LA-UR- /- DL A

Approved for public release;
distribution Is unlimited.

Title: | THE DYNAMICS OF UNSTEADY DETONATION WITH
DIFFUSION

Author(s): | Tariq D. Aslam, WX-9
Christopher Romick, Notre Dame
Joseph Powers, Notre Dame

Intended for: | 48th AIAA Aerospace Sciences Meeting
Orlando, FL, USA
Jan 4-7, 2011

F &

/

-
> Loc§ Alagnos

Los Alamos Natlonal Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



AT

THE DYNAMICS OF UNSTEADY DETONATION WITH DIFFUSION *

Christopher M. Romick | Tarig D. Aslam  and Joseph M. Powers $

October 4, 2010

Here we consider an unsteady detonation with diffusion included. This introduces an
interaction between the reaction length scales and diffusion length scales. Detailed kinet-
ics introduce multiple length scales as shown through the spatial eigenvalue analysis of a
hydrogen-oxygen system'; the smallest length scale is ~ 10~7 m and the largest ~ 1072 m;
away from equilibrium, the breadth can be larger. In this paper, we consider a simpler set
of model equations, similar to the inviscid reactive compressible fluid equations, but include
diffusion (in the form of thermal/energy, momentum, and mass diffusion). We will seek to
reveal how the complex dynamics already discovered in one-step systems? in the inviscid

limit changes with the addition of diffusion.
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Introduction

e Standard result from non-linear dynamics: small scale
phenomena can influence large scale phenomena and vice

versa.

e What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

e Might there be risks in using numerical viscosity, LES, and

turbulence modeling, all of which filter small scale physical

~ dynamics?




Introduction-Continued

e |t is often argued that viscous forces and diffusion are small
effects which do not affect detonation dynamics and thus can be

neglected.

e Tsuboi et al., (Comb. & Flame, 2005) report, even when using

micron grid sizes, that some structures cannot be resolved.

e Powers, (JPP, 2006) showed that two-dimensional detonation

patterns are grid-dependent for the reactive Euler equations, but

relax to a grid-independent structure for comparable

Navier-Stokes calculations.

® This suggests grid-dependent numerical viscosity may be

problematic.




Introduction-Continued

e Powers & Paolucci (AIAA J, 2005) studied the reaction length

scales of inviscid Ho-O9 detonations and found the finest

length scales on the order of sub-microns to microns and the
largest on the order of centimeters for atmospheric ambient

pressure.
This range of scales must be resolved to capture the dynamics.

In a one-step kinetic model only a single length scale is induced

compared to the multiple length scales of detailed kinetics.

By choosing a one-step model, the effect of the interplay
between chemistry and transport phenomena can more easily
be studied.




Review

In the one-dimensional inviscid limit, one step models have

been studied extensively.

Erpenbeck (Phys. Fluids, 1962) began the investigation into the

linear stability almost fifty years ago.

Lee & Stewart (JFM, 1990) developed a normal mode

approach, using a shooting method to find unstable modes.

Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear

development of instabilities.




Review-Continued

e Kasimov & Stewart (Phys. Fluids, 2004) used a first order

shock-fitting technique to perform a numerical analysis.

e Ng et al. (Comb. Theory and Mod., 2005) developed a coarse
bifurcation diagram showing how the oscillatory behavior
became progressively more complex as activation energy

increased.

e Henrick et. al. (J. Comp. Phys., 2006) developed a more

detailed bifurcation diagram using a fifth order shock-fitting

technique.




One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations
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Equations were transformed to a steady moving reference frame.




Constitutive Relations
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Case Examined

Let us examine this one-step kinetic model with:

e afixed reaction length, L1 /5 = 107°% m, which is similar to

that of Ho-Os.

e a fixed the diffusion length, L, = 10~7 M mass, momentum,

and energy diffusing at the same rate.

e an ambient pressure, P, = 101325 Pa, ambient density,
po = 1 kg/m?>, heat release ¢ = 5066250 m?/s?, and

v = 6/5.




Numerical Method

Finite difference, uniform grid
(Az =2.50 x 10~®m, N = 8001, L = 0.2 mm) .

Computation time = 192 hours for 10 us onan AMD 2.4 GH z
with 512 kB cache.

A point-wise method of lines aproach was used.

Advective terms were calculated using a combination of fifth
order WENO and Lax-Friedrichs.

Sixth order central differences were used for the diffusive terms.

Temporal integration was accomplished using a third order

Runge-Kutta scheme.




Method of Manufactured Solutions (MMS)

e A solution form is assumed,
and special sources terms
are added to the governing

equations.

e With these sources terms,
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the assumed solution satis-

fies the modified equations.

e Fifth order and third order
convergence is acheived for

space and time, respectively.




Method

e Initialized with inviscid
ZND solution.

e Moving frame travels at

the CJ velocity.

e Integrated in time for

long time behavior.




Effect of Diffusion on Limit Cycle Behavior

e | ee and Stewart revealed for
Viscous Detonations: E < 2526 the Steady ZND

E = 26.647 wave is linearly stable.

— e For the inviscid case Henrick

et al. found the stability limit at
Eo = 25.265 4= 0.005.

1.5 2

E = 27.6339
e In the viscous case F =

26.647 is still stable; how-
ever, above Fyp ~ 27.1404 a
period-1 limit cycle can be re-

alized.




Period-Doubling Phenomena

Viscous Detonations: ® AS in the inViSCid I|m|t the

E = 29.6077 |

viscous case goes through a

period-doubling phase.

e For the inviscid case the

period-doubling began at

® In the viscous case the begin-

ning of this period doubling is
delayed to £/ ~ 29.3116.




Effect of Diffusion on Transition to Chaos

e |n the inviscid limit, the point where bifurcation points
accumulate is found to be o ~ 27.8324.

e For the viscous case, L, /L5 = 1/10, the accumulation

point is delayed until £, ~ 30.0411.

e For £/ > 30.0411, a region exists with many relative maxima
in the detonation pressure; it is likely the system is in the chaotic

regime.




Table of Approximations to Feigenbaum’s Constant

boo = lim &, = lim En = Bn1

Feigenbaum predicted 0, ~ 4.669201.

Inviscid Inviscid Viscous Viscous

25.2650 - 27.1404 -
27.1875 29.3116
27.6850 29.8840
27.8017 30.0074
27.82675 30.0339




Effect of Diffusion in the Chaotic Regime

e The period-doubling behavior and transition to chaos predicted
in both the viscous and inviscid limit have striking similarilities to

that of the logistic map.
e Within this chaotic region, there exist pockets of order.

e Periods of 5, 6, and 3 are found within this chaotic region.




Chaos and Order

Viscous Detonations:

Period-5 Chaotic

Period-6




Bifurcation Diagram

(a) Inviscid model
with

shock-fitting
algorithm

(b) Diffusive model




Effect of Diminshing Viscosity (£ = 27.6339)
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Conclusions

e Dynamics of one-dimensional detonations are influenced
significantly by mass, momentum, energy diffusion in the region

of instability.
e In general, the effect of diffusion is stabilizing.

e Bifurcation and transition to chaos show similarities to the

logistic map.

e For physically motivated reaction and diffusion length scales not

unlike those for H»-air detonations, the addition of diffusion

delays the onset of instability.




Conclusions-Continued

e As physical diffusion is reduced, the behavior of the system

trends towards the inviscid limit.

e |f the dynamics of marginally stable or unstable detonations are
to be captured, physical diffusion needs to be included and

dominate numerical diffusion or an LES filter.
e Results will likely extend to detailed kinetic systems.

e Detonation cell pattern formation will also likely be influenced by

the magnitude of the physical diffusion.




