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Motivation

Coupled thermal-fluid flow-mechanical-chemical processes
are important in many subsurface energy and environment
applications including

 Unconventional oil and gas production
e CO, sequestration
e Geothermal energy production

* Nuclear waste storage




Full physics modeling of in situ heating processes
Is challenging

ExxonMobil’s in situ oil-shale recovery process

Toe Connector Production Wells Heating Element

Process Heater \l/

Heat transport

Pyrolysis

Creation of flow pathways by fluid
generation

Migration of generated fluids

. _ - Conductive Heating
Electrically Conductive Material and Oil Shale

Conversion
Mimicking in situ heating processes requires coupled thermal,
mechanical, chemical, and multiphase flow modeling




Numerical Model-Conservation Equations

Chemical
Reactions

Mass Balance <:

Fluid properties: Density,
Viscosity

Rock flow properties:
Permeability, Porosity

Rock thermal properties:
Thermal diffusivity, Expansion
coefficient

Rock deformation relations:
Elastic modulus, Plasticity,
Poisson’s ration

Thermal Energy
Balance

Force Balance
(static)

Variables: pressure, temperature, saturation, composition, deformation




LANL’s FEHM simulator is being modified for oil shale
simulator development

e FEHM: Finite Element Heat and Mass
— Had the coupled thermal-flow-mechanics simulation
capability applicable to elastic response
— Control-volume-finite-element (CVFE) approximation:
— Control volume for mass/energy balance
— Finite element for stress

e FEHM has been verified through extensive
applications:

— Over 30 years of development and application
— Groundwater modeling
— Contaminant transport and reactions
— Methane hydrate reservoir production
— CO, sequestration
— Geothermal




Developing new thermal-hydrological-mechanical-chemical
(THMC) modeling capabilities in FEHM

e Thermal:
— Anisotropic, temperature-dependent thermal properties

 Hydrological (multiphase flow):
— Black oil model (k-value based phase equilibrium)
— EOS based properties

e Mechanical:
— Anisotropic, temperature-dependent mechanical properties
— Plastic/elastic deformation models
— Stress-dependent changes in porosity and permeability

e Chemical:

— Kerogen conversion into oil/gas/coke and subsequent
reactions




Component mass conservation
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Total energy conservation
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Static Stress Equilibrium Equations-Finite Element Formulation for
Infinitesimal elastic deformation, with pore pressure and thermal

terms
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Modeling challenges

Large changes in fluid pressure

Large changes in temperature
Large changes in stress I
Large problem size

Highly nonlinear

Many different space and time scales

Matrix rock and fractures/faults are both important




How coupling occurs in the equations

 Explicit terms in equations

effective stress and thermal stress in the Force
Balance

FAVORED FRACTURE
DIRECTION

* Dependence of coefficients
¢ (e,0,p,T) K{(g0o,p,T)

In fractured media, permeability has power
(cubic or higher) dependence on aperture .
Growing body of literature, a number of
permeability-deformation models

Figure 1. Stress ele-
FEE“I%PAL ment and preferred plane
STRESS of fracture (after Hubbert
and Willis, 1957),

* Dependence of rock properties
and reaction kinetic parameters




Flow and stress coupling

Permeability — Aperture — Deformation — Strain - Stress

: *Tensile - *Tectonic
«Power Law *Mechanical *Elastic !
Hydraulic *Shear Plastic *Gravity
*Thermal

Pore Pressure

Growing body of literature, a number of permeability-deformation models




Levels of coupling

o

Desirable to be able to choose between fully implicit
coupling and explicit coupling, depending upon the
domain of interest

For example, near-field (~10’s m) strong gradients might be expected
requiring full coupling (microseismicity, surface deformation, fracture
generation due to pore pressure) where as in the mid-field (~km)
(microseismicity, surface deformation) explicit coupling may be sufficient, and
far-field (10’s km) may be adequately treated by uncoupled models.




Example: coupled flow-stress
modeling (permeability change)




Comparison with field data

Injection of cold water into a geothermal reservoir at pressure below fracture
opening.

2km x 2km x 1km grid with specified far-field stresses.

Shear failure using Mohr-Coulomb criteria (Permeability function of shear stress)

Key Conclusion:
Good match of field observations with model, permeability enhancement due to
thermal stresses is important.
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Cross-validation of FEHM’s oil-shale
simulation capability with CMG's
STARS




Benchmarked some of FEHM’s new THMC modeling capabilities against

CMG’s STARS

Problem description:

* Richness 35 gal/ton (GPT)

* Pt = Pyen = 5.54 Mpa
Stress-dependent permeability (empirical)
Q =0.7 kW

Reactions:

Kerogen = Oil + Gas + Coke
Oil = Gas + Coke
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FEHM’s new THMC modeling predictions compare well with CMG’s STARS
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FEHM’s new THMC modeling predictions compare well with CMG’s STARS

Effectlve normal stress in Z
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FEHM’'s new THMC modeling capabilities go beyond contemporary commercial
simulators

Thermal softening
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Changes in rock properties with temperature will impact fluid
recovery and formation stability




Its critical to model change in permeability with
stress

e Creation of permeable pathways due to change In
stresses Is critical for success of in situ process

* Permeability creation due to pore pressure change

— Local effect
— Need models that accurately capture change in permeability at
continuum scale

e Qur stress-perm model is limited Iin its ability to capture

these sub-continuum scale pore-pressure effects

— We used another hypothetical model in order to demonstrate
how sub-continuum scale effects can be captured in continuum
models




Model to demonstrate effect of pore-pressure change on permeability

Stress-perm model
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FEHM’'s new THMC modeling capabilities go beyond contemporary commercial
simulators

Directional permeability-stress dependence

Case (i); K, = f(n}gx(aﬂ))
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Implicit coupling of permeability change

Derivative of the mass flux between two connected

nodes | and j wrt a node k connected to one of them:
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PF'™ is an effective permeability factor
representing stress/deformation effects

Control
volume (CV)
of node

Approximate locations
of the Gauss
integration points

Finite Elements(FE) shared
be the nodes i and |

NOTE: In FEHM, properties are input at nodes and assigned to the CV. properties on FE

are obtained by using appropriate averagesfinterpolations




New THMC modeling capabilities in FEHM enable
comprehensive modeling of /n situ conversion processes

» New thermal-hydrological-mechanical-chemical (THMC) capabilities
have been developed in FEHM to numerically simulate in situ
conversion processes

» Some THMC modeling capabilities extensively benchmarked against
CMG’s STARS and Abaqus

» FEHM’s new THMC modeling capabilities go beyond commercial
simulators. These capabilities are critical for effectively modeling the in
Situ conversion processes

» Models to effectively capture change in permeability due to stress
change are needed in continuum-scale formulations

» We are currently developing capabilities to implicitly simulate change in

permeability due to stress change
» Multi-phase formulation
» Plastic deformation
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Parameter values

PARAMETER VALUE
Formation temperature 190°C
Initial pore pressure 9 MPa
Bottom hole injection pressure 13.1 MPa
Injection temperature 170°C

Principal in situ stresses

Maximum | 22.6 MPa (vertical)
Intermediate | 18.1 MPa
Minimum | 13.8 MPa
Thermal conductivity 3W/m/IK
Heat capacity 820 J/kg/K
Porosity 10%
Initial permeability*thickness 9md.m
Shear failure-permeability model parameters
Friction Coefficient | 0.8
Cohesion 2 MPa
Permeability multiplier (all { 100
directions)
Young's modulus 30 GPa
Poisson' ratio 0.15
Coeffficient of Thermal Expansion 104 /°C
Biot poroelastic parameter 0.5




Example of application to non-Orthogonal

d, weak fault
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