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The effects of shockwave profile shape and shock obliquity on spallation in Cu 
and Ta: kinetic and stress-state effects on damage evolution 

George T. (Rusty) Gray III 

Los Alamos National Laboratory 

Widespread research over the past five decades has provided a wealth of 
experimental data and insight concerning shock hardening and the spallation 
response of materials subjected to square-topped shock-wave loading profiles. Less 
quantitative data have been gathered on the effect of direct, in-contact, high 
explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock 
loading on the shock hardening, damage evolution, or spallation response of 
materials. Explosive loading induces an impulse dubbed a "Taylor Wave". This is a 
significantly different loading history than that achieved by a square-topped 
impulse in terms of both the pulse duration at a fixed peak pressure, and a different 
unloading strain rate from the peak Hugoniot state achieved. The goal of this 
research is to quantify the influence of shockwave obliquity on the spallation 
response of copper and tantalum by subjecting plates of each material to HE-driven 
sweeping detonation-wave loading and quantify both the wave propagation and the 
post-mortem damage evolution. This talk will summarize our current 
understanding of damage evolution during sweeping detonation-wave spallation 
loading in Cu and Ta and show comparisons to modeling simulations. The spallation 
responses of Cu and Ta are both shown to be critically dependent on the shockwave 
profile and the stress-state of the shock. Based on variations in the specifics of the 
shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu 
and Ta, "spall strength" varies by over a factor of two and the details of the 
mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, 
such as Pmin based on 1-0 square-top shock data lack the physics to capture the 
influence of kinetics on damage evolution such as that operative during sweeping 
detonation loading. Such considerations are important for the development of 
predictive models of damage evolution and spallation in metals and alloys. 
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• Evolved from C.S. Smith 
Experiments with GMX6 
ofLANL (1958) on recovery 
techniques for shocked materials 

-Question : Given that the shock­

loading process is a high-rate loading 

(risetime) I hold (duration) I and 

unloading (release) cycle ---

-How are defects generated and stored 

in each phase and how does this 

process differ between materials? 
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...... One way of introducing shear is through $ingle-point initiated det wave. 
Shear component is function of t and position, although P still dominant at high obliquity 

Example of explosively loaded flat disc 
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CJ pressure for 
PBX 9501 

T. A. Mason 

F R · P ·bl just consider this from here on our eglmes OSSI e: / 
1. Regular reflection (0 - 58 degrees) 
2. Mach reflection (58 - 78 degrees) 
3. Regular with multiple metal shocks ( 78- 79) 
4. Regular with product rarefaction (79 - 90) 



Strong Shock Loading 
• Normal ID shock com ressionlrelease 

• Superimposed spherical & deviatoric stresses 
(loosely uncoupled) 

Sll - P 0 0 

0= o II 
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Uniform/Stable 
Deformation 

Deviatoric 
Spherical 

Unstable 
Deformation with 
significant shear 

Shear component may lead to localization/fracture in the wake of the shock! 
A What can produce a significant shear component (significant wrt P)? .... 
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etonation Waves 

...... One way of introducing shear is through single-point initiated det wave. 
Shear component is function of t and position, although P still dominant at high 

Example of explosively loaded flat disc 
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obliquity. 

F our Regimes Possible: 
1. Regular reflection (0 - 58 degrees) 
2. Mach reflection (58 - 78 degrees) 
3. Regular with multiple metal shocks ( 78- 79) 
4. Regular with product rarefaction (79 - 90) 
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Re ular Reflection 
Mach 
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Twin initiation or growth occurs when the externally applied shear stress across the K1 plane, 
resolved in the w1 direction, reaches a "critical" value. 

IIIO}pl:mc 

III 121 Twinllill U <iircclion K1• U1 = twin plane, tWin direction 

• Twins in most crystal structures form more readily as the temperature of 
deformation is decreased or the rate of deformation is increased. 
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Fig. 14-Angular frequencies of markings on brass aiter 
550-kbar normal shock. Plane of section includes shock 
direction. 

C.S. Smith: Trans. AIME (1958) 



observations 
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L.E. Murr, APS Topical Conf. 
Proceedings (1987). 

Murr & Staudhammer: Shock Waves 
for Industrial Applications: (1988): 

1-0 Shock Loading 
Generalized 
prediction of critical 
twinning shock stress 
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observations in Cu & Ta observations 

. 
Copper ROds 1. 

Shedr F"Ont 

L ........ 

\ 

Sanchez, Murr & Staudhammer: Acta Mater., (1997), vol. 45, pp. 3223-3235. 

"The obliquity of the shock wave seems to suppress the 
critical shock pressure of copper, since twinning was 
observed at pressures of only 11 GPa at the top of the 
rods in contrast to an established critical twinning 
~sure of - 20 GPa for plane-wave loaded Cu." 
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Gray & Vecchio: Metall. Trans. (1995) 

Deformation twins in Ta-1 OW shocked at 20GPa 

Pappu, Kennedy, Murr & Meyers: Scripta Mater., (1996), vol. 
35, PR. 959-965. 

"There was no evidence of these features in 
any of the Ta EFP's. Since shock-waves of 
higher peak pressures than necessary for 
plane-wave shock induced twinning are 
involved in EFP formation it is believed that 
the actual , dynamic deformation process 
either retards or annihilates deformation 
twins." 
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Constitutive Response of Warheads 
/ weapon materials are 
. preconditioned by HE preshock load 
cycle. 

Predictive Performance of Warhead 
requires knowledge of shock 
hardening 
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• Tantalum Cylinder 12178, ¢8mm, 4.47mm thick 
• PETN pellet ¢8mm, 2mm thick, 1.55g/cc 
• High voltage slapper foil initiation 
• Test geometry: 

Face Initiation 
Tantalum '4r-- Tantal urn 

++-- PETN PETN 

EBSD analysis: 
-5 scans selected in each region: 

• left bottom corner 
• center bottom corner 
• right bottom corner 

--QAlamos 

- Scan size: 150 J1m x 150 J1m 
-Scan step size: 0.15J1m 
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Tantalum 
Optical image @1 OOx 

• Qualitatively, the amount of twinning increases from left to right, with a 
visibly higher concentration along the upper edge. (adjacent to HE) 

• Red rectangles and twin close-up images are shown at larger scale on 
the next slide. 
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Avg. twin fraction 

Bottom 
Left 

0.21 

Bottom 
Center 

0.47 

Bottom 
Right 

0.52 

50 !-1m 

• ,A"isually there are more twins in the center and right regions compared to the left region; EBSD confirms 
~ observations 
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Twinned vs. N on-Twinned Grains 

Non-twinned grains 

8mm in diameter and 4 mm thick, 2mm PETN pellet 
(similar results in lower HE-drive specimen) 

Twinned grains 
10 1 

", •• 617J 
• sse 
3 )65 
, 4' 1 
It)1 

1354 
1 000 
0138 

• No bulk texture differences found between non-twinned grains and twinned grains. 

• A grain size effect was found indicating that grains below 25 microns did not twin. 
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Morphology of Twins in HE-Driven Tantalum 
• Twins form preferentially along the grain boundaries. 

• More than one twin variant present in one grain. 

• Many twins boundaries are no longer a straight line. 

• Variable orientation/contrast along the length of some twins 

• Twins form at boundaries to mitigate compatibility stresses between adjacent 
grains. 

• Based on their morphology, twins are formed during shock rise, then subjected 
to deformation during subsequent stages of shock evolution. 
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Damage Models Need to Account for Twinning 

• Twin boundaries are preferred void nucleation sites in HE-driven tantalum. 

• An average of 70% of the small voids analyzed were nucleated at twin boundaries. 

• Taylor factor map indicates sharp differences at most twin boundaries. 

Void damage nucleated at twin boundaries 

Min Max 
_ 2.26749 2.54884 

2.54884 2.83019 

D 2.83019 3.11154 

3.11154 3.39289 

3.39289 3.67424 

~Alamos 

One cannot accurately model shock damage without understanding the twin 
nucleation process and including the effect of twinning on the de/ormation and 

damage evolution. 
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• Consider the interaction of an oblique detonation 
wave (D) with a PETN/metal interface as depicted by 
the right-going regular-reflection wave structure. 

• The wave 0 propagates into non-reacted HEat an 
angle of obliquity defined by 8 , with 0 reflecting from 
the interface as a gas shock into HE combustion 
products and transmitting shock into the Ta metal. 

• Application of three-dimensional (3~) Jump 
Relationships to each of the three waves produces a 
nonlinear set of coupled, algebraic equations (11 
equations containing 12 unknowns for each wave) 
involving conservation principles of mass, momentum, 
energy, Equation-of-State (EOS) and deviatoric 
constitutive information. 
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Sweeping Detonation Drive: 8 mm Detasheet + .25" Foam 

Det Point 1018 steel Frame 
Line-W o 0 0 

o o 
o 

Lexan Shot Stand 

Foam 

Front View Side View Back View 

Sweeping Detonation-Wave Experimental Set-Up 
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Cu Sweeping Detonation Drive: 4 mm Detasheet + 6.3Smm Foam 
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Cu Sweeping Detonation Drive: 4 mm Detasheet + 6.35mm Foam 
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• weeping 
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rive: 4 mm Detasheet In Ire 

• The damage evolution 
is seen to consist of 
equiaxed ductile 
dimples consistent with 
a Mode I overload 
fracture process 

• No evidence of 
shearing in the dimples 
was observed 



Sweeping Detonation Drive: 8 mm Detasheet + 6.35mm Foam 
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Total Macroscopic Damage Differs as Function of Shock Obliquity in Cu; the 
Plastic Processes that Evolve the Damage Remain Constant 

1 1 1 

001 101 

• No obvious shock obliquity effects 
• No deformation twins detected 
• Kernel average misorientation maps 
are similar 
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Cu Sweeping Detonation Drive: 4 mm Detasheet + 6.35mm Foam 

" 25mm 25mm 
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PDV DATA - Sweeping Detonation Drive: 4 mm Detasheet + 6.35mm Foam 
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Cu - Sweeping-Wave Experiments 

4mm detasheet direct on Cu 

8mm detasheet + 7.62mm Foam 

4mm detasheet + 7.62mm Foam 

__________ -____ 25mm 

2mm detasheet + 7.62mm Foam 



20mm 

~Alam05 
NATIONAL LABORATORY 

EST. 1943 

· " _ .• ' ,I.. . I ,_ ..--_. ~ ct I , _.1'., • " 

Reflected Light Image of Entire Surface 

Operated by the los Alamos National Security, lLC for the DOE/NNSA 



20mm 

~Alamos 
NATIONAL LABORATORY 

£5T _1943 

"-:.... .J ". • '.I .... ',;0 _~ , ~_ _ , ~ ~ I' . ~ ~ 

Reflected Light Image of Entire Surface with Details 

2000.­
I I 

.. 

• 

200 pm 
I I 

Operated by the los Alamos National Security, llC for the DOE/NNSA 



20mm 

Reflected Light Image of 
Entire Surface with 

Interference Contrast 
Images of Details 
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Tantalum - Spherical & Deviatoric Stress 
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1 st Sweeping Spallation Experiment on Ta 
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Similarly, Larger Scale Sweeping Detonation Experiments Are Being Conducted 
on Ta 

25mm 

... ",, - - -- -
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1 st Sweeping Spallation Experiment on Ta 

Optical metallography 
reveals slip-line 
surface offsets on the 
polished and etched 
plane section. 
Dislocation slip lines 
are seen 
concentrated along 
grain boundaries. 
Deformation twins are 
also seen. 
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Nucleation/Growth as Function of the Loading Profile 

25mm 
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EBse of dislocations - IPF map with IQ map superimposed 
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Optical Microscopy - Comparison 
Shot 1 (3.5" long, lOmm thick, 8mm HE, 1/4" foam) 

25mm 
.. ---- .- - .. ~ .-

--------"--- --. ~- ..... _- -

• Very incil,ient dam age - no defined spall plane 
• Small voids (u p to IOJlm diameter ) sca ttered throughollt the micro tru cture 
• Heterogeneou twinning 
• 65-70% ofvoids appear to be intragranular (some related to twi n boundarie ) 
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Shot 2 (3.5" long, lOmm thick, 8mm HE, 1/8" foam) 

25 mm 

• More advanced dam age state, vaguely defined spall plane 
• Two stronger void damage zones 
• La rger oids (u p to 200Jtnl diam eter) 

trong localization where voids are nucleated 
• Heterogeneous twinn ing. possibly with higher den ity a long the centerline 



EBSD Analysis - Shot 1 (3.5" long, tOmm thick, 8mm HE, 114" foam) 

Min Max - -- 0 1 
1 3 

CJ 3 4 

4 6 

Boundaries Rotatic 

Min Max 
3' 7' 
7' 180' 

1 1 1 
Electron Backscattered Diffraction analysis indic~ltcs: 
• No microstructural disturbance around voids 
• No deformution affected material (aside from presence of twins) 
• KAM map is similar to that of the undcformed material 

A 
Los Alamos 
NATIONAL LABORATORY 

EST. 1943 

Ooerated bv the Los Alamos National Security, LLC for the DOE/NNSA 

reG-IV, November 9, 2010 



Void Nucleation Aspects- Shot 1 (3.5" long, lOmm thick, 8mm HE, 114" foam) 

reG-IV, November 9,2010 

• Dislocation etch patterns were revealed 

• Intragranular voids that are not related to twin boundaries 
are spatially correJated to dislocations (sec orange arrows 
below) 

• The stress fields that result from the compressive and 
tensile forces around different dislocations interact with 
one another and lead to void nucleation? 



Optical Microscopy- Shot 2 (3.5" long, 10mrn thick, Smm HE, 1/S" foam) 
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• While "fully-grown" voids appear round, incipient damage 
areas indicate that they are the result of multiple small 
voids that grow and coalesce. 
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EBSD Analysis- Shot 2 (3.5" long, IOmm thick, 8mm HE, 1/8" foam) 
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Electron Backscattered Diffraction analysis indicates: 

-Strong microstructural disturbance around voids 

-Higb orientation gradients affect areas extending at least on gTa in diameter 
around the void 

-Linked deformation-affected regions extend to grain boundary network and 
twin boundaries surrounding voids 

-Away from voids microstructure seems undisturbed 
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Aspects of Void Nucleation-Shot 2 (3.5" long, JOmm thick, 8mm HE, 1/8" foam) 
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• Damage localization extends up to 250",01, across many grains 
and includes many grain boundaries, twins and microbands, 
offering multiple potential void nucleation ites. 



EBSD Analysis- Shot 2 (3.5" long, lOmm thick, 8mm HE, 1/8" foam) 

1 1 1 

--QAlamos 001 101 

NATIONAL LABORATORY 
"1.1943 __ _ 

ODe rated bv the Los Alamos National Security, LLC for the DOE/NNSA 

TCG-IV, November 9,2010 

• EBSD maps confirm that in ucb bighly disturbed regions, with int ragranular 
orientation gradients of up to 45·, multiple voids nucleate and grow 
sim uItaneously 

• Que tion: \Vhat determines the formation of these large but still loca lized 
regions? 



Summary 

• Shock loading obliquity is known to significantly alter the imposed stress tensor during shock 
loading-in particular the ratio of the spherical (hydrostatic) and deviatoric (shear stresses) 
components; this affects both shock hardening and damage evolution 

• Quantification of the effects of shock prestraining on the post-shock mechanical behavior, 
structure evolution, and damage evolution must therefore quantify the influence of all aspects of 
shock loading: 

• Shockwave profile shape (square, triangle, ramp, sweeping det. wave) 
• Shockwave parameters (peak stress, pulse duration, rarefaction rate) 
• Shockwave obliquity 
• Material properties (chemistry, texture, microstructure, etc.) 

• Twin formation during shock loading in Ta is seen to be a strong function of shockwave obliquity 
consistent with the effect of obliquity on the stress tensor. 

• Electron Backscatter Diffraction (EBSD) data can only provide valuable information on twin 
volume fractions. Coupling with 3-D reconstruction will facilitate quantitative volume fractions. 

• The concept of a "critical twinning pressure" is shown to be relevant to only pure 1-D shock 
~ing and provides minimal insight to modeling shock effects in materials. 
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