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Here we consider an unsteady detonation with diffusion included. This introduces an 

interaction between the reaction length scales and diffusion length scales. Detailed kinet-

ics introduce multiple length scales as shown through the spatial eigenvalue analysis of a 

hydrogen-oxygen systeml; the smallest length scale is '" 10-7 m and the largest'" 10-2 m; 

away from equilibrium, the breadth can be larger. In this paper, we consider a simpler set 

of model equations, similar to the inviscid reactive compressible fluid equations, but include 

diffusion (in the form of thermal/energy, momentum, and mass diffusion). We will seek to 

reveal how the complex dynamics already discovered in one-step systems2 in the inviscid 

limit changes with the addition of diffusion. 
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Introduction 

• Standard result from non-linear dynamics: small scale 

phenomena can influence large scale phenomena and vice 

versa, · 

• What are the risks of using reactive Euler instead of reactive 

Navier-Stokes? 

• Might there be risks in using numerical viscosity, LES, and 

turbulence modeling, all of which filter small scale physical 

dynamics? 



I ntrod uction-Conti nued 

• It is often argued that viscous forces and diffusion are small 

effects which do not affect detonation dynamics and thus can be 

neglected. 

• Tsuboi et al., (Comb. & Flame, 2005) report, even when using 

micron grid sizes, that some structures cannot be resolved. 

• Powers, (JPP, 2006) showed that two-dimensional detonation 

patterns are grid-dependent for the reactive Euler equations, but 

relax to a grid-independent structure for comparable 

Navier-Stokes calculations. 

• This suggests grid-dependent numerical viscosity may be 

problematic. 



Introduction-Continued 

• Powers & Paolucci (AIAA J, 2005) studied the reaction length 

scales of inviscid H 2-02 detonations and found the finest 

length scales on the order of sub-microns to microns and the 

largest on the order of centimeters for atmospheric ambient 

pressure. 

• This range of scales must be resolved to capture the dynamics. 

• In a one-step kinetic model only a single length scale is induced 

compared to the multiple length scales of detailed kinetics. 

• By choosing a one-step model, the effect of the interplay 

between chemistry and transport phenomena can more easily 

be studied. 



Review 

• In the one-dimensional inviscid limit, one step models have 

been studied extensively. 

• Erpenbeck (Phys. Fluids, 1962) began the investigation into the 

linear stability almost fifty years ago. 

• Lee & Stewart (JFM, 1990) developed a normal mode 

approach, using a shooting method to find unstable modes. 

• Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear 

development of instabilities. 



Review-Continued 

• Kasimov & Stewart (Phys. Fluids, 2004) used a first order 

shock-fitting technique to perform a numerical analysis. 

• Ng et al. (Comb. Theory and Mod., 2005) developed a coarse 

bifurcation diagram showing how the oscillatory behavior 

became progressively more complex as activation energy 

increased. 

• Henrick et. al. (J. Compo Phys., 2006) developed a more 

detailed bifurcation diagram using a fifth order shock-fitting 

technique. 



One-Dimensional Unsteady Compressible Reactive 
Navier-Stokes Equations 

ap a 
at + ax (pu) == 0, 

a a (2 ) at (pu) + ax pu + P - T == 0, 

:t (p (e + ~2) ) + :x (pu (e + ~2) + jq + (P - T) U) = 0, 

:t (pYB) + :x (PUYB + j";) = pro 

Equations were transformed to a steady moving reference frame. 



Constitutive Relations 

P == pRT , 

e== p 
p("(-l) -qYB, 

E 
r == H(P - Ps)a (1 - YB) e - pip, 

·m __ D aYB 
JB - P ax' 

4 au 
T == 3 JL ax ' 

aT aYB 
jq == -k- + pDq--ax ax 

-4 m 2 k -1 W 10-4 Ns f 1 kg with D == 10 -, == 10 -K' and JL == ~,so or Po == ~, s m m m 
Le == S c == Pr == 1. 



Case Examined 

Let us examine this one-step kinetic model with: 

• a fixed reaction length, L 1/ 2 == 10-6 m, which is similar to 

that of H 2-02 . 

• a fixed the diffusion length, LJL == 10-7 m; mass, momentum, 

and energy diffusing at the same rate. 

• an ambient pressure, Po == 101325 Pa, ambient density, 

Po == 1 kg /m3
, heat release q == 5066250 m 2 

/8
2

, and 

r == 6/5. 



Numerical Method 

• Finite difference, uniform grid 

(~x == 2.50 x 10-8m, N == 8001, L == 0.2 mm) . 

• Computation time = 192 hours for 10 J1s on an AMD 2.4 GH z 

with 512 kB cache. 

• A point-wise method of lines aproach was used. 

• Advective terms were calculated using a combination of fifth 

order WENO and Lax-Friedrichs. 

• Sixth order central differences were used for the diffusive terms. 

• Temporal integration was accomplished using a third order 

Runge-Kutta scheme. 



Method of Manufactured Solutions (MMS) 

• A solution form is assumed, 

and special sources terms 

are added to the governing 

equations. 10-6 c .'./1. 
. ... 

e 10-8 I 
• With these sou rces terms, ~ I 

the assumed solution satis- ~ 10-

10

r 
10-1 

fies the modified equations. 1'(fi04 

• Fifth order and third order 

convergence is acheived for 

space and time, respectively. 

...... D ' 

•••• g 

.0 •• ---

.. / ·/ / 1 ~(0x') 
O(~x ) 

0.01 0.02 0.04 0 .08 

~ (m) 



Method 

-~ 

-+- ---

\ 

• Initialized with inviscid 

ZND solution. 

• Moving frame travels at 

the CJ velocity. 

• Integrated in time for 

long time behavior. 



Effect of Diffusion on Limit Cycle Behavior 
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Viscous Detonations: 
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• Lee and Stewart revealed for 

E < 25.26 the steady ZND 

wave is linearly stable. 

• For the inviscid case Henrick 

et al. found the stability limit at 

Eo == 25.265 ± 0.005. 

• In the viscous case E 

26.647 is still stable; how­

ever, above Eo ~ 27.1404 a 

period-1 limit cycle can be re­

alized. 



Period-Doubling Phenomena 

Viscous Detonations: 

Cil 
c.. 
~ 
c.. 

o 0.5 

t (ItS) 
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c.. I 
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• As in the inviscid limit the 

viscous case goes through a 

period-doubling phase. 

• For the inviscid case the 

period-doubling began at 

El ~ 27.2. 

• In the viscous case the begin­

ning of this period doubling is 

delayed to El ~ 29.3116. 



Effect of Diffusion on Transition to Chaos 

• In the inviscid limit, the point where bifurcation points 

accumulate is found to be Eoo ~ 27.8324. 

• For the viscous case, LJ-L/ L 1/ 2 == 1/10, the accumulation 

point is delayed until Eoo ~ 30.0411. 

• For E > 30.0411, a region exists with many relative maxima 

in the detonation pressure; it is likely the system is in the chaotic 

regime. 



Table of Approximations to Feigenbaum's Constant 

6 r 6 r En - E n- 1 
00 == 1m n == 1m E E 

n-+oo n-+oo n+l - n 

Feigenbaum predicted 600 ~ 4.669201. 

Inviscid Inviscid Viscous Viscous 

n En 6n En 6n 

0 25.2650 27.1404 

1 27.1875 3.86 29.3116 3.793 

2 27.6850 4.26 29.8840 4.639 

3 27.8017 4.66 30.0074 4.657 

4 27.82675 30.0339 



Effect of Diffusion in the Chaotic Regime 

• The period-doubling behavior and transition to chaos predicted 

in both the viscous and inviscid limit have striking similarilities to 

that of the logistic map. 

• Within this chaotic region, there exist pockets of order. 

• Periods of 5, 6, and 3 are found within this chaotic region. 
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Bifurcati1o,n Diagram 
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Effect of Diminshing Viscosity (E == 27.6339) 
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• The system undergoes 

transition from a stable 

detonation to a period-1 

limit cycle, to a period-2 

limit cycle. 

• The amplitude of pulsa­

tions increases. 

• The frequency de-

creases. 



Conclusions 

• Dynamics of one-dimensional detonations are influenced 

significantly by mass, momentum, energy diffusion in the region 

of instability. 

• In general, the effect of diffusion is stabilizing. 

• Bifurcation and transition to chaos show similarities to the 

logistic map. 

• For physically motivated reaction and diffusion length scales not 

unlike those for H 2 -air detonations, the addition of diffusion 

delays the onset of instability. 



Conclusions-Continued 

• As physical diffusion is reduced, the behavior of the system 

trends towards the inviscid limit. 

• If the dynamics of marginally stable or unstable detonations are 

to be captured, physical diffusion needs to be included and 

dominate numerical diffusion or an LES filter. 

• Results will likely extend to detailed kinetic systems. 

• Detonation cell pattern formation will also likely be influenced by 

the magnitude of the physical diffusion. 


