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 Adapting nanoparticles to aqueous 
environments 

 Functionalities on  particles and biomolecules 
 Covalent crosslinking 
 Non-covalent binding 
 Case-studies 



 www.piercenet.com 
 Bioconjugate 

Techniques, 2nd Ed. 
Greg T. Hermanson, 
Published by Academic 
Press, Inc., 2008, 1202 
pages. 

http://www.piercenet.com/


 Surface energy is important due to surface 
area to volume ratios 

 ΔGparticle = ΔGbulk + ΔGsurface  

 Colloids are thermodynamically unfavored, 
so surface chemistry must confer stability 
 



 Reduction of gold salt  with sodium citrate in 
aqueous environment produces gold colloids 
with a negative surface charge 

 Electrostatic repulsion confers water-
solubility and colloidal stability 



 Colloids synthesized in organic solvents 

 e.g. Quantum Dots (QDs) or Magnetic Iron Oxide 
Nanoparticles (MIONs) 

 Surface passivated with hydrophobic surfactants 

 Stabilize via electrostatic repulsion or steric 
hindrance 

 Attach organic coating via 

 Hydrophobic interaction 

 Dative bonds 
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 i.e. QDs coated with amphiphilic polymers 

 Invitrogen ITK Carboxyl Qdots 

 Hydrophobic portion of polymer (alkyl 
chains) interact with surfactant 

 Charged groups (e.g. carboxylic acids) confer 
high surface charge density 



 e.g. amphiphilic coating containing PEG 

 Invitrogen ITK Amino-PEG Qdots 

 Lipid-PEG coated QDs, MIONs 

 Hydrophobic portion (alkyl chains or lipid) 
interact with surfactant 

 Hydrophilic PEG confers water stability and 
reduces non-specific interactions through 
steric hindrance 
 





 aka  coordinated covalent bond 
 Two electrons come from single atom, rather 

than two atoms each sharing one electron 
 e.g. free electron pair on sulfur atom of thiols 



 Thiols + charged group 
 Hydrophobic surfactant removed from 

surface 
 Thiol binds to surface of particle (gold, QD) 
 Charged group confers water solubility 
 Small molecule  thin coating 
 Dithiols improve stability over time 



 PEGylated thiols/thiolated PEGs 
 Relatively thin coating and reduced non-

specific binding 
 Heterobifunctional PEGs result in a PEG 

coating with another functional group 





Dative Bond 

Smallest possible coating 

QDs: lower QY  
(~0.1-0.2) 

Sensitive to pH, salt 
concentration 

Hydrophibic 
Interaction 

Larger particle size 

QDs: higher QY  
(~0.8) 

Better environmental stability; 
some steric hindrance 





Dative Bond 

Thinner coating 

QDs: lower QY  
(~0.1-0.2) 

Prevents non-specific 
interactions 

Hydrophibic 
Interaction 

Large particle size 

QDs: higher QY  
(~0.8) 

Prevents non-specific 
interactions 



 Coating dependent! 
 Electrostatic: COO-, NH3

+ 

 Steric: just about anything… 

 COO-, NH3
+ , biotin, streptavidin, maleimide, … 

 

 What kinds of bio-friendly bonds can we 
make with these functional groups? 



 Biofunctionalization involves the attachment 
of biomolecules to the nanoparticles… 

 What functional groups are available on the 
most common biomolecules? 

vis.lbl.gov/Research/ProteinShop/index.html http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.html 

http://vis.lbl.gov/Research/ProteinShop/index.html
http://vis.lbl.gov/Research/ProteinShop/index.html
http://vis.lbl.gov/Research/ProteinShop/index.html


 Polymer of amino acids 

 20 natural monomers 

▪ Non-polar (hydrophobic) 

▪ Polar 

▪ Charged 





 2˚ structure:α-helices and β-sheets 

 Stabilized through hydrogen bonding 

 3 ˚ structure: folded proteins 

 Hydrophobic interactions ,salt 
bridges, and disulfide bonding further 
stabilize structure 

 4 ˚ structure: multiple subunits 
 

 

http://en.wikipedia.org/wiki/Protein_structure 





 Nucleic acid hybridization can be used to 
reversibly bind  two components 

 Strength of interaction depends on length and 
G/C content of complimentary sequence 

 Disrupt hydrogen bonding with high salt or raising 
temperature above Tm 



 No amine, carboxyl, or thiol groups intrinsic 
to nucleic acid structures 

 Modified NAs can be incorporated into 
oligomer synthesis… 

 e.g. Integrated DNA Technologies 
(www.idtdna.com) 

 Incorporate amines, thiols, or biotin with various 
linker lengths 

http://www.idtdna.com/


 Create functional groups to suit the 
application 

 Extra step, but could improve control of 
downstream reactions 



 Covalent bonds 

 Zero-length crosslinkers 

 Homobifunctional crosslinkers 

 Heterobifunctional crosslinkers 



 Two compounds linked without the addition 
of extra atoms– no linker atoms 

 Reagents added to mediate the reaction by 
forming active intermediates 



 Link amines with carboxylates or phosphates 

 Two protein molecules 

 Protein + peptide 

 Protein + oligonucleotide 

 Biomolecule  + particle surface 

 Protein/peptide/oligonucleotide/particle + small 
molecule 

 Water-soluble and water-insoluble varieties 

 



 



 Reaction most favored at pH 4.5-7.5 
 Hydrolysis occurs faster at lower pH 
 If mix Protein A + EDC… 

 Polymerization of the protein! Proteins contain 
both carboxylates and amines 

 Avoid buffers with carboxylates and amines 

 TRIS 

 Active intermediate reacts slowly with 
amines and is prone to hydrolysis… 



 Sulfo-NHS – water soluble reagent that 
improves the solubility and stability of the 
active intermediate 

 Same reaction product as with EDC alone, 
but improved efficiency 
 



 



 Carboxyl QDs + Protein + EDC + S-NHS 

 Mixed and reacted for 2 hrs at R.T. or O/N at 4˚C 

 Byproducts and excess reagents/unbound protein 
removed with a centrifugal filtration device 

 Pros: straight-forward, minimal manipulation 
of the particles, efficient 

 Cons: Polymerization of the protein on and 
off the particle 



 Carboxyl QDs + EDC + S-NHS 

 Carboxylate activated; excess EDC then quenched 
with β-mercaptoethanol 

 Nanoparticle prep could be cleaned up prior to 
second step or protein can be added directly 

▪ Why clean up first? 

 Pros: Eliminates protein polymerization 
 Cons: More susceptible to particle 

aggregation 
 



 EDC chemistry to covalently bind proteins to 
525 nm Carboxyl Qdots 

~15-16 FPs per QD 

probe – QD = FP 

Conjugated QD/mOrange probe 

QD only 



 Maleimide reacts specifically with thiols at a 
pH range of 6.5-7.5 

 Reactivity with amines increases at higher pH 

 Competing reaction: hydrolysis of maleimide 

  faster at higher pH 



 Lipid-PEG-maleimide from Avanti used to 
coat MIONs 

 Peptidic ligand for cell surface receptor 
VCAM1 with terminal cysteine synthesized 

 MIONs + peptide = MRI imaging agent that 
can be targeted to vascular endothelial cells 
that overexpress VCAM1 due to cardiac 
disease 



 Reversible reaction 

 Disulfide reducing reagents include DTT and TCEP 

 Occurs over a wide range of conditions 
 

 Allows for release of a compound for analysis 
or in vivo for bioactive agents 



 2 identical reactive groups located on 
opposite ends of an organic spacer arm 

 e.g. bind protein amines to other protein amines 



 Little control over 
reaction products… 

 Protein A + Protein B + 
homobifunctional NHS 
ester 

 One-step or Two-step 
reactions 



 2 different reactive groups located on 
opposite ends of an organic spacer arm 

 e.g. bind protein amines to other peptidyl thiols 

 





 Hydrophobic interations 
 Ionic interactions 
 Affinity-based binding 
 His-tag coordination 

 



 If QD surface accessible, his-tag coordinates to 
Zn2+ in ZnS shell 

 Assembly demonstrated with DHLA QDs
a
 and 

carboxyl-functionalized lipid-PEG QDs
b
 

aSapsford et al. (2007). J Phys Chem C 111(31):11528 – 11538. bDennis and Bao (2008). Nano Letters 8(5):1439-1445. 



 Same tag used for protein purification (IMAC) 
and bioconjugation 

 nM affinities comparable to some antibody-
antigen interactions 

 No purification necessary (no byproducts or 
excess reactive species) 

 Controllable molar ratios 
 Fast– binding equilibrium reached within 15 

minutes 



 Non-covalent 
 Possibly disrupted in acidic environment, by 

excess of imidazole or other coordinating 
agents 

 May not withstand rigorous purification 
 Only feasible when M2+ ions accessible 

 Particle surface accessible because of thin coating 
and/or defects 

 Ni2+-NTA bound to surface, presenting ions 



 Streptavidin: tetrameric protein with binding 
pockets for the small molecule biotin 

 Commercially-available streptavidin-coated 
nanoparticles, e.g. Qdots from Invitrogen 

 Biotin is a common modification for custom 
peptide and nucleotide syntheses 

 Biotinylation kits enable in-house 
biotinylation of biomolecules 

 Genetically engineered tags for enzymatic 
biotinylation of recombinant proteins 



 Pros: Shake-and-bake chemistry, extremely 
high affinity, easily accessible reagents, very 
specific reaction 

 Cons: addition of large protein to 
nanoparticle surface increases size of particle, 
some applications require minimized 
distances between components (FRET) 



 Issue: four binding sites can lead to 
aggregation of biotinylated protein 

 Solution: engineered monovalent 
Streptavidin 

Nature Methods 3, 247 - 248 (2006)  



 Cell Penetrating Peptides (CPPs)  

 short peptide sequences  

 carrying particles across cell membrane 

 Other sequences act like “zip codes” 

 NLS– nuclear localization sequence 

 Peptides may act as ligands for cell surface 
receptors 

 e.g. Used to target nanoparticles to tumors 



 Particle with maleimide functionality… 

 What amino acid(s) could mediate binding? 

 Particle with carboxyl groups on surface… 
 What amino acid(s) could mediate binding? 

 Particle with amino groups on surface… 
 What amino acid(s) could mediate binding? 

 
 



 DHLA-coated QD + amine-
functionalized dye 

 EDC-based reaction– why 
or why not? 

NH2 



 DHLA-coated QD + dye-
labeled polypeptide 

 EDC-based reaction– why 
or why not? 

 Alternative binding 
method? 
 

 DHLA-PEG coated QD + 
dye-labeled polypeptide? 



a: Nature Materials 5 (2006) 581-589;  



 Linker or no linker? 
 Characterizing biofunctinalized nanoparticles 
 Maintaining functionality of the biomolecule 



 


