skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deformation of the UI-14at%Nb shape memory alloy: experiments and modeling

Conference ·
OSTI ID:1044912

U-14at%Nb is a shape memory effect (SME) alloy that undergoes deformation by the motion of complex twins and twin related lath boundaries up to the limit of SME deformation ({approx}7%). All of the twins present in the as-transformed martensite and active during SME deformation are derived from those of the orthorhombic alpha-U phase, modified for the monoclinic distortion of the alpha martensite phase. In the SME regime a simple Bain strain model qualitatively predicts variant selection, texture development in polycrystalline samples, and stress-strain behavior as a function of parent phase orientation in single crystal micropillars. In the post-SME regime, unrecoverable deformation occurs by a combination of slip and twinning, with the first few percent of strain in tension apparently governed by a twin species specifically associated with the monoclinic distortion (i.e. not present in the orthorhombic alpha-U phase). The situation in compression is more complicated, with a combination of slip and twinning systems believed responsible for deformation. A review of the Bain strain model for SME deformation will be presented in conjunction with experimental data. In addition, results from modeling of post-SME behavior using the Visco-Plastic Self-Consistent (VPSC) model will be compared to experimental texture measurements.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1044912
Report Number(s):
LA-UR-10-08441; LA-UR-10-8441; TRN: US201214%%578
Resource Relation:
Conference: Plasticity 2011 ; January 3, 2011 ; Puerto Vallarta, Mexico
Country of Publication:
United States
Language:
English