LA-UR-12-22688

Approved for public release; distribution is unlimited.

Title: JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

Author(s): Jackson, Jay M.

Lopez, Jacquelyn C. Wayne, David M. Schulte, Louis D. Finstad, Casey C. Stroud, Mary Ann

Mulford, Roberta Nancy MacDonald, John M. Turner, Cameron J. Lee, Sonya M.

Intended for: JOWOG 22/2 Actinide Chemical Technology, 2012-07-09/2012-07-13

(Aldermaston, ---, United Kingdom)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

LANL Overview

Roberta Mulford

MET-1 (Actinide Processing Support)

Manufacturing Engineering & Technology Division

JOWOG 22/2 – Actinide Chemical Technology

July 9-13, 2012

AWE, Aldermaston, UK

Associate Directorate-Plutonium Science and Manufacturing

ADPSM Mission Statement

 The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs.

Plutonium Science and Manufacturing (PSM)

Rev. 05/01/12

Associate Director Chief of Staff Support Services Jeff Yarbrough Anne Menefee Taylor Van Buren, Business Ops Mgr Shurette Neuman, Human Resources **Deputy Associate Director** Office Administrator Janine Detter, Human Resources Tim George Debbie Rovbal **Technical Advisor** Seaborg Director **Brett Kniss** Albert Migliori Integrated Program **Nuclear Component** Manufacturing **Nuclear Process TA-55 Facility** TA-22 Facility Management Operations Engineering & Infrastructure Operations Operations Jim Ostic, PD Steve Schreiber, DL Technology Tim Nelson, DL Kirsty Archuleta, COS Dominick Palamara, DL (Vacant), COS Director Director Annie Vigil, COS Robert Mason Reanna Sharp-Geiger Pu Sustainment & NPI-1 Nuclear Materials Mgt. NCO-1 Stephanie Salazar, COS W78 LEP Elizabeth Ronquillo, GL (A) Weapon Component MET-1 Deputy Director Brad Storey, PD (A) Manufacturing & Actinide Engineering and **Deputy Director** Stephanie Archuleta (A) Surveillance NPI-2 Infrastructure Ops. Science Stu McKernan Fawn Coriz, GL Tresa Yarbro, GL **DSW & Life Extension** Kent Abney, GL **Engineering Manager** Program Chief Engineer Jason Apperson NCO-2 **NPI-3 Process Equipment** Juan Corpion, PD (A) MET-2 Derek Gordon **Actinide Process** Maintenance and Pit Integrated ESH & Q Manager Chemistry Decontamination Services Facilities & Nuclear Technologies ESH & QA Manager Stephanie Archuleta Materials Tony Drypolcher, GL Matt Johnson, GL Brad Smith, GL Dianne Wilburn Russell Stone (A) Judy Eglin, PD (A) **NPI-4 Business Services** NCO-3 MET-3 **Operations Manager HE/WF Operations** Detonator & Cable Steve Boerigter, GL **Detonator Fabrication** Chuck Tesch Manager Manufacturing & Engineering Steve Westerhold Development Ted Cousins, GL NPI-5 Operations Support Maintenance Manager Jeff Kinzer, GL David Costa, GL **Greg Melton** Maintenance Manager MET-4 Hugo Ojeda NCO-4 NPI-6 Deployed Security, **Quality Control** Rad Control Operations Pit Disposition & Engineering MC&A Emergency Manager Operations Support Precision Fabrication Jim Valenzuela, GL (A) Management and Property Jerry George Manager Craig Van Pelt, GL Services Lorraine Kinzer Kim Nelson, Security Mgr. TA-50 Facility & NCO-5 Security Manager RLUOB Actinide Manufacturing **NPI-7 Waste Services** Trish Quin Amanda Bean, GL Bob Dodge, GL **Operations Manager** Cliff Kirkland

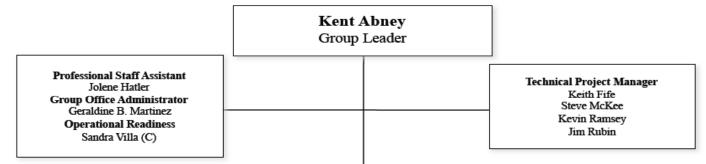
NPI-8 Equipment Installation

Mark Dinehart, GL

Maintenance Manager

Robert Sanchez

Actinide Engineering and Science (MET-1)


Mission Statement

 We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists.

Manufacturing Engineering and Technology Division (MET-DO) Actinide Engineering and Science (MET-1)

Disassembly & Metal Production

Dave Romero (12) First Line Manager

Tom Allen
Alonso Archuleta
Mike Brooks
Wendel Brown
Danny Gallant
David Huerta
Matt Jackson
Steve Levings (C)
David Lohmeier
David A. Parkinson (S)

Alfonso Vargas

Joshua Williams (S)

Steve Willson

Applied Science & Packaging

Rene Chavarria (14) First Line Manager

John Berg
Scott Breshears
Harvey Decker
Gary Herrera
Brett Hill (S)
Jane Lloyd
Kristy Long
Josh Narlesky
John Park
John Steuben (S)
David Streusand (S)
Mary Ann Stroud
Cameron Turner (GS)
Kirk Veirs

Dave Wayne

Pu238 Manufacturing & Surveillance

Jackie Lopez (15) First Line Manager

Brian Berger (S)
Joe Blaylock
Brent Espinoza
Joseph Hickey
Jeff Huling
Jared Mason
Stephen Miehls
Paul Moniz
Roberta Mulford
Stan Pierce
Allen Pittman (S)
Darren Quintana
Pat Reardon
Tom Ricketts

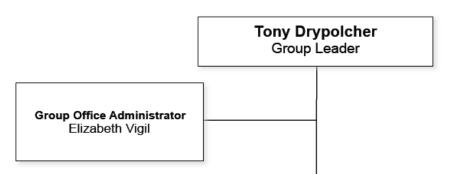
Diane Spengler Mike Stoll

Timothy Schollenberger (S)

Pu239 Aqueous & Materials Operations

Sammi Owens (12) First Line Manager

Sheldon Apgar Casey Finstad John Macdonald Larry Peppers Hope Quintana (S) Charles Richardson Brad Schake Louis Schulte Brad Skidmore Chris Thom Maybelle Vigil


Actinide Process Chemistry (NCO-2)

Mission Statement

 Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in a world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.

Nuclear Component Operations Division (NCO-DO) Actinide Process Chemistry (NCO-2)

Material Packaging

Dennis Padilla

First Line Manager

James Aragon
Doug Ditsworth
Greg Kaczar
Annabelle Lopez
David Martinez
Ed Romero
Leonard Trujillo
Chuck Williams
Kennard Wilson

Pyrochemical Processing

Alan Bond

First Line Manager

Leo Archuleta Jeff Elliott Xavier Martinez Kellen Nelson Leo Urbina

Aqueous Chloride Processing

Ron Nakaoka

First Line Manager

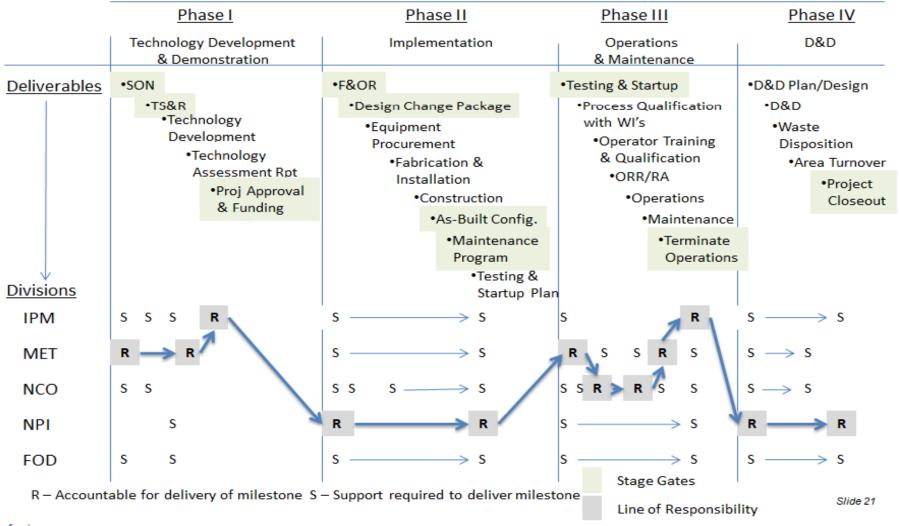
Lawrence Aragon (Form-B to NCO-5) Steven Archuleta Brenda Griego Joe Ray Martinez Sylvia Nunn (Form-B from NCO-5) Victor Salazar Chester Smith

Felix Valdez (Form-B to NCO-4)

Nitrate Processing

Ron Chavez

Team Leader


Georgette Ayers Yvonne Martinez Greg Ortega Marvin Romero Felice Valdez

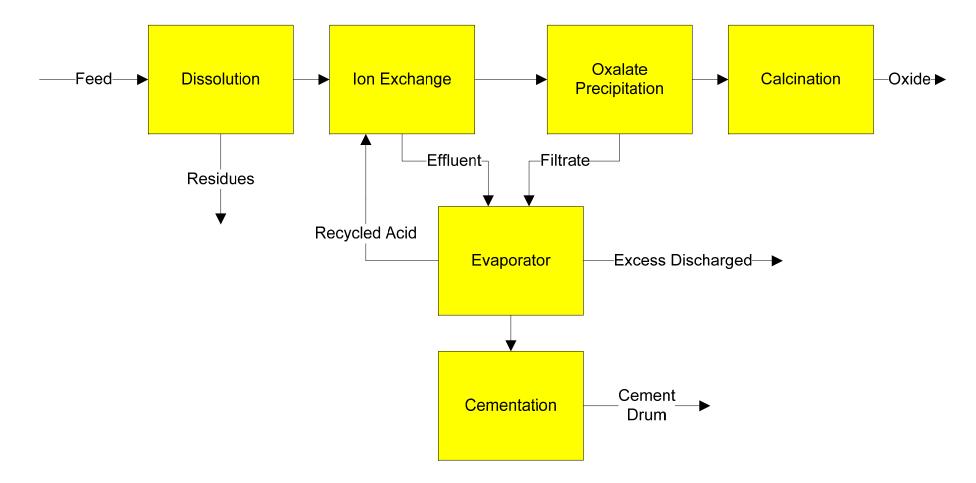
PSM Organizational Responsibilities

Equipment Lifecycle

Aqueous Nitrate Processing at Los Alamos

Casey Finstad, Mary Ann Stroud

Roberta Mulford, presenter


Presented to JOWOG 22-2 July 10, 2012

Aldermaston Weapons Establishment

Aqueous Nitrate Flowsheet shows 4 major steps

Ceramic or metal feed is from several sources

Vault

• Oxides (LZB, PMB), residues, sweepings (VTB)

Casting Skulls, Anode Heels

• Suspect chloride oxide

PuBe

• High purity mixed metal oxides

Slide 3

Pu residues are dissolved, usually in a batch process

- Add 15.6M* nitric acid
- Add HF
- Sparge with argon or air to mix
- Slowly add feed

Dissolution requires time and often, fluoride catalysis

Reflux ~96 °C for at least 4 hours

Evaporation and Condensation

$$PuO_2 + 6HNO_3 \stackrel{HF}{=} >$$

 $Pu(NO_3)_6^{-2} + 2H_2 O + 2H^+$

Pu +
$$6HNO_3 \stackrel{HF}{=} >$$

Pu $(NO_3)_6^{-2} + 2H_2 + 2H^+$

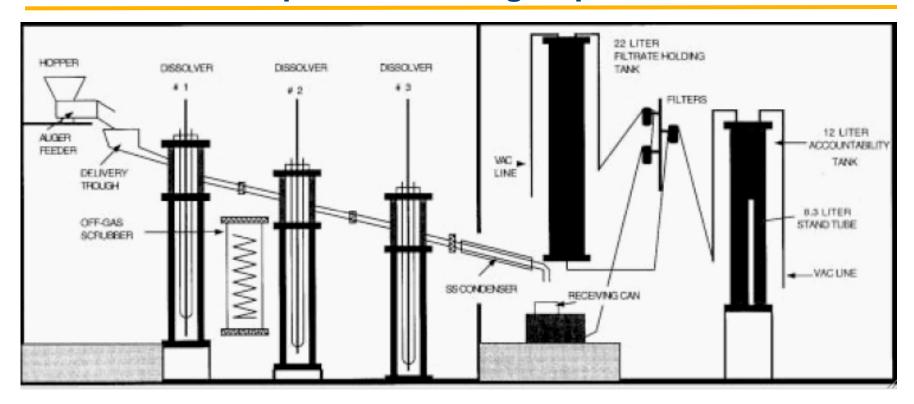
Slide 5

Fluoride ion removed from system after dissolution

Add aluminum nitrate

$$AI(NO_3)_3 + 6HF ->$$

 $AIF_6^{-3} + 3H^+ + 3HNO_3$

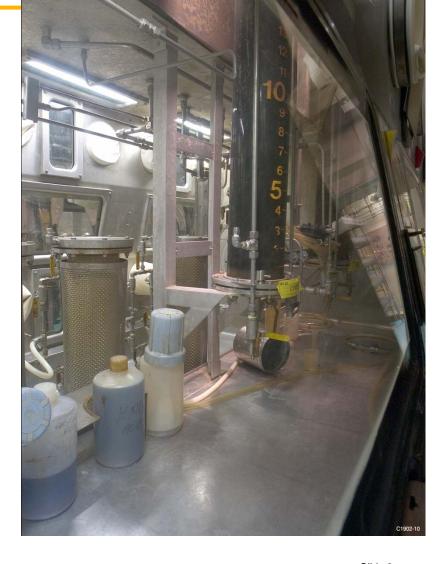

- Filter and Rinse
- Chloride concentration determination

determination as necessary, based on feed (e.g. skull)

Cascade Dissolvers can provide continuous feed process for larger quantities

- Ensure air is flowing to airlift
- Bring acid in dissolvers to ~90-100 C
- Add feed with CaF2 into hopper
- Start acid drip

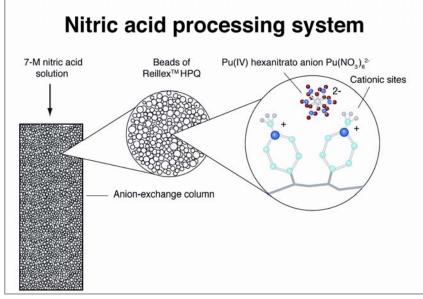
Ion Exchange requires preparation of feed and column


Feed Treatment

- Verify SNM
- Adjust Molarity ~ 7M
- Optional Peroxide Treatment
 - Pu(VI) -> Pu(IV)

Condition column

- ~7M nitric acid
- 10 liters added at 30 liter/hour



Slide 8

Ion Exchange selectively captures plutonium

- Pumped through the three serial columns
- Loading Rate varies with Pu concentration
 - 50-90 liters/hr

Plutonium purified by washing ion exchange column

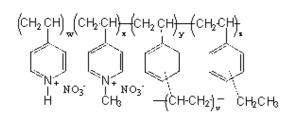
- 5M acid
- Varying Volumes
- 50-70 liters/hr

Silde 10

Plutonium usually recovered from ion exchange as Pu(IV)

Elute column

- 0.45M acid
- 40-50 liters/hr
- ~90 liters
 - reducing
- Hydroxylamine
 - convert to Pu(III)
 - optional


Technical Safety Requirements govern ion exchange resin lifetime and maintenance

Resin can degrade, evolve H₂

- Polyvinyl pyridine
- Max. 5 years
- Max. 500 Mrad exposure
- Resin kept wet

Pressure Release Valves

- Set point <25 psig
- Inspected annually

Reillex™ HPQ

Plutonium recovered as a solid Pu(III) oxalate precipitate

Reduce Pu(IV) to Pu(III) (Hydroxylamine nitrate)

$$2Pu(NO_3)_4 + 2NH_2OH \cdot HNO_3 \rightarrow 2Pu(NO_3)_3 + 2H_2O + N_2 + 4HNO_3$$

80-100% stoichiometric excess

■ Add oxalic acid 10% stoichiometric excess

$$2Pu(NO_3)_3 + 3 H_2C_2O_4 -> Pu_2(C_2O_4)_3 + 6HNO_3$$

- Filter and wash
 - Oxalate Filtrate to Evaporator
- Pu (IV) Oxalate can be obtained

Calcination converts oxalate to oxide

 Calcine for approximately 6 hours at 600 °C

$$Pu_2(C_2O_4)_3 + 2O_2 -> 2PuO_2 + 6CO_2$$

Slide 14

Evaporator removes contaminants from acid solutions

Products

- Recycled Acid
 - Molarity preserved
- Bottoms
 - Salts
 - Liquid

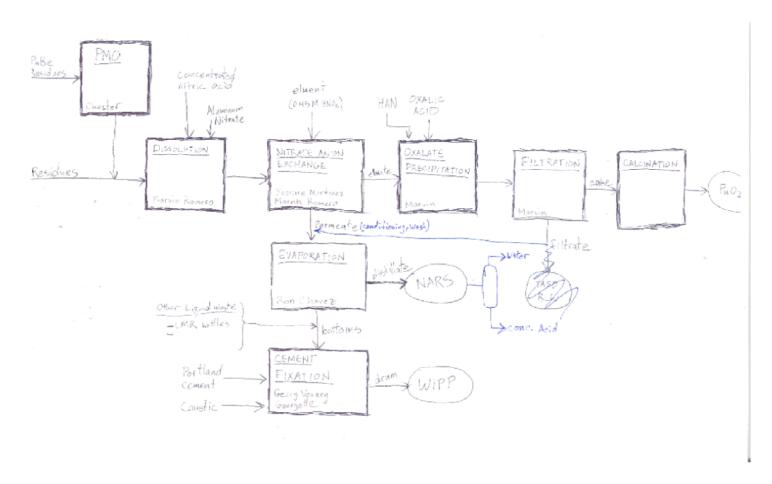
Cement Fixation stabilizes salt residue waste for disposal

- Immobilize RCRA waste constituents
- TRU waste sent to WIPP

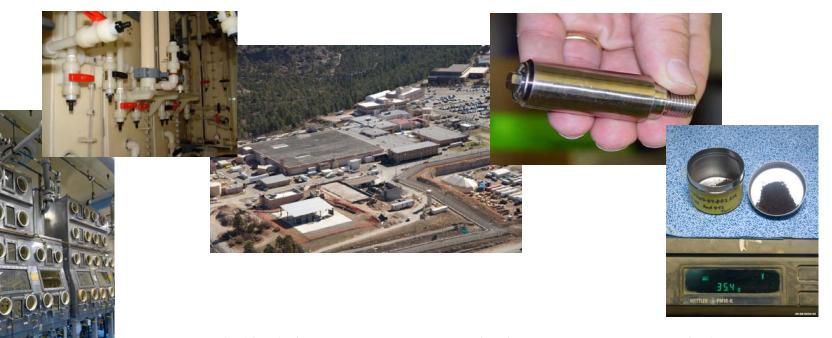
Summary

Process optimized over 60 years

Improvements


- Resins changed over time to improve stability
- Acid distillation and reuse an important innovation
- Air brake installed recently to prevent backflow to acid tank

Challenges


High chloride feeds can cause difficulties

Aqueous Nitrate process notes and personnel

Establishing an Americium-241 Oxide Production Capability at the Los Alamos National Laboratory. LA-UR-12-21319

Louis D. Schulte, Technical Lead, MET-1

Slide 1

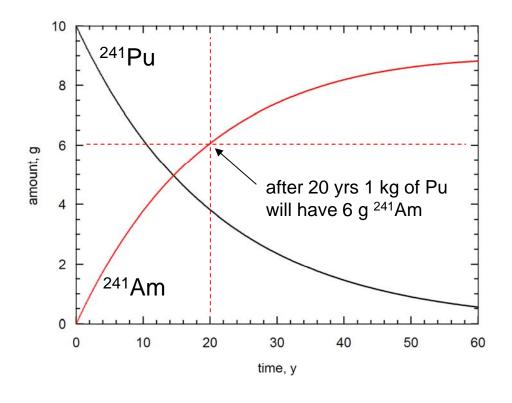
- Toby Vigil (IPM) Program Manager
- Benjie Martinez (NPI-8) Project Manager.
- Kevin Van Cleave (ES-PE) Project Engineer for construction activities.
- Jay Rutten, Rod Sanchez Project Coordinators for construction activities.
- Lorenzo Viramontes & Mike Caviness for work on shipping/containers.
- Sheldon Apgar & Christopher Thorn for design, drawings & mechanical work.
- Steve McKelvey for scheduling, project controls. Bradley E. Skidmore Process Engineering.

Acknowledgements

- DOE Office of Nuclear Physics, SC-26.2. Don Rej, Wolfgang Runde, & Kevin John (SPO-SC).
- Mitch Ferren and Jeff Shelton (ORNL/NIDC) for shipping/containers help.
- Dave Gallimore, Khal Spencer, Lav Tandon, and Randy Drake, (C-AAC), and Usha Narayanan, Chino Srinivasan and Richard Essex (NBL) for chemical analysis capabilities and standards.
- Lynn Foster, Charles Bonner, James Pecos, and Wayne Punjak (NPI-1) regarding NDA capabilities.
- Joel Williams, Ruel Hicks, Mike Kaufman (SAFE 4) for discussions about MC&A.
- Dan Gonzales (RP-3) and Adam Davis (AET-2) for dose assessment work, Drew Kornreich (AET-2) for analysis & project documentation.

- •Nuclear decay by nearly monoenergetic alpha emissions—5.44 and 5.49 MeV—with an associated high yield of 59.6 keV gamma emissions. Glenn Seaborg called ²⁴¹Am "The Most Useful Actinide Isotope".
 - The largest ²⁴¹AmO₂/Be (AmBe) neutron sources, and the majority of these sources, are used for oil and natural gas well-logging purposes. ²⁴¹Am has a half-life (432 years) useful for sources because this relatively high-specific activity (3.43 curies per gram) provides good neutron source efficiency, useful neutron flux ranges, and steady neutron output for years in an AmBe source.
 - Ionization smoke detectors use ²⁴¹AmO₂. The alpha emission finds use in measurement of thin films, gas densities, and as a source of alpha ionization.
 - Low-energy gamma emission transmission/absorption and backscatter measurements, primarily for determination of thickness of materials/coatings, density and radiographic measurements. Both the alpha and gamma signatures find use in calibration of instrumentation.

UNCLASSIFIED


- About 14 kg ²⁴¹AmO₂ added to the National Isotope Center in early 1980s. A "glut" of ²⁴¹AmO₂ on the market has become a "shortage" over 25 years.
 - Domestic USA ²⁴¹AmO₂ sales were discontinued in 2004/2005.
 - Recent sales (2004) ~\$1,000 / g. Set by 1980s material recovery prices.
 - Sustainable domestic production of ²⁴¹AmO₂ is needed for the future (at a higher price).
 - Path forward possible from recycle of weapons Pu.
 - LANL now funded to "Establish an Americium-241 Oxide Production Capability".

All ²³⁹Pu from reactors contains a small percentage of ²⁴¹Pu

$$t_{1/2} = 14.4 \text{ years}$$
 $\xrightarrow{241} \text{Am} + \beta^{-1}$

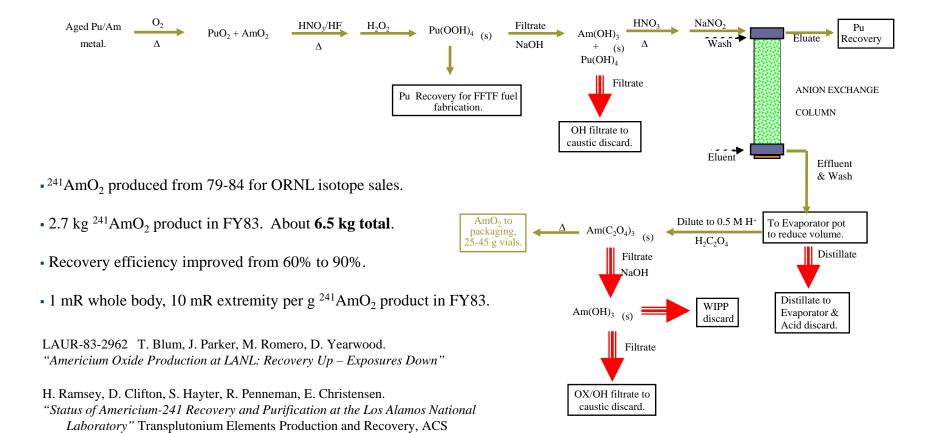
UNCLASSIFIED

$$t_{1/2} = 432 \text{ years}$$
 $t_{1/2} = 432 \text{ years}$ $t_{1/2} = 432 \text{$

²⁴¹Am Specific Activity = 3.43 Ci/g (~100 % by alpha decay)

Radiation

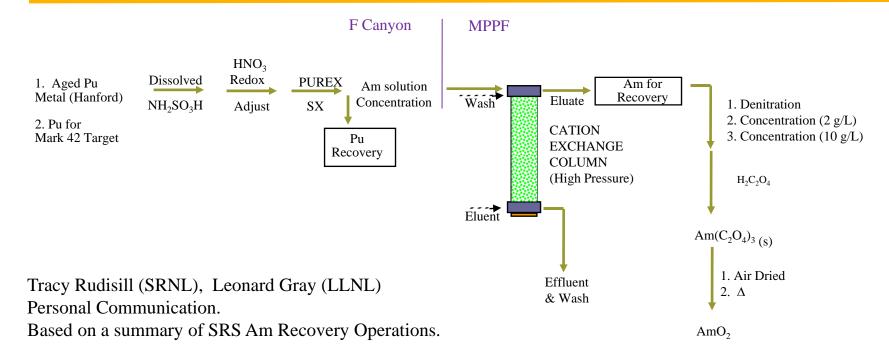
Alpha (a) charged helium nucleus, shield with paper.


Beta (b) charged electron, shield with thin Al sheet.

Gamma (g) photon, very penetrating (energy dependent), shield with Pb.

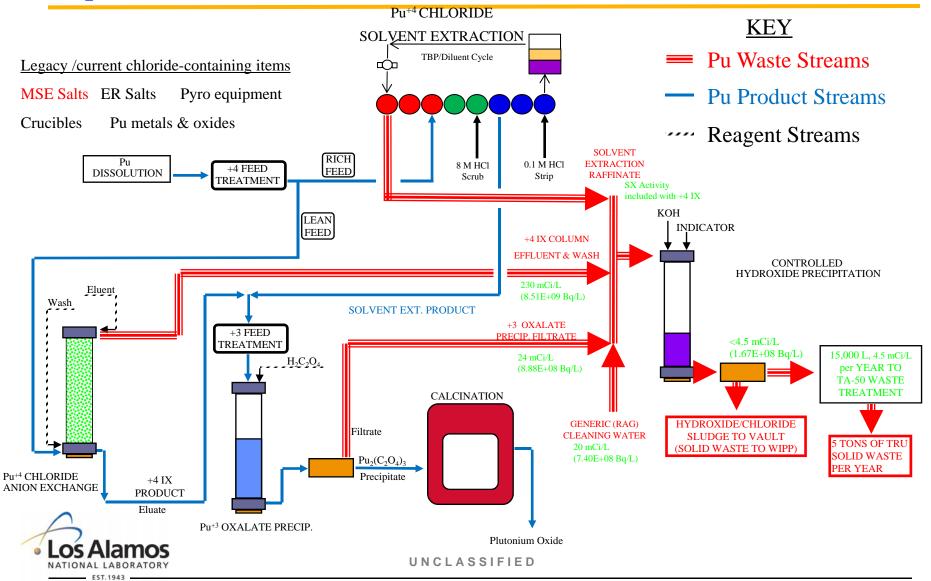
Neutron (N) neutral particle, very penetrating, shield with concrete/water.

The high alpha specific activity of ²⁴¹Am means we handle it in a facility and gloveboxes designed for confinement of alpha materials.

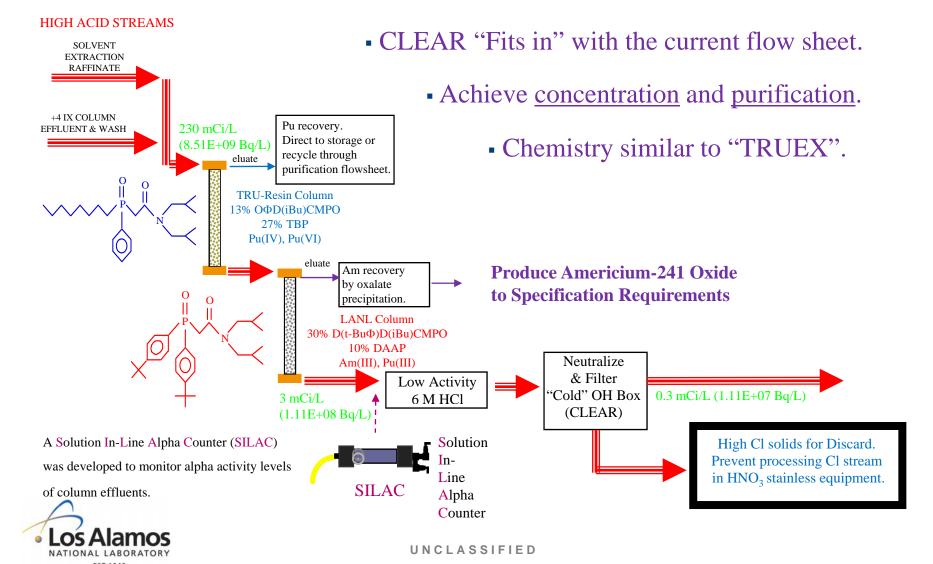


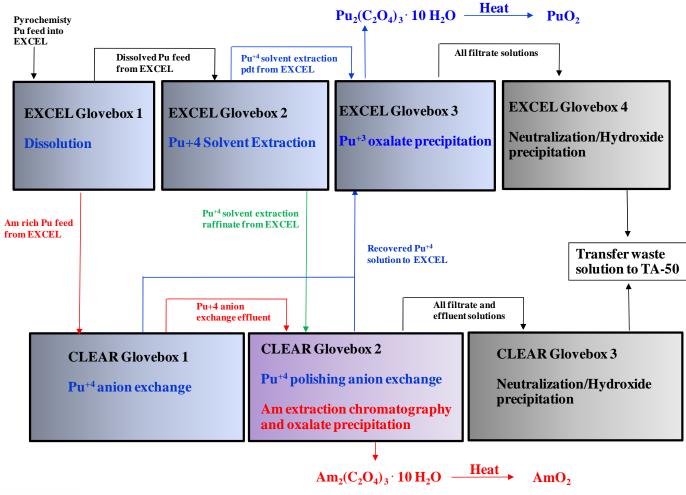
UNCLASSIFIED

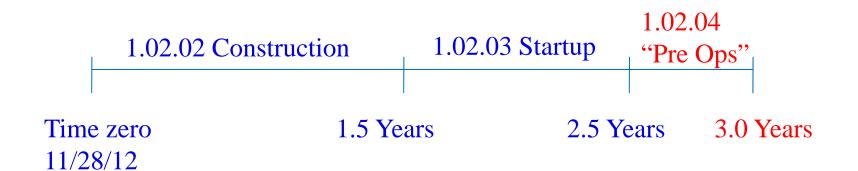
Symposium Series 161, pp 75-91, 1980. J. Navratil and W. Schulz Editors.



 $^{241}\mathrm{AmO}_2$ produced from 7/78 to 6/81 for ORNL isotope sales.


About 7 kg total ²⁴¹AmO₂ in two campaigns in F Canyon/MPPF. (Multi-Purpose Processing Facility).


UNCLASSIFIED



Integration of EXCEL and CLEAR Glovebox Lines

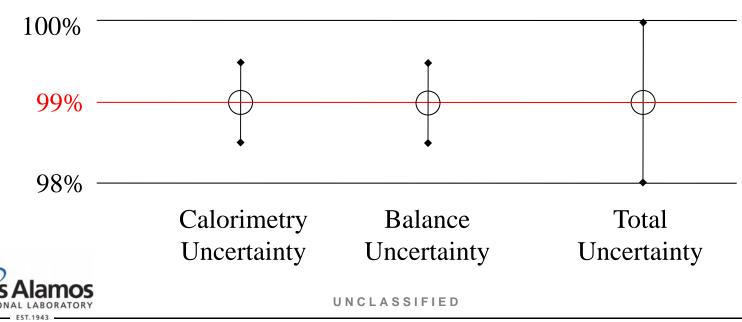
1.02.02 Construction
Complete utility piping,
electrical, sheetmetal.
Testing of glovebox hardware,
dose assessment, containers,
establish analysis capabilities.

1.02.03 Startup
Criticality safety,
procedures, MSA,
RA, QA.

1.02.04 "Pre Ops"
Initial operations.
Analysis of products.
CRM/WRM Work.

Quantity	Specification
²⁴¹ Am isotopic purity	$^{241}\text{Am} > 99\% \dots ^{243}\text{Am} < 1\%$ weight by
	Gamma NDA method (TIMS, RC alternate
	method).
²⁴¹ AmO ₂ chemical purity	> 95% by weight from Calorimetry NDA
	method (TIMS, RC alternate method).
Pu content	< 1.0% by weight (with allowed uncertainty)
	by Gamma NDA method for ²³⁹ Pu (TIMS, RC
	alternate method).
Pu isotopics	No spec requirement or measurement typically
	reported, only assumptions for wpPu. Can be
	measured and reported from TIMS.
Trace elements	< 0.5% by weight for any individual trace
	element measured and reported by ICP-AES
	and ICP-MS.
²³⁷ Np	No spec requirement, but typically measured
	and reported by ICP-AES and ICP-MS.

Activity	Above Specification Non-Routine Analysis	95% Specification Routine Analysis
Sample dissolution, aliquoting and separation	All	All
Am assay (TIMS)	All	Primary by NDA, need periodic TIMS measurement
Am isotopic (TIMS)	All	Primary by NDA, need periodic TIMS measurement
Pu assay (TIMS)	All	Primary by NDA, need periodic measurement
Pu isotopic (TIMS)	All	Primary by NDA, need periodic measurement
Trace elements on oxide (ICP-AES/MS)	All	All
Np by radiochemistry	All	periodic
Anions (Cl & F)	periodic	periodic
NDA/Calorimetry for ²⁴¹ Am assay	All	All
NDA/Gamma for ²³⁹ Pu, ²⁴³ Am	All	All



- Calorimetry: thermal power generated by radioactive decay on a bulk item.
- <u>Calorimetry is arguably the most important measurement tool</u> to quantify the amount of ²⁴¹AmO₂ in items from production operations. Direct value for Ci/g.
- Required for MC&A (Material Control and Accountability) purposes.
- "Bulk item" measurement means that measured value is tied to the balance measurements of the ²⁴¹AmO₂ and the innermost container.
- Standards program exists for calorimetry based on calibrated ²³⁸PuO₂ WRM items. No new standards (WRMs) are planned for use in calorimetry. Utilize the known half life and decay heat of ²⁴¹Am (3+ significant figures).
- Alternate methods that provide independent verification measurements, independent qualification, and higher precisions can be made by TIMS isotope dilution and RC on aliquot samples. CRMs/WRMs planned for TIMS & RC.

- Calorimetry: Uncertainty values for calorimetry measurements on production $^{241}\text{AmO}_2$ items are expected to be +/- 0.5% at the 95% confidence level.
- Balance: Measurement uncertainty in our production environment is nominally about +/- 0.5% at the 95% confidence level. Regardless of other measurements. Between 2 & 3 significant figures, report 3.

Assume a particular lot of ²⁴¹AmO₂ is 99.0% chemical purity

- Radiopurity greater than 99% by weight is synonymous with "isotopic purity" and can also be defined as the summation of americium nuclides other than ²⁴¹Am being less than 1% of the total.
- LANL will assume ²⁴³Am content less than 1% by measurement as adequate proof that radiopurity specification greater than 99% has been met for production operations. Only tracer quantities of ²⁴²Am or ^{242m}Am on site, not considered credible to have gross contamination (1%) of ²⁴¹AmO₂ product materials.
- NDA gamma methods easy to qualify for ²⁴³Am contamination. ²⁴³Am is relatively easy to detect in small quantities because of prominent high E gamma rays associated with its ²³⁹Np daughter, and further (beta) decay to ²³⁹Pu.
- It is the intent of the project to develop NDA gamma methods to quantify ²⁴³Am/²⁴¹Am ratios to "less than" 1% values in ²⁴¹Am.
- Alternate methods that provide independent verification measurements, independent qualification, and higher precision can be made by TIMS and RC on aliquot samples. New standards (WRMs) are planned for ²⁴³Am/²⁴¹Am to provide tighter error bars and verification of NDA gamma measurements.

- Pu content very important to MC&A (materials control and accountability) of SNM. Less than 1% Pu values in batches of 30 g ²⁴¹Am would keep Pu "sub-accountable" (<0.5 g) for MC&A.
- It is the intent of the project to develop NDA gamma methods to quantify ²³⁹Pu/²⁴¹Am ratios in order to generate "less than" 1% Pu values in ²⁴¹Am. Utilize approximate isotopic ranges of weapons Pu for calculations of total Pu.
- Concerns about the measurement uncertainty for the ²³⁹Pu/²⁴¹Am ratio by gamma ray NDA, and allowance of this uncertainty might be noted in the specification. More difficult than gamma analysis of ²⁴³Am.
- Pu < 1.0% by weight (with allowed uncertainty) by Gamma NDA method. Alternate methods provide independent verification measurements, independent qualification, and higher precision can be made by TIMS and RC on aliquot samples. New standards (WRMs) are planned for 239Pu/241 Am to provide tighter error bars and verification of NDA gamma measurements.

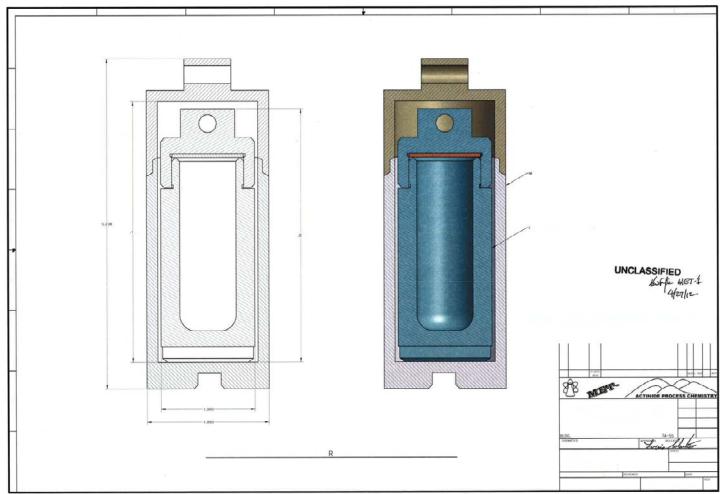
- 11/2/10 External Review of the "Establish ²⁴¹AmO₂ Production Capability Project.", commissioned by DOE NP (Office of Nuclear Physics), recommended certification of "standards" by an external laboratory such as NBL (New Brunswick Laboratory).
- LANL has developed a plan for NBL certification of LANL methods of measurement CRM of key attributes of ²⁴¹Am content (assay), ²⁴³Am /²⁴¹Am, and ²³⁹Pu /²⁴¹Am. Very great certainty and small error bars can be achieved in these attributes for the CRM and WRM materials.
- The ²⁴¹AmO₂ CRM would provide a common and well characterized reference material for LANL destructive analysis for the life of the project. This material has a unique potential value outside the project for others due to the extensive certification required.
- The ²⁴¹AmO₂ WRM would be utilized as verification standards for NDA gamma methods to quantify ²⁴³Am /²⁴¹Am, and ²³⁹Pu /²⁴¹Am ratios to "less than" 1% values in ²⁴¹AmO₂ production.

Trace Elements 21

• "Raw Material Specification" for 241 AmO₂ received from the DOE Office of Science matches AMP-xxx data sheets. Historical specification requirements are no more than 0.5% by weight (<5,000 microgram/gram) of any measure inert trace element impurity in 241 AmO₂.

- The ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) and ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) are utilized to measure trace element impurity levels. Al, B, Be, Bi, Ca, Cd, Co, Cr, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Si, Sn, Zn, Zr.
- It is anticipated that residual and ingrown ²³⁷Np content and U content will be adequately measured by ICP methods for routine ²⁴¹AmO₂ production, and only occasionally measured for process knowledge by more precise radiochemical methods.
- LANL ICP instrumentation is currently calibrated against NIST traceable materials. No ²⁴¹AmO₂ reference materials are needed.

- 1 mR whole body, 10 mR extremity per g ²⁴¹AmO₂ product in FY83. LAUR-83-2962 T. Blum, J. Parker, M. Romero, D. Yearwood. "*Americium Oxide Production at LANL: Recovery Up Exposures Down*". Gradual ~3 fold reduction in whole body and ~8 fold reduction in extremity exposure per gram of ²⁴¹Am produced over the years from 1979 to 1983.
- Modeling (MCNP5) of unit operations for ²⁴¹AmO₂ production today shows 1.2 mR whole body, 6 mR extremity per g ²⁴¹AmO₂ product. LAUR-12-xxxx, Adam Davis, Daniel Gonzalez. "*Preliminary Radiological Assessment of Americium Recovery Operations*".
- Extremity dose is the toughest issue. Handling solid materials is the source of most dose. Many unique point-source shields and tools have been developed.
- Attention to operational details, shielding, and improving worker skill all can contribute to reducing exposure in glovebox operations. Operational experience and improvements are likely to provide better understanding of high dose operations and further methods to optimize/reduce personnel dose. Automation of some steps.

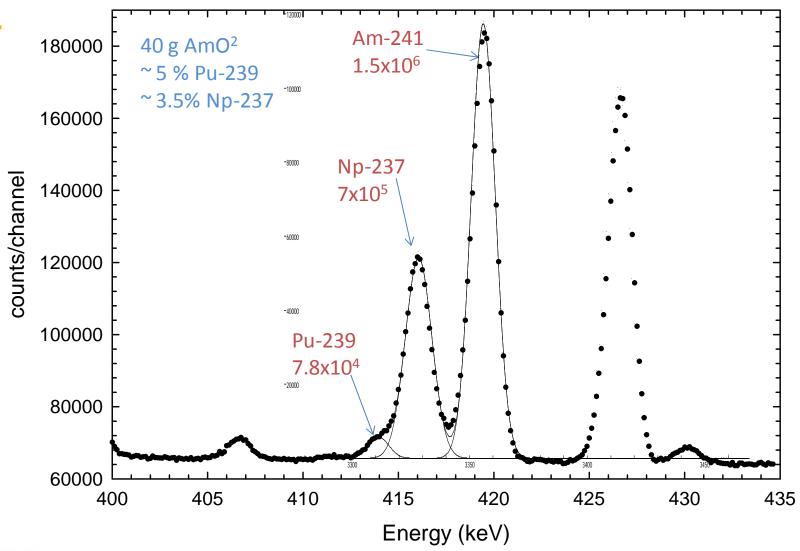


DOT Certified Type "A" SFC Shipping Container "Outer" 23

"Innermost" and "Middle" Container (LANL working design) 24

End of Presentation 25

Results for MSE Residues Batched for 1 SX run


			Alpha mCi/L	Alpha mCi/L			
		Vol.	(Bq/L)	(Bq/L)	% alpha		Resin
Run	Pass	(L)	Before resins	After resins	Removed	Resin(s)	Eluates
30	1	17	2700	49	98.19	0.54 L column 100 g Reilly HPQ	? g Pu
			9.99E+10	1.81E+09	_		
						1.8 L	0.47 g Pu
						D(tBuPh)D(iBu)CMPO resin	14.4 g Am
31	1	23	2454	3.52	99.86	0.54 L column 100 g Reilly HPQ	? g Pu
			9.08E+10	1.30E+08			
						1.8 L	0.10 g Pu
						D(tBuPh)D(iBu)CMPO resin	17.4 g Am
32	1	16	1620	2.26	99.86	0.54 L column 100 g Reilly HPQ	2.37 g Pu
			5.99E+10	8.36E+07			
						1.8 L	0.062 g Pu
						D(tBuPh)D(iBu)CMPO resin	7.83 g Am

			Alpha mCi/L	Alpha mCi/L			
		Vol.	(Bq/L)	(Bq/L)	% alpha		Resin
Run	Pass	(L)	Before resins	After resins	Removed	Resin(s)	Eluates
35	1	19	3130	3.63	99.88	1.8 L	1.25 g Pu
			1.16E+11	1.34E+08		D(tBuPh)D(iBu)CMPO resin	16.9 g Am
36	1	18	2460	1.47	99.94	1.8 L	3.78 g Pu
			9.10E+10	5.44E+07		D(tBuPh)D(iBu)CMPO resin	13.4 g Am
37	1	19	2460	2.63	99.89	1.8 L	3.18 g Pu
			9.10E+10	9.73E+07		D(tBuPh)D(iBu)CMPO resin	13.3 g Am
38	1	20	2900	0.576	99.98	1.8 L	0.613 g Pu
			1.07E+11	2.13E+07		D(tBuPh)D(iBu)CMPO resin	13.8 g Am
39	1	14	2430	0.66	99.97	1.8 L	1.83 g Pu
			8.99E+10	2.44E+07		D(tBuPh)D(iBu)CMPO resin	9.87 g Am

Am-241 Oxide Gamma-Ray Spectrum

- "Raw Material Specification" for ²⁴¹AmO₂ received from the DOE Office of Science silent on Pu isotopics. No historical specification requirements.
- Historical AMP-xxx data shows approximate isotopic information for "reactor" Pu utilized for the ²⁴¹AmO₂ campaign 1979-1984. No precise Pu isotopics reported.
- It is the intent of the project to develop NDA gamma methods to quantify ²³⁹Pu/²⁴¹Am ratios in order to generate "less than" 1% Pu values in ²⁴¹Am.
- Utilize approximate isotopic ranges of weapons Pu for calculations of total Pu in routine ²⁴¹AmO₂ production. Occasional/periodic TIMS measurements of Pu isotopics can be performed.
- Pu isotopics by TIMS a mature technology at LANL.

Am 1/2 life from "241 Am - Comments on evaluation of decay data"

by V. P. Chechev and N. K. Kuzmenko, Sept., 2009

241
Am 1/2 life (years) = $t_{1/2}$ = 432.6 plus/minus 0.6 years 241 Am decay constant lambda (λ , years) = $ln2/(t_{1/2})$ = 0.00160 N/No = $e^{-\lambda t}$ N = number of atoms or amount after time t N_o = number of atoms or amount at time 0 (t_o)

$$A = \Delta N/\Delta t = \lambda N$$
 $A = decay rate$
²⁴¹Am activity (A) in Ci/g = 3.430

• 3.43 Ci/g is the accepted activity value for 100% isotopic purity, 100% chemical purity americium-241 **metal**.

²⁴¹Am Formula Weight calculation

ISOTOPE	Isotope Weights	FW of AmO ₂
²⁴¹ Am	241.0568	273.0556
nat _O	15.9994	
Chemical	Theoretical	Theoretical %
Purity	Ci/g Purity	²⁴¹ Am wt
of AmO ₂	of AmO_2	of $^{241}AmO_2$
100%	3.028	88.28%
99%	2.998	87.40%
96%	2.907	84.75%
95%	2.877	83.87%
94%	2.847	82.98%

Container Geometry & Weight Issues

LANL innermost	t container (4/27/12	2)				approximate	approximate
Nitronic 60 SST		without lid	with lid	$V = pi r^2 h$	S = 2 pi rh	weight (g)	weight (lb)
	diameter (in)	height (in)	height (in)		surface area (cm ²)	container	container
inner	0.9	2.75		29	50		
outer	1.5	3.25	4	94	99		
delta volume				65		524	1.2
				More precise v	alues from drawings		
			inner volume	28.2		613	1.33
LANL middle con	ntainer (4/27/12)					approximate	approximate
Nitronic 60 SST		without lid	with lid	$V = pi r^2 h$	S = 2 pi rh	weight (g)	weight (lb)
TARONE OF SST	diameter (in)	height (in)	height (in)	volume (cm ³)	surface area (cm ²)	container	container
		3.25	neight (iii)	107		Container	container
inner	1.6 1.95	4.20	5.30	206	105 166		
outer delta volume	1.95	4.20	5.30	98	100	788	1.7
della volume					aluas from drawings		1.7
		inner volume		More precise values from drawings 403.9			
			inner volume	403.9		767	1.68
Nominal Dimension	ns for SAVY-4000 c	containers for PF-4 va	ult	MAR limit for I	MT 44 (²⁴¹ AmO ₂) is	s 84 g ²⁴¹ Am in a S	AVY 4000
3 quart SAVY 400	0 appears suitable a	s an overpack		per TA55-DOI	P-091,R1		
	Inner	Inner	Overall	Overall	Gross	Tare	Payload Max.
	diameter (in)	height (in)	diameter (in)	height (in) weight (lb)		weight (lb)	weight (lb)
12 quart	8.99	12.76	10.00	13.95	49	11.9	
8 quart				15.93	77	11.9	37.1
	7.75	10.26	8.85	11.45	44	9.3	37.1 34.7
5 quart	7.75 6.60	10.26 8.76	8.85 7.70				
5 quart 3 quart				11.45	44	9.3	34.7
-	6.60	8.76	7.70	11.45 9.95	44 40	9.3 7.4	34.7 32.6
3 quart 1 quart	6.60 5.45 3.67	8.76 6.76	7.70 6.55 4.77	11.45 9.95 7.95 5.98	44 40 33 22	9.3 7.4 5.6 3.3	34.7 32.6 27.4 18.7
3 quart 1 quart Dimensions of exist	6.60 5.45 3.67 ing Type A SFC (Dr	8.76 6.76 4.38	7.70 6.55 4.77	11.45 9.95 7.95 5.98	44 40 33 22	9.3 7.4 5.6	34.7 32.6 27.4 18.7
3 quart 1 quart Dimensions of exist	6.60 5.45 3.67 ing Type A SFC (Dr	8.76 6.76 4.38 rawing # 90Y-219998	7.70 6.55 4.77	11.45 9.95 7.95 5.98	44 40 33 22	9.3 7.4 5.6 3.3	34.7 32.6 27.4 18.7
3 quart 1 quart Dimensions of exist	6.60 5.45 3.67 ing Type A SFC (Dr FC has 1/2" wall thic	8.76 6.76 4.38 rawing # 90Y-219998	7.70 6.55 4.77	11.45 9.95 7.95 5.98 length of 11.75" while container.	$\begin{array}{c} 44 \\ 40 \\ 33 \\ 22 \end{array}$ without the nut.	9.3 7.4 5.6 3.3 270 Ci limit (78.9 approximate weight (g)	34.7 32.6 27.4 18.7 g ²⁴¹ Am) approximate weight (lb)
3 quart 1 quart Dimensions of exist Assumes existing S	6.60 5.45 3.67 ing Type A SFC (Dr FC has 1/2" wall thic	8.76 6.76 4.38 rawing # 90Y-219998	7.70 6.55 4.77	11.45 9.95 7.95 5.98 length of 11.75" will container.	44 40 33 22 vithout the nut.	9.3 7.4 5.6 3.3 270 Ci limit (78.9 approximate weight (g)	34.7 32.6 27.4 18.7 g ²⁴¹ Am) approximate weight (lb)
3 quart 1 quart Dimensions of exist Assumes existing S	6.60 5.45 3.67 ing Type A SFC (Dr FC has 1/2" wall thicking Type A SFC.	8.76 6.76 4.38 rawing # 90Y-219998 ckness. Plug leaves ~	7.70 6.55 4.77	11.45 9.95 7.95 5.98 length of 11.75" while container.	$\begin{array}{c} 44 \\ 40 \\ 33 \\ 22 \end{array}$ without the nut.	9.3 7.4 5.6 3.3 270 Ci limit (78.9 approximate weight (g)	34.7 32.6 27.4 18.7 g ²⁴¹ Am) approximate weight (lb)
3 quart 1 quart Dimensions of exist Assumes existing S. Dimensions of exist	6.60 5.45 3.67 ing Type A SFC (Do FC has 1/2" wall thic ing Type A SFC. diameter (in)	8.76 6.76 4.38 rawing # 90Y-219998 ckness. Plug leaves ~'	7.70 6.55 4.77	11.45 9.95 7.95 5.98 length of 11.75" we de container. $V = pi r^2 h$ volume (cm ³)	$\begin{array}{c} 44 \\ 40 \\ 33 \\ 22 \\ \end{array}$ without the nut. $S = 2 \text{ pi rh}$ surface area (cm ²)	9.3 7.4 5.6 3.3 270 Ci limit (78.9 approximate weight (g)	34.7 32.6 27.4 18.7 g ²⁴¹ Am) approximate weight (lb)

Software Quality Assurance

John MacDonald, Cameron Turner, Sonya Lee

Roberta Mulford, presenter

Presented to JOWOG 22-2 July 10, 2012

Aldermaston Weapons Establishment

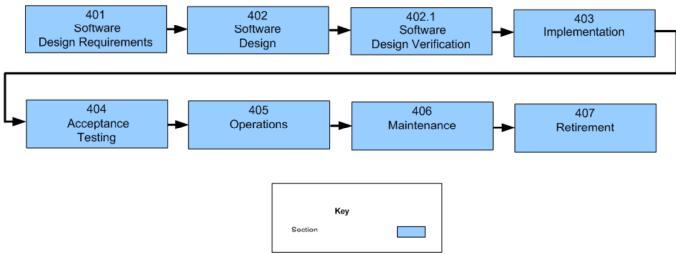
Software Quality Assurance Concerns Reliability, Cost

- Processes rely on software for governance, process record acquisition
- Software testing is critical
- Software maintenance must be facile
 - Minimize down time
 - Process replacement necessary if software obscure
- Safety and reliability must be demonstrable
- Good engineering practise, industry-wide standards

Testing usually constitutes Software Quality Assurance

Testing examines

- Software-hardware interface
- Human factors
- Algorithm
- Required outputs
- Reproducibility
- Environmental factors
- Other factors



SQA Implemented throughout Software Life Cycle

ASME NQA-1 1997 Subpart 2.7 Software life cycle activities

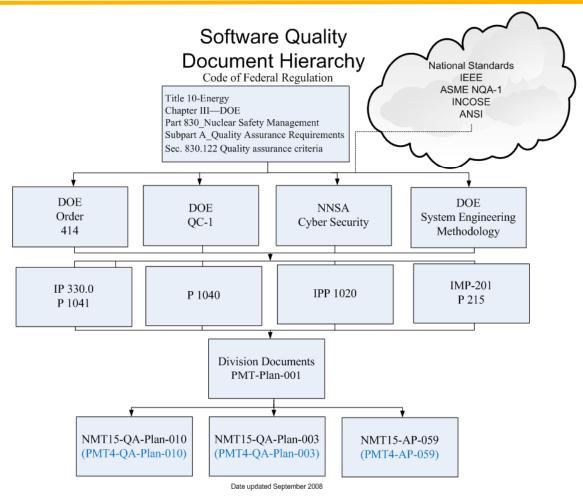
As found in section 102 - **Software life cycle:** the activities that comprise the evolution from conception to retirement. The software life cycle typically includes the software development cycle and the activities associated with operation, maintenance and retirement.

Subpart 2.7 Section 400 SOFTWARE ENGINEERING METHOD Contains the following sections:

NS N

Maintenance of software facilitated by sound SQA

- Software maintenance can be demanding
 - Hardware upgrades
 - Software and operating system upgrades
 - Revised requirements
 - Version control and necessary bug fixes
- Experience tells us that capabilities can be lost to inability to upgrade software or hardware



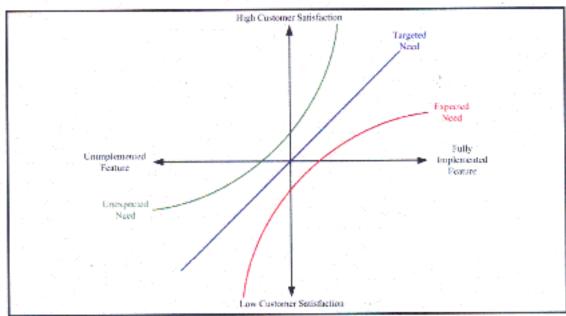
SQA was systematically implemented in ARIES Program software development

SQ Process Flow Software Project Software Requirements Software Design Plan Specification Description (SPP) (SRS) (SDD) The Software Project Plan SPP may be one spans software life cycle SRS Document/s SDD Document/s comprehensive document for smaller projects Software Requirements Software Design Review Review Hazard Analysis Software Safety Plan If Applicable Software Test Software Test Source Code Acceptance Report Plan Testing Development (STP) (Validation) Source Code Software Test Results Usually includes: STP Document/s If Applicable Review (1) Memorandum Software Test Plan (2) STP Review form or Users Manual results Review If Applicable (3) STP Software Code Review Software User Manual Review Key Software Retirement Software Maintenance Step Plan Plan Deliverables Reviews - Verifications

Regulatory Drivers and Standards Govern Implementation of SQA at Los Alamos

Various SQA Standards Can Be Compared

QC-1 Rev 10, Feb 10, 2004	IEEE	TBP 306	Draft IPP 1004 5/1/2007 & LIR 308-00- 05.1 12/29/2006	DOE Systems Engrg Methodology	NQA-1 SubPart 2.7	Title 10: Energy CFR 830.122 Quality Assurance Criteria	DOE O 414
Continuous Quality Improvement	1061-1998 Software Quality Metrics Methodology	2.1.1 Project Planning	Product Engineering Process	System Design	100 General	Criterion 3 Management / Quality Improvement	Criterion 5 - Work Processes & Criterion 6 - Design
Software Quality Assurance	730-2002 Software Quality Assurance Plans	1.2 Objectives	Software Quality Assurance	Develop Quality Assurance Plan	100 General	Criterion 1 Management / Program	Criterion 1 Program
Continuous Process Improvement	1061-1998 Software Quality Metrics Methodology	2.9.2 Software Support Concept and Assurance	Project Management	Develop Project Plan	204 Problem Reporting and Corrective Action	Criterion 3 Assessment / Management Assessment	Criterion 3 Quality Improvement
Risk Assessments	1540-2001 Software Life Cycles - Risk Management	2.1 Project Control	Risk Management	Risk Management	101 Software Engineerng	Criterion 9 Management / Quality Improvement	Criterion 10 Independent Assessments
Training	1063-2001 Software User Documentation	1.2 Life Cycle Support and Training	Formal Training and Qualification Process	Organizational Training	NQA-1 Part 1 Rqmts	Criterion 2 Personnel Training and Qualification	Criterion 2 Personnel Training & Qualification
Planning	1490 - 2003 Guide for Adoption of PMI Standard & IEEE 1058- 1998 Software Project Management Plans	2.1.1 Project Planning	Project Management Process	Develop Project Plan	202 Review	Criterion 3 Assessment / Management Assessment	Criterion 9 Management Assessment & Criterion 10 Independent Assessment
Metrics	1061-1998 Software Quality Metrics Methodology	2.3 Product Identification and Traceability	Software Project Tracking & Oversight Process	Develop Quality Assurance Plan	204 Rptg and Corrective Action	Criterion 5 Performance / Work Processes	Criterion 9 Management Assessments
Design Definition	1016-1998 Software Design Descriptions	2.5.2 Design Process	Product Engineering Process	Functional Design	401 Software Design Req	Criterion 6 Performance / Design	Criterion 6 Design
Functional Design	1016-1998 Software Design Descriptions	2.5.2 Design Process	Product Engineering Process	Functional Design	402 Software Design	Criterion 6 Performance / Design	Criterion 6 Design
System Design	1016-1998 Software Design Descriptions	2.5.2 Design Process	Product Engineering Process	Functional Design	402.1 Software Design Veri	Criterion 6 Performance / Design	Criterion 6 Design
Procurement	1062-1998 Practice for Software Acquisition	2.7.1 OTS Software Procurement	Procurement Process	Initiate Procurement	300 Software Acquisition	Criterion 7 Performance / Procurement	Criterion 7 Procurement


Standards Are Extensive and Comprehensive

QC-1 Rev 10, Feb 10, 2004	IEEE	TBP 306	Draft IPP 1004 5/1/2007 & LIR 308-00- 05.1 12/29/2006	DOE Systems Engrg Methodology	NQA-1 SubPart 2.7	Title 10: Energy CFR 830.122 Quality Assurance Criteria	DOE O 414
Test and Verification - Acceptance	829-1998 Standard Test Documentation	2.8.1 Product Acceptance Process	Verification and Validation	Acceptance Testing	404 Acceptance Testing	Criterion 8 Inspection and Acceptance	Criterion 8 Inspection and Acceptance Testing
Programming	1061-1998 Software Quality Metrics Methodology	2.1.2 Project Control	Product Engineering Process	Acceptance Testing	404 Acceptance Testing	Inspection and Acceptance Testing	Criterion 8 Inspection and Acceptance Testing
Installation and Acceptance	829-1998 Standard Test Documentation	2.8.1 Product Acceptance Process	Verification and Validation	Acceptance Testing	404 Acceptance Testing	Inspection and Acceptance	Criterion 8 Inspection and Acceptance
Operation	1362-1998 Concept of Operations	2.8.3 Site Production Acceptance	Quality Assurance Process	Plan transition to Operational Status	405 Operation	Criterion 4- Documenrts and Records	Criterion 8 Inspection and Acceptance
Corrective Action	1044-1993 Standard Classification for Software Anomalies	2.3 Product Identification and Traceability	Tracking and Oversight	Risk Management	204 Problem Reporting and Corrective Action	Criterion 10 Assessment / Independent Assessment	Criterion 10 Independent Assessments
Records	All Engineering Standards	2.3.2 Identification Schema	Configuration Management	Project Management	201 Document ation	Criterion 4 Documenrts and Records	Criterion 4 Documents and Records
Configuration Management	828-1998 Software Configuration Management	2.6.1 Records Management Process	Configuration Management	Project Management	203 Software Config Mgmt	Criterion 4 Management / Documenrts and Records	Attachment 5 Supplemental Safety SQ Requirements
Procedures	AHSI/IEEE Std. 610.12-1990 Software Dev. Life Cycle	2.0 Software Process Implement Guidance	Software Product Engineering Process	Project Management	203 Software Config Mgmt	Criterion 4 Management / Documenrts and Records	Criterion 1 Program
Libraries	All Engineering Standards	2.3.4 Program Management	Generate Operating Documentation	Project Management	405 Application documentation	Criterion 4 Management / Documenrts and Records	Criterion 1 Program
Verification and Validation	1028-1997 Software Reviews	Product Acceptance	Verification and Validation	Quality Reviews	404 - 405 Acceptance testing	Inspection and Acceptance	Criterion 8 Inspection and Acceptance
Assessments	Under Development	Product Acceptance	Tracking and Oversight	Quality Reviews	202 Review	Management Assessment	Criterion 9 Management Assessments
Requirements	830-1998 Software Requirements Specifications	Product Definition	Requirements Management	Requirements Definition	401 Software Design Require ments	Criterion 3 Management / Quality Improvement	Criterion 6 Design
Retirement	1219-1998 Software Maintenance	Program Management	Software Project Management	Plan transition to Operational Status	407 Retirement	Criterion 3 Quality Improvement	Criterion 5 - Work Processes

Customer Satisfaction Requires a Methodical Approach

The Kano diagram

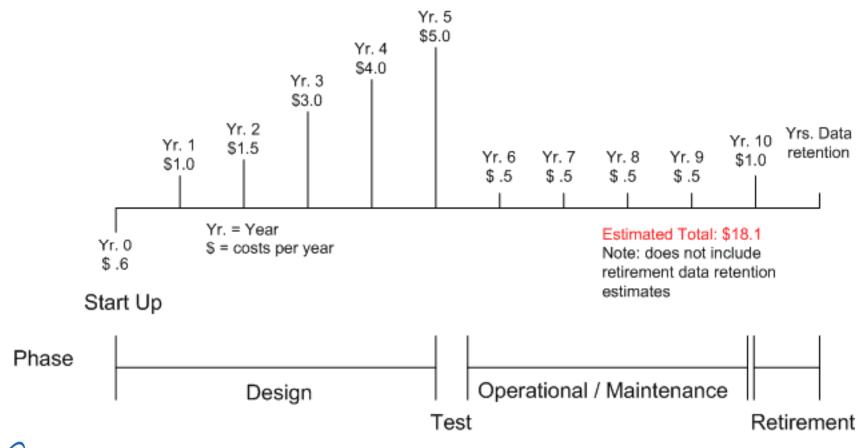
Prof. Noriaki Kano

Figure 5. Customer Needs and Satisfaction versus Implementation Quality

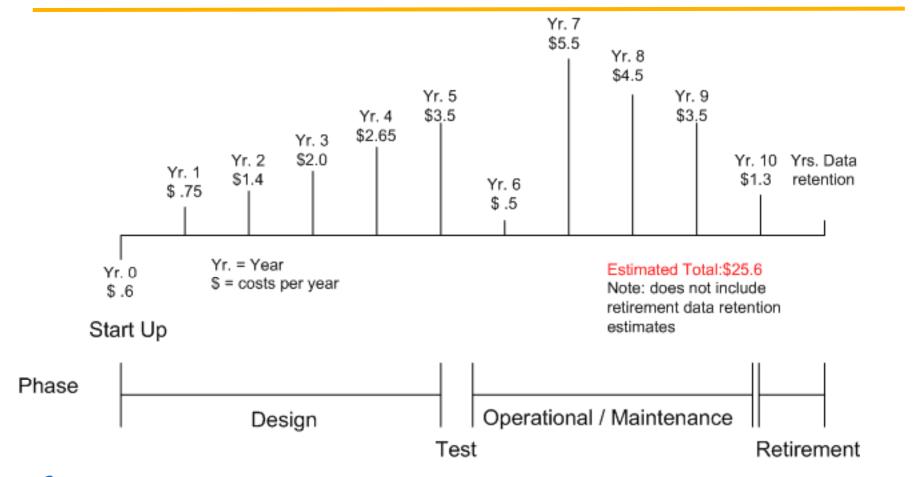
Customers have explicit requirements and implicit expectations

Early implementation of SQA identifies real needs and expectations

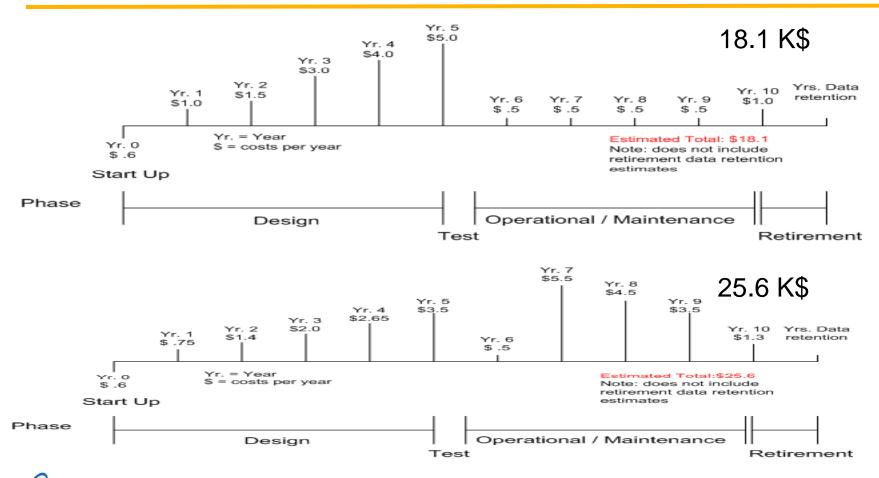
Cost-benefit Analysis Supports Lifecycle Application of SQA


- [(Cost of software development) + (Cost of SQ activities)] = Costs
- [(Down system cost per week) + (Security impacts per week)
- + (Safety estimated costs of an event per week) + (Productivity loss per week) + (Impact on community, state, society) + (Impact on current project) + (Impact on future projects)] = Costs
- (Red costs Blue costs) = difference presents a return on investment (ROI) number.

Cost of Software development	Cost of SQA Activities		Cost per	Security		Productivy		Impact on			Difference ROI
\$300	\$200	\$500	\$12	\$20	\$25	\$12	\$1,000	\$60	\$1,000	\$2,128	\$1,628.10



SQA Distributed Over Software Lifecycle Adds Cost Early in Lifecycle



Legacy or "Archeologial" Software Documentation is Difficult and Expensive

value of attention to SQA throughout software lifecycle

Summary

- SQA is required by regulation: Title 10: Energy CFR 830, and DOE Order 414 supporting documents.
- SQA testing has caught issues that without SQ activities would have gone unnoticed until the system was in a production mode of operation.
- The need exists for sound SQA, based on prior experiences with failures such as those cited in section 4.
- SQA produces documents supporting software throughout the life cycle and retirement.
- SQA requires greater attention and focus on the software than a programmer would normally give to the software.
- SQA reduces the risk of failure associated with software.
- SQA requirements can incorporate safety and security requirements.
- SQA uses a graded approach of activities dependent on safety or security level.
- SQA is good engineering practice.

Plutonium Oxide Characteristics

Jacquelyn Lopez and Dave Wayne Presented by: Roberta Mulford

MET-1 (Actinide Processing Support)

Manufacturing Engineering & Technology Division

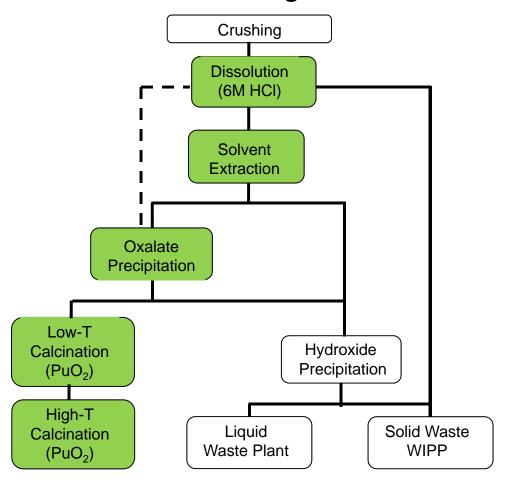
JOWOG 22/2 – Actinide Chemical Technology

July 9-13, 2012

AWE, Aldermaston, UK

Purpose

- Characterize plutonium oxide processed through aqueous and high temperature operations.
- Gather analytical and characterization results of items with known process history.
 - Processing documentation
 - Pu Assay
 - Analytical chemistry
 - Physical analysis
 - Moisture content
- Review information for any distinguishing characteristics based on the material and/or process to identify trends


Analysis Plan

- Recovery Processes:
 - Aqueous Chloride- recovery of chloride based feed items
 - Aqueous Nitrate- recovery of non-chloride based feed items
 - Metal Oxidation- low temperature metal oxidation ~475-575°C
- High Temperature and Blending Processes:
 - ARIES stabiliation- Calcination at ~950-1040°C for 2.2 hrs
 - MOX stabilization- Calcination at 650°C for 6 hrs
 - DOR stabilization-Calcination at 850°C for 8 hrs
 - 94-1 3013 stabilization- Calcination at 1025°C for 4 hrs
 - Other stabilization- Calcination at 750°C for 8 hrs

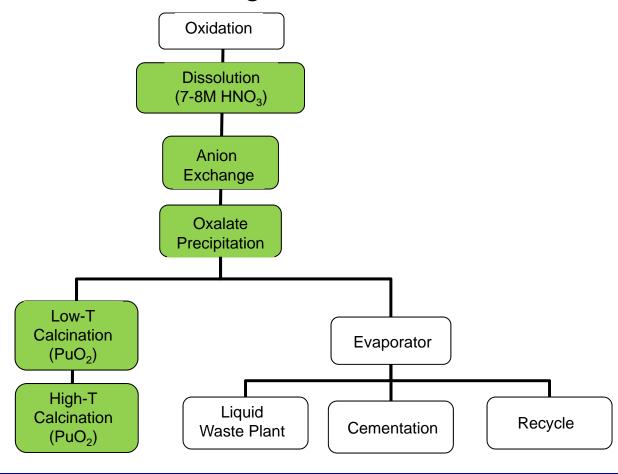
Aqueous Chloride Processing

Typical Aqueous Chloride Processing Input Feeds

ER salt

Anode heel

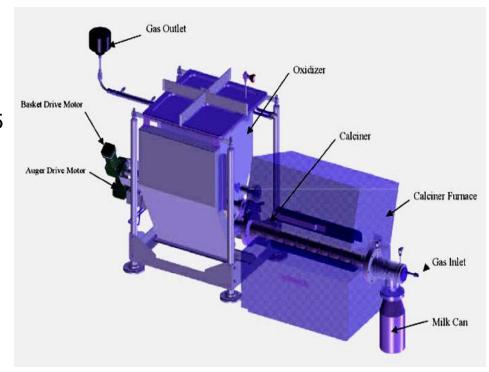
ER Crucible



MSE metal and salt

Aqueous Nitrate Processing

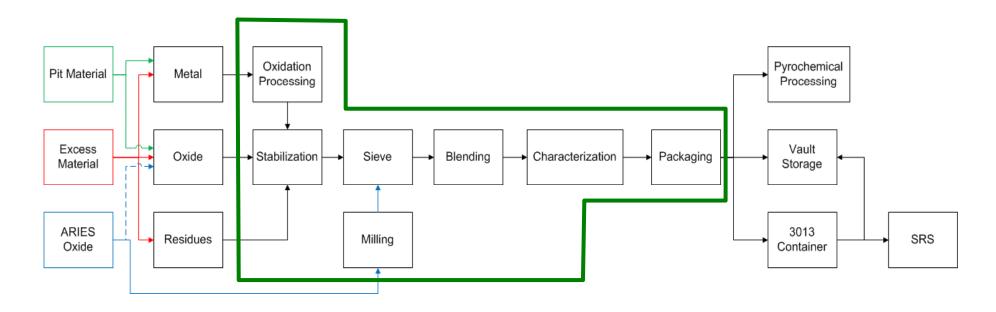
- Typical Aqueous Nitrate Processing Input Feeds
 - Pu metal turnings
 - Casting skulls from Coalescence
 - Anode heel from Electro-refining
 - Sand, Slag, and Crucible (SS&C) from metal production during PuF₄-Ca⁰ reduction
 - Ashes formed from the treatment of Pu bearing combustible material
 - Any other non-chloride based residues



ARIES Oxide Processing

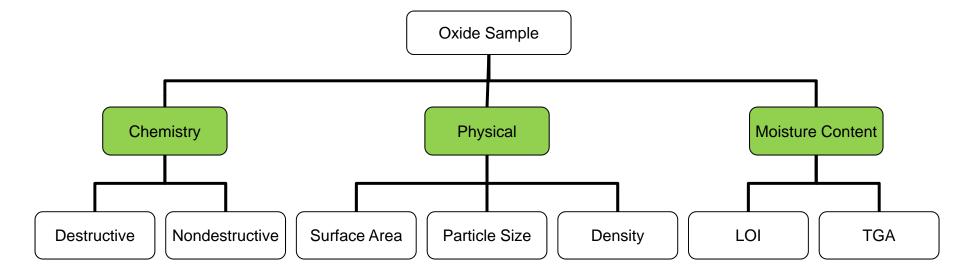
- ARIES (Advanced Recovery & Integrated Extraction System)
- Pu extracted from old weapons
 - Pu → high-purity oxide: DMO
 - Ignition / Oxidation: rotating perforated basket: ~475-575°C, 75%O₂ / 25% He, ~2 L/min He; 1.5 L/min O₂
 - Total O₂ > amt. needed for stoichiometric PuO₂
 - Calcination: screw calciner, ~950-1040°C, 132 min., same gas mix
 - Product Oxide: sieved, milled, blended; physical & chemical analysis; packaged for long-term storage

Direct Metal Oxidation (DMO-2)
 Furnace / Calciner



Operation Capabilities, continued

High Temperature Stabilization


Operations performed by Material Processing

Operation Capabilities, continued

Oxide Characterization

Why TGA?

Loss-on Ignition

Thermal Analysis

Why TGA?

- Analysis required for Packaging & Shipping PuO₂ in 3013 welded steel cans
- Loss On Ignition (LOI) insufficient for many reasons:
 - Does not address possible weight gain
 - Does not distinguish between H₂O & other volatiles
 - No knowledge of temperature vs. time constraints
 - Large samples / Overnight analysis
 - Severe restrictions on sample handling
- Upper Limits for Moisture in Packaged PuO₂
 - Max. H₂O permissible by LOI = 0.15 wt. %
 - Max. H₂O permissible by TGA-MS = 0.32 wt. %

Analysis Overview

- Reviewed process information between 1997-2011
 - Feed material
 - Material Type
 - Calcination temperatures for conversion from oxalate to oxide
 - Stabilization temperatures
 - Characterization techniques used
 - Project (historical process information)
 - Pictures of material
 - Any process variations
 - Acid molarity adjustments
 - Purification process, if used
 - Sieving and Blending times
 - Processing issues

General

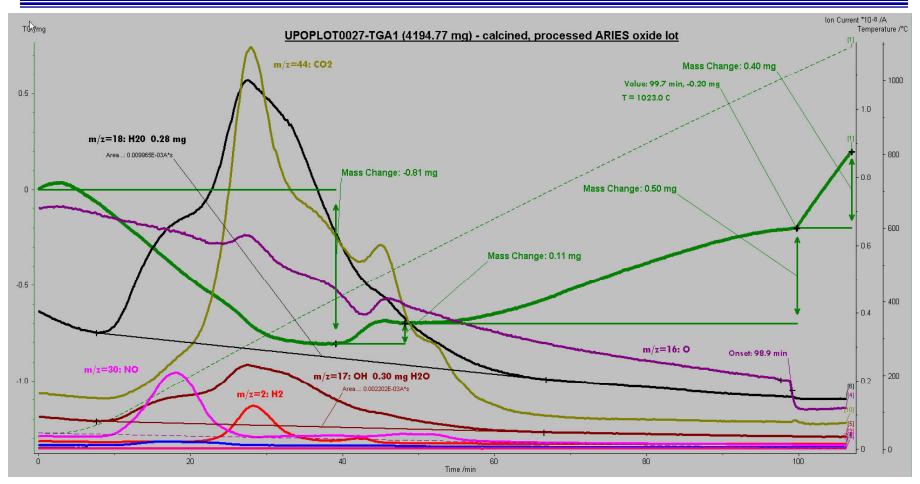
- All current Pu oxide products processed in the same room
- Analytical samples were taken post calcination
- Most analytical information was taken as part of experimental plans or to verify composition as part of existing project requirements
- The results are identified by project but the feed items came from multiple sources. Mostly LANL processed material but also LLNL, Rocky Flats, and Hanford.
- It took a lot of experimental work to develop our current processes and its still ongoing
- Types of equipment is important
- Human technique is most important

Aqueous Processing

- Aqueous Chloride incoming feed generally between 10-35%
 Pu assay if crucible or residue, if MSE salt, it can be >50%
- Aqueous Nitrate incoming feed generally >40% Pu assay
- Large volumes of solutions are necessary to achieve high Pu assay, >50 L per 1000g of Pu assay solution from dissolution with IX and SX. Complete flow sheet and ~40 L without SX.
- Dissolution is the first step and key in determining how much Pu can be recovered
- High product assay can be achieved (>80%) without SX
- The nitrate process has a more consistent recovery

Oxide Processing

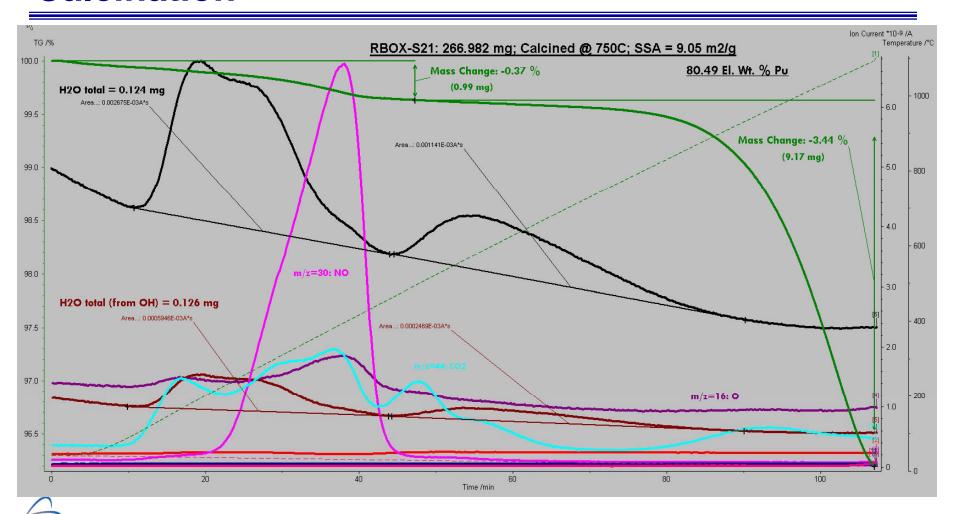
- Oxide products were typically 82-86% Pu assay when IX or SX were used
- Oxide products were typically 73-86% Pu assay without SX
- Residues not processed through Aq. were typically 60-78% Pu assay
- 3013 processing avg. calcination loss was 91.9 g (3.5 wt%)
- DOR processing avg. calcination loss was 25.9 g (0.81 wt%)
- MOX processing avg. calcination loss was 2172.2 g (55.25 wt%)
- The lower the assay the higher the calcination loss (g)
- Type of calcination boat can affect oxide product due to cross contamination, but is minimal

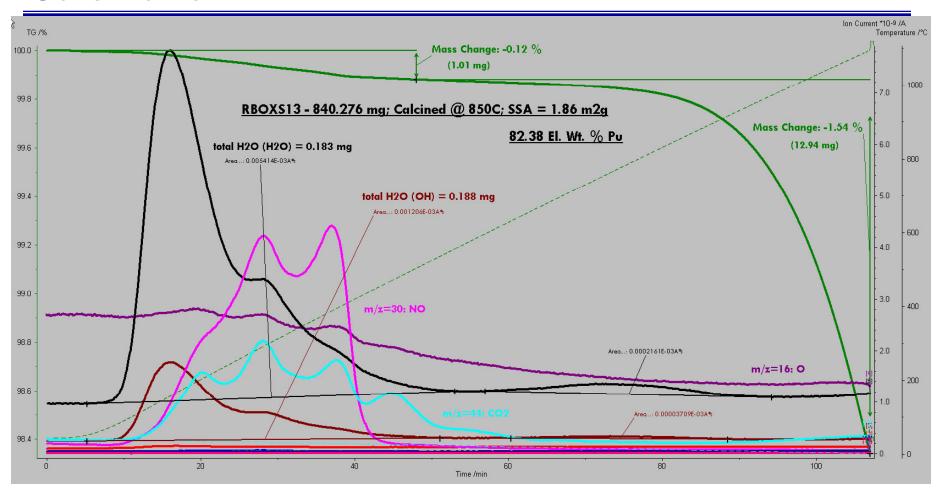


Thermal Trends

- PuO2 from different process paths → Different thermal behavior
- ARIES: complex trimodal PSD, very low SSA, miniscule volatile content: H₂O and CO₂ dominate, NO always present, may see H₂ peaks. Possible oxidation of sub-stoichiometric oxides dominates high-T behavior (wt. gain). Considerations include initial particle size, oxygen levels in TGA furnace. Uncalcined PuO₂ may deposit Ga₂O₃.
- MR&R / MIS: relatively simple unimodal PSD, high & variable SSA, significant volatile content: H₂O and NO dominate, CO₂ always present, other ligands such as SO₂ may also appear @ high T. Weight loss behavior dominated by salt volatilization no CI peaks seen (abundance sensitivity problem due to Ar).

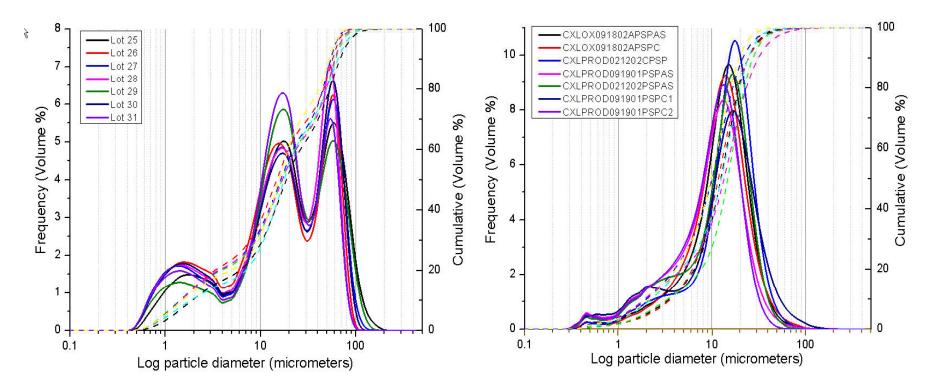
A Typical ARIES PuO₂ Calcined, Processed Lot




MR & R Sample: High Surface Area, 750°C Calcination

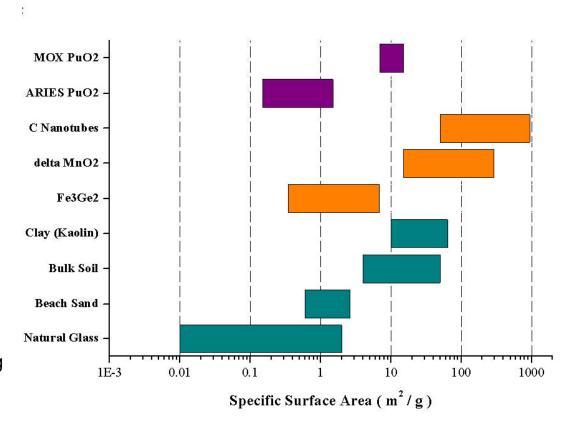
EST.1943

MR & R Sample – Low Surface Area, 850°C Calcination

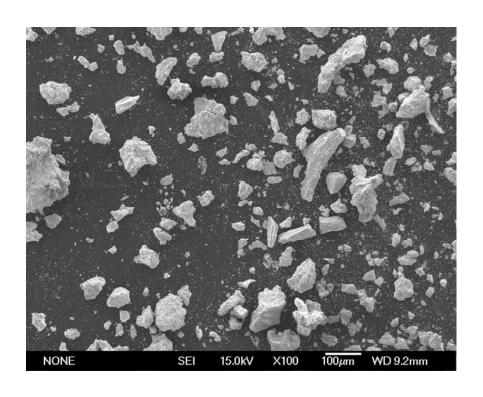


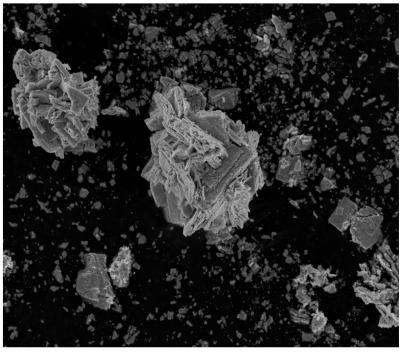
Characteristics of Process PuO₂: Particle Size Distribution

- Processed ARIES Oxide
- MIS / MR&R Impure Oxide



Specific Surface Area: Significant variation depending on process path


- Specific Surface Area varies markedly for Pu Oxides produced by different methods:
 - Oxidation in DMO: <u>0.1 1.0</u> <u>m²/g</u> (typically <u>~0.2 to 0.35</u> <u>m²/g</u>)
 - Oxidation in Air (no calcination):
 ~7 m²/g (one sample)
 - Oxalate Precipitation (calcination to ~650°C): <u>7 – 14</u> <u>m²/g</u> (LANL's MOX Pu Polishing Program)



SEM: ARIES vs. MOX

Chemistry Trends

- Iron (Fe), Magnesium (Mg), Aluminum (Al), Molybdenum (Mo), Phosphorous (P), and Tungsten (W) high for oxide produced from Aq. Chloride processing
- Calcium (Ca), Thorium (Th), Uranium (U), Bismuth (Bi) higher for oxide produced from Aq. Nitrate processing
- After stabilization, chloride concentrations are similar between Aq. Chloride products vs. Aq. Nitrate products (~125 ppm)
- Material processed from metal oxidation and no aqueous processing was the cleanest, and represents a baseline

Sample Results- Aq. Chloride with & without SX

			Concentration (ppm)										
	Lot ID	MT	Са	К	Mg	Na	F	Cl					
	04272-CC-075	52	133	83	12	85	50	30					
	RBXSFY05-4	52	27	82	119	142	100	20					
	RBXSFY05-6	52	11	92	412	72	120	250					
	RBXSFY05-18	52	61	171	11	64	<40	<40					
$SX \rightarrow$	RBXSFY06-1	52	33	81	67	63	<90	<90					
	RBXSFY06-2	52	49	86	375	67	<90	140					
	RBXSFY06-3	52	16	76	1390	59	160	150					
	RBXSFY06-4	52	35	91	602	71	160	170					
	RBXSFY06-5	52	24	92	55	72	60	150					
	RBOX	52	2680	5	2090	670	526						
	RBOX	52	1460	1100	3840	99							
$OX \dashv$	RBOX	52	1600	1400	3900	210	510	3100					
	RBOX	52	1100	6500	1200	1000	837	10352					
	Averages	SX	43	95	338	77	108	130					
	Averages	OX	1710	2251	2758	495	624	6726					

Sample Results- Aq. Chloride with & without SX

	ī													
			Concentration (ppm)											
Lot ID	MT	Al	Cr	Fe	Ni	Si	Ga	Та	Th	Ti	W			
04272-CC-														
075	52	55	32.7	111	28	195	17.6	4.3	0.4	4.6	51.3			
RBXSFY05-4	52	84	43.8	340	35	156	9.9	8.9	0.2	5.9	195			
RBXSFY05-6	52	<20		278	11	100	5.8	3.2	<0.1	1.5	104			
RBXSFY05-														
18	52	56	22		23	223	8.1		3.6	15	86			
RBXSFY06-1	52	25	93		64	141	29		0.4	1.9	87			
RBXSFY06-2	52	58	88		155	214	24		1.2	3.5	137			
RBXSFY06-3	52	23	37		57	128	8.8		0.3	2.0	88			
RBXSFY06-4	52	<20	39		66	78.1	14		0.3	1.7	96			
RBXSFY06-5	52	32	68		82	110	19		0.1	1.6	94			
RBOX	52	92	5.3	1000	260	300	150	99	110	13	110			
RBOX	52	8.5	36	29	18	1100	21	87	6.5	2.9	49			
RBOX	52	48	34	66	22	1500	39	84	9.1	10	55			
RBOX	52	47	31	210	93	500	20	160	160	11	120			
Averages	SX	48	53	243	58	149	15	5.5	0.8	4	104			
Averages	ОХ	49	27	326	98	850	58	108	71	9.2	84			

Sample Results- Aq. Nitrate vs. Aq. Chloride

			Concentration (ppm)								
Lot ID	MT	Feed	Ca	K	Mg	Na	F	Cl			
04272-CC-075	52	Chloride	133	83	12	85	50	30			
RBXSFY05-4	52	Chloride	27	82	119	142	100	20			
RBXSFY05-6	52	Chloride	11	92	412	72	120	250			
RBXSFY05-18	53	Chloride	61	171	11	64	<40	<40			
RBXSFY06-1	52	Chloride	33	81	67	63	<90	<90			
RBXSFY06-2	52	Chloride	49	86	375	67	<90	140			
RBXSFY06-3	52	Chloride	16	76	1390	59	160	150			
RBXSFY06-4	52	Chloride	35	91	602	71	160	170			
RBXSFY06-5	52	Chloride	24	92	55	72	60	150			
RBXSFY05-10	53	Nitrate	143	93	4.4	72	200	80			
RBXSFY05-11	53	Nitrate	118	90	18	70	180	210			
RBXSFY05-12	53	Nitrate	99	101	<3	79	120	40			
RBXSFY05-13	53	Nitrate	84	87	5	67	90	100			
RBXSFY05-14	53	Nitrate	191	88	5.6	69	100	90			
RBXSFY06-9	54	Nitrate	92	89	11	69	60	170			
Averages		Nitrate	(121.2)	91.3	8.8	71.0	125.0	115.0			
Averages		Chloride	43.2	94.9	(338.1)	77.2	108.3	130.0			

Sample Results- Aq. Nitrate vs. Aq. Chloride

		i											
			Concentration (ppm)										
Lot ID	MT	Feed	Al	Fe	Ni	Si	Mo	Ga	<i>)</i> P	Th	U	W	
04272-CC-			7.11			<u> </u>			•				
075	52	Chloride	55	111	28	195	5.2	17.6	98.2	0.4	105	51.3	
RBXSFY05-4	52	Chloride	84	340	35	156	9.8	9.9	542	0.2	116	195	
RBXSFY05-6	52	Chloride	20	278	11	100	18.3	5.8	283	<0.1	115	104	
RBXSFY05-18	53	Chloride	56		23	223	182	8.1	215	3.6		86	
RBXSFY06-1	52	Chloride	25		64	141	18	29	406	0.4		87	
RBXSFY06-2	52	Chloride	58		155	214	22	24	281	1.2		137	
RBXSFY06-3	52	Chloride	23		57	128	16	8.8	374	0.3		88	
RBXSFY06-4	52	Chloride	20		66	78.1	10	14	166	0.3		96	
RBXSFY06-5	52	Chloride	32		82	110	14	19	132	0.1		94	
RBXSFY05-10	53	Nitrate	20	98	41	162	6.8	19.6	43.6	5470	3220	10.8	
RBXSFY05-11	53	Nitrate	19	97	86	118	12.8	16.5	43.6	531	2180	21	
RBXSFY05-12	53	Nitrate	22	47	30	105	11	0.7	42	371		5.4	
RBXSFY05-13	53	Nitrate	19	50	32	113	7.5	2.6	38	470		6.9	
RBXSFY05-14	53	Nitrate	19	15	29	129	2.9	1.4	41	708		15	
RBXSFY06-9	54	Nitrate	19		59	192	5.3	1.0	77	981		14	
		Nitrate	19.7	61.4	46.2	136.5	7.7	7.0	47.5	1421.8	2700.0	12.2	

149.5

32.8

15.1

277.5

8.0

112.0

(243.0)

41.4

57.9

Averages

Chloride

Sample Results- Calcination

Project	Pu Assay (g)	Pre Calcination Initial wt% Net wt (g)		Post Calcination Net wt (g)	Final wt%	Loss due to Heating (g)
3013	2060.02	2673.58	82.56%	2514.61	86.27%	-91.90
DOR	1593.77	3223.7	84.78%	2981.93	85.30%	-25.96
MOX	1541.63	3931.81	36.6%	1759.59	88.14%	-2172.21
Other	667.50	819.9	80.53	806.04	81.85%	-13.3

- MOX stabilization- Calcination at 650°C for 6 hrs (min)
- DOR stabilization-Calcination at 850°C for 8 hrs (min)
- 94-1 3013 stabilization- Calcination at 1025°C for 4 hrs (min)
- Other stabilization- Calcination at 750°C for 8+ hrs (min)

Sample Results- Testing the Trends

			Concentration (ppm)											
Lot ID	МТ	Feed	Al	Ni	Si	Ca	K	Bi	Mg	Na	Ga	Р	Th	W
		LEXC-PO-												
RBXSFY05-19	53	0006	49	125	218	200	85	6240	84	66	41	24	307	17
		LEXC-PO-												
RBXSFY05-21	53	0009	45	131	179	188	83	6720	67	65	53	68	307	19
		LEXC-PO-												
RBXSFY05-22	53	0010	83	143	277	180	88	4380	71	69	51	86	271	30

- LEXC-PO-000X were unknown because they had already been packaged in 2000. So can we figure out where it came from?
 - 1. Compare to process averages. Are there any abnormal compositions? Yes, high bismuth
 - 2. Are there any similarities to any of the processes? Yes, they are high in Th and Ca and low in Mg and W like nitrate history.
 - 3. Is there any other information; particle size, surface area, etc? No
 - 4. Any similarities to known process history samples? Yes, one item processed through chloride operations and solvent extraction and another item that was from pyrochemistry but did not go through aqueous processing.

Sample Results

- 5. Based on process knowledge and comparison to chemical process averages, was it processed through nitrate or chloride processing? Nitrate
- 6. Research process history. Was some information found, if so what? Yes, item was found on LAMCAS and the history revieled it was processed through nitrate operations in the mid-1990s and the feed came from pyrochemistry. I later found research papers describing work that was done which supports what these items were.

Future Work

- Look at more available data
 - Physical characteristics like particle size and surface area
 - TGA data
- Look at kinetics of aqueous processing and mass balances to help identify/validate possible trends
- Look at what process impurities are being introduced during processing
- There is still more historical information available

Beryllium Oxide Sparge Tube Experiment in Pyrochemical Plutonium Operations

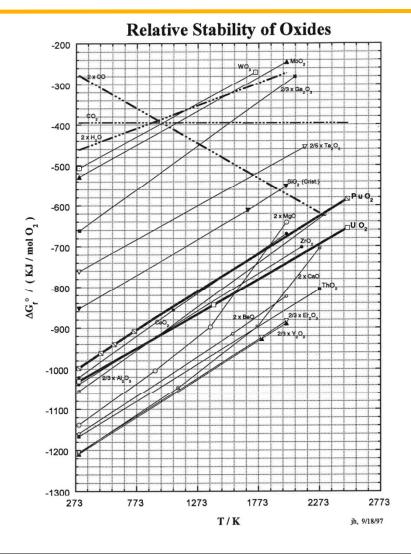
Process Engineer: J. Matt Jackson

Background

- Ceramic sparge tubes are used to deliver anhydrous chlorine gas to the Multiple Cycle Direct Oxide Reduction (MCDOR), and the Metal Chlorination (MC) Processes at LANL.
 - The MCDOR process reduces plutonium oxide to plutonium metal using calcium metal. The reaction takes place at 850 C in a molten calcium chloride solvent salt. The byproduct of the reaction is calcium oxide which is then oxidized using chlorine gas to regenerate the solvent salt.
 - The MC process chlorinates Pu metal directly for either a short time (30 minutes) for the purpose of Am extraction, or for a long time (6 hours) for the purpose of PuCl3 production.
- Currently Magnesium Oxide (MgO) sparge tubes are used in the process discussed above.

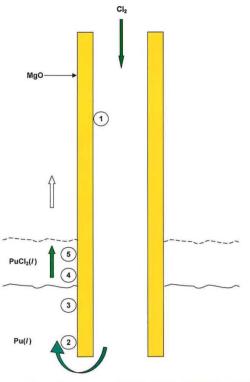
The Problem

- MgO sparge tubes fail at a high rate. Sparge tubes fail in both processes due to thermal shock and fragility. Additionally MgO sparge tubes fail in both processes due to chemical deterioration. In MC a MgO sparge tube has a one run service life.
- Efforts to replace MgO with AlO2, Y2O3, Ta, and SiAlON have been unsuccessful (SiAlON performed well in MCDOR but extremely poorly in MC).



Why BeO?

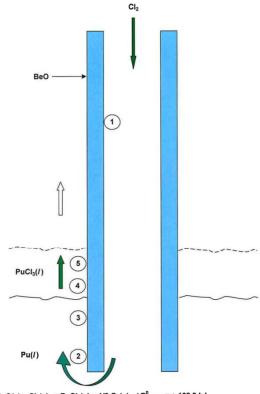
- BeO exceptionally stable oxide
- Gibbs Free Energy Predictions
- Thermal Properties
- Material Toughness/Durability
- Better Wetting Properties



MC Gibbs Predictions

MgO Sparge Tube in Metal Chlorination

 $(1) \ \text{MgO(s)} + \text{Cl}_2(g) \rightarrow \ \text{MgCl}_2(I) + 1/2 \ \text{O}_2(g) \ , \\ \Delta G^0_{1200\text{K}} = + \ 7.3 \ \text{kJ} \ ; \\ \Delta G_{1200\text{K}} < 0, \ \text{if} \ P_{\text{Cl2}} > 2.08 \ (P_{\text{O2}})^{1/2} = 1/2 \ \text{kg} = 1$


(2) MgO(s) + 1/2 Pu(/) \rightarrow 1/2 PuO₂(s) + Mg (/), ΔG^0_{1200K} = + 59.0 kJ

(3) $Pu(I) + 3/2 Cl_2(g) \rightarrow PuCl_3(I)$, $\Delta G^0_{1200K} = -698.1 kJ$

(4) 2 MgO(s) + PuCl₃(I) + 1/2 Cl₂(g) \rightarrow 2 MgCl₂(I) + PuO₂(s), ΔG^{0}_{1200K} = -109.1 kJ

(5) MgO(s) + 2/3 PuCl₃(I) \rightarrow 1/3 Pu₂O₃(s) + MgCl₂(I), ΔG^{0}_{1200K} = - 22.7 kJ

BeO Sparge Tube in Metal Chlorination

- (1) BeO(s) + $Cl_2(g) \rightarrow BeCl_2(g) + 1/2 O_2(g)$, $\Delta G^0_{1200K} = + 108.9 \text{ kJ}$
- (2) 2 BeO(s) + Pu(I) \rightarrow PuO₂(s) + 2 Be (s), ΔG^{0}_{1200K} = + 161.4 kJ
- (3) $Pu(I) + 3/2 Cl_2(g) \rightarrow PuCl_3(I)$, $\Delta G^0_{1200K} = -698.1 kJ$
- (4) 2 BeO(s) + PuCl₃(/) + 1/2 Cl₂(g) \rightarrow 2 BeCl₂(g) + PuO₂(s), $\Delta G^0_{1200K} = + 93.8 \text{ kJ}$
- (5) 2 BeO(s) + PuCl₃(I) + 1/2 Cl₂(g) \rightarrow 2 BeCl₂(g) + 1/2 Pu₂O₃(s) + 1/4 O₂(g), $\Delta G^0_{1200K} = + 172.6 \text{ kJ}$

BeO Advantages

- Beryllium oxide has a thermal conductivity of 330 WK⁻¹m⁻¹ and a coefficient of thermal expansion of 6.5 X 10⁻⁶ (At room temperature). Magnesium oxide has a thermal conductivity of 45 WK⁻¹m⁻¹ and a coefficient of thermal expansion of 10.4 X 10⁻⁶ (At room temperature). Therefore the BeO sparge tube would be much less susceptible to failure due to thermal shock.
- Beryllium oxide has a Knoop hardness of 2000 while MgO has a Knoop Hardness of 692.
- The more durable material of construction would result in fewer failed runs due to broken sparge tubes.

Tests Conducted (Thus Far)

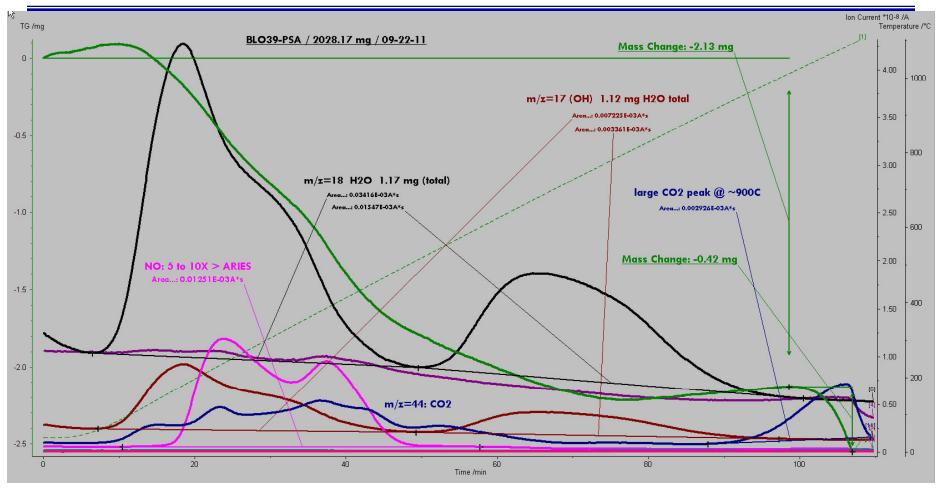
- 1 run in MC (Americium Extraction)
- 1 run in MCDOR

MC Run Summary

- Run was a typical MC with 1/3 turnings and 2/3 DOR metal.
- Samples drawn from melt using quartz pipette (Results Pending).
 - 1 sample pre chlorination.
 - 1 sample after 15 minutes of chlorination.
 - 1 sample after 40 minutes of chlorination.
- Sample taken from salt after breakout (Results Pending).
- Dose rate monitored throughout the run.
 - Background: 2.6 mr/hr
 At Insertion: 6.0 mr/hr
 High: 7.4 mr/hr
- Mass of sparge tube was measured before and after run.
 Approximately 0.6 g was lost. Small amount of tapering could be seen at Pu submerged tip.
- Further Testing Planned this FY.

MCDOR Run Summary

- Run was a typical MCDOR operation with 4 reductions and 3 salt regenerations.
- Samples Taken (Results Pending):
 - 1 sample of plutonium oxide feed.
 - 1 sample after 1st, 2nd, and 3rd salt regeneration.
 - 1 sample after final reduction.
 - 1 sample of metal product after break out.
 - 1 sample of substance from downstream particulate filter.
- Dose rate monitored through duration.
- Mass and dimensions of sparge tube were monitored throughout the run. A total of 3.5 grams were lost over 315 minutes of operation. ID and length were unchanged. OD reduced from 0.362" to .345".



Questions?

MIS Sample: Oxalate Precipitation

