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Motivation 

Coupled thermal-fluid flow-mechanical-chemical processes 
are important in many subsurface energy and environment 
applications including 

• Unconventional oil and gas production 

• CO2 sequestration 

• Geothermal energy production 

• Nuclear waste storage 



Full physics modeling of in situ  heating processes 
is challenging  

Mimicking in situ heating processes requires coupled thermal, 
 mechanical, chemical, and multiphase flow modeling 

Heating Element  
 

Heat transport 
  

Pyrolysis 
 

Creation of flow pathways by fluid 
generation  

 
Migration of generated fluids 

Toe Connector 
Well 

Production Wells Process Heater 
Wells 

Electrically Conductive Material 
Conductive Heating 

and Oil Shale 
Conversion 

ExxonMobil’s in situ oil-shale recovery process 



Mass Balance 

Thermal Energy  
     Balance 

Force Balance  
     (static) 

Numerical Model-Conservation Equations 

Fluid properties: Density, 
Viscosity 
 
Rock flow properties: 
Permeability, Porosity 
 
Rock thermal properties: 
Thermal diffusivity, Expansion 
coefficient 
 
Rock deformation relations:  
Elastic modulus, Plasticity, 
Poisson’s ration 

Variables: pressure, temperature, saturation, composition, deformation 

Chemical 
Reactions 



LANL’s FEHM simulator is being modified for oil shale 
simulator development 

• FEHM: Finite Element Heat and Mass 
– Had the coupled thermal-flow-mechanics simulation 

capability applicable to elastic response 
– Control-volume-finite-element (CVFE) approximation: 

– Control volume for mass/energy balance 
– Finite element for stress 

• FEHM has been verified through extensive 
applications:  
– Over 30 years of development and application 

– Groundwater modeling 
– Contaminant transport and reactions 
– Methane hydrate reservoir production 
– CO2 sequestration 
– Geothermal 



Developing new thermal-hydrological-mechanical-chemical 
(THMC) modeling capabilities in FEHM 

 
• Thermal: 

– Anisotropic, temperature-dependent thermal properties 

• Hydrological (multiphase flow): 
– Black oil model (k-value based phase equilibrium) 
– EOS based properties 

• Mechanical: 
– Anisotropic, temperature-dependent mechanical properties 
– Plastic/elastic deformation models  
– Stress-dependent changes in porosity and permeability 

• Chemical: 
– Kerogen conversion into oil/gas/coke and subsequent 

reactions 



Component mass conservation 
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φ – Total porosity which includes solid with kerogen plus liquids and gas 



Total energy conservation 

Accumulation 

Advection + conduction 

Source/sink 

Reaction 
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Static Stress Equilibrium Equations-Finite Element Formulation for  
infinitesimal elastic deformation, with pore pressure and thermal 

terms 
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Modeling challenges 

• Large changes in fluid pressure 

• Large changes in temperature 

• Large changes in stress 

• Large problem size 

• Highly nonlinear 

• Many different space and time scales 

• Matrix rock and fractures/faults are both important 

 



How coupling occurs in the equations 

• Explicit terms in equations  
     effective stress and thermal stress in the Force 

Balance 

• Dependence of coefficients 

  φ (ε,σ ,p,T)  K (ε,σ ,p,T) 
In fractured media, permeability has power 
(cubic or higher) dependence on aperture . 
Growing body of literature, a number of 
permeability-deformation models 

• Dependence of rock properties 
and reaction kinetic parameters 



Permeability – Aperture – Deformation  –  Strain  -  Stress 
•Tensile 
•Shear 
 

•Power Law •Mechanical 
•Hydraulic 

•Elastic 
•Plastic 

•Tectonic 
•Gravity 
•Thermal 
•Pore Pressure 

Growing body of literature, a number of permeability-deformation models 
 

Flow and stress coupling 



Levels of coupling 

Desirable to be able to choose between fully implicit 
coupling and explicit coupling, depending upon the 

domain of interest 

 
For example, near-field (~10’s m) strong gradients might be expected 
requiring full coupling (microseismicity, surface deformation, fracture 
generation due to pore pressure) where as in the mid-field (~km) 
(microseismicity, surface deformation) explicit coupling may be sufficient, and 
far-field (10’s km) may be adequately treated by uncoupled models. 



Example: coupled flow-stress 
modeling (permeability change) 



Comparison with field data 
 Injection of cold water into a geothermal reservoir at pressure below fracture 

opening.  
2km x 2km x 1km grid with specified far-field stresses. 
Shear failure using Mohr-Coulomb  criteria (Permeability function of shear stress)  

 
Key Conclusion:  

Good match of field observations with model, permeability enhancement due to 
thermal stresses is important. 



Cross-validation of FEHM’s oil-shale 
simulation capability with CMG’s 

STARS 



Problem description: 
• Richness 35 gal/ton (GPT)  
• PInitial = Pwell = 5.54 Mpa 
• Stress-dependent permeability (empirical) 
• Q = 0.7 kW 
• Reactions: 

   Kerogen  ⇒  Oil + Gas + Coke 
Oil  ⇒  Gas + Coke 

Benchmarked some of FEHM’s new THMC modeling capabilities against 
CMG’s STARS 
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FEHM’s new THMC modeling predictions compare well with CMG’s STARS 
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FEHM’s new THMC modeling predictions compare well with CMG’s STARS 
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FEHM’s new THMC modeling capabilities go beyond contemporary commercial 
simulators 
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 Changes in rock properties with temperature will impact fluid 
recovery and formation stability 
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Its critical to model change in permeability with 
stress  

• Creation of permeable pathways due to change in 
stresses is critical for success of in situ process 

• Permeability creation due to pore pressure change 
– Local effect 
– Need models that accurately capture change in permeability at 

continuum scale 

• Our stress-perm model is limited in its ability to capture 
these sub-continuum scale pore-pressure effects 
– We used another hypothetical model in order to demonstrate 

how sub-continuum scale effects can be captured in continuum 
models 



Problem description: 
• Same as before except: 
• Initial permeability 1 µ−Darcy 
• Different stress-dependent permeability 

(hypothetical) 
• No thermal stress effect (thermal 

expansion coefficient 0.0) 

Model to demonstrate effect of pore-pressure change on permeability 

Pressure and 
permeability at 
heater node 

Stress-perm model 



FEHM’s new THMC modeling capabilities go beyond contemporary commercial 
simulators 

Directional permeability-stress dependence 

))(max( jjiji fK σ
≠

=

)( meanfK σ=

Case (i): 

Case (ii): 

Impacts pressure and hence recovery 



Implicit coupling of permeability change 
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New THMC modeling capabilities in FEHM enable 
comprehensive modeling of in situ conversion processes 

 New thermal-hydrological-mechanical-chemical (THMC)   capabilities 
have been developed in FEHM to numerically simulate in situ 
conversion processes 
 

  Some THMC modeling capabilities extensively benchmarked  against 
CMG’s STARS and Abaqus 
 

 FEHM’s new THMC modeling capabilities go beyond commercial 
simulators. These capabilities are critical for effectively modeling the in 
situ conversion processes 

 
 Models to effectively capture change in permeability due to stress 

change are needed in continuum-scale formulations 
 
 We are currently developing capabilities to implicitly simulate change in 

permeability due to stress change 
 Multi-phase formulation 
 Plastic deformation 
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Parameter values 
PARAMETER VALUE 
Formation temperature   1900 C 
Initial pore pressure  9 MPa 
Bottom hole injection pressure 13.1 MPa 

Injection temperature 1700 C 
Principal in situ stresses 

 Maximum    22.6 MPa (vertical) 
Intermediate   18.1 MPa 

Minimum   13.8 MPa 
Thermal conductivity   3 W/m/K 
Heat capacity    820 J/kg/K 
Porosity   10% 
Initial permeability*thickness  9 md.m 

Shear failure-permeability model parameters 

Friction Coefficient  0.8 
                     Cohesion   2 MPa 

                       Permeability multiplier (all 
directions)  

100 

Young's modulus   30 GPa 
Poisson' ratio   0.15 
Coeffficient of Thermal Expansion   10-4 /0C 

Biot poroelastic parameter   0.5 



Example of application to non-Orthogonal 
grid: Inclined, weak fault 

30 MPA  
(1.3 km) 

23 MPA  
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