

LA-UR-12-22566

Approved for public release; distribution is unlimited.

Title: Image processing and nonparametric regression

Author(s):
Thieurmel, B.
Hengartner, Nicolas W.
Wohlberg, Brendt E.
Cornillon, P.A.
Matzner-Lober, Eric B.

Intended for: Rencontre R boRdeaux, 2012-07-02 (Bordeaux, ---, France)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

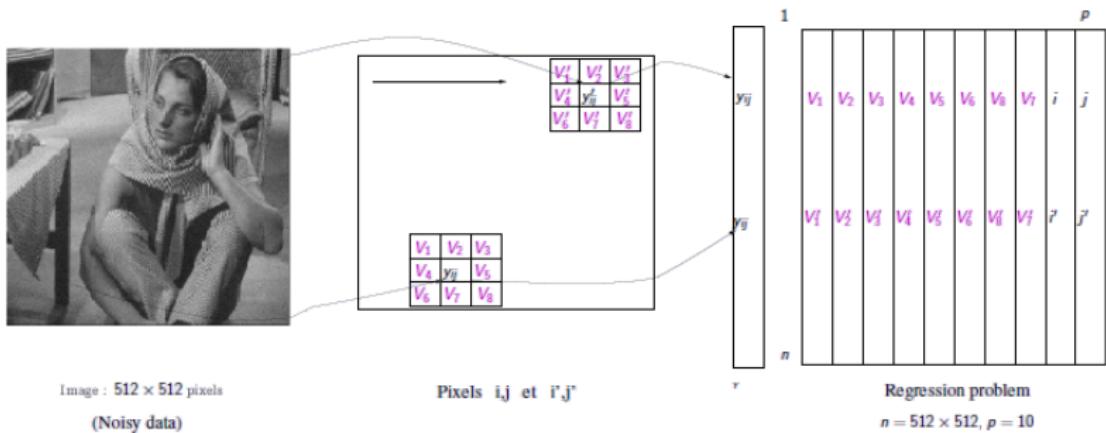
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Image processing and nonparametric regression

Rencontres R BoRdeaux 2012

B. Thieurmel

Collaborators : P.A. Cornillon, N. Hengartner,
E. Matzner-Løber, B. Wolhberg
2 Juillet 2012


Definition :

- noisy image = original image + noise
- Our study : gaussian noise

- **image** : matrix pixel
- **one pixel**
 - represent a value of grey level or color level
 - is spatially defined by its coordinates (i, j)
 - is surrounded with 8 neighbors (vertical, horizontal and diagonal)
- **numerical measure** : Peak Signal to Noise Ratio (**PSNR**)

$$PSNR = 10 \times \log_{10}\left(\frac{d^2}{MSE}\right)$$

- d maximum possible pixel value of the image
- MSE mean squared error between the original image and the treated image
- quality of reconstruction, in decibel (**dB**)
- well reconstructed image $\rightarrow 30 \leq PSNR \leq 40$

Notations :

- y_{ij} the grey level at pixel (i,j)
- Y the grey level of the pixel to be denoised
- $X \in \mathbb{R}^{10}$ (or more) the vector of explanatory variables

Non parametric regression model :

- $(X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}$ pairs of observations

$$\begin{aligned} Y &= m(X) + \varepsilon \\ \hat{Y} &= S_\lambda Y \end{aligned}$$

Using method Iterative Bias Reduction (**IBR**) :

- developed by Cornillon, Hengartner et Matzner-Løber
- competes with classic techniques (MARS, GAM)
- estimation without constraints of the regression function m
- R package **ibr** available on cran

Problem :

$n = 262144 \rightarrow$ smoothing matrix very big

Resolution :

Image partitioning in small-sized regions

Our proposal :

- free itself from the choice of the size of regions
- have a certain freedom of shape
- data dependent regions
- use of **CART**(Breiman *et al.*, 1984) and more exactly regression trees
- explain grey level Y by coordinates (i, j)

Modifications of package **rpart** (T.M. Therneau *et al.*, 2002) :

- application for high-dimension data
- control maximal and minimal region size

Resolution :

Image partitioning in small-sized regions

Our proposal :

- free itself from the choice of the size of regions
- have a certain freedom of shape
- data dependent regions
- use of **CART**(Breiman *et al.*, 1984) and more exactly regression trees
- explain grey level Y by coordinates (i, j)

Modifications of package **rpart** (T.M. Therneau *et al.*, 2002) :

- application for high-dimension data
- control maximal and minimal region size

Resolution :

Image partitioning in small-sized regions

Our proposal :

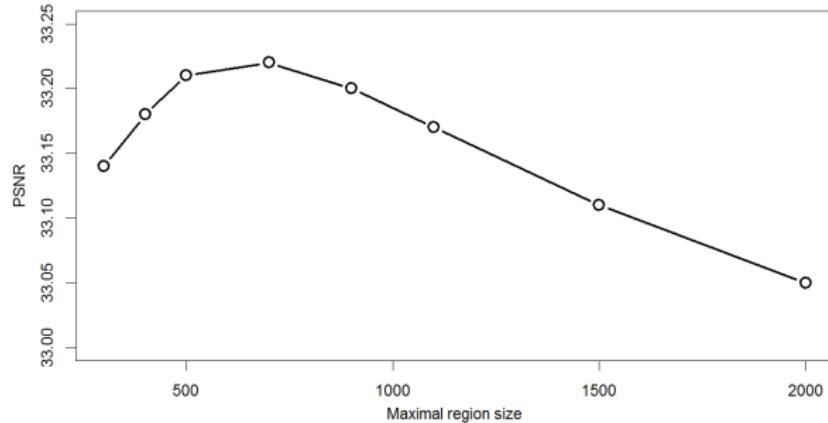
- free itself from the choice of the size of regions
- have a certain freedom of shape
- data dependent regions
- use of **CART**(Breiman *et al.*, 1984) and more exactly regression trees
- explain grey level Y by coordinates (i, j)

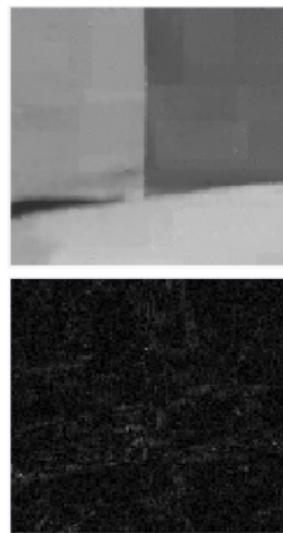
Modifications of package **rpart** (T.M. Therneau *et al.*, 2002) :

- application for high-dimension data
- control maximal and minimal region size

- Evolution of partitioning via **rpart** :

Characteristics :

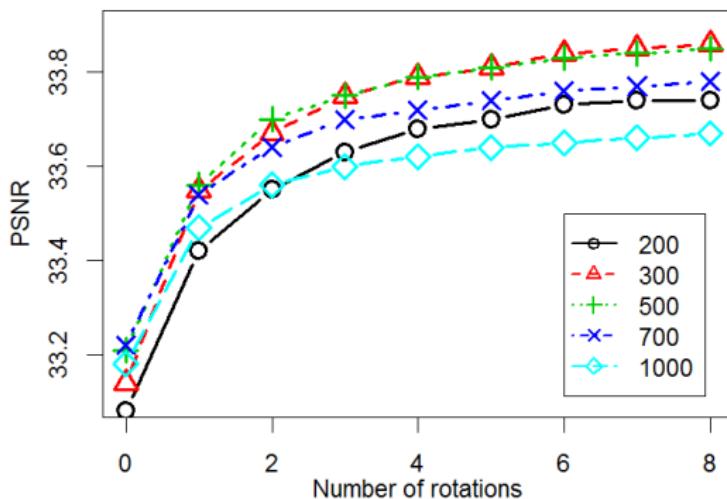

- rectangular regions
- detection of the horizontal and/or vertical structures of the image

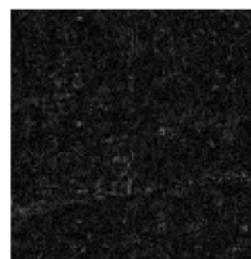
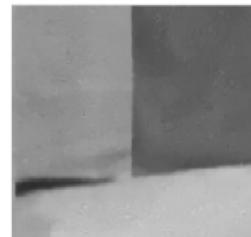

Regression model for each region :

$$Y_i = m(X_i) + \varepsilon_i, \quad i = 1, \dots, n,$$

with $X \in \mathbb{R}^{10}$ the vector of explanatory variables, and n the size of the region

- Question : Influence of the size of regions ?


- maximale size of regions : 700 pixels
- number of regions : 686
- region no overlapping → visibility of the outlines of regions
- $\text{PSNR} = 33.22 \text{ dB}$



Rotation :

- iteration of image partitioning and image denoising via **IBR**
- rotation of plan IJ between every iteration
- prediction of a same pixel with different regions
- unique prediction : mean of predicted values

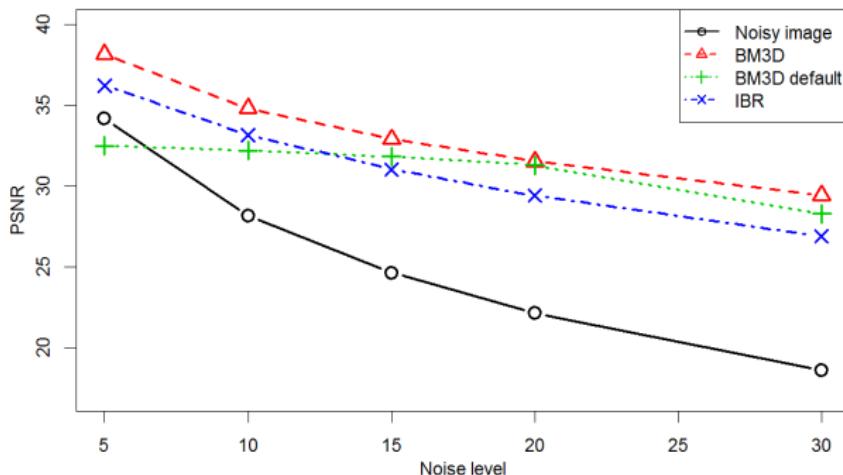
- Question : Influence of the number of rotations ?

- maximale size of regions : 300 pixels
- number of rotations : 3
- $\text{PSNR} = 33.75 \text{ dB} \rightarrow + 0.5 \text{ dB}$

Presentation :

- developed by Dabov *et al.*, 2007
- state of art
- **algorithm** : standard deviation of the noise in parameter
 - strong influence on the result
 - unknown noise, default standard deviation = 25
- source **Matlab** code available

Comparison BM3D / IBR :


- several images with various noise
- 3 results :
 - ① BM3D with good standard deviation of the noise
 - ② BM3D with default standard deviation of the noise
 - ③ IBR, 3 rotations, maximale size = 700

Presentation :

- developed by Dabov *et al.*, 2007
- state of art
- **algorithm** : standard deviation of the noise in parameter
 - strong influence on the result
 - unknown noise, default standard deviation = 25
- source **Matlab** code available

Comparison BM3D / IBR :

- several images with various noise
- 3 results :
 - ① BM3D with good standard deviation of the noise
 - ② BM3D with default standard deviation of the noise
 - ③ IBR, 3 rotations, maximale size = 700

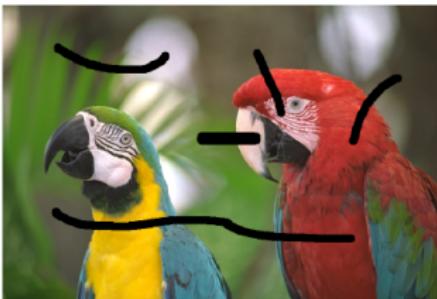
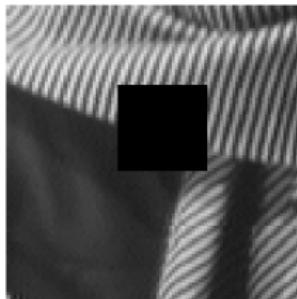
- BM3D with good standard deviation of the noise (red) :
 - IBR (blue) less successful of more or less 2 dB
 - the differences increase with the level of noise
- BM3D with default standard deviation of the noise (green) :
 - IBR better for a low level of noise

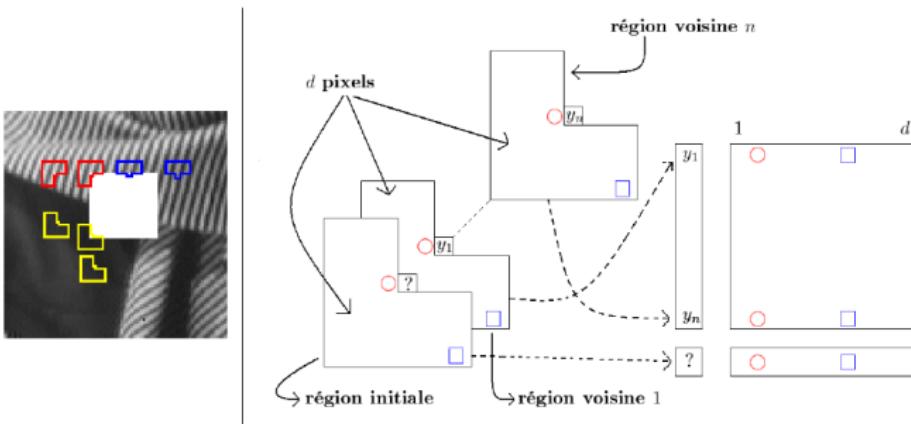
Performance :

Image denoising by means of the method **IBR** already gives satisfactory results for its entrance to the vast field of image processing

Current research :

- more freedom of shape in the creation of regions
- implementation of connections between similar regions



Others applications :


- use of the **rpart** partitioning for high-dimension data in regression
- application in chronological series

- **Objective** : reconstruct the missing parts of an image by means of the iterative bias reduction

Picture data base :

- black and white images and color images
- accent put on the structural reconstruction

Process :

- ① pixels treated one by one, from extremities to the center
- ② definition of a region formed by the d available neighbors in a neighborhood of 4 pixels
- ③ **data base** : K nearest neighbors $\rightarrow n$ most similar regions

(a) Reference

PSNR :

SSIM :

(b) Criminisi *et al.*

18.85 dB

0.66

(c) Wexler *et al.*

20.10 dB

0.76

(d) Xu and Sun

23.07 dB

0.86

(d) Proposed

25.84 dB

0.94

(a) Reference

PSNR :

SSIM :

(b) Criminisi *et al.*

16.5 dB

0.47

(c) Wexler *et al.*

21 dB

0.74

(d) Proposed

22 dB

0.81

- color images :

- formed by three different images (Red, Green, Blue)
- treatment separated by image

Conclusion :

- Good structural reconstruction
- No impression of blur
- **Current research** : use of the structural information of the image in the choice of the filling order
- **Others applications** : treatment of missing data, tested at the moment for chronological series

Image processing and nonparametric regression

Rencontres R BoRdeaux 2012

B. Thieurmel

Collaborators : P.A. Cornillon, N. Hengartner,
E. Matzner-Løber, B. Wolhberg
2 Juillet 2012

