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Second Order Multidimensional Sign-Preserving Remapping for
ALE Methods

1Hill R.N., !Szmelter J.
'Loughborough University, Leicestershire, LE11 3TU, UK
R.Hill2@[boro.ac.uk

A second-order conservative sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE)
methods is developed utilising concepts of the Multidimensional Positive Definite Advection Transport
Algorithm (MPDATA). The algorithm is inherently multidimensional, and so does not introduce splitting
errors. The remapping is implemented in a two-dimensional, finite element ALE solver employing stag-
gered quadrilateral meshes. The MPDATA remapping uses a finite volume discretisation developed for
volume coordinates. It is applied for the remhpping of density and internal energy arranged as cell centered,
and velocity as nodal, dependent variables.

In the paper, the advection of scalar fields is examined first for test cases with prescribed mesh movement. A
direct comparison of MPDATA with the performance of the van Leer MUSCL scheme indicates advantages
of a multidimensional approach. Furthermore, distinctly different performance between basic MPDATA
and the infinite gauge option is illustrated using benchmarks involving transport of a sign changing velocity
field.

Further development extends the application of MPDATA remapping to the full ALE solver with a staggered
mesh arrangement for density, internal energy and momentum using volume coordinates. At present, two
options of the algorithm - basic and infinite gauge - are implemented. To ensure a meaningful assessment,
an identical Lagrangian solver and computational mesh update routines are used with either MPDATA or
van Leer MUSCL remapping. The evaluation places particular focus on the abilities of both schemes to
accurately model multidimensional problems.

Theoretical considerations are supported with numerical examples. In addition to the prescribed mesh
movement cases for advection of scalars, the demonstrations include two-dimensional Eulerian and ALE
flow simulations on quadrilateral meshes with both fixed and variable timestep control. The key compar-
isons include the standard test cases of Sod and Noh for single material problems.

The results demonstrate that the MPDATA gauge option is suitable for providing accurate ALE remapping
and preserves the multidimensionality and sign of both scalar and vector fields.
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Introduction

Remapping within an arbitrary Lagrangian-Eulerian (ALE) scheme requires values of a scalar to be
conservatively interpolated from one computational mesh to another which has differing geometry.
Advection methods are typically utilised for the remapping phase, with fluxes being created by
overlapping volumes between adjacent elements. This paper documents the application of MPDATA [1, 2]
as a remapping scheme for this purpose.

In this study, the numerical tests initially follow Reference [3] and examine cases with prescribed mesh
movement. Examples are extended to fields of varying sign - highlighting the benefits of the infinite gauge
option of MPDATA [4]. Further development extends the application of MPDATA remapping to a
complete ALE solver [5] with a staggered mesh arrangement for density, energy and momentum using
volume coordinates, shown in Figure 1. In terms of accuracy, the ALE remapping scheme should be at
least second order accurate, conservative, correctly deal with corner coupling errors in multiple
dimensions and preserve symmetry when required. We investigate how MPDATA serves this purpose.

Demonstrations focus on the classical Noh problem. The problem is relevant to shock reflection and
interactions, and has been extensively studied; refer to [6, 7] as well as the literature therein for in-depth
analysis and reviews. In general, accurate solutions of the Noh problem can be obtained by methods based
on the Eulerian framework, but simulations involving Lagrangian solutions introduce unphysical wall
heating. ALE methods inherit errors introduced in the Lagrangian phase, which in turn raises an issue for
the remapping phase. The remapping phase should accurately interpolate the Lagrangian solution,
including all significant features of the variables, whether such features are deemed accurate or otherwise.
In the case of the Noh problem, the wall heating features are unphysical, and should not be present in the
solution. The remapping phase may then be employed to repair the solution in a computationally efficient
manner. This study describes an MPDATA based treatment for reducing the wail heating errors in
ALE/Lagrangian-Eulerian calculations, and highlights additional benefits of this treatment, such as the
restoration of symmetry. in multidimensional test cases.

MPDATA Based Remapping with Second-Order Filtering

In order to use MPDATA for remapping, it is useful to utilise the volume coordinate update of a scalar. For
arbitrary flows, the volume update is given as

v = v i AW, (N

where AV}, denotes the quadrilateral generated by the movement of edge k from the post-Lagrangian
mesh, denoted (=), to the remapped mesh, denoted (). The scalar in each cell is given by its mean value
over the cell volume, so that the corresponding scalar update is then

v 1

v v Sha1 AViyy . 2

w(-f-) —

Equation (2) corresponds to the first order upwind calculation required for MPDATA remapping. Upwind
advection utilises a Courant number that is also required for the calculation of the pseudo velocities used
to compensate the second order truncation error in MPDATA. Identification of the Courant number within
(2) is therefore necessary for the subsequent steps in the algorithm.
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Figure 1: Illustration of thé staggered grid arrangement. Density, p, and internal energy, ¢, are
stored at element centres (circles) on the computational mesh (solid lines). Components of velocity, u
and v, are stored at nodes (diamonds) which become the centres of elements on the dual mesh

(dashed lines).

Defining ¥ := V4 and multiplying (2) by V(‘)/V(_), the scalar remapping becomes

A Vi

el L 3)

g+ = - Ti_

which is now in the form of upwind advection used in [4], with AVA./V(‘) being akin to the Courant
number evaluated at edge k& of an element. For consistency, the volume in the denominator of (3) is
obtained by averaging over element volumes on either side of the edge. Repeating the update (2)-(3) using

“mass instead of volumes reveals that AV/V (=) can be interpreted as the Courant number for all scalar and
vector variables. The MPDATA scheme, generalised to volume coordinates including second-order
filtering [8] is summarised below. Following [4], which provides the detailed derivation of MPDATA, only
the volume coordinate extension is provided here, and to assist the reader, notation adopted from [4] is
used.

By denoting the Courant number by C' = AV/V (=), the first pass is formulated as
®_ ) (=) gl (=) (=3
‘I’i,j = \I" i = {F (‘I’L;)> 1+1] Ci+1/27j) —/3i+1/2,j (\I/7'+1j - ‘I’i,j )
(=) )
~F<‘IJE ]]:\I’ CL ]/Q,J) _ﬂi—1/2j<\11(' \I};( %])jl
(

[F <lIJL 3)5\1/7 j+1?CIJ+1/2> . 181, g+1/2 (qll(]-)’-l ‘Ij( ))

— F (‘I’,(;ll, ‘I’z(-;), Ci,j—l/‘Z) = Bij-12 <¥D(~ - ‘I’I(J) 1)} 4

where half integer index subscripts indicate edge (and nodal) centred variables, and integer indices denote
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element centred variables. The flux function F' is defined as

1
F (W0, 0,C) = 5 (C+ C]) Wy + 2

2 (C—1[C) Yy

Terms utilising the small positive coefficient 3 are activated when oscillations are present in the first-order
solution and may be filtered.

The pseudo velocities (antidiffusive overlap volumes), modified into antidiffusive Courant numbers for the
second pass are

1 2 _
Cl'(+)1/2’j = (|Ci+1/2,j| — (Cig1/25)" + 2/8i+1/'2,j) AW Cit1/2,iCit1/2;BW, ©)
where Ciy1/2; = 1/4 (Cy j11/2 + Cij=1/2 + Cit1,j+1/2 + Cip1,j—1/2). With an analogous expression for
(1)
Ci—1/2,j’ and
a )
Ci1jo = (ICismaal = (Cigar)” +28i5112) BY = CigiapaCijurpA®), (©)

where CL]+1/Q =1/4(C iv1/2,5 + Cic1/25 + Cigry2,541 + Ci 1/2]+1) with an analogous expression for
Ci(Alj)_l/Q, where

aey! 1)
AW = |92 0¥ e - Y|~ [V )
| 2¢Oz | - (D ml’
w25 Y| |y
1) (1)
(1) — [61] 61/] ! ’¢L+1]+1‘ wi,j+1 - ¢7+1,] 1‘ 1/’1]' 1‘ ®
- (1 1 (1 ’
20 0y | ;1172 2 ¢i+)1.j+1‘ + wz(,j)+1 + "l’z+11 1’+ zg) 1‘
The corrective pass then takes the following form,
() _ ) 1) ¢ (1) (1) (1) ~()
\I}i,j - ‘I" o [F (\PLJ’\IIIHJ‘CHI/Z,J') _F(\I}7 1,5 \I}i]’ci—l/zj)}
1) ¢ (1) o) 1) ~Q)
[F (‘Ijz] ’\Ili,j+l’cz,j+1/2> _F( 1,7— 1)‘1}11 301] 1/9)] ) (9)

The infinite gauge (whereby the algorithm is linearised around an arbitrarily large constant) and monotonic
options used within the remapping in this paper are detailed in [4] and [2] respectively.

Prescribed Mesh Movement Test Cases

A key aspect of the ALE method is to remap the post-Lagrangian solution onto a relaxed mesh which will
have improved geometric properties. The prescribed mesh movement test cases proposed by Margolin and
Shashkov [3] are designed to test the performance of the remapping schemes for this purpose. The test
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cases remap initial distributions of a positive scalar field on to a series of meshes where nodal positions are
determined by a tensor product function. The scalar field is mapped from a mesh at time t" to the
prescribed mesh at time "1, with the overlap volumes calculated using the two nodal positions of an
element edge on the mesh at times ¢* and "+, The nodal positions are purposely specified to ensure that
the overlap volumes do not cover more than one element [9], thus maintaining consistency with the CFL
condition in an ALE scheme.

In the following example, the tensor product meshes are generated in the domain [0, 1] x [0, 1] using the
functions

z(€nt) = (1—at)f+ ()&, y(€ 1) = (1 —a®)n+ a(t)n?, (10)
a@%=ﬁ%?ﬁ, (1

to give the z and y coordinates of the nodes in the computational mesh, with
0<¢<1, 0<n<l1, 0<t<1.

The parameters £ and 7 are discretised according to the expressions

¢ =1 . . j-1 . _ ;
i = T =1, tmaz; Iy =i = = Loy Jman,
= S =1 e =1 Jma
at the time level " determined by

v n

t" - )n:os"-an'm[l,’l‘7

n'fTLfIIZ

to give a sequence of meshes {rz”]} given by

The indices 7 and j correspond to the nodes of the mesh, with im0z = jrmar = 129 and 1,4, = 640 in the
test cases shown. The tensor product movement (10)-(12) has the effect of skewing the mesh from an
initially regular grid (t = t° = 0, a(t) = 0) before returning to a regular mesh (t = " = 1, a(t) = 0).
An initial test case, illustrated in Fig. 2, is performed featuring a discontinuity (normal shock) in a positive

scalar variable given by (13). This function essentially represents one-dimensional transport between
elements with both the van Leer and MPDATA methods performing well.

w@w)={ (13)
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Figure 2: Isolines at t = t"+* for a normal (top) and oblique (bottom) shock remapped over tensor
product mesh movement. The contour interval is 0.25, minimum contour level, 0.0. The exact
solution (left plate) and the solutions given by the van Leer and MPDATA based remapping schemes
(centre and right plates respectively)

A more rigorous test case features an oblique shock function, detailed in (14). It involves transport
between diagonal elements and tests the multidimensional capabilities of the remapping schemes. Fig. 2
shows the exact, van Leer and MPDATA solutions in the left, centre and right plates respectively.
Limitations of the one dimensional basis of the isotropic remapping van Leer based scheme are again
highlighted, with undesired rippling introduced into the solution as a result of the inadequate corner
coupling. The MPDATA remapping however, deals with the corner transport effectively, gives results
consistent with the exact values (14), and appears to improve on both the MPDATA inspired
Positivity-preserving Error Compensation Algorithm and the Barth-Jespersen solutions given in [3].

1.0 ify > (z—0.4)/0.3,

14
0.0 ify < (z—04)/0.3. (14

w(fl?»y): {

The shock distributions involve non-negative distributions. To allow further analysis of the remapping
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Figure 3: Profiles of the ‘sine’ distribution through = = 0.25 after 640 pseudo timesteps. Left:
Isotropic van Leer, center: MPDATA, Infinite gauge MPDATA.

methods, a distribution featuring a smooth sign changing distribution is proposed:

Y(x,y) = sin(2mx)sin(2my). (15)

MPDATA was originally derived for non-negative scalar and vector fields, and subsequently extended to
positive or negative fields, cf. Section 3.2 in [4]. This extension utilises absolute values in the calculations
of derivatives in the pseudo velocity calculation. However, for some test cases involving fields of varying
sign, aspects of the solution may not be accurate. For example, if 15 j & —;41,; then Oy»/0x — o0 as
1, j increases in magnitude with —1);.1 j, whereas J || /0x — 0. The infinite gauge option of MPDATA

is an alternative approach to generalising MPDATA to fields of varying sign.

The volume coordinate infinite gauge option is obtained by linearising the algorithm (4)-(9) around an
arbitrarily large constant, see Section 4 in [10] for a detailed discussion of the process. In this way, the
scalar or vector field is modified to be effectively non-negative, which in turn removes the need to exploit
absolute values in derivatives. In practice, the basic algorithm is altered such that unity replaces each ¥ in
the denominators of (7) and (8), and in the fluxes of the corrective pass (9).

Figure 3 shows a cut through the distribution along z = 0.25. The isotropic van Leer scheme, shown for
comparison, struggles with the mesh movement, and as a result introduces undesired ripples similar to
those reported in [15] which dominate the solution (particularly along the profile z = 0.5, not shown). In
contrast, the basic MPDATA solution correctly remaps the scalar, with the exception of regions where the
distribution changes sign because 9 |¢| /Ox — 0. In this case, an unphysical reduction in the gradient of
the scalar distribution is introduced. Such errors are not present in the infinite gauge MPDATA solution,
with correct remapping achieved for all values. Scalar conservation during the MPDATA gauge
calculation, using the error norm

+) ()

i Vig — 2 Yy
=
Zi,j Lo

after each pseudo time step, is shown in Figure 4.

€= (16)
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Figure 4: Temporal evolution of the conservation error for MPDATA gauge remapping.

The Explosion Problem

The Explosion problem [11] is essentially an axisymmetric two dimensional extension to Sod’s shock tube
benchmark. The domain is filled with an ideal gas with specific heat ratio coefficient v = 1.4. A circular
region of radius » = 0.4 is centred at the origin of a [—1, 1] x [~1, 1] domain with higher density, p, and
pressure, p, compared to the rest of the domain.

1 if || <04, 1 if |r] <04,
= 0125 if|r|>0.4. o1 ifr] > 04

The gas is initially at rest so that a contact discontinuity, shock and rarefaction wave are formed radially as
the simulation progresses. The computations are conducted on 100 x 100 and 200 x 200 Cartesian grids
with Eulerian and Winslow equipotential [12] rezoning. The geometry of the Cartesian grid is mismatched
with the radial initial conditions which may evoke perturbations at the interface between regions of high
and low densities and pressures.

A comparison of the resulting density contours at £ = 0.25 is shown in Fig. 5. A considerable error is
visible in the rarefaction wave of the van Leer solution using isotropic remapping. Indeed, this arises due to
the castellated interface between material properties where the lack of true multidimensionality highlights
corner coupling errors. Significantly, the errors seeded at the initial material interface are impinging upon
the radial position of the contact discontinuity. This has the result of damaging the required symmetry in
the simulation. The MPDATA based scheme however, does not exhibit the same behaviour at the material
interface, with the castellation effect being suppressed due to the utilisation of information from all
directions in the remapping. Preservation of symmetry is therefore stronger in the MPDATA scheme. Such
a mismatch of geometries may be reduced by smoothing the interface using area weighting in the cells
which are intersected by the circle. The initial castellated interface is retained however to provide a
challenge when studying properties of remapping. As seen in Fig. 5, the solutions obtained with both
rezone strategies show similar features with the results from the full ALE calculation being more accurate.

The density, energy, pressure and velocity profiles representing a cut through the 200 x 200 mesh at 45°
are shown in Fig. 6. Both methods perform comparably in each of the profiles, and conform to results in
the literature, for example the high order one dimensional solution of Toro (Fig. 17.4 in [11]). It can be
seen that the isotropic remapping van Leer scheme introduces an overshoot in the velocity profile in the
region surrounding » = 0.4 which is linked to a dip at the base of the rarefaction wave of the density
profile. This feature is not physical, and is not present in the MPDATA solution. Small inaccuracies at the
contact discontinuity and shock are present within the profiles for both solutions. The van Leer solution
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Figure 5: Density contours at ¢ = (.25 for the Explosion problem with Eulerian (left) and Winslow
(right) mesh rezoning; the van Leer scheme is shown in the upper plates, and the infinite gauge
MPDATA scheme in the lower plates. The contour interval is 0.066, minimum contour level, 0.125.
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using Strang splitting appears to be more diffusive in the regions of discontinuities, however, a rigorous
comparison of this result is impeded by difterences in the implementation of the routines used in ALE.

The Noh Problem
The Noh problem [6] consists of a cold, ideal gas with density p = 1.0, internal energy e = 0.0, ratio of
specific heat y = % and uniform velocity ||v|| = —1.0 forcing the gas into a rigid wall. An infinite strength

shock is generated at the wall boundary and travels in the opposite direction to the gas flow. The simulation
of the planar case (rigid wall along z = 0.0) is performed in a [0, 1] x [0, 0.2] domain, discretised with a
series of uniform resolution grids. The simulation of the cylindrical case (wall at (z,y) = (0,0)) is
performed on a Cartesian mesh on a [0, 1] x [0, 1] domain, with 200 x 200 elements, and At = 0.0005.
Exact values are used on inflow boundaries, with symmetry utilised on boundaries x = 0 and y = 0 in the
cylindrical case. Both planar and cylindrical cases use a constant time step, terminating at time ¢ = 0.6.

The wall heating error in the Noh problem arises in the Lagrangian solution of unsteady wave propagation
and is related to factors such as the application of artificial viscosity, phase errors, wave speed or changes
in mesh resolution travelling with the shock. A thorough analysis of the sources of wall heating is
provided in Reference [7]. Due to the nature of the Noh problem, a strong shock is formed next to an
impermeable wall. At this stage, elements near the boundary experience large compression so that the
added artificial viscosity cannot be dissipated sufficiently, manifesting itself as unphysical heating. This
generates a build up of energy at the wall boundary which in turn forces a drop in the density as the
equation of state establishes the correct pressure level. Herein, properties of the MPDATA based
remapping are exploited to regulate the solution.

By design, MPDATA relies on the iterative application of the upwind scheme, where subsequent iterations
compensate for the implicit viscosity of the preceding steps. Thus it bears an analogy to generalised
similarity models, where an estimate of the full unfiltered Navier-Stokes velocity (that enters the
subgrid-scale stress tensor) is obtained by an approximate inversion of the filtering operation, i.e.
deconvolution [1]. Building upon this concept, and in the spirit of Flux Corrected Transport methods [13],
additional diffusion i.e. activating 5 terms in (4)-(6) may be explicitly added to the first upwind iteration to
remove oscillations in the first-order solution. The second iteration, (9), compensates the truncation error
of the first step (4) which includes the added dissipation. With dt o éz, the explicit diffusion enters (4) as
an (O(dx) correction, whereupon its reversal in the corrective step leaves an O(dz?) residual; see [8] for a
thorough exposition. Similarly to MPDATA, this treatment is fully multidimensional.

Within the second-order filtering option, 8 = 0.02 is the default value, but may vary in space or be set to
zero upon the detection of a shock (discontinuity). The effective level of diffusion is an order of magnitude
lower than that reported in [13]. Wall heating errors will be the focus of this study, with preservation of
symmetry receiving attention in the cylindrical case.

Planar Case

The left plate of Fig. 7 shows the density profile for the van Leer and MPDATA-gauge (3 = 0.0) schemes.
It can be seen in this diagram that the MPDATA result is correctly aligned to the exact solution in terms of
the shock position (z = 0.19958 using linear interpolation for p = 2.5) and the level of post-shock density
accumulation, whereas the van Leer scheme incorrectly aligns both features (shock at x = 0.19073) in a
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Figure 6: Density, energy, pressure and velocity profiles of the Explosion problem with Eulerian

rezoning.
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Grid

Density

LE.

TE.

Pressure

Velocity

van Leer

100x20
200x20
400x20

0.105941
0.126266
0.139633

0.148222
0.188564
0.208208

0.148211
0.188557
0.208204

0.186724
0.203178
0.212429

0.079659
0.094454
0.102806

MPDATA

100x20
200x20
400x20

0.058166
0.040818
0.030565

0.064287
0.043834
0.035261

0.064252
0.043832
0.035260

0.074276
0.058089
0.053451

0.035359
0.025558
0.021844

MPDATA
filtered

100x20
200x20
400x20

0.056939
0.039963
0.029813

0.061482
0.042083
0.033872

0.061475
0.042081
0.033871

0.075888
0.057768
0.053052

0.035611
0.025556
0.021781

Table I: L, error data for planar Noh problem with increasing mesh resolution in the direction of
flow. LLE. denotes internal energy; T.E., total energy.
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Figure 8: Entropy errors for the planar Noh Problem (400 x 20, At = 0.00025). van Leer (pink
square), MPDATA gauge (blue triangle), MPDATA gauge filtered (red diamond).

manner consistent with results shown in [7] for Eulerian calculations using internal energy.

The van Leer scheme has masked the wall heating error. This feature has arisen due to the van Leer
scheme being forced to give a first-order accurate solution at the wall elements because the larger stencil
required to construct the monotonic piecewise linear distribution of the transported variables is not
available at the boundary. The MPDATA based scheme has accurately remapped the Lagrangian wall
heating features, which are unphysical, near the boundary at x = 0.0, therefore a self-regulating
application of small explicit dissipation of wall heating errors is beneficial. This is achieved with the
second-order filtering option (3 = 0.02 for density and internal energy remapping) which removes the
build up of energy at the boundary.

The filtering option of MPDATA is applied anisotropically in the direction of flow at all element edges
except those where a shock has been detected. Therefore, the filtering does not smear the shock any further
than has been done so with the application of artificial viscosity in the Lagrangian phase, and gives a more
accurate shock position (x = 0.19961). The shock is detected automatically by examination of pressure
gradients. The exclusion of the shock from the filtering is not essential, but provides a modest
enhancement.

The behaviour, illustrated in Figure 7, of all schemes is consistent across coarse and finer resolution
meshes. The departures from the exact solutions are reflected by Table I which gives Ly error data for
100 x 20,200 x 20 and 400 x 20 meshes. These norm values show consistently higher errors in all
variables for the van Leer scheme compared to the MPDATA based scheme. Due to the presence of a
shock, the treatment of inflow boundaries and other factors, Table I is not suitable for an assessment of
asymptotic mesh convergence. A second order asymptotic mesh convergence study of MPDATA
remapping was conducted in [15] for a pure advection test with prescribed mesh velocity.

Solutions using the internal energy equation depend upon the level of entropy production. Fig. 8 shows the
ratio of entropy error (defined in [7]) for each method. All methods have large start up errors (maximum
entropy error for the van Leer scheme is 1.652, MPDATA based schemes, 1.655), however the van Leer
scheme stabilises to a level significantly below the correct production level so that the incorrect features
are evident. The MPDATA solutions attain more accurate levels of entropy production, however it can be
seen that the start up errors and the conservation of internal energy rather than total energy, cf. [7, 8], are
still affecting the solutions. This is seen by the MPDATA-based remapping entropy errors asymptotically
approaching a negative value (—0.006 at ¢t = 0.6).
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Figure 9: Upper row: Density plotted against radius for the cylindrical case of the Noh problem
(Cartesian mesh). Left: van Leer, centre: MPDATA gauge, right: MPDATA gauge with second order
filtering. Lower row: Corresponding density contours (quarter of the domain shown), minimum
value p = 2.0, contour interval, 1.0.

Cylindrical Case

Figure 9 shows the density distributions obtained on a 200 x 200 Cartesian mesh at t = 0.6

(At = 0.0005). The van Leer based scheme is extended to two-dimensions by isotropic remapping. In this
case corner coupling errors dominate the van Leer solution with a loss of symmetry, and significant errors
along the cut z = y (linearly interpolated shock position along for p = 10 at r = 0.19932)!. As in the
planar case, the method features a first-order solution at the “wall” (origin), however in this case the
first-order solution does not mask the wall heating errors. The MPDATA gauge solution features an
incorrect shock position (7 = 0.20646) because of the wall heating errors. This in turn leads to an under
evaluation of post-shock density accumulation. The multidimensional nature of MPDATA provides greater
preservation of symmetry, with a significant reduction in errors along the cut x = y, as highlighted in the
contour plots of Fig. 9.

Applying the second-order filtering with MPDATA gauge significantly reduces the wall heating errors, and
improves the preservation of symmetry. However, the effect of filtering is ultimately limited by the
underlying Lagrange and MPDATA gauge solution, so that the shock position (r = 0.20544) and
post-shock density accumulation are improved, but not fully regulated to the correct levels. The key result
from the second-order filtering solution in the cylindrical case is the marked improvement in symmetry.

' A multidimensional isotropic extension of any one-dimensional scheme is not optimal. A scheme in which a one-dimensional
version of MPDATA was employed isotropically in place of the van Leer scheme produced results (not shown) very close to those
in the left panel of Fig. 9
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Christensen [14] monotonic artificial viscosity is used in Lagrangian phase of the simulations, with
coefficients ¢, = 0.75 and ¢; = 0.5. The ¢; coefficient determines the diffusivity of the artificial viscosity.
A reduction of this coefficient results in oscillations along the post shock density accumulation, and is
therefore not appropriate for unfiltered methods. The filtering option however, introduces a small amount
of diffusion in the remapping phase, and in this case ¢; may be reduced, with ¢, remaining unchanged (not
shown). In the planar case, this permits very low wall heating errors on coarse meshes. In the cylindrical
case, greater symmetry preservation is provided due to a reduction of oscillations in the post-shock region
near the jump in density, particulary along the cut z = y.

Conclusions

A second-order accurate MPDATA remapping has been presented. The work builds upon developments of
the algorithm for ALE calculations shown in [15, 16]. Conservativity and beneficial properties of the
infinite gauge option for MPDATA based remapping have been discussed. The infinite gauge option has
been shown to correctly deal with distributions containing a change in sign. This property affirms the
conclusions obtained in [15, 16] stating that the infinite gauge option offers greater accuracy and flexibility
compared to the basic MPDATA for remapping. Improvements in the accuracy of remapped solutions is
also obtained by exploiting the properties of MPDATA to preserve symmetry and to remove wall heating
errors

MPDATA has shown the ability to retain second order accurate calculations for elements along the wall (or
potentially, a material) boundary. The capability of the MPDATA based remapping scheme to correctly
remap the Lagrangian features at the wall boundary (with or without second-order filtering) is particularly
desirable for the application of MPDATA based methods in future multimaterial ALE simulations, in
which case the material boundary will have properties similar to a wall boundary.
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