
LA-UR- / /-- 0 C0::<"O
Approved for public release;
distribution is unlimited.

~)
Los Alamos
NATIONAL LABORATORY

--- EST.1943 ---

Title: Error Minimizing Algorithms for Nearest Neighbor Classifiers

Author(s): Reid Porter
Don Hush
G. Beate Zimmer

Intended for: SPIE Electronic Imaging
23 - 27 January, 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos Nalional Security , LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-ACS2-06NA2S396. Byacceplance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license 10 publish or reproduce lhe
published form of this contribution, or to allow others to do so , for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identity this article as work performed under the auspices of the U.S. Department of Energy . Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness .

Form 836 (7/06)

Error Minimizing Algorithms for Nearest Neighbor Classifiers

Reid B. Portera and Don Husha and G. Beate Zimmerb

aSpace and Remote Sensing Sciences Group,
Los Alamos National Lab, Los Alamos, NM 87544, USA.

bDept. of Mathematics and Statistics, Texas A&M University-Corpus Christi,
6300 Ocean Drive, Corpus Christi, TX 78412-5825, USA.

ABSTRACT

Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise
removal. In recent years we have suggested their application to classification problems, and investigated their
relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous
domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate
their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in
which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. We use
the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type
classifier for low false alarm rate applications. We report results on both synthetic data and real-world image
data.

Keywords: Stack Filters, Classification, Nearest Neighbor

1. INTRODUCTION

Nearest Neighbor classifiers define a family of pattern classifiers that are both simple to understand and imple­
ment. Much of the early work in Nearest Neighbor methods was inspired by the proof that with infinite samples
the performance of the Nearest Neighbor method is no worse than twice the Bayes erroL l At the same time,
it was also observed that the Nearest Neighbor approach assumes the class conditional densities are constant
within local neighborhoods of training samples and that this can lead to high bias (and poor performance) in
problems with high dimensions. A large number of extensions and modifications to Nearest Neighbor classifiers
are motivated by this observation. 2 We point out that this assumption is also key to a number of the advantages
associated with Nearest Neighbor approaches. Specifically, the extension to multi-class classification becomes
straightforward, and the implementation and application of the classifier to future data can be highly optimized.

Another unique characteristic of Nearest Neighbor classifiers is that training does not involve fitting a model
to the training data. While this has advantages (such as simple implementation) , it also has disadvantages
which limits the applicability of Nearest Neighbor methods. Specifically, there is no direct link to empirical error
minimization which means there is no consistent way to control classifier complexity, compress the training set
and/or design Nearest Neighbor classifiers for cost sensitive problems. In this paper we present a new classification
framework based on Stack Filters that directly minimizes empirical error based loss functions under the Nearest
Neighbor assumption that class conditional densities are locally constant. This leads to a new Nearest Neighbor
variant that inherits many of characteristics of traditional Nearest Neighbor classifiers, and also many of the
advantages of empirical error minimizing classifiers.

In the next section, we provide a more formal summary of the main results. In Section 3 we summarize Stack
Filter Classifier framework and in Section 4 describe how it relates to Nearest Neighbor classifiers with the help
of synthetic experiments. In Section 5 we make use of error minimization to design Nearest Neighbor classifiers
specifically for the low False Alarm rate regime in several practical applications.

E-mail: rporter@lanl.gov, Telephone: (505) 6656117

2. SUMMARY

In two-class classification we are given a training set of N points, x E]RD, with labels , y E {-1 , 1}, drawn at
random according to a probability distribution PX,Y' The task is to find a decision function F : jRD ~ jR that
has small error: e(F) = Ex,y(I(sgn(F(x)) i- y)). PX,y is unknown and we therefore seek a decision function
that minimizes an empirical estimate, known as the misclassification risk:

N

e(F) = I)I(sgn(F(x(n))) i- y(n)). (1)
n=l

Consider the memory based function class defined by the Nearest Neighbor classifier :

n* = argmin{d(x(n),x)} (2)
n

F(x) = y(n*) (3)

where d(x (n), x) is the distance between a test point x and a training sample x(n). We observe that F(x)
minimizes Equation 1, and assuming there are no class conflicts in the training set, it obtains zero training error.
Of course the classifiers real performance (e(F)) in the finite sample case is unknown. Part of the problem
is that Nearest Neighbor classifiers do not belong to any obvious function class, and therefore it is difficult to
characterize class complexity. In this paper we present a new function class which provides good control on class
complexity and leads to Nearest Neighbor like classifiers. Specifically, our approach finds solutions of the form :

n* = argmin{d(x(n),x) - c(n)} (4)
n

F-y(x) = y(n*) (5)

where c(n) is a sample dependent constant. The constants are found by solving one of a number of optimization
problems which select empirical error minimizers from a nestled set of function classes indexed by T

F-y(x) = arg min e(F)
FEF.,

(6)

where F-y ~ . .. ~ Fl ~ F At / = 0 the classifier obtains zero error on any (non ambiguous) training set, c(n)
are equal for all samples, and the classifier is the standard Nearest Neighbor classifier. At / = 00 the size of the
function class is two and c(n) will be assigned in such a way that samples from one class will always be closer to
any given test point. That is, we can throwaway all samples and simply keep the label of the majority class. For
intermediate values of /, the approach provides a systematic way to trade empirical error with class complexity
where increasing numbers of training samples, which do not contribute to the final Nearest Neighbor classifier,
can be thrown away.

3. APPROACH

3.1 Stack Filter Classifiers

Stack Filters include the Median , Order Statistics , and Weighted Order Statistics as sub-classes.3 Stack Filters
are uniquely defined by a positive (or monotone) Boolean function and therefore represent a discrete, or finite
function class . Given a real valued input vector x = (Xl, X 2 , . . . , X D) the Stack Filter will select one of the input
components as its output value. In two dimensions, the only nontrivial Stack Filters are the minimum and
maximum functions. To increase the expressive power of the function class Generalized Stack Filters expand the
input space by adding T monotonically increasing and evenly spaced constant offsets (ti) to each component:

xt = [{ X I - t I, X I - t2, ... , X I - tT}, .. . , {x D - t I, x D - t2, ... , X D - tT } 1 (7)

In addition, since Stack Filters are constrained to a monotonic function class it is also common to mirror
the expanded input vector: xm = [xt, -xt]. The monotonicity constraints imply that a Stack Filter, F(xm),
commutes with thresholding:

F(xm) ~ t ¢=:::} f(xm ~ t) = 1 (8)

where ~ is a thresholding function parameterized by a scalar t that produces a binary vector with components
xbi = l{xmi~t). Equation 8 tells us that a thresholded Stack Filter, F(xm) ~ 0, reduces to positive Boolean
function f(xb) applied to thresholded inputs xb = xm ~ O. The fact that Stack Filters commute with thresholding
is also key to efficiently finding a Stack Filter minimizer for Mean Absolute Error. The property can also
be exploited to optimize classification risk functions. To find the Stack Filter which minimizes zero-one or
misclassification risk (Equation 1), we define a partially specified Boolean function where we assign class labels
to the rows of a look-up table that appear in the (input expanded) training set thresholded at zero. Since the
xb associated with each training sample has Hamming weight DT, there can be no violation of monotonicity
constraints, and the look-up table is guaranteed to be a positive Boolean function.

Note, that if we choose a sufficient number of thresholds during input expansion (and assuming training
samples are unique), training samples fall into unique partitions, and the positive Boolean function obtains zero
error on the training set. However, the corresponding look-up table is extremely sparse, and a large fraction of
the input space remains undecided.

In previous work we suggested various ways to infer undecided entries in the Stack Filter look-up table by
choosing different risk functions. 4 We found that large margin risk functions, which require the Stack Filter
output to be further away from zero (yF(xm) > t), have both practical and theoretical interest. It led to the
notion of rank-order margin where we require the Stack Filter to select an input component that is , samples
greater than the median for class 1, and, samples less than the median for class -1. This also means the positive
Boolean function is applied to different inputs (xb = xm ~ t for class 1). Each training vector has less l's for
class 1 and more 1 's for class 0, which increases the number of monotonicity constraints that must be satisfied
as margin is increased. Geometrically, training samples correspond to tiles of increasing size in the input space
and the monotonicity constraints require that tiles from different classes do not overlap.

More formally, to find a Stack Filter that minimizes misclassification risk we use the same integer linear
program that is used to optimize Stack Filters under Mean Absolute Error. We associate a binary variable z(n)
to each training sample. This variable determines whether the sample is kept or not: 1 = keep, 0 = discard.
Our objective is to maximize the sum (keep as many samples/tiles as possible) subject to the constraint that
tiles associated with samples from different classes are not allowed to overlap.

maximize
subject to

and

'E:=l z(n)
z(n) + z(m) ~ 1 if 6.~,m > 0 and y(n) > y(m)

z(n) E {O,I} Vn E {I, ... IV}
(9)

where 6.~,m is greater than zero when tiles associated with x(n) and x(m) overlap. The size (and shape) of tiles
are determined by the value of margin, and the thresholds used in the input expansion in Equation 7. For a
more detailed example and further discussion of this topic see. 4 On the left of Figure 1 we show an example of
this optimization problem. There are four training samples in total indicated by crosses. Class 1 tiles at margin
, are drawn with a solid line. Class -1 tiles at margin, are drawn with a dotted line. Tiles from different classes
that overlap (tiles that intersect the shaded area) introduce constraints into the linear program. In the middle
panel of Figure 1 we show a hypothetical solution to Equation 9 where two tiles have been removed to satisfy
the constraints.

In previous work we also suggested an alterative to the large margin misclassification risk function for Stack
Filter Classifiers. We call this risk function, the large margin hinge risk, and it is analogous to the hinge risk
used in SVMs:

Tiles at margin Y

x
X

r .. ··················· ············l
r········ .. ··· X

j Z) X 'r Z

'!
:;

X

i Z3 = 1
t ;

Tiles up to margin Y

Ytiles Y tile

IJ~~
@J.l.
: 1

;I~ I I
I ::K! I ~ ,,,'e,' I ~ I' m: ; ; Ytdes

l = J

Figure 1. Geometric view of OHM training. Left) The objective function aims to maximize the size of tiles up to width
"I and Right) producing a variable.

N

e(F) = Lh - y(n)F(x(n)))+ (10)
n=l

In this case, we keep all the tiles associated with a training sample as the margin is increased up to 'Y. The
optimization problem is identical to Equation 9, but we have N'Y variables instead of N. This new optimization
problem is shown on the right in Figure 1. The hinge risk has a number of advantages over misclassification risk
for Stack Filter classifier design, however the optimization problem depends on 'Y, which depends on the size of
the input expansion. In order to make Stack Filter Classifiers as general purpose as possible, we would like the
size of the input expansion to be very large, and this means that Equation 9 gets expensive quickly. In the next
section we introduce a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis
Machines (OHM), which provides an efficient solution to this problem.

3.2 Ordered Hypothesis Machines

Due to the monotonicity constraints, the tile associated with training samples in Stack Filter Classifiers form an
increasing set as margin is increased. A simple, and convenient way to parameterize these increasing sets of tiles
is to to imagine letting the distance between thresholds to shrink to zero (or conversely the number of thresholds
in Equation 7 to grow to infinity). The margin parameter becomes continuous and the overlap between tiles can
be calculated directly:

6~ m = max(2'Y - d(n, m), 0)
whe~e d(n, m) = Ilx(n) - x(m) lip

(11)

When p = 00, the distance function 111100 defines a sequence of square tiles analogous to the expansion used in
Equation 7. In this paper we will use spherical tiles, based on p = 2: d(n, m) = Ilx(n) - x(m) 112.

Finding Ordered Hypothesis Machine (OHM) Classifiers that minimize zero-one risk is identical to finding a
Stack Filter Classifier classifier that minimizes zero-one risk except that 'Y indexes tiles differently. The problem
is illustrated on the left in Figure 2 and the optimization problem in Equation 1 is used to find the hypothetical
solution shown in the middle panel where monotonicity constraints have been satisfied.

The advantage of Ordered Hypothesis Machines becomes more obvious when we consider minimizing the
hinge risk in Equation 10. In this case we replace the binary variables z(n) with real valued variables v(n), that
represent the number of tiles associated with each training sample. The generalization of the linear program is
straightforward:

i(Y)(......

.......
...............

..... ".

y x
1-, = 1

'.

.......

€Jf;l
••••••• • h ••• ••• {~ •• V 4)(.. \

......... ~ ... V3)(..... \ . r·.· ·····
..

"'"
.. '

Figure 2. Geometric view of OHM training. Left) The objective function aims to maximize the size of tiles upto width l'
and Right) producing a variable.

maximize
subject to

and

L::=l v(n)
v(n) + v(m) :::; 41' - ~~,m if y(n) > y(m)

0:::; v(n) :::; 21' 'Vn E {1, ... N}
(12)

where ~~ m is defined by Equation 11 and l' is a free parameter. Geometrically, we try to maximize the
size of tiles, ~entered on training samples, up to a maximum radius of". In addition, tiles with similar labels
can overlap, but tiles with different labels must not overlap. On the right in Figure 2 we show a notional result
where the size of the tiles have been chosen to satisfy the monotonicity constraints.

Unlike the Stack Filter Classifier , the OHM formulation of hinge risk does not increase the number of variables
in the problem. In the Stack Filter problem, the variables are integer z E 0,1 and we solve a linear program
relaxation with a uni-modular constraint matrix. This means we can threshold the real-valued variables found
with the linear program to obtain the exact integer solution. In the OHM formulation we solve the same linear
program but the constraint matrix is no longer uni-modular (since we introduce non binary values into the right
hand side of the constraint equations) and we use the real-valued variables found by the linear program directly
as the tile radii.

4. RELATIONSHIP TO NEAREST NEIGHBOR CLASSIFIERS

After training OHM classifiers we have a set of tiles associated with training samples. To apply this classifier
to a test point, we need to test if the point falls within a tile. Due to the monotonicity constraints, the point
is guaranteed to fall in at most one tile . However, the point may also fall outside of all tiles in which case it's
value is undetermined. Note that as the dimension of the problem increases, it is more and more likely that
a test point will be undetermined. Various schemes for assigning labels to undetermined points are possible
(e.g. assign label to the class which largest prior probability) that mayor may not work better in different
applications. We suggest Nearest Neighbor type classifiers are particularly appropriate for OHM classifiers since
in our formulation, finding the nearest neighbor is equivalent to finding the nearest tile.

For example, in the case of zero-one risk, an OHM classifier is defined by a set of the tiles centered on a
subset of the training samples and all tiles have the same size. To test if a point is within a tile, we implement
a Nearest Neighbor type search and determine if the distance is within l' of the training sample. At l' = 0 all
(nontrivial) test points are undecided and if we are using the Nearest Neighbor classifier to assign labels, then
the OHM classifier and the Nearest Neighbor classifier are identical. As l' is increased, OHM classifiers will
discard more and more training samples. In this case, applying the OHM classifier is identical to applying the
Nearest Neighbor classifier to the reduced training set. A natural extension to this approach, is to use K-Nearest
Neighbor rules to assign labels to undecided points. The relationship between the risk function and the final
classifier is less clear in this case, however we investigate the relationship in our experiments.

In the case of the hinge risk OHM classifier also derives a set of tiles centered on a subset of the training
samples. However in this case each tile can potentially have a different size. As defined by Equation ??, the
classifier is implemented through a modified nearest neighbor rule where distances to the (remaining) training
samples are translated by a sample specific constant. To apply this classifier to a test point , we simply find the
Nearest Neighbor using the modified distance measure. This is equivalent to finding the nearest tile to the test
point. Again, K-Nearest Neighbor rules could also be used with these modified distances, and we investigate the
approach in our experiments.

0 .4r;=_=_=_=:;;KN:;:;:Nc="l--~---"'---~---~--1

-OHMl
0.39 -OHM:)

-OHMS
-OHM'

0.38 -OHM49

, ,
0.37

~
.~ 0.36

L1J

g 0.35
L1J

0.34

0.33

0.32

O . J 'OL---~--~'9'----"'29---3:'c9-----'4~9 __ -,J

K for Nearest Neighbors and Margin for OHM
19 29 39 49 59

K for Nearest Neighbors and Margin for OHM

Figure 3. Comparison of misclassification and hinge risk compared to K-Nearest Neighbors on 4 dimensional Gaussian
data.

~

O" rr=_=_=_:::;KN:;:;:Nc="l--~---"'---~---~--1

-OHM'
-OHM3

0.55 -OHMS
-OHM7
-OHM49

0.5

,
, '--- ..

,'" " ...
(Q 0.45 ,
.§
III
g 0 .4

L1J

0.35

0.3

, , , ,

, , , ,

,

,
,,- ,

, , , ,

O.250:-----7-------;;'9c-----2~9----;3~9----;4~9 ------!S·9

K for Nearest Neighbors and Margin for OHM

0.6rr=_ =_=_=:;;KN:::;N=x:;----.---..,------r----~--,
-OHM'
-OHM3

0.55 -OHMS
-OHM7

0.5

~

.~ 0.45

III
g 0.4

L1J

0.35

0.3

-OHM49

, ,
,

, , , ,

, , ,
, ,

, , ,

19 29 39 49
K fOf Nearest Neighbors and Margin for OHM

59

Figure 4. Comparison of misclassification and hinge risk compared to K-Nearest Neighbors on chi-squared data.

We investigate the relationship between OHM classifiers and Nearest Neighbor classifiers with synthetic
experiments. For the first dataset used in Figure 3, we chose overlapping independent normal random values in 4
dimensions: J.LI = 5, ~I = 1 and J.L-I = 01i, ~_I = 0.751. For the dataset used in Figure 4, we used a Chi-square
distribution with 3 degrees of freedom. In each of 4 dimensions the samples of class 1 are of the form 10 - X
and for class -1 samples are of the form 5 + X. We used 100 samples in training and 1000 samples to estimate
performance, and we average the results over 100 trials.

In both figures we compare standard Nearest Neighbor classifiers to OHM classifiers. On the x axis we vary a

50 50 .---... ------- - - - zero-one -- - - - zero-one
, -hiogo

45 --45 , -hingo

, , , , , ,
40 , 40 , , , ,

il 3S
, il35

,
I

" I " I

i 30

I i '0
I

I I
I

~ I ~ I
I

~ 25
I ~ 25 I I

~ I ~ I

~ 20
I ~ 20

I

I I

1l I
~ I

E I ~ I

~ 15 ~ 15
I

I I

10 10 I
I

I
I , ,

-, I

0
0 0.1 0.2 0.3 OA 0.5

0
0.0 0 0.2 0.3 0.4

Rank-Order MBtgin Rank-Order Margin

Figure 5. Number of samples discarded (on average) as I is varied for Left) The Gaussian data used in Figure 3 and
Right) The chisquared data used in Figure 4.

free parameter and on the y axis we show the estimated performance. For Nearest Neighbors the free parameter
is K, and for OHM it is 'Y . We show multiple results for OHM, each corresponds to a different value of K used
when applying the classifier. Note that K is not used in OHM training. Also note, that the performance of K
Nearest Neighbor and OHM at 'Y = 0 for the various values of K, should be identical.

Several general observations can be made about Figures 3 and 4. For Guassian data we observe that increas­
ing K increases performance for Nearest Neighbor methods, and for Chi-squared data increasing K decreases
performance.

When Nearest Neighbors is compared to OHM classifiers optimized under zero-one risk, we observe that the
best performance obtained by OHM is a value of K for which I = O. For the Gaussian data this occurs at
the maximum K = 49 and for Chi-square data this occurs at the minimum K = 1. In contrast when Nearest
Neighbors is compared to OHM classifiers optimized under the hinge risk there is a non-zero value of 'Y for which
the OHM classifier has slightly better performance than the best Nearest Neighbor classifier. In the Gaussian
case, OHM with K = 5 and 'Y = 13 obtains similar peformance to NN with K = 49. And in the Chi-square case,
OHM with K = 1 and 'Y = 5 outperforms NN with K = 1.

Perhaps more important than the improvement in performance obtained by OHM classifiers optimized under
hinge risk is the reduced cost associated with implementing OHM classifiers in comparison to the traditional
Nearest Neighbor classifier. In Figure 5 we show the number of training samples thrown away under zero-one
and hinge risk optimization for the Gaussian (left) and Chi-square (right) problems. By matching the margin
of best hinge loss solutions we observe that close to 10 samples were thrown away in the Gaussian problem,
and approximately 5 samples in the Chi-square problem. In addition for the Gaussian problem, we observe that
OHM can obtain similar performance to NN with a much smaller K. For example, the best OHM classifier for
K = 1 does nearly as well as the K = 49 NN classifier, and at K = 5 it does better.

5. COST-SENSITIVE CLASSIFICATION

In many practical applications, we would like to treat the errors associated with different classes in different ways
e.g. many applications require a very low false alarm rate. In some cases this can be achieved by simply adjusting
an output threshold associated with a pre-trained classifier. However, in Nearest Neighbor type classifiers, and
in general, this is not possible. In addition, the class membership proportions represented in the training set are
often different to the class membership proportions that are desired in the final application. What we would
like is a training algorithm that can use all the training data available and also target a desired false alarm rate
directly. Several general purpose methods have been proposed for designing cost insensitive classifiers (such as

Nearest Neighbors) in a cost sensitive way.5 In this paper we approach the problem by considering alternative
risk functions for OHM classifiers.

Specifically, we investigate a one sided risk function that approximates a Neyman Pearson design criteria:
maximize the detection rate subject to the false alarm rate being::; a , where a is a user specified value. The
approximation arises from our use of hinge risk instead of zero-one risk. We associate N variables v(n) associated
with training samples from class 1 (the target class) and M variables v(m) associated with training samples from
class -1. The one sided linear program is:

5.1 Anomaly Detection

maximize
subject to

and
and

L:~=l v(n)
L:~=l v(m) :::: 2')' * M * (1 - a)

v(n) + v(m) ::; 4')' - 6~,m
0::; v(n), v(m) ::; 2')'

(13)

Anomaly detection is a general purpose application where there is often an upper limit on the amount of work,
or the number of candidate anomalies, that a human user can inspect . On the left in Figure 6 we show a
two dimensional synthetic experiment which captures some of the key ingredients of the anomaly detection
application. The data is drawn from a Gaussian distribution. We label all samples that fall outside of the 0.15
probability level set as anomalies and label the samples that fall inside as normal. The task is to build a classifier
to approximate the level-set and identify the anomalous samples using only the data (i .e. sample labels are not
provided to the learning algorithm).

+

0.8

0.6

0.4

0.2

o

-0.2

-0.4

-0.6

-0.8
+

-1'--------~· --------~, ---+----~------~
-1 -0.5 0 0.5

O. '6,----r---~----~--~--~----~r=~~=.N==Nl=il

0.15

0.14

0.13

~ 0.12

.§
LYl 0.11

g
W 0.1

0.09

,
O.OB , , ,
0.07

, ,
,

, , , ,

.A----I-_-~~~!!
-KNN49
- - -OHM

.l -r j

D .06'----...:L-----'-----~--~----'-----~--~-----'
4 6
Dimension of problem

Figure 6. Left) Identifying the 0.025 probability level set of a Gaussian Distribution and Right) Performance as dimension
increases.

A solution method for anomaly detection which employed a surrogate classification problem was presented
in. 6 The unlabeled data is assigned a label of -1, and samples for class +1 are artificially generated based on
our prior knowledge of anomalies. Lacking prior knowledge, a natural choice is to draw samples from a uniform
distribution. In our experiments we draw the same number of samples from the uniform distribution as we have
in the original data. We then train two different types of classifier.

For K-Nearest Neighbors we apply the standard algorithm on a sub-sampled training set. That is, we
reduce the number of anomalous samples to 0.15, our expected alarm rate, and we use an artificially generated
validation set to select the best classifier for various values of K. For OHM we use Equation 13 and use an
artificially generated validation set we choose the values of ')' and a. On the right in Figure 6 we show the

average performance over 20 runs as the dimension of the problem is increased . OHM using 1 Nearest Neighbor
is able to clearly outperform the naive KNN methods in this problem.

5.2 Hemi-Supervised Learning

Another type of application where cost-sensitive classification becomes important is hemi-supervised learning. In
hemi-supervised learning we are given examples and class labels for one class (often the target class) as well as a
number (often much larger) of unlabeled samples. The unlabeled samples are assumed to contain both examples
of the target class as well as a background class. In previous work we showed how this problem could also
be cast as a surrogate classification problem 7 and developed a solution method with Support Vector Machines
(SVMs). In recent works (also reported at this conference) we describe an image processing application where
hemi-supervised learning proved useful. In summary, we have a segmented image and a user begins to identify
segmented regions which belong to the background. We would like to use machine learning to predict the user's
future selections, thereby reducing the amount of work required by the user. An example of the images and the
segmentation used in the experiment is shown on the left in Figure 7.

0.9

0.8

0.7

~
&. a
c

.Q 0.5
U
Q)

Q) 0.4
o

0.3

0.2

0.1

oL-----~~~--~----~~~==~~
10' 10' 10'

Number of false alarms

Figure 7. Left) Example imagery showing the regions that must be classified as either background or foreground. Right)
The performance of the various machine learning approaches to this problem.

We compare three different classifiers for this problem. 1) NN: We use a one-sided variant of Nearest Neighbor
where we measure the minimum distance to a training example. We threshold this distance at various values to
produce a Receiver-Operator Characteristics Curve (ROC-Curve) . 2) SVM: We train a SVM using the hemi­
supervised method 7 and we obtain a classifier whose performance can be represented as a point in the ROC
space - circles in Figure 7. Details of the SVM parameters are provided in.s 3) OHM: We train a classifier using
Equation 13. For the purposes of comparison we choose 'Y and (} such that the alarm rate of the classifier is
approximately equal to target class probability. In practice this quantity may not be known and this is a topic
of future work. Results are represented as triangles in Figure 7.

The experiment involved 5 training segments, and we observed a large variance in the performance of all
algorithms. By including the unlabelled data in the optimization OHM was able to outperform the Nearest
Neighbor approach in some parts of the ROC curve. In general, the parameter settings for the SVM favored
lower false alarm rates compared to OHM which made comparison difficult, although we expect the SVM would
outperform OHM in general since it relaxes the constant class conditional density assumption .

6. SUMMARY

We have presented a novel framework to produce Nearest-Neighbor like classifiers that optimize empirical error
based risk functions. This approach can be used to optimize alternatives to misclassification error that may

..

be better suited for particular applications, e.g. anomaly detection and herru-supervised learning . We suggest
future work in this area should investigate the relationship between OHM and K-Nearest Neighbors where K is
greater than 1. As shown in experiments, the smoothing effect of K Nearest Neighbors improves performance
in some problems, but the relationship to risk minimization is unclear. Formalizing this relationship may shed
light on where and when K-Nearest Neighbors is successful and also suggest new ways to relax the constant class
conditional density assumption.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the U.S. Department of Energy through the LANLjLDRD Program
for this work

REFERENCES

[1] Cover, T. and Hart, P., "Nearest neighbor pattern classification," Information Theory, IEEE Transactions
on 13, 21 - 27 (Jan. 1967).

[2] Hastie, T. and Tibshirani, R., "Discriminant adaptive nearest neighbor classification," IEEE Trans. Pattern
Anal. Mach. Intell. 18,607-616 (June 1996).

[3] Wendt, P., Coyle, E., and Gallagher, N., "Stack filters," IEEE Trans. on Acoustics, Speech, and Signal
Processing 34,898-910 (1986).

[4] Porter, R. B., Zimmer, G. B., and Hush, D., "Stack filter classifiers," in [Mathematical Morphology amd Its
Applications to Signal and Image Porcessing, 9th International Symposium, ISMM 2009, Groningen, The
Netherlands, August 24-27, 2009 Proceedings], Wilkinson, M. F. and Roerdink, J., eds., Lecture Notes in
Computer Science 5720, 282-294, Springer (2009).

[5] Domingos, P., "Metacost: A general method for making classifiers cost-sensitive," in [In Proceedings of the
Fifth International Conference on Knowledge Discovery and Data Mining], 155- 164, ACM Press (1999).

[6] Steinwart, 1., Hush, D., and Scovel, C., "A classification framework for anomaly detection," J. Mach. Learn.
Res. 6, 211-232 (December 2005).

[7] Porter, R., Ruggiero, C. , and Hush, D., "Density-based similarity measures for content based search," in
[Proceedings of the 43rd Asilomar conference on Signals, systems and computers], A silomar '09, 390-394,
IEEE Press, Piscataway, NJ, USA (2009).

[8] Porter, R., Ruggiero, C., Hush, D., Harvey, N., Kelly, P., Scoggins, W., and Tandon, L., "Interactive image
quantification tools in nuclear material forensics," in [Proceedings of ISf3TjSPIE Electronic Imaging], SPIE
(2011).

