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1 Executive Summary
The Kepler project1 has made a significant impact
and established a sustained leadership in the field
of scientific workflows. The open source Kepler
project started in 2003 when members of the SciDAC-
SDM Center/SPA Team, sponsored by this DOE-
funded project (DE-FC02-01ER25486) and members
of the SEEK project (NSF/ITR awards DBI-0225674
and DBI-0533368) decided to collaborate and jointly
develop a scientific workflow system based on the
open source Ptolemy ii system (Ludäscher was a
co-PI on both projects). In the first project phase,
between 2001 and 2003, the SDSC team (Altintas,
Ludäscher) worked closely with a domain scientist
(Matt Coleman, LLNL) and created early versions
of a Promoter Identification Workflow (PIW) [15,
62]. Towards the end of that period, the open source
Ptolemy ii system was adopted by SciDAC-SDM
and SEEK as the basis for a general scientific work-
flow system and problem-solving environment to de-
sign and execute scientific workflows, giving rise to
Kepler.

Once started through SciDAC-SDM and SEEK,
the Kepler leadership team was able to attract fur-
ther support from funding agencies including from
DOE (as part of SciDAC-2), NSF, NIH, and the Gor-
don and Betty Moore Foundation. Important ad-
vances to Kepler were made by the SciDAC/SDM-
SPA team during the report period (2001–2007), in
particular by the SDSC team (and after Ludäscher’s
move) the UC Davis team, including (i) research and
development of the workflow infrastructure, (ii) li-
brary (actor) development, and (iii) development of
concrete scientific workflows, in collaboration with
scientists. Years later, the Kepler system was listed
as one of the prominent “Big Data” research outcomes
of DOE in the White House Big Data Factsheet, an-
nounced as part of the White House Big Data press
release [21].2

In addition to the core technology development,
research in scientific workflow management was con-
ducted and led to a deeper understanding of fun-
damental technical challenges in scientific workflow

1http://kepler-project.org
2Quoting from [22]:“The Office of Advanced Scientific Com-

puting Research (ASCR) provides leadership to the data man-
agement, visualization and data analytics communities, in-
cluding digital preservation and community access. Programs
within the suite include widely used data management tech-
nologies such as the Kepler scientific workflow system; Stor-
age Resource Management standard; a variety of data storage
management technologies, such as BeSTman, the Bulk Data
Mover and the Adaptable IO System (ADIOS); FastBit data
indexing technology (used by Yahoo!); and two major scientific
visualization tools, ParaView and VisIt.”

design and execution. Research results have been
documented in a number of publications and pre-
sented at national and international meetings and
conferences including several at the Supercomput-
ing Conference (SC), the International Conference on
Scientific and Statistical Database Management (SS-
DBM), the e-Science Workflow Services Workshop
[4], the e-Science Grid Environments Workshop [6],
the Virtual Observatory Service Composition Work-
shop [7], the e-Science LINK-Up Workshop on Work-
flow Interoperability and Semantic Extensions [8], and
the Global Grid Forum (GGF10) Scientific Workflow
Workshop [9]. The success of the Kepler collabora-
tion for scientific workflow development is also docu-
mented by the 6th Biennial Ptolemy Miniconference
that was featuring a special track on the Kepler
project [43] (Kepler members also contributed to
Ptolemy miniconferences in subsequent years). The-
oretical results with applications in workflow design
and composition have appeared in the Intl. Workshop
on Data Integration in the Life Sciences [26], and
database theory conferences [56, 32], among many
others.3 In particular, the publications [49] and [13],
led by Ludäscher and Altintas, respectively, are among
the most cited papers on scientific workflows and prove-
nance, according to Google Scholar.

Early Development Highlights. Initial develop-
ment efforts of our team were focused on develop-
ing a number of generic workflow components, called
actors, e.g., to support rapid workflow proto-
typing based on web services (web service actor,
web service harvester); to integrate legacy appli-
cations via command line and ssh actors; to sup-
port user interaction via a BrowserUI actor; to
support data-intensive workflows via SRB (Stor-
age Resource Broker) actors; to support compute-
intensive workflows via a generic “Grid workflow”
framework [16]; and to support data transforma-
tions via XSLT actors.

Outreach and Growth of the Kepler/SPA Col-
laboration. In collaboration with other Kepler
participants, a number of further components and
workflows were created, e.g., a cheminformatics work-
flow to control high-end computing workflows [19,
20], several ecoinformatics and geoinformatics work-
flows, and workflows dealing with real-time sensor
data. Dr. Ludäscher, then co-PI of the NSF/ITR
projects GEON, SEEK, and ROADNet, had actively
recruited these new communities to contribute to Ke-
pler. With his move to the Department of Computer

3See scholar.google.com/scholar?q=DE-FC02-01ER25486
for an online list.

http://kepler-project.org
http://kepler-project.org
http://scholar.google.com/scholar?q=DE-FC02-01ER25486
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Science at UC Davis, Kepler members also joined
from there, e.g., via the graduate seminar ECS-289F:
Topics in Scientific Data Management and a new
course ECS-166: Scientific Data Management for non-
CS majors (Fall 2005). In both courses, students are
trained by Dr. Ludäscher to use and develop new Ke-
pler/SPA workflows. Meanwhile, at SDSC, Ilkay Al-
tintas has very actively recruited further groups and
communities leading to additional members of the
collaboration. Moreover, under guidance from Rea-
gan Moore and Arcot Rajasekar from SDSC, Storage
Resource Broker (SRB) components have been added
to Kepler in the early project phases.

Report Organization. Section 2 provides a high-
level introduction, motivating the need for scientific
workflows. In Section 3 we introduce scientific work-
flows by means of several real-world examples from
different domains. We use those examples to illus-
trate some of the characteristic features and require-
ments of scientific workflows, and compare the latter
with business workflows. These sections are based
on a preprint of Ludäscher et al. [49]. In Section 4
we describe some of the generic technology we have
developed, in particular web service extensions (Sec-
tion 4.1) and grid-related extensions (Section 4.2).
We also introduce the notion of actor-oriented mod-
eling, which is inherited from Ptolemy ii. Section 5
presents some ongoing research issues. In Section 6
we discuss some details of the Kepler collaboration
of which SPA has been a founding member. A more
detailed list of accomplishments is given in Section 7,
derived from the quarterly reports. Section 8 high-
lights a few of the recent publications and presen-
tations. Some concluding remarks are given in Sec-
tion 9.
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“The diversity of the phenomena of nature is so
great, and the treasures hidden in the heavens
so rich, precisely in order that the human mind
shall never be lacking in fresh nourishment.”

— Johannes Kepler, My<erium Cosmographicum

2 Background
Information technology is revolutionizing the way many
sciences are conducted, as witnessed by new tech-
niques, results, and discoveries from quickly evolv-
ing, multi-disciplinary fields such as bioinformatics,
biomedical informatics, cheminformatics, ecoinformat-
ics, geoinformatics, etc. To further advance this new
data- and information-driven science through advanced
IT infrastructure, large investments are made, e.g., in
the UK e-Science programme, or in the US through
the NSF Cyberinfrastructure initiative and other ini-
tiatives from NIH (BIRN: Biomedical Informatics Re-
search Network) and DOE (SciDAC: Scientific Dis-
covery through Advanced Computing, GTL: Genomes
to Life), just to mention a few. While many efforts
focus on the underlying middleware infrastructure,
known as “the Grid”, scientists are ultimately inter-
ested in tools that bring the power of distributed
databases and other computational Grid resources to
the desktop, and allow them to conveniently put to-
gether and run their own scientific workflows. By
these we mean process networks that are typically
used as “data analysis pipelines” or for comparing
observed and predicted data, and that can include a
wide range of components, e.g., for querying databases,
for data transformation and data mining steps, for
execution of simulation codes on high performance
computers, etc. Ideally, the scientist should be able to
plug-in almost any scientific data resource and com-
putational service into a scientific workflow, inspect
and visualize data on the fly as it is computed, make
parameter changes when necessary and re-run only
the affected “downstream” components, and capture
sufficient metadata in the final products such that
the runs of a scientific workflow, when considered
as (computational) experiments themselves, help ex-
plain the results and make them reproducible by the
computational scientist and others. Thus, a scien-
tific workflow system becomes a scientific problem-
solving environment, tuned to an increasingly dis-
tributed and service-oriented Grid infrastructure.

However, before this grand vision can become re-
ality, a number of significant challenges have to be
addressed. For example, current Grid software is still
too complex to use for the average scientist, and fast
changing versions and evolving standards require that
these details be hidden from the user by the scientific

workflow system. Web services seem to provide a
simple basis for loosely coupled, distributed systems,
but core web service standards such as WSDL [81]
only provide simple solutions to simple problems,4
while harder problems such as web service orchestra-
tion, 3rd party transfer (from one service directly to
another, circumventing the transfer back to a work-
flow control engine), and transactional semantics of
service-based workflows, remain the subject of emerg-
ing or future web service standards. The complexity
of the underlying technical issues and the resulting
(sometimes overly) complex standards make it less
likely that those will be as widely adopted as the core
standards such as XML and WSDL.

Another set of challenges arises from the inher-
ent complexity of scientific data itself. For example,
how can we capture more of the semantics of scien-
tific data (beyond simple metadata meant for human
consumption) and thus inform the system which data
sets might be suitable input for a specific analytical
pipeline? Similarly, how can we define when it is
even potentially meaningful at the conceptual level
to compose two independently designed web services,
or when an analysis pipeline might be included as a
subworkflow in another scientific workflow? Knowl-
edge representation techniques, including formal on-
tologies, and corresponding Semantic Web standards
such as theWeb Ontology Language [61] seem promis-
ing directions. However, as is the case for Grid mid-
dleware, the goal is to hide the underlying complexity
as much as possible from the user of a scientific work-
flow system.

3 Scientific Workflows
In the following we first introduce scientific work-
flows by means of several examples taken from differ-
ent projects and implemented using the Ptolemy ii-
based Kepler system [40]. We then discuss typi-
cal features of scientific workflows and from this de-
rive general requirements and desiderata for scientific
workflow systems. We take a closer look at underly-
ing technical issues and challenges in Section 4.

3.1 Example Workflows
3.1.1 Promoter Identification

Figure 1 shows a high-level, conceptual view of a typ-
ical scientific knowledge discovery workflow that links
genomic biology techniques such as microarrays with
bioinformatics tools such as BLAST to identify and

4E.g. WSDL mainly provides an XML notation for function
signatures, i.e., the types of inputs and outputs of web services.
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Figure 1: Conceptual (“napkin drawing”) view of the Promoter Identification Workflow (PIW) [15]

characterize eukaryotic promoters5 – we call this the
Promoter Identification Workflow or PIW (see also
[79, 15, 62]: Starting from microarray data, cluster
analysis algorithms are used to identify genes that
share similar patterns of gene expression profiles that
are then predicted to be co-regulated as part of an
interactive biochemical pathway. Given the gene-ids,
gene sequences are retrieved from a remote database
(e.g., GenBank) and fed to a tool (e.g., BLAST) that
finds similar sequences. In subsequent steps, tran-
scription factor binding sites and promoters are iden-
tified to create a promoter model that can be itera-
tively refined.

While Figure 1 leaves many details open, some
features of scientific workflows can already be identi-
fied: There are a number of existing databases (such
as GenBank) and computational tools (such as Clus-
favor and BLAST) that need to be combined in cer-
tain ways to create the desired workflow. In the
past, accessing remote resources often meant imple-
menting a wrapper that mimics a human entering the
input of interest, submitting an HTML form, and
“screen-scraping” the result from the returned page
[45]. Today, more and more tools and databases
become accessible via web services, greatly simpli-
fying this task. Another trend is web portals such as
NCBI [58] that integrate many tools and databases
and sometimes provide the scientist with a “work-
bench” environment.

Figure 2 depicts snapshots of an early implemen-
tation of PIW in Kepler. Kepler is an extension of
the Ptolemy ii system [64] for scientific workflows.
The topmost window includes a loop whose body is
expanded below and which performs several steps on

5A promoter is a subsequence of a chromosome that sits
close to a gene and regulates its activity.

Figure 2: PIW implemented in Kepler [15]. Com-
posite actors (subworkflows) expanded below.

each of the given gene-ids: First, an NCBI web ser-
vice is used to access GenBank data. Subsequently
a BLAST step is performed to identify similar se-
quences to the one retrieved from GenBank. Then
a second inner loop is executed (bottom window) for
a transcription factor binding site analysis. Using
Ptolemy ii terminology, we call the individual steps
actors, since they act as independent components
which communicate with each other only through the
channels indicated in the figure. The overall execu-
tion of the workflow is orchestrated by a director (the
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green box in Figure 2; see Section 4.3 for details).
This early PIW implementation in Kepler [15]

illustrates a number of features: Actual “wiring” of
a scientific workflow can be much more complicated
than the conceptual view (Figure 1) suggests. A
mechanism for collapsing details of a subworkflow
into an abstract component (called composite actor
in Ptolemy ii) is essential to tame complexity: The
windows in Figure 2 have well-defined input and out-
put ports and thus correspond to (sub)-workflows
that can be collapsed into a more abstract, composite
actor as indicated. Nevertheless, the resulting work-
flow is fairly complex and we will need to introduce
additional mechanisms to simplify the design in par-
ticular of loops (see Section 5.1).

3.1.2 Mineral Classification

The second example, from a geoinformatics domain,
illustrates the use of a scientific workflow system for
automation of an otherwise manual procedure, or al-
ternatively, for reengineering an existing custom tool
in a more generic and extensible environment. The
upper left window in Figure 3 shows the top-level
workflow: Some samples are selected from a database
holding experimentally determined mineral composi-
tions of igneous rocks. This data, together with a set
of classification diagrams are fed into a Classifier
subworkflow (bottom left). The manual process of
classifying samples involves determining the position
of the sample values in a series of diagrams such as
the one shown on the right in Figure 3: if the loca-
tion of a sample point in a non-terminal diagram of
order n has been determined (e.g., diorite gabbro
anorthosite, bottom right), the corresponding dia-
gram of order n+1 is consulted and the point located
therein. This process is iterated until the terminal
level of diagrams is reached (here shown in the upper
right: the classification result is anorthosite).

This traditionally manual process has been au-
tomated in commercial custom tools, or here in the
Kepler workflow shown in Figure 3. As above, work-
flows are shown in graphical form using Ptolemy ii’s
Vergil user interface [27]. Note that in Vergil, work-
flows can be annotated with user comments. Sub-
workflows (e.g., bottom-left) become visible by right-
clicking on a composite actor (such as Classifier,
upper-left) and selecting “Look Inside” from the re-
sulting pop-up menu. Vergil also features simple VCR-
like control buttons to play, pause, resume, and stop
workflow execution (red icons in the top-left toolbar;
e.g., right-triangle for play).

Kepler specific features of this workflow include:
A searchable library of actors and data sources (Actor

and Data tabs close to the upper-left) with numerous
reusable Kepler actors. For example, the Browser
actor (used in the bottom-right of the Classifier
subworkflow) launches the user’s default browser and
can be used as a powerful generic input/output device
in any workflow. In this example, the classification
diagrams are generated on the client side as interac-
tive SVG displays in the browser (windows on the
right in Figure 3). Moving the mouse over the dia-
gram highlights the specific region and displays the
rock name classification(s) for that particular region.
The Browser actor has proven to be very useful in
many other workflows as well, e.g., as a device to
display results of a previous step, and as a selection
tool that passes user choices (made via HTML forms,
check-boxes, etc.) to subsequent workflow steps.

3.1.3 Job Scheduling

The final example workflow, depicted in Figure 4, is
from a cheminformatics domain and involves running
thousands of jobs of the GAMESS quantum chemi-
cal code [68] under the control of the Nimrod/G Grid
distribution tool [10]. This is an example of a work-
flow employing high-performance computing (HPC)
resources in a coordinated manner to achieve a com-
putationally hard task, in this case a variant of a hy-
brid quantummechanics/molecular mechanics (QM/MM)
technique; see [35] and [73] for details. Interestingly,
the workflow in Figure 4 is rather domain-neutral
and illustrates some features typical of many high-
performance computational experiments:

Figure 4: Workflow for scheduling HPC jobs.

The main window shows four composite actors,
corresponding to the four depicted subworkflows. The
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Figure 3: Mineral Classification workflow (left) and generated interactive result displays (right).

first one, PrepareInputs creates a list of input files
for the subsequent jobs. These files are then used to
create a plan file for Nimrod/G in the PrepareEx-
periment step. The AddExperiment subworkflow
takes a plan file and generates experiment run files
using several CommandLine actors. The latter is
shown with a “$” icon (to indicate a command shell),
and has proven to be a very useful rapid-prototyping
tool: Existing local applications can be made part of
a workflow simply by providing a suitable command
line expression and the corresponding command line
arguments. The ManageResources subworkflow
can create new processes (via AddFork) to run jobs
and subsequently add experiments as new server pro-
cesses.

This example workflow also highlights the pos-
sibility of incremental design and development: At
the time of writing, not all components of the over-
all workflow are operational. Nevertheless, due to the
clearly defined input/output interfaces of all subwork-
flows (a feature inherited from Ptolemy ii), each of
them can be designed, implemented, and tested sepa-
rately. Moreover, the current version of the workflow
relies heavily on invoking external applications via
the CommandLine actor. Some of these applications
might be “promoted” to custom actors with native
Java implementations in the future. Such changes are
encapsulated by the containing subworkflow and thus
do not require changes of other parts of the workflow.

3.2 Requirements and Desiderata
In this section we summarize a number of common re-
quirements and desiderata of scientific workflows, as
exhibited by the examples above or by other work-
flows we encountered in various application-oriented
research projects including in addition to SDM/SPA
also GEON, SEEK and several others [36, 70, 69, 23,
67].

R1: Seamless access to resources and services:
This is a very common requirement (e.g., see
the example workflows in Section 3.1), and web
services provide a first, simple mechanism for
remote service execution and remote database
access6 via service calls. However, as mentioned
before, web services are a simple solution to a
simple problem. Harder problems, e.g., web ser-
vice orchestration, and 3rd party transfer are
not solved by “vanilla” web services alone.

R2: Service composition & reuse and work-
flow design: Since web services emerge as the
basic building blocks for distributed Grid ap-
plications and workflows, the problem of ser-
vice composition, i.e., how to compose simple
services to perform complex tasks, has become

6We do not elaborate on the important challenges of data
integration [71]; see, e.g., [37] for a survey of query rewriting
techniques, and [57] and [51, 25] for related issues of query
capabilities and semantics, respectively.
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a hot research topic [38]. Among the different
approaches are those that view service compo-
sition as an AI planning problem [24], a query
planning problem [50, 52], or a general design
and programming problem. A related issue is
how to design components so that they are eas-
ily reusable and not geared to only the spe-
cific applications that may have driven their
original development. As we will see, service
composition and reuse are addressed by em-
ploying an actor-oriented approach at the de-
sign level (Section 4.3), but also require flexible
means for data-transformations at the “plumb-
ing” level (Section 4.2).

R3: Scalability: Some workflows involve large vol-
umes of data and/or require high-end compu-
tational resources, e.g., running a large num-
ber of parallel jobs on a cluster computer (such
as workflow in Section 3.1.3). To support such
data-intensive and compute-intensive workflows,
suitable interfaces to Grid middleware compo-
nents (sometimes called Compute-Grid andData-
Grid, respectively) are necessary.

R4: Detached execution: Long running workflows
require an execution mode that allows the work-
flow control engine to run in the background
on a remote server, without necessarily stay-
ing connected to a user’s client application that
has started and is controlling workflow execu-
tion (such as the Vergil GUI of Kepler).

R5: Reliability and fault-tolerance: Some com-
putational environments are less reliable than
others. For example, a workflow that incorpo-
rates a new web service can easily “break”, as
the latter can often fail, change its interface, or
just become unacceptably slow (as it becomes
more popular). To make a workflow more re-
silient in an inherently unreliable environment,
contingency actions must be specifiable, e.g.,
fail-over strategies with alternate web services.

R6: User-interaction: Many scientific workflows
require user decisions and interactions at vari-
ous steps.7 For example, an improved version
of PIW (Section 3.1.1) allows the user to in-
spect intermediate results and select and re-
rank them before feeding them to subsequent
steps. An interesting challenge is the need for
user interaction in a detached execution. Us-
ing a notification mechanism the user might

7In fact, when workflow management was still called “office
automation”, humans were the main processors of tasks – the
workflow system was just used for book-keeping; cf. Section 3.3.

be asked to reconnect to the running instance
and make a decision before the paused (sub-
)workflow can resume.

R7: “Smart” re-runs: A special kind of user inter-
action is the change of a parameter of a work-
flow or actor. For example, in a visualization
pipeline or a long running workflow, the user
might decide to change some parameters after
inspecting intermediate or even final results. A
“smart” re-run would not execute the workflow
from scratch, but only those parts that are af-
fected by the parameter change. In dataflow-
oriented systems (e.g., visualization pipeline sys-
tems such as AVS, OpenDX, SCIRun, or the
Kepler system) this is easier to realize than
in more control-oriented systems (e.g., business
workflow systems), since data and actor depen-
dencies are already explicit in the system. An-
other useful technique in this context is check-
pointing, which allows to backtrack (in the case
of a parameter change or even a system failure;
cf. (R5)) to a previously saved state without
starting over from scratch.

R8: “Smart” (semantic) links: A scientific work-
flow system should assist workflow design and
data binding phases by suggesting which actor
components might possibly fit together (this is
also an aspect of (R2), service composition), or
by indicating which data sets might be fed to
which actors or workflows. To do so, some of
the semantics of data and actors has to be cap-
tured. However, capturing data semantics is
a hard problem in many scientific disciplines:
e.g., measurement contexts, experimental pro-
tocols, and assumptions made are often not ad-
equately represented. Even if corresponding
metadata is available, it is often not clear how
to best make it useable by the system. It seems
clear though that ontologies provide a very use-
ful semantic type system for scientific workflows,
in addition to the current (structural) type sys-
tems [26].

R9: Data provenance: Just as the results of a
conventional wet lab experiment should be re-
producible, computational experiments and runs
of scientific workflows should be reproducible
and indicate which specific data products and
tools have been used to create a derived data
product. Beyond the conventional capture of
metadata, a scientific workflow system should
be able to automatically log the sequence of ap-
plied steps, parameter settings and (persistent
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identifiers of) intermediate data products. A
related desiderata is automatic report genera-
tion: The system should allow the user to gen-
erate reports with all relevant provenance and
runtime information, e.g., in XML format for
archival and exchange purposes and in HTML
(generated from the former, e.g., via an XSLT
script) for human consumption.

Data provenance can be seen as a prerequisite
to (R8): In order to provide semantic infor-
mation about a derived data product, suitable
provenance information is needed.

While the above list of requirements and desider-
ata for scientific workflow systems is by no means
complete, it should be sufficient to capture many of
the core characteristics. Other requirements include
the use of an intuitive GUI to allow the user to com-
pose a workflow visually from smaller components, or
to “drill-down” into subworkflows, to animate work-
flow execution, to inspect intermediate results, etc.

A scientific workflow system should also support
the combination of different workflow granularities.
For example, coarse-grained workflows, akin to Unix
pipelines or web service-based workflows, consist mainly
of “black box” actors whose contents are unknown to
the system. Scientific workflows may also be very
fine-grained, or include fine-grained subworkflows. In
that case, components are “white boxes” containing,
e.g., the visual programming equivalent of an algo-
rithm, or a system of differential equations to be
solved, in other words, a detailed specification known
to the system.

3.3 Differences to Business Workflows
The characteristics and requirements of scientific work-
flows are partially overlapping those of business work-
flows. Indeed, the term ‘scientific workflows’ seems
to indicate a very close relationship with the latter,
while a more detailed comparison reveals a number
of significant differences. Historically, business work-
flows have roots going back to office automation sys-
tems of the 1970’s and 80’s, and gained momentum in
the 90’s under different names including business pro-
cess modeling and business process engineering ; see,
e.g., [12, 77, 83].

Today we see some influence of business workflow
standards in the web services arena, specifically stan-
dards for web service choreography.8 For example, the

8Despite the long history of business workflows, it is sur-
prising how short-lived some of the so-called standards are, as
“most of them die before becoming mature” [75].

Business Process Execution Language for Web Ser-
vices (BPEL4WS) [30], a merger of two earlier stan-
dards, IBM’s WSFL and Microsoft’s XLANG, has
received some attention recently.

When analyzing the underlying design principles
and execution models of business workflow approaches,
a focus on control-flow patterns and events becomes
apparent, whereas dataflow is often a secondary issue.
For example, [76] describe a large number of work-
flow design patterns that can be used to analyze and
compare business workflow standards and products
in terms of their control features and expressiveness.

Scientific workflow systems, on the other hand,
tend to have execution models that are much more
dataflow-oriented. This is true, e.g., for academic
systems including Kepler, Taverna [2], and Tri-
ana [3], and for commercial systems such as Infors-
ense’s DiscoveryNet or Scitegic’s Pipeline-Pilot.
With respect to their modeling paradigm and execu-
tion models, these systems seem closer to an “AVS
for scientific data and services” than to the more
control-flow and task-oriented business workflow sys-
tems, or to their early scientific workflow predecessors
[28, 54, 11].

The difference between dataflow-orientation and
control-flow orientation can also be observed in the
underlying formalisms. For example, visualizations
of business workflows often resemble flowcharts, state
transition diagrams, or UML activity diagrams, all of
which emphasize events and control-flow over dataflow.
Formal analysis of workflows usually involves study-
ing their control-flow patterns [41], and is often con-
ducted using Petri nets.

Conversely, the underlying execution model of cur-
rent scientific workflow systems usually resembles or
is even directly implemented as a dataflow process
network [39, 44], having traditional application areas,
e.g., in digital signal processing. Dataflow-oriented
approaches are applicable at very different levels of
granularity, from low-level CPU operations found in
certain processor architectures, to high-level program-
ming paradigms such as flow-based programming [55].
Scientific workflow systems and visualization pipeline
systems can also be seen as dataflow-oriented problem
solving environments [80] that scientists use to ana-
lyze and visualize their data. Last not least, there
is also a close relationship between dataflow-oriented
approaches and (pure) functional languages, includ-
ing non-strict variants such as Haskell (cf. Section 5.1).
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Figure 5: Kepler web service Harvester in action: repository access (1-2), harvesting (3), and use (4).

4 SPA Technology Development
One of the recommendations coming out of the Sci-
DAC/SDM review meeting in Napa Valley (March
2003) was to avoid working only as “consultants” to
individual scientists, automating just their particular
workflow needs. Instead, it was recommended to also
focus on the development of generic technology (al-
beit guided by specific scientific applications). As a
result of this, as well as the fact that the domain sci-
entist9 with whom we had worked intensively during
the first report period (2001-2003) has subsequently
been “adopted” by the SPA/LLNL team, we indeed
focused our efforts on the development of such generic
workflow technology.

In this section, we discuss some highlights of the
current Kepler system as well as some upcoming ex-
tensions. Many features directly address the require-
ments and desiderata from Section 3. More research-
oriented extensions are described in Section 5.

4.1 Web Service Extensions
A basic requirement for scientific workflows is seam-
less access to remote resources and services (see (R1)
in Section 3.2 and the examples in Section 3.1). Since
web services are emerging as the standard means for
remote service execution of loosely coupled systems,
we extended Kepler early on to handle web ser-
vices. Given the URL of a web service description
[81], the generic WebService actor of Kepler can
be instantiated to any particular operation specified

9molecular biologist Matt Coleman, LLNL

in the service description. After instantiation, the
WebService actor can be incorporated into a sci-
entific workflow as if it were a local component. In
particular, the WSDL-defined inputs and outputs of
the service are made explicit via the instantiated ac-
tor’s input and output ports.

Figure 5 shows screenshots of an extended web
service harvesting feature, implemented by a special
web service Harvester component.10 As in the case
of the generic WebService actor, a URL is first pro-
vided (see (1) in Figure 5), however this time not
to an individual WSDL description of a web service,
but to a web service repository. The repository URL
might point to a UDDI repository, or simply to a
web page listing multiple WSDL URLs as shown in
(2). The Harvester then retrieves and analyzes all
WSDL files of the repository, creating instantiations
of web service actors in the user’s local actor library;
see (3). For example, one of the harvested services,
the BLAST web service, comprises five service oper-
ations which are imported into a corresponding sub-
directory. The user can then drag-and-drop any of
these service operations on the workflow canvas for
use in a scientific workflow (4). The Harvester
feature facilitates rapid prototyping and development
of web service-based applications and workflows in a
matter of minutes – that is, provided

(i) the web services are alive when needed, and

(ii) they can be wired together more or less directly
to perform the desired complex task.

10Inspiration came from a similar feature in Taverna.
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The problem with (i) is that, while harvested web ser-
vices look like local components, their runtime failure
can easily “break” a scientific workflow, reminding the
user that the service interface has been harvested,
not the actual code.11 We are currently extending
Kepler to make workflows with web services more
reliable. One simple approach is to avoid the as-
sociation of a service operation with a fixed URL.
Instead, a list of alternate services can be provided
when the workflow is launched, and service failure
can then be compensated by invocation of one of the
alternate services. Another option is to insert spe-
cial control tokens into the data stream, indicating
to downstream actors the absence of certain results.
Long running workflows may thus more gracefully re-
act to web service failures and produce at least par-
tial results. This idea has been further developed for
“collection-oriented” (in the functional programming
sense) workflows: via so-called “exception-catching
actors”, invalid (due to failures) data collections can
be filtered out of the data stream, while valid sub-
collections pass through unaffected [53]. An interest-
ing research question is how to extend Ptolemy ii’s
pause-resume model to a full-fledge transaction model
that can handle service failures.

The problem (ii) is even more fundamental and
has different aspects: At the design level the chal-
lenge is how to devise actors that can be reused eas-
ily. In Section 4.3 we give a brief introduction to
actor-oriented modeling, the underlying paradigm of
Ptolemy ii, and discuss how it facilitates component
composition and reuse. At the “plumbing” level it
is often necessary to apply data transformations be-
tween two consecutive web services (called “shims”
in Taverna). Such data transformations are sup-
ported through various actors in Kepler, e.g., XSLT
and XQuery actors to apply transformations to XML
data, or Perl and Python actors for text-based trans-
formations.

4.2 Grid and other Extensions
Figure 6 depicts a number of Kepler actors that fa-
cilitate scientific workflows, including workflows that
make use of “the Grid”. In the upper left, the previ-
ously discussed generic WebService actor and some
instantiations are shown. Note how the latter spe-
cialize their actor interface via their input/output
ports: e.g., Blast_SearchSimple has three input
ports and one output port, for the search arguments
and result, respectively. The naming scheme used is
WSN_OP, where WSN is the name of the web ser-
vice and OP is a specific web service operation.

11Which is of course the whole point of web services.

Figure 6: Grid actors and other Kepler extensions.

The upper right shows two Grid actors, called
FileFetcher and FileStager, respectively. These
actors make use of GridFTP [63] to retrieve files from,
or put files to, remote locations on the Grid. The
GlobusJob actor below is another Grid actor, in
this case for running a Globus job [1]. At the bottom
of Figure 6 a small workflow is shown that takes a
Globus proxy and some input files, staging the files
to where the job is run, then fetching the results from
the remote location and displaying them on the client
side. The green box specifies that this workflow is ex-
ecuted using an SDF (Synchronous Data-Flow) direc-
tor. This director analyzes the dataflow dependencies
and token consumption and production rates of ac-
tors (here: token = file), and schedules the execution
of actors accordingly.

On the right, a number of actors that use the
SDSC Storage Resource Broker [72] are shown, e.g.,
to connect and disconnect from SRB and to get and
put files from and to SRB space, respectively. We are
currently in the process of providing all commonly
used SRB commands as actors. This will allow the
Kepler user to design and execute Grid workflows
involving a number of different tools, e.g., SRB for
data handling aspects, and Globus, Nimrod and other
tools for computational aspects and job scheduling.

In the center and left of Figure 6, various other
Kepler actors are shown: The CommandLine ac-
tor can be used to incorporate any application into a
workflow, provided it can be accessed from the com-
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mand line.12 The “$” icon is reminiscent of a shell
prompt. The actor is parameterized with the argu-
ments of the shell command, making it easy to cre-
ate generic or specialized command line invocations.
A Browser actor is shown directly below (cf. Sec-
tion 3.1.2). It takes as input an HTML file or URL
and displays it in the user’s default browser. This
makes the actor an ideal output device for displaying
intermediate or final workflow results in ways that are
well-known to users. Another extremely useful appli-
cation of this actor is as an input device for user in-
teractions. The result file of an upstream actor might
have been transformed to an HTML file (e.g., using
the xslt actor) and augmented with HTML forms,
check boxes, or other input forms that are displayable
to the user in a standard web browser. Upon execut-
ing the desired user interaction, an http-post re-
quest is sent to a special Kepler web server, acting
as a listener, and from there the workflow is resumed.

The Email actor in the center of the figure pro-
vides a simple notification mechanism to inform the
user of specific situations in the workflow. Together,
the Email and Browser actors address core issues
of requirement (R6) in Section 3.2. The Pause ac-
tor (red down-triangle) pauses workflow execution at
specific points, allowing the user to inspect intermedi-
ate results, possibly changing parameter values, and
resuming the workflow subsequently (addressing (R7)
in Section 3.2).

Finally, actors for accessing real-time data streams
from ROADNet sensor networks [67] have recently
been added. These actors (e.g., OrbWaveform-
Source) can be integrated easily into Kepler, since
many of the underlying Ptolemy ii directors support
streaming execution.13

4.3 Actor-Oriented Modeling
Arguably the most unique feature of Kepler comes
from the underlying Ptolemy ii system:

“The focus [of the Ptolemy project] is on as-
sembly of concurrent components. The key
underlying principle ... is the use of well-
defined models of computation that gov-
ern the interaction between components.” 14

This focus together with the actor-oriented modeling
paradigm make Ptolemy ii an ideal starting point
for tackling the breadth of challenges in scientific work-
flow design and execution. In Ptolemy, a system or

12E.g., Kepler workflows can include data analysis steps via
calls to R [65].

13This should come as no surprise, since dataflow process
networks are defined on token streams in the first place.

14http://ptolemy.eecs.berkeley.edu/objectives.htm.

model thereof (in our case, a scientific workflow) is
viewed as a composition of independent components
called actors. Communication betweem actors hap-
pens through interfaces called ports. We distinguish
between input ports and output ports. In addition
to the ports, actors have parameters, which configure
and customize the behavior.15 For example, a generic
filter actor might consume a stream of input tokens
via an input port, letting through to the output port
only those tokens that satisfy a condition specified by
a parameter.

producer
actor

consumer
actor

IO-ports

receiver

Director

Figure 7: The semantics of component interaction is
determined by a director, which controls execution
and supplies the objects (called receivers) that im-
plement communication.

Actors, or more precisely their ports, are con-
nected to one another via channels. Given an inter-
connection of actors, however, there are many possi-
ble execution semantics that one could assign to the
diagram. For example, actors might have their own
thread of control, or their execution might be trig-
gered by the availability of new inputs.

A key property of Ptolemy ii is that the execu-
tion semantics is specified in the diagram by an object
called a director (see Figure 7). The director defines
how actors are executed and how they communicate
with one another. Consequently, the execution model
is less an emergent side-effect of the various intercon-
nected actors and their (possibly ad-hoc) orchestra-
tion, and more a prescribed concurrent semantics as
one might find in a well-defined concurrent program-
ming language. The execution model defined by the
director is called the model of computation. Patterns
of concurrent interaction are factored out into the de-
sign of the directors, rather than being individually
constructed by the designer of the workflow. Figure 7
depicts a producer and a consumer actor whose ports
are connected by a unidirectional channel. The dia-
gram is annotated by a director, which might, for ex-
ample, execute the producer prior to the consumer so
as to respect data precedences. The communication
between the actors is mediated by an object called a

15Parameters are usually not shown in the figures.

http://ptolemy.eecs.berkeley.edu/objectives.htm
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receiver, which is provided by the director, not by the
actors. Thus, for example, whether the communica-
tion is buffered or synchronous is determined by the
designer of the director, not by the designer of the
actor. This hugely improves the reusability of actor
designs.

Process Networks. The Process Network (PN)
director is a popular choice for designers of scien-
tific workflows. It gives a diagram the semantics
of (dataflow) process networks [39, 44]. In this se-
mantics, actors are independent processes that exe-
cute concurrently, each with its own thread of con-
trol, and communicate by sending tokens through
unidirectional channels with (in principle) unbounded
buffering capacity. Writing to a channel is a non-
blocking operation, while reading from a channel can
block until sufficient input data are available. This
model of computation is similar to that provided by
Unix pipes, as in the following example of a Unix
command-line composition of processes:

cat foo.txt | bar | baz

This example shows three independently executing
processes (cat, bar, and baz) that are connected
to one another through unidirectional pipes. The
stream of tokens flowing between the processes also
synchronizes them if necessary. For example if bar
and baz are filter operations working on a single line
of text at a time (e.g., grep xyz), then a Unix process
executing bar will block until a line of text is provided
by the process executing cat foo.txt. Unlike Unix
pipes, however, the PN director in Ptolemy iitolerates
feedback loops and forking and merging of data streams.
It performs deadlock detection, and manages buffers
to keep memory requirements bounded (if possible).

The PN director is only one example of a large
number directors available in Ptolemy ii. There is
also, for example, the SDF (Synchronous Data-Flow)
director, which can be used for specialized process
networks with fixed token production and consump-
tion rates per firing (see below). The SDF director
performs static analysis on a workflow that guaran-
tees absence of deadlocks, determines required buffer
sizes, and optimizes the scheduling of actor execution.
Other directors have been constructed for modeling
Discrete Event systems (DE), Continuous-Time mod-
els (CT, which solve ordinary differential equations),
and Communication Sequential Processes (CSP), to
mention just a few [27].

By relieving actors from the details of component
interaction, the actors themselves become much more
reusable (cf. (R2) in Section 3.2). The behavior of
an actor adapts to the execution and communication

semantics provided by the director. This feature of
actor-oriented modeling is called behavioral polymor-
phism. For example, a single Ptolemy ii actor im-
plementation of an arithmetic operation, say Plus,
can be connected to any number of input operands
and reused within different models of computation
and under the control of different directors. An SDF
director, e.g., schedules the actor invocation (or “fir-
ing”) as soon as all inputs have data, which it knows
since actors declare their fixed token consumption
and production rates in the SDF domain. In con-
trast, when the Plus actor is governed by a DE direc-
tor, additions happen when any input has data, cor-
responding to the different overall execution model
in the Discrete Event domain. In addition to be-
havioral polymorphism, the Ptolemy ii type system
also supports data polymorphism, again increasing
the reusability of actors. For example, our Plus ac-
tor can be implemented in such a way that it dynam-
ically chooses the correct numeric addition (integer,
float, double, complex), depending on the types of in-
puts it receives. Moreover, on other data types, e.g.,
strings, vectors, matrices, or user-defined types, the
Plus actor16 can execute appropriate actions, e.g.,
string concatenation, vector or matrix addition, etc.

Actor-Oriented Programming Interface. Actor-
oriented modeling addresses several challenges in the
design of complex systems [34]. We have already
mentioned improved component reusability due to
behavioral and data polymorphism. Another aspect
is hierarchical modeling. As illustrated by the exam-
ples in Section 3.1, subworkflows can be abstracted
into (composite) actors themselves (e.g., see the Clas-
sifier actor/subworkflow in Figure 3) and thus arbi-
trarily nested. In the following, we give a simpli-
fied introduction on some implementation aspects of
Ptolemy ii’s actor-oriented approach. These can be
adapted to the context of scientific workflows and dis-
tributed, service-oriented environments, leading to a
more structured approach to service composition and
workflow design.

execution−→ preinitialize, type-check, run*, wrapup
run −→ initialize, iteration*
iteration −→ prefire, fire*, postfire

Figure 8: AOPI execution phases and actormethods.

The structure we propose is based on various phases
and methods in Ptolemy ii’s actor-oriented program-
ming interface (AOPI), see Figure 8. These AOPI
methods are used by a director to orchestrate overall

16This actor is called AddSubtract in Ptolemy ii.
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execution. Symbols in boldface denote actual meth-
ods that actor implementations have to provide; the
remaining symbols describe other phases17 of the over-
all execution.

When a director starts a workflow execution, it
invokes the preinitialize method of all actors. Since
this method is invoked only once per lifetime of an
execution (even if there are multiple runs), and prior
to all other activities, this is a good time to put in
place the receiver components of actors, and for ac-
tors to “advertise” their supported port data types,
transport protocols, etc.

Next the director type-checks all connections and
ports. This includes checking each port’s data types,
all (previously advertised) type constraints, and the
validity of port types being connected through chan-
nels. A type inference algorithm is used to deter-
mine the most general types satisfying the given con-
straints. For scientific workflows, we can modify di-
rectors to also type-check which transport protocol
to use, or to check whether producer and consumer
actors exchange data directly or via handles:18 For
example, if an actor A declares its output port to be
of handle type “http | ftp” and a connected actor B
declares its input port to be of handle type “http”,
then type-checking can establish that the connection
is valid, provided A’s output port is subtyped to use
http handles only. Indeed such information can and
should be passed to the actor with the invocation of
the initialize method.

Other possible actions during execution of initial-
ize are: Web service actors can “ping” the web ser-
vices they represent and signal failure-to-initialize if
the corresponding service is not alive. A “fail-over-
aware” director can use this information to replace
the defective web service with an equivalent one that
is alive (see (R5) in Section 3.2). A workflow ex-
ecution will often consist only of one run, but if a
workflow is re-run, initialize is called again. A run
usually includes multiple iterations, each of which in-
cludes a call to prefire, fire (possibly called repeat-
edly by some special directors), and a call to postfire.
The main actor operation finally happens in the fire
method, e.g., a web service actor will make the actual
remote service call here.

Towards Actor-Oriented Scientific Workflows.
The idea of actor-oriented scientific workflows is to
apply the principles of actor-orientation and hierar-
chical modeling, underlying the Ptolemy approach

17Some correspond to methods of other Ptolemy ii entities,
e.g., director methods or manager methods [27].

18By handle we mean a unique identifier that can also be
used to retrieve data, e.g., a URL.

[34, 27], to the modeling and design of scientific work-
flows. In particular, web service operations, which
provide the building blocks of many loosely coupled
workflows, should be structured into different parts,
corresponding to the different phases and methods
used in actor-oriented modeling. For example to im-
plement a web service wA, the service developer should
think of specific web service operations such as wA.initialize
and wA.prefire in addition to the main “worker” method
wA.fire. As in the case of Ptolemy actors, this will
lead to more generic and reusable components and
even facilitate more complex extensions such as state-
ful web services.19

5 Research Issues
In this section we briefly discuss some technical issues
that we have begun addressing for Kepler, but that
are less mature and require some additional research.

5.1 Higher-Order Constructs
The early implementation of the Promoter Identifi-
cation Workflow (PIW) depicted in Figure 2 demon-
strated the feasibility and some advantages of imple-
menting scientific workflows in the Kepler exten-
sion of Ptolemy ii [15]. However, it also highlighted
some inherent challenges of the dataflow-oriented pro-
gramming paradigm [48]. We have argued in Sec-
tion 3.3 that many current scientific workflow systems
are more dataflow-oriented than business workflow
systems and approaches, which tend to emphasize
event-based control-flow rather than dataflow. When
designing real-world scientific workflows it is neces-
sary, however, to handle complex control-flows within
a dataflow-oriented setting as well. It is well-known
that control-flow constructs require some thought in
order to handle them properly. The fairly intricate
network topology in Figure 2 includes backward-directed
“dataflow” channels, having the sole purpose of send-
ing control tokens that initiate another iteration of
a subworkflow. While such complicated structures
achieve the desired effect (here, a special kind of loop),
they are hard to understand, design, and maintain.
Such ad-hoc constructions also increase the complex-
ity of workflow design while diminishing the overall
reusability of workflow components (see (R2) in Sec-
tion 3.2). Fortunately, there are better ways to in-
corporate structured control into a dataflow-oriented
system, thereby directly supporting workflow design
as required by (R2).

19Statefulness is an established concept in actor-oriented
modeling and dataflow networks; e.g., it can be represented
explicitly via feedback loops.
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Figure 9: PIW variant with map iterator.

In [48] we have illustrated how higher-order func-
tional programming constructs can be used to im-
prove the design of PIW. In particular, the higher-
order function map :: (α → β) → [α] → [β] has
proven to be very useful to implement a certain type
of iteration. It takes a function f (from α to β) and
a list of elements of type α, and applies f to each list
element, returning the list of result elements (each of
type β). Thus map is defined as

map f [x1, x2, . . . , xn] = [f(x1), f(x2), . . . , f(xn)]

For example, map f [1, 2, 3] = [1, 4, 9] for f(x) = x2.
Figure 9 shows an improved version of the PIW

workflow from Section 3.1.1 and Figure 2, now using
the higher-order map function. Note how backward-
directed flows of control-tokens are avoided. Instead,
iterations are realized as nested subworkflows inside
a higher-order Map actor. For example, to imple-
ment a look-up of a list of gene sequences via a Gen-
Bank web service that can only accept one gene at
a time, we simply create the higher-order construct
Map(GenBankWS) as shown in Figure 9 (the “stack”
icon indicates that the contained workflow is applied
multiple times).

Other higher-order functional programming con-
structs, e.g., foldr (for “fold right”) can be similarly
used to provide more abstract and modular iteration
and control constructs in a dataflow setting, and we
plan to add those to Kepler in the future. The
utility of declarative functional programming meth-
ods for dataflow-oriented systems is no coincidence;
see, e.g., [66] for more on the close links between
dataflow, functional, and visual programming, and
[59] for interesting applications in implicit parallel
programming. Here we only give a simple illustra-
tion using a core subworkflow of PIW in a Haskell
specification; see [48] for details:

d0= $Gid % input: some gene-id
d1= genBankG in % get its gene sequence
d2= blastP d1 % find candidates from similar seqs
d3= map genBankP d2 % get promoter sequences
d4= map promoterRegion d3 % compute regions
d5= map transfac d4 % compute transcr. factor sites
d6= zip d2 d4 % create list of (promoter-id,region) pairs
d7= map gpr2str d6 % accumulate into string list
d8= concat d7 % create a single file
d9= putStr d8 % output to subsequent steps

The input and output (ports) of this workflow are
given by d0 and d9, respectively. Note the use of
map to iterate over lists where the available services
(e.g. genBankP) can only handle one item at a time.
Also note that these ten equations establish a sim-
ple forward-only dataflow process network with the
di representing named channels, and the expressions
on the right of the equation representing processes
(i.e., actors). A merge of two parallel branches hap-
pens, e.g., through the function zip that creates a
single stream of pairs (promoter-id, promoter-region)
in channel d6 from the two streams in d2 and d4.

5.2 Third Party Transfers
Scientific workflows can involve large volumes of data
(see (R3) in Section 3.2). In a web service setting, this
creates a problem since so-called 3rd party transfers
are not currently supported by web services: Let us
consider two web services wA and wB, located at two
sites s1 and s2, respectively. wA takes some input x
and produces some data d that we would like to pass
on to wB, which produces the final output data y. We
can depict this as follows:

x→ wA@s1
d−→ wB@s2

y→

Assume that the overall execution of this workflow
WF is coordinated and controlled by a workflow en-
gine E (e.g., Kepler) running at some site s3. Cur-
rent web service implementations do not allow the
engine E to call wA@s1, telling it to route d directly
to wB@s2. Instead, web service invocations and the
input/output dataflows that go with them, all go
through E@s3. In pseudo-code this means:

WF@s3(in x,out y) = {
d@s3 := wA@s1(x@s3);
y@s3 := wB@s2(d@s3) }

How do we execute the “remote assignments” shown
here? To execute WF@s3, the workflow engine E first
sends a request message containing x to wA@s1. Upon
completion, wA replies back to E@s3 with the result d.
Now WF@s3 can proceed and E forwards d to s2 where
wB can work on it. The final result y is then sent
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from s2 back to s3. This simple call/return execution
is quite desirable from a modeling and design point of
view since control-flow and dataflow go hand in hand,
and since the control engine E does not have to worry
about the status of direct (i.e., 3rd party) transfers
of data d from wA to wB. The downside, however, is
that data is moved around more often than necessary.
Let us trace the “data shipments” of x, d, and y:

1. ship x@s3;x@s1 % part of request to wA

2. @s1 execute d := wA(x) % execute wA

3. ship d@s1;d@s3 % part of reply from wA

4. ship d@s3;d@s2 % part of request to wB

5. @s2 execute y := wB(d) % execute wB

6. ship y@s2;y@s1 % part of reply from wB

If d is very large, executing both steps (3) and (4) is
wasteful: first d is sent from s1 to s3 where the work-
flow engine E runs, only to be sent to s2 in the next
step. Instead of sending d over the wire twice, the
more direct 3rd party transfer wA@s1

d
; wB@s2 moves

d only once, but as mentioned before, is not currently
supported by web services.20 The question becomes:
How can we avoid unnecessary transfers and achieve
the efficiency of 3rd party transfer, while retaining
the above simple call/return execution model?

A Handle-Oriented Approach. A simple solu-
tion to the above problem is that wA does not send
the actual data d but a handle hd to it. Such a han-
dle corresponds to a “logic pointer” and can be rep-
resented by a globally unique URI, but may also be
a URL and indicate the protocol by which d is to be
accessed, e.g., http, ftp, GridFTP00, scp, or SRB. If
we replace all data occurrences x, d, and y by handles
hx, hd, and hy, respectively, we obtain:

1. ship hx@s3;hx@s1 % request to wA

2. @s1 execute hd := wA(hx) % execute wA

3. ship hd@s1;hd@s3 % reply from wA

4. ship hd@s3;hd@s2 % request to wB

5. @s2 execute hy := wB(hd) % execute wB

6. ship hy@s2;hy@s1 % reply from wB

20And even if it were, “divorces” control-flow and dataflow,
resulting in more complex execution models.

Now, instead of sending (the possibly very large) d
over the wire twice in (3) and (4), we only do so for
the (constant size) handle hd. We cannot hope to
further reduce this since a reply message from wA to
E and a new request from E to wB are necessary for
the overall control of workflow execution.

In order to implement the above handle-solution,
we need to slightly extend our web services: in steps
(2) and (5), wA and wB need to process handles by
dereferencing them or by creating new ones. The for-
mer happens when a web service acts as a consumer
of data (wA consumes x), while the latter is needed
in the role of a data producer (wA produces d).

Consider, e.g., the case where handles are rep-
resented as URLs with http as the transport pro-
tocol. In step (2) above, wA needs to dereference
hx before it can execute its function. hx might be,
e.g., http://foobar.com/f17. When dereferenced
via http-get it yields the actual data x.21 To prop-
erly process handles as a data consumer, the op-
eration “receive x” has to be replaced by “receive
hx”, followed by a “dereference and get” operation
x := http-get(hx). All subsequent read operations
can then operate on x as before.

In the role of a data producer, we have the re-
verse situation. We want to avoid shipping of the
actual result data d and instead send a handle hd.
Thus, we need to first create this handle, e.g., by cre-
ating a new file f18 that can be accessed via hd =
http://baz.edu/f18. All subsequent write access
to d will proceed unchanged, provided the file name
f18 is used for d. Finally, we need to replace “send
d” with “send hd”.

We are currently working on extensions of Ke-
pler that make the system “handle-aware” [46]. For
example, during the type-checking phase (Figure 8)
a handle-aware director could determine whether two
web service actors A and B that invoke the web ser-
vices wA and wB, respectively, support compatible
handle types. For this to work seamlessly, web ser-
vices themselves should offer an actor-oriented pro-
gramming interface as presented in Section 4.3.

5.3 Other Research Issues
Higher-order constructs and the handle-approach to
3rd party transfers are only two of a number of press-
ing research issues in scientific workflows.22 For ex-
ample, detached execution (R4), reliability and fault-
tolerance (R5), semantic links (R8), and data prove-
nance (R9) are all scientific workflow requirements

21Note that while the handle hx is sent from s3 to s1 in step
(1), x might actually not reside at s3.

22Addressing (R2) and (R3), respectively.

http://foobar.com/f17
http://baz.edu/f18
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that need further attention in the future. For ex-
ample, [26] presents some initial work on the use of
ontologies as semantic types to help generate data
transformation mappings between consecutive work-
flow steps. These kinds of semantic extensions can
help at both levels, at the “plumbing” level to cre-
ate data transformations as in [26], and at the design
level to create more reusable components (R2) and
to support “smart” links in workflows (R8).

5.4 Related Work
In Section 4 we have described some of the features of
Kepler and the underlying Ptolemy ii system on
which Kepler is based. Ptolemy ii aims at model-
ing and design of heterogeneous, concurrent systems.
In contrast, Kepler aims at the design and execution
of scientific workflows. Consequently, Kepler ex-
tensions to Ptolemy ii include numerous actors and
capabilities that facilitate scientific workflows (e.g.,
web service actors and harvester, GridFTP, SRB and
database actors, command-line and secure shell ac-
tors, etc.) Additional components are constantly added,
e.g., to support statistics packages (such as R), GIS
functionality (e.g., Grass and ArcIMS couplings), and
other scientific data analysis and visualization capa-
bilities [78].

The research and development on Kepler also
benefits from interactions and collaborations with other
groups. On one hand, development is driven by appli-
cation scientists, the ultimate “customers” of scientific
workflow system, on the other hand, work in related
projects also influences Kepler developments. For
example, Taverna [2, 60] is a system that focuses on
web service-based bioinformatics workflows. In con-
trast, Triana [3, 29] provides mechanisms for cou-
pling workflows more tightly with Grid middleware
tools. Cross-fertilization between these and other
projects has happened, e.g., through e-Science LINK-
UP workshops [8], meetings and workshops at GGF
[9], etc. Other scientific workflow tools include Pega-
sus [31], Chimera, and job scheduling tools such as
Condor/G [33] and Nimrod/G [10]. For a taxonomy
of workflow management systems for Grid computing
and a comparison of systems see [82]. Future work
will address the various outstanding research issues
and workflows requirements that have not yet been
(fully) met. For example, some projects contribut-
ing to Kepler plan to provide couplings to highly-
interactive visualization tools such as SCIRun [78]
and GeoVista [74].

Figure 10: A screenshot of the Kepler IRC chan-
nel. A member from Kepler/SPA (Xiaowen Xin) dis-
cussing with a Kepler/SEEK member (Matt Jones)
the technical issues surrounding the problem of a
“non-deterministic merge”.

6 Brief History of the Kepler
Collaboration

Towards the end of the first report period (08/2001-
08/2003) it became clear that significant progress to-
wards a general scientific workflow tool would be dif-
ficult if not impossible by developing a system from
scratch. Around the same time, the NSF/ITR project
SEEK (Science Environment for Ecological Knowl-
edge) had decided to base their development of a
scientific workflow tool on the Ptolemy ii system
[64]. During 2003, after several months of informal
collaborations between developers from SEEK and
from SciDAC/SDM, Dr. Ludäscher, a co-PI of both
the SEEK and the SciDAC/SDM project, together
with Matthew Jones, co-PI and project manager of
SEEK, started discussions on how the collaboration
could be organized to maximize leverage while pre-
serving the different projects’ individual needs. Af-
ter initial discussions with Dr. Mladen Vouk from
NCSU (whose students were, in addition to Ilkay Al-
tintas from SDSC, the main SPA developers extend-
ing the Ptolemy ii system for scientific workflows at
the time), in November 2003 discussions between Arie
Shoshani (SDM), Terence Critchlow (SDM), Bertram
Ludäscher (SDM, SEEK), Mladen Vouk (SDM), and
Matthew Jones (SEEK) led to founding of the open
source Kepler collaboration.
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Figure 11: A social network obtained on Feb 15, 2005 from discussions on the Kepler IRC channel. Here,
Ilkay Altintas (Kepler/SPA, SDSC) has been a “hub” of a number of discussions with Xiaowen Xin (Ke-
pler/SPA, LLNL), Shawn Bowers (Kepler/SEEK, UC Davis), and others.

Kepler Membership. Contributing members of
the Kepler collaboration are primarily developers
but also researchers. There are different ways to be-
come a member with read/write access to the shared
CVS repository. For example, an existing member
can “sponsor” a new member (thus being responsible
for the new member’s changes to the code). Once
the new member has become familiar with the work-
ings and practices of the existing team, the latter can
vote the new member in as a regular member, thus
removing the sponsorship status.

The Kepler Collaboration Today. Over time,
a number of other projects teamed up with the orig-
inal founding projects of Kepler, i.e., SEEK and
SPA: e.g., members supported under the NSF/ITR
GEON project contributed workflows such as the one
in Figure 3 and actors such as the SRB actors for
large-scale data management (cf. Figure 6). Other
examples include contributions from members of the
NSF/ITR ROADNet project, the Resurgence chem-
informatics project (SDSC and University of Zurich),
the Encylopedia of Life project (SDSC), since re-
cently also the NSF GeoStreams project (UC Davis),
and last not least the original Ptolemy II project (UC
Berkeley).

Today, Kepler is a highly active collaboration,

with regular developers meetings as well as meetings
that interlink with other projects. For example, in
addition to SDM All-Hands and PI Meetings, Super-
computing conferences, and other meetings, recent
Kepler and SPA specific meetings include:

• July 2004, SPA developers meeting (with sev-
eral other Kepler members attending), SDSC23

• October 2004, e-Science Link-Up meeting, SDSC;
this collaboration (Dr. Ludäscher is a co-PI)
is with members of the UK e-Science MyGrid
project to share experiences gained in different
scientific workflow projects (esp. Kepler and
Taverna) 24

• January 2005, Kepler developer meeting in Juneau,
Alaska25

• February 2005, SPA software engineering meet-
ing (with several other Kepler members at-
tending), UC Davis26

• May 2005, Ptolemy Miniconference, featuring
Kepler, UC Berkeley

23http://kbis.sdsc.edu/events/SPA-07-04/
24http://kbi.sdsc.edu/events/LINK-UP-10-04/
25http://kepler-project.org/Wiki.jsp?page=

KeplerMeetingNotesJanuary2004
26http://kbi.sdsc.edu/events/SPA-Davis-02-05/

http://ptolemy.eecs.berkeley.edu/conferences/05/
http://kbis.sdsc.edu/events/SPA-07-04/
http://kbi.sdsc.edu/events/LINK-UP-10-04/
http://kepler-project.org/Wiki.jsp?page=KeplerMeetingNotesJanuary2004
http://kepler-project.org/Wiki.jsp?page=KeplerMeetingNotesJanuary2004
http://kbi.sdsc.edu/events/SPA-Davis-02-05/
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Figure 12: Social network obtained on March 7, 2005 from discussions on the Kepler IRC channel. Ilkay
Altintas (Kepler/SPA, SDSC), supposedly “gone” (but not quite) and Tim Wong (UC Davis, Bertram
Ludäscher’s ECS-289F student) form a very active link/discussion; similarly Laura Downey (Kepler/SEEK,
UNM) and Matt Jones (Kepler/SEEK, UCSB). Also Xiaowen Xin (Kepler/SPA, LLNL) has been in contact
with Efrat Frank (Kepler/GEON, SDSC).

• June 2005, Kepler developer meeting, Santa Bar-
bara, (timed to to take advantage of SSDBM
2005)

Kepler Collaboration Tools. There are several
ways by which Kepler developers from various projects
regularly communicate to collaborate and co-develop
the system. Standard mechanisms include of course
email and a shared CVS repository (SPA also main-
tains a separate CVS repository for specific code that
some SPA members might not want to share or con-
tribute to Kepler), but also voice-over-internet tele-
conferencing via Skype27 and, in particular, internet-
relay-chat (IRC). Figure 10 shows a screenshot of the
Kepler IRC channel, documenting a discussion be-
tween SPA and SEEK project members. The various
interaction paths between team members are also de-
picted in Figures 11 and 12.

7 Excerpts from the Quarterly
Reports

In this section we briefly highlight some of the de-
tailed technical developments and accomplishments,
roughly based on their chronological order as docu-
mented in the quarterly reports we have prepared –
for additional details please see the SDM quarterly
reports themselves.

At the SDM/SPAmeeting at Georgia Tech in May
2003, the decision had been made to abandon earlier
efforts to start a SPA workflow system from scratch,

27http://www.skype.com

as it became clear that this would not be feasible
within the time constraints and given the limited re-
sources of the project. Moreover, a very suitable sys-
tem was found in UC Berkeley’s Ptolemy II system
that had simultaneously been adopted as a starting
point for a scientific workflow system by the SEEK
NSF/ITR project. As indicated above, this choice
has since proven an excellent one and first proto-
type workflows based on Ptolemy II could already
been demonstrated at SSDBM’03 [15] and the SDM
Framework workshop [5] and All-Hands Meeting, Au-
gust 2003.

After adoption of Ptolemy II as the underlying
system, technical development was often in the form
of new or improved actors:

• New actors implemented: pause actor, inter-
active shell actor, initial version of web ser-
vice actor.

• Initial work on an ant-based build system
(in collaboration with Kepler/SEEK members).

Subsequently a number of actors were developed or
refined:

• WSDL-based generic web service actor: Pro-
vides the user with an interface to connect and
execute any web service defined by a WSDL
URL.

• Initial version of Web service harvester: Im-
ports all the operations of all the web services
in a web service repository (e.g. UDDI) based
on a keyword search. The operations execute
as local actors when imported once.

http://2005.ssdbm.org/
http://2005.ssdbm.org/
http://www.skype.com
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• XSLT transformation actor: allows trans-
formations of XML and HTML generation from
XML, using XSLT scripts.

• BrowserUI actor: a browser user interface
can now be inserted anywhere in the workflow,
allowing the user to display intermediate results
(including text/HTML, SVG, etc. output), as
well as submission of user interactions and se-
lections through HTML forms.

• Database access and query actors: these al-
low access and manipulation of relational data.

• Grid ProxyInit,Globus Grid Job, andGrid-
FTP actors: allow the user to create Grid jobs
and to move large amounts of data round using
Globus tools.

These were the main developments until the end
of 2003; development continued in 2004 with the fol-
lowing items:

• New email actor: e.g., in long-running work-
flows, now an email can be sent to the user
(including to email/SMS-enabled cell phones)
about the status of the computation, including
success, failure, or iteration count etc.

• New command line actor implementation started
that allows users to invoke local commands and
legacy tools.

• New SRB actors (provided by Efrat Jaeger
Kepler/GEON); allow users access to SRBman-
aged data collections.

• Updated Web Service actor: allow for primi-
tive XML Schema types of WSDL-based generic
web service actor (before: only support for xsd:string)

• Updated BrowserUI actor: The BrowserUI
actor allows to launch any default browser on
the client to provide workflow input and/or dis-
play workflow output (text/HTML, SVG, CGI,
XML, etc.)

In addition, new workflows were developed and
scientific communities were reached, in co-development
with other Kepler members:

• New Geologic Map Integration Workflow
(implemented/operational); this workflow ex-
hibits the use of web services and shows how a
complex external system, here ESRI’s ArcIMS
is incorporated into the workflow (Altintas, Memon)

• New Mineral Classification Workflow (im-
plemented/operational); this workflow shows how
the workflow system can be used to re-engineer
an existing end user scientist application. In-
cludes loop constructs, SVG graphical output
through the BrowserUI actor, and database ac-
cess actor (Jaeger, Ludaescher)

• New Cheminformatics Workflow (designed
using Kepler/SEEK workflow prototyping tool);
once implemented this workflow will integrate
Protein Databank (PDB) queries with the com-
putational GAMESS biochemstry tool and the
APBS tool; when implemented this will be an
example of a "compute-intensive" workflow (Wibke
Sudholt, I. Altintas)

The initial Kepler/SPA release was put together
by Ilkay Altintas (SDSC) and Zhengang Cheng (NCSU).
Later developments in 2004 include:

• New timestamp actor that outputs the sys-
tem time.

• New SSH actor that implements the secure
shell (ssh2) protocol and lets user natively con-
nect to a server through secure shell.

• New generic JDBC-based DatabaseWriter
and DatabaseReader actors that connect to
any database and perform read, insert, update,
delete and create table functions.

• New ExecutionLog utility: this is a sepa-
rate workflow component that creates execu-
tion logs on the fly. This feature is designed
to let the user post/save this log to a variety of
grids/databases/files.

• Updatedweb service actor,web service har-
vester

• Created a WebStart installer for Kepler in-
cluding the SPA modules.

• Designed and implemented a new documenta-
tion feature using taglets for describing actor
signatures.

• New FileStager and FileFetcher actors, based
on GridFTP.

• New Scp actor (secure copy).
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8 Selected Publications
We briefly highlight a few recent publications and
presentations from the report period. See also the
official SPA webpage28 for additional publications.

• [49] – overview paper on scientic workflow man-
agement and the Kepler system; used also as
a basis for this project report

• [16] – develops a framework for the design and
reuse of “Grid workflows”, i.e., having compute-
intensive and data-intensive aspects

• [47] – overview on scientific data management
challenges, with a focus on data integration and
semantics

• [19] – describes the computational chemistry
prototyping environment and its use of Kepler

• [57, 56, 52, 32] – work in database theory on
the foundations of composing queries with lim-
ited access patterns; this is directly applicable
to composing scientific workflows from web ser-
vices

• [14] – presentation by Dr. Ludäscher at the Global
Grid Forum Workshop on Scientific Workflows

• [26] – develops a new approach to employ se-
mantic information in scientific workflows to
guide structural data transformations

• [17, 42] – presentations on Kepler at Super-
computing 2003 and 2004 by Ilkay Altintas and
Werner Krebs, respectively

9 Concluding Remarks
We have provided an overview of scientific workflow
management issues, an presented highlights of our
work on award #DE-FC02-01ER25486 on scientific
workflow management during report period (2001–
2007). This work is motivated by real-world needs
and examples that we encountered in a number of
application-oriented projects, in particular SDM/SPA.
The spectrum of what can be called a scientific work-
flow is wide and includes scientific discovery work-
flows (e.g., Section 3.1.1), workflows that automate
manual procedures or reengineer custom tools (e.g.,
Section 3.1.2), and data and compute-intensive work-
flows (e.g., Section 3.1.3). Scientific workflow sup-
port is needed for practically all information-oriented

28Formerly available at: http://www-casc.llnl.gov/sdm/;
see scholar.google.com/scholar?q=DE-FC02-01ER25486 for a
current list.

scientific disciplines, including bioinformatics, chem-
informatics, ecoinformatics, geoinformatics, physics,
etc. We identified a number of common requirements
and desiderata of scientific workflows (Section 3.2)
and contrasted them with business workflows.

The Kepler system addresses many of the core
requirements (Section 4) and provides support for
web service-based workflows and Grid extensions. The
source code of Kepler is freely available [40]; a first
beta-release is in preparation (there have been several
alpha-releases already). A unique feature of Kepler
is inherited from the underlying Ptolemy ii system:
the actor-oriented modeling approach. This approach
facilitates modeling and design of complex systems
and thus provides also a very promising direction for
pressing problems such as web service composition
and orchestration. The way data polymorphism and
behavioral polymorphism are supported by an actor-
oriented approach that “concentrates” component in-
teraction in a separate director entity, can also shed
light on other efforts to create reusable component
architectures such as CCA [18]. Areas of research
include modeling issues such as the use of higher-
order functional constructs for workflow design (Sec-
tion 5.1), and optimization issues such as the use of
virtual data references (handles) to facilitate data-
intensive, web service-based workflows (Section 5.2).

The research and development on Kepler does
not occur in isolation. For example, cross-fertilization
comes from interactions and collaborations with many
groups; on one hand, this includes application sci-
entists which are our ultimate “customers”, on the
other hand, this includes colleagues working on re-
lated projects. For example, Taverna [2] is a sys-
tem that focuses on web service-based bioinformatics
workflows. In contrast, Triana provides mechanisms
for coupling workflows more tightly with Grid mid-
dleware tools. Other scientific workflow tools include
Pegasus, Chimera, and job scheduling tools such as
Condor/G and Nimrod/G. Future work will address
the various outstanding research issues and workflows
requirements that have not yet been (fully) met. For
example, some projects contributing to Kepler plan
to provide couplings to highly-interactive visualiza-
tion tools such as SCIRun29 and to GIS systems such
as GRASS30 and PostGIS31. A major challenge for
the future will be a better integration between tightly
coupled parallel applications and more loosely cou-
pled scientific workflows.

29http://software.sci.utah.edu/scirun.html
30http://grass.itc.it/
31http://postgis.refractions.net/

http://www-casc.llnl.gov/sdm/
http://scholar.google.com/scholar?q=DE-FC02-01ER25486
http://software.sci.utah.edu/scirun.html
http://grass.itc.it/
http://postgis.refractions.net/
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