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1. INTRODUCTION

This report has been prepared to make available and archive the background scientific
data and related information collected on groundwater during the preparation of the
environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project
(HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S.
Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994
(Fed. Regis. 59, 25638), withdrawing its notice of intent (Fed. Regis. 57, 5433) of February 14,
1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to
pursue the HGP, DOE considers the project to be terminated.

The background scientific data and related information presented in this report were
collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The
scientific background data and related information is being made available for use by others in
conducting future scientific research in these areas. This report describes the environmental
resources present in the areas studied (i.e., the affected environment) and does not represent an
assessment of environmental impacts.

This paper summarizes the current state of knowledge with respect to groundwater in the
Puna District of the island of Hawaii (hereinafter referred to as Hawaii). Groundwater quality in
and adjacent to Kilauea’s east rift zone (KERZ), Puna District, is compared with that of meteoric
water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District.
These segments are the middle east rift zone (MERZ) and lower east rift zone (LERZ). The
degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the
KERZ also is discussed. Finally, groundwater pathways and use in the Puna District are
discussed. Most of the information contained herein is compiled from recent U.S. Geological
Survey publications and open-file reports.

2. CHEMICAL AND THERMAL CHARACTERISTICS OF SHALLOW GROUNDWATER
IN THE PUNA DISTRICT

Shallow groundwater has highly variable chemical and thermal characteristics depending
on its location in or adjacent to the LERZ. Table 1 lists six groundwater types (Sorey and Colvard
1994) based on temperature and chloride concentration. The following discussion is based on
Figs. 1-4 (compiled from figures provided by Sorey and Colvard 1994) and Tables 1-5 [compiled
from tables provided by Sorey and Colvard (1994) and Janik, Nathenson, and Scholl (1994)].

Groundwater in the Pahoa region north of the LERZ (Fig. 1 and Table 2) is cold and
dilute (Type I). An excellent underground source of drinking water (USDW) exists in this region.
Six municipal and privately owned wells are located in the Pahoa region. Chemical and thermal
characteristics of water from five of these wells were compiled from Janik, Nathenson, and Scholl
(1994). No data are currently available for the Orchidland well. Water in these wells is remarkably
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Table 1. Groundwater types in the lower east rift zone

Chloride
Temperature concentration
Groundwater type O (mg/L)
I (cold & dilute)
IT (cold & brackish) 75 to 300
III (warm & dilute)
IV (warm & brackish) 100 to 800
V (hot & saline) 50 to 100
VI (warm & saline) 30 to 40

Source: Sorey and Colvard 1993,

consistent in quality. The temperature ranges from 20 to 24°C (68 to 75°F), total dissolved solids
(TDS) range from 106 to 143 mg/L, and the only trace element reported is zinc (0.07 mg/L). Such
consistently high quality groundwater is not found further to the south in the Puna District.

Groundwater in the LERZ (Fig. 2 and Table 3) ranges between warm and dilute (Type
IIT) and hot and saline (Type V). Most of the wells shown in Fig. 2 are shallow, geothermal test
wells (GTW) from various geothermal exploration activities or monitor wells (MW) associated
with Puna Geothermal Venture’s (PGV’s) operating power plant. Most of these wells are in or
near the area leased by PGV. Two wells (Kapoho Airstrip and Kapoho Shaft) are privately owned
and (along with GTW-4) are several kilometers northeast of the area leased by PGV. Water from
the Kapoho Shaft well is unique in that it is perched rather than basal lens groundwater. The
perched water is cold and slightly brackish (Type II). Although some groundwater in the LERZ
may be potable without chemical treatment, it does not have the same consistent quality as
groundwater in the Pahoa region. Most of these wells contain trace amounts of either boron (B)
or bromine (Br), or both, ranging up to 3 mg/L.. However, most well water in this area would be
considered by the U.S. Environmental Protection Agency (EPA) as a potential USDW, having a
TDS < 10,000 mg/L. Water from one shallow well (GTW-3) exceeds 10,000 mg/L TDS and has a
bromine concentration of 21 mg/L.

Groundwater is hot and saline (Type V) immediately south of Kapoho near the eastern
end of the LERZ (Fig. 3 and Table 4). In contrast, groundwater is cold and slightly brackish
(Type II) on the south sides of the middle east rift zone (MERZ) and near the western end of
the LERZ. The very limited data available suggests that the easternmost region (south of
Kapoho) has a very marginal USDW. Water from the Malama Ki well is very hot [53°C (127°F)],
very saline (TDS is nearly 9000 mg/L) and contains measurable concentrations of several trace
elements [arsenic (As), 0.08 mg/L; B, 2.3 mg/L; and Br, 17.4 mg/L). In contrast, the westernmost
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Fig. 1. Shallow wells north of the lower east rift zone. Source: Sorey and Colvard 1994.
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Fig. 2. Shallow wells in Kilauea’s lower east rift zone. Source: Sorey and Colvard 1994.
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Fig. 3. Shallow wells south of the middle east rift zone and the lower east rift
zone. Source: Sorey and Coivard 1994.
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region (south of the MERZ and the Kamaili region to the south of the LERZ) has a fairly good
USDW (based on the EPA’s definition of a USDW).

Water from springs that feed anchialine ponds (coastal ponds which are hydraulically
connected to the sea by subsurface conduits) is warm and saline (Type VI). Figure 4 provides the
locations of anchialine springs on the southeastern coast of Hawaii. Table 5 lists the chemical and
thermal characteristics of these springs as provided by Janik, Nathenson, and Scholl (1994). The
locations of uncharacterized anchialine ponds are not shown. Lighthouse Spring (near Cape
Kumukahi) and Opihikao Spring are the easternmost and westernmost springs for which chemical
and thermal data are available. Data for these springs are arranged with the easternmost spring
displayed at the top of Table 5 and the westernmost spring at the bottom. As seen in the table,
temperatures and TDS concentrations increase in an orderly manner from east to west [28 to
38°C (82 to 100°F) and 3490 to 8110 mg/L TDS, respectively]. Concentrations of selected trace
elements (boron and bromine) also increase in an orderly manner from 0.6 to 1.2 mg/L for boron
and from 6.0 to 14.3 mg/L for bromine.

There are two inland springs in Kilauea’s LERZ. One (Blue Grotto) is now covered by
lava that erupted between 1955 and 1961. It contained Type VI water, based on its temperature
and chloride content in 1941 [32°C (90°F) and 1017 mg/L, respectively]. Water in Kapoho Crater
Lake is Type I, based on temperature [26°C (79°F)] and chloride concentration (31 mg/L). This
lake water also is perched and not in hydraulic connection with either basal lens water or
seawater (Sorey and Colvard 1994; Janik, Nathenson, and Scholl 1994).

' The generalized chemical and thermal characteristics of shallow groundwater in the Puna
District suggest that groundwater flows south to the coast from the Kapoho region of the LERZ.
The three westernmost springs (Wayne’s, Pohoiki, and Opihikao) have water chemistries which
are very similar to that of water from the nearby Malama Ki well. The three easternmost springs
(Lighthouse, Vacationland, and Kapoho Beachlots) have water chemistries that are more similar
to that of the Allison well. Water temperatures in these two wells are 10-20°C (50-68°F) higher
than those of the springs. Water from GTW-3 has water chemistry which is very similar to both
the Malama Ki well and Pohoiki Spring. Water from the GTW-3 well is about 36°C (97°F)
hotter than that of the Malama Ki well. Water in all of these wells and springs contains small
concentrations of boron and bromine (elements commonly found in seawater). In contrast to
water in shallow wells and springs on the south side of the KERZ, water in shallow wells on the
north side is uniformly cold and low in TDS, and its boron and bromine concentration are below
detection limits (as indicated by data presented in Table 2).

There is no evidence to suggest that basal-lens groundwater or anchialine springs on the
south side of the KERZ are significantly connected with the KERZ'’s hydrothermal system. Water
in the two Keauohana wells (south of Kamaili) and in the Pulama well (south of the MERZ) is
cold and only slightly brackish (Type II). Both of these wells are located near the coast, where
slightly brackish water would be expected. Boron concentrations are below detection limits in all
three wells, and only one well contains a measurable concentration of bromine (0.2 mg/L in
Keauohana 1) as indicated by data presented in Table 5.

9
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Fig. 4. Anchialine and inland springs that have been charactenzed for water chemistry on

the southeast coast of Hawalii. Source: Sorey and Colvard 1994,
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3. CHEMICAL AND THERMAL CHARACTERISTICS OF GEOTHERMAL FLUID

Figure 5 (GeothermEx 1992) shows the locations of deep wells in the KERZ. Most of
these wells are near Pahoa in the LERZ. Geothermal fluid characteristics are known for only a
few wells in and adjacent to the PGV lease. Currently PGV is the only active private developer of
geothermal energy in Hawaii. Geothermal fluid characteristics are summarized in this section.

Tables 6 and 7 are compiled from data provided by GeothermEx (1992) and Janik,
Nathenson, and Scholl (1994). These tables provide concentrations of common and selected trace
elements, respectively, in several Kapoho State PGV wells, two Lanipuna wells, and the HGP-A
well.! Two distinct groups of wells are represented in these tables. One set of wells characterizes
geothermal fluids which consist of a combination of brine and steam. These wells are relatively
deep, varying in depth from 1900 to 2560 m (6200 to 8400 ft), have well-head pressures >10’ Pa
(a few hundred psig), and are capable of producing mixed brine and steam at rates ranging
between 22,700 and 45,350 kg/h (50,000 and 100,000 1b/h) (Janik, Nathenson, and Scholl 1994). A
second set of wells characterizes geothermal fluids which consist of steam and steam condensate.
These wells (KS-8 and KS-9) are relatively shallow (1070 m, 3500 ft), have well-head pressures
from 7 x 10° to 1. 4 x 107 Pa (1000 to 2000 psig), and are capable of producing predominantly
steam at rates between 136,000 and 227,000 kg/h (300,000 and 500,000 1b/h). The chemical
characteristics of fluids from these two sets of wells also are remarkably different as seen in
Tables 6 and 7.

Table 6 provides chemical characteristics for the HGP-A well both before production
began (February 1977) and about midway through the production period (November 1984). A
liquid sample taken in 1977 was collected after considerable steam had separated out at -
atmospheric pressure (0 psig) and at a temperature of 100°C (212°F). Although chemicals
become more concentrated in the remaining liquid, this sample had relatively low TDS
(2500 mg/L). Eight years later a sample was taken from separated liquid at a pressure of
1 x 10° Pa (158 psia) and a temperature of 184°C (363°F). Although proportionately less steam
probably separated out of the more recent sample, the amount of TDS was relatively high
(17,000 mg/L). Geothermal fluid was not reinjected during production. The nature of the
reservoir fluid changed over time, perhaps because more saline water was drawn into the well
from more distant sources within the reservoir or from separate reservoirs (Sorey and Colvard
1994).

Table 6 also provides chemical characteristics for other combination brine and steam wells.
Like the HGP-A well, the liquid phase was sampled after steam separation occurred. The data
represent chemical characteristics of the liquid phase of shut-in wells at their most recent
sampling dates. Although these data do not provide information about the nature of unseparated
reservoir fluid, they provide an indication of chemical characteristics of the liquid phase in the

Most of these geothermal wells were drilled since 1981. The HGP-A well was completed as a production well in
1977 to provide steam for the Hawaii Geothermal Projects 3-MW(e) pilot plant.
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borehole as steam is released at various temperatures and pressures. The TDS in the liquid phase
ranges from 17,000 mg/L to 86,000 mg/L. The pH ranges from 3.6 (strongly acidic) to 8.3
(moderately alkaline). Most of the geothermal liquids are mildly to strongly acidic.

GeothermEx (1992) provides data on reservoir fluid chemical characteristics corrected for
steam loss for the HGP-A and KS-1A wells. These values are more representative of reservoir
conditions after long-term production in the case of the HGP-A well and prior to commencement
of production in the case of the KS-1A well. The TDS in HGP-A and KS-1A reservoir fluids are
12,400 mg/L and 16,300 mg/L, respectively, prior to steam separation. The TDS concentration
after long-term production from the HGP-A well was lower than that of the KS-1A well, which
has never been used as a production well. These results suggest that the chemical composition of
reservoir fluids may be highly variable over short distances as well as over time.

Chemical characteristics of the predominantly steam wells (steam and steam condensate)
also are shown in Table 6. The steam condensate (liquid) in these wells has a very low TDS
(241 to 262 mg/L) and is strongly to moderately acidic (pH from 4.2 to 5.9). The steam (vapor)
phase has an even lower concentration of TDS (6 mg/L) and also is more strongly acidic (pH
from 3.8 to 4.2). Separation pressures and temperatures range from 214 to 218 psig and 198 to
200°C (388 to 392°F), respectively. The KS-9 well’s recombined liquid and vapor (KS-9I,
injectate to injection well KS-1A) has a very low TDS (47 mg/L) and is strongly acidic (pH = 4.7)
at a temperature of 72°C (162°F). These data represent reservoir chemistry prior to initiation of
steam production. Data are not currently available for reservoir chemistry during steam
production from the KS-9 well.

Table 7 presents data on trace elements and metals concentrations in both brine/steam
wells and steam wells. Arsenic (As), boron (B), bromine (Br), iron (Fe), and manganese (Mn) are
common constituents of brine/steam wells, but only arsenic and boron carry over significantly into
the steam wells.

4. SUMMARY OF CHEMICAL AND THERMAL CHARACTERISTICS OF
GROUNDWATER IN THE PUNA DISTRICT.

Table 8 presents a summary of chemical and thermal characteristics of groundwater in the
Puna District. Water in shallow wells north of the KERZ is uniformly cold, low in TDS, and low
in chemical species normally found in seawater. Water in shallow wells in the KERZ is uniformly
warm, and most of it is high in TDS and chemical species normally found in seawater. Water in
shallow wells south of the KERZ is variable. Water in wells south of the east end of the LERZ is
warm and high in TDS, whereas water south of the MERZ and the west end of the LERZ is cold
and dilute. Water in anchialine ponds south of the Kapoho Section of the KERZ is warm, high in
TDS, and high in chemical species normally associated with seawater. Geothermal brine in the
KERZ is hot, high in TDS, and high in chemical species normally associated with seawater.
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Geothermal steam from steam wells is hot, low in TDS, and low in chemical species normally
associated with seawater.

5. RELATIONSHIP OF SHALLOW GROUNDWATER TO HYDROTHERMAL SYSTEMS,
SEAWATER, AND METEORIC WATER

The degree of mixing between meteoric water and seawater in groundwater can be
determined by comparing chloride concentrations, chlorine-magnesium (CI/Mg), chlorine-boron
(CI/B), and chlorine-bromine (Cl/Br) ratios in groundwater with those in seawater (Sorey and
Colvard 1994). Similarities in these ratios suggest that a seawater component is present in
groundwater. Assuming steam has not been distilled off, the percentage of seawater may be
approximated by the ratio of chloride in seawater versus groundwater. Mixed meteoric and
seawater that has been heated by volcanic activity to form hydrothermal water has a much higher
ratio of Cl/Mg than unheated seawater but similar CI/B and CI/Br ratios. Meteoric water without a
seawater component has much smaller CI/Mg and CI/B ratios. The temperature of the
groundwater provides an indication of influence by the hydrothermal system. Table 9 compares
water chemistry in various wells and springs with that of seawater, hydrothermal brine, and
hydrothermal steam condensate.

Data from Table 9 are interpreted as follows. Water in shallow wells north of the LERZ
is meteoric. This water is mixed with neither seawater nor hydrothermal fluid, and its
temperature is low. Hot brine (HB in Table 9) in deep wells in the LERZ is hydrothermally
altered seawater. Water in shallow wells in the LERZ is believed to be a mixture of meteoric
water, seawater, and steam condensate (Cl/Mg ratios are too low for a significant contribution
from geothermal brine) with higher-than-normal temperatures. Water in shallow wells [Malama Ki
(1993) and Allison (1982)] and all anchialine ponds south and southeast of the east end of the
LERZ is a mixture of meteoric water and seawater, without hydrothermal fluid; however, higher-
than-normal temperatures suggest that geothermal heating has occurred. Water in shallow wells
south of the west end of the LERZ and the MERZ (Keauohana 1, and Pulama, respectively) is
meteoric with a slight mix of seawater, has normal temperatures, and contains no hydrothermal
fluids.

The presence of seawater in shallow wells in the LERZ (in contrast to similar wells north
of the LERZ) may be explained in terms of either convective heating of seawater or heating by
commingling seawater with escaping steam and steam condensate. Seawater underlies the fresh
water basal lens throughout Hawaii. At the same temperature, seawater is denser than fresh water
and remains below the freshwater lens. However, seawater’s density decreases when it is heated
and/or diluted with steam or steam condensate. This characteristic may allow mixing of heated
seawater, steam condensate, and cool fresh water through convective circulation. Sorey and
Colvard (1994) and Janik, Nathenson, and Scholl (1994) offer no opinion with regard to mixing
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Table 9. Chloride concentrations and ionic ratios for samples
from wells, warm pools, and seawater

Water Temp
Feature Date type” ) Cl Cl/Mg Ci/B Cl/Br
Seawater - - 19,000 14.1 4,200 284
Deep wells in the LERZ"
Geothermal brine wells
KS-1A° 10/29/85 HB (360) 14,280 15,870 1,721 263
Ks-3 6/9/85 HB (360) (50,100) (860) (2,150) nd
HGP-A? 11/28/84 HB (330) 6,924 46,160 2,086 204
Geothermal steam well
KS-8 8/92 SC (360) an (425) 3 nd
Shallow wells north of the LERZ
. Hawaiian 9/16/92 I 23 16 5.7 129 775
beaches
Keonepoko Nui  9/15/92 I 20 4 09 >175 >175
| Orchidland I 23 6-12
Pahoa 2 9/15/92 I 24 4.5 1.8 >450 >225
Shallow wells in the LERZ
GTW-4 6/21/61 v 43 72 9.6 nd nd
Kapoho Airstrip  1/11/82 v 35 390 174 nd nd
Kapoho Shaft 8/14/92 11 25 128 3.8 >6,400 298
GTW-3 9/16/92 A\ 89 6,042 295 2,863 290
HGP-A 1976 v (150) 4,720 337 nd nd
(shallow)
KS-1 (shallow) 1985 v (45) 1,150 38 nd nd
KS-1A (shallow) 1985 \Y% (50) 1,098 405 nd nd
MW-2 8/6/91 v 58 533 273 2,960 303




Table 9 (Continued)

Water Temp

Feature Date type® O Cl Ci/Mg CI/B Cl/Br

Mw-2 9/16/92 v 57 1,060 8.5 2360 328

MWw-1 9/16/92 I 4 19.6 1.5 73 392

MW-3 9/16/92 111 44 19.9 1.5 71 498
Spring in the LERZ

Blue Grotto 1941 VI 29-32 1,017 nd nd nd
Lake in the LERZ

Kapoho Crater 8/14/91 P 26 31 28 >1,550 443
Shallow wells south of the east side of the LERZ

Allison 17775 v 38 281 18.7 nd nd

Malama Ki 9/6/62 v (53) 5,850 18.1 nd nd
Anchialine ponds south of the east side of the LERZ

Kapoho 9/17/92 VI 33 2,729 16.5 3,100 321

Beachlots

Lighthouse 8/14/91 VI 29 1,821 163 4,140 276

Opihikao 8/1/61 VI 38 4,800 nd nd nd

Pohoiki 8/4/91 VI 35 3,011 158 4,125 280

Pohoiki 9/15/92 VI 34 4,441 167 3,800 311

Vacationland 8/14/91 VI 32 2,168 154 3,740 261

Wayne’s 8/3/91 VI 37 3,505 172 4,800 280
Shallow well south of the west side of the LERZ

Keauohana 9/15/92 I 25 76 23 >7,600 362
Shallow well south of the MERZ?

Pulama 12/6/63 | 26 345 11.1 nd nd

Note: Concentrations in milligrams per liter, except were noted.

“Water types are defined in Table 1, except for deep geothermal wells which contain either hot brine (HB) or steam

condensate (SC).
YLERZ = lower east rift zone
°KS = Kapoho State (well)
4HGP = Hawaii Geothermal Project
‘GTW = geothermal test well
= monitor well
IMERZ = middle east rift zone.

Source: Sorey and Colvard 1994.
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methodologies, but both are unequivocal in their opinion that geothermal brine does not
contribute to the mix. .

It is further suggested (based on this limited data) that the water table must slope south
and southeast toward the coast. Fresh water from the north would flush through the LERZ and
displace mixed meteoric water, seawater, and steam condensate toward the southeast coast.
Convective circulation of heated seawater and steam condensate would replace the displaced
groundwater in dynamic equilibrium with fresh water that flushes through the system from the
north. The displaced, mixed water eventually would reach the anchialine ponds along the
southeast coast. Apparently, this flushing action does not occur south of the west end of the
LERZ or the MERZ where the Keauohana and Pulama wells are located. Sorey and Colvard
(1994) state that groundwater in the MERZ is dike-impounded. Dikes are vertical, tabular-
shaped intrusive igneous rocks. These dikes are much less permeable than the lava flows into
which they are intruded. Hence, groundwater contained between dikes is referred to dike-
impounded.

The above interpretations are based on the limited number of shallow wells in the Puna
District. These interpretations may be confirmed or changed as new groundwater data become
available. Groundwater data are especially limited in and adjacent to the MERZ and the west end
of the LERZ.

6. DIRECTION AND RATE OF GROUNDWATER FLOW IN THE LERZ

Sorey and Colvard (1994) state that a quantitative interpretation of groundwater flow in
the LERZ and adjacent regions is complicated by (1) differences in temperature, chemistry, and
water source; (2) large differences in permeability related to dikes and other intrusive bodies;

(3) influences of freshwater/saltwater interfaces; and (4) faults and fracture zones oriented along
and transverse to the LERZ. Faults and fracture zones cannot be properly characterized by
available drill-hole and geophysical data.

Figure 6 is a map of the shallow water table in the LERZ and adjacent areas. Sorey and
Colvard (1994) identify two shallow groundwater zones in this region. One is the basal lens, where
the water table ranges from about 5.2 m (17 ft) to a meter or so above sea level (from the
HGP-A well to the east and south coasts). The other is dike-impounded groundwater, where the
water table exceeds 30 m (100 ft) above sea level (the True and SOH-4 wells).? Based on the
assumption that there are no barriers to groundwater flow in the basal lens throughout this
region, the groundwater flow direction is directly down the slope of the water table to the sea. In
contrast, the dike-impounded groundwater may be separated by one or more dikes that are

?The True and SOH<4 wells are the only geothermal test holes drilled in the MERZ. The True well was drilled by a
private developer. The SOH-4 well was a scientific observation hole that was drilled by the Hawaii Natural Epergy
Institute at the University of Hawaii at Manoa.
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Fig. 6. Water table elevations in the Puna District. Source: Sorey and Colvard, 1994.
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barriers to groundwater flow. Sorey and Colvard (1994) make no predictions with regard to flow
directions in dike-impounded groundwater.

Figure 6 provides enough water-table data for Sorey and Colvard (1994) to develop
tentative conclusions in regard to shallow groundwater movement east and south of the HGP-A
well. These conclusions are based on statistically uncertain data. The uncertainty arises from the
fact that variations in water levels from repeated measurements within a given well are similar to
the small differences in water levels between wells spaced kilometers apart. North of the LERZ,
groundwater flows generally to the northeast; south of the LERZ, the groundwater flows
generally to the southeast. Within the LERZ, groundwater generally flows downrift to the
northeast. A groundwater flow component also is directed to the east and southeast toward the
region of the anchialine ponds.

The hydraulic gradient (defined as the change in water table elevation per unit of
horizontal distance) varies depending on location with respect to the LERZ. Sorey and Colvard
(1994) provide estimates of hydraulic gradients from the HGP-A well to the south and east coasts
of Hawaii. North of the LERZ the gradient is 0.2 to 0.8 m/km (1 to 4 ft/mile), with flow northeast
toward the coast; south of the LERZ the gradient is about 0.3 m/km (1.5 ft/mile), with flow to the
east or southeast toward the coast; within the LERZ the gradient is 0.2 to 2.8 m/km (1 to
15 ft/mile) with flow to the northeast as well as east and southeast toward the coast and the
anchialine ponds. The average hydraulic gradient in the apparent zone of southeasterly flow is
about 0.6 m/km (3 ft/mile). Sorey and Colvard (1994) assume that these hydraulic gradients apply
to the shallow, unconfined basal-lens groundwater system, where volcanic dike barriers have little
or no effect.

The near surface between the HGP-A well site and the south coast is a region of low
electrical resistivity, as revealed by various geophysical surveys (Kauahikaua 1993; Jackson and
Kauahikaua 1987; Flanigan and Long 1987). The low-resistivity zone has been interpreted as
representing hot, saline (Type V) groundwater moving toward the coast from the LERZ. These
natural flows feed the warm anchialine ponds along the southeast coast. Hot and saline (Type V)
groundwater has been found in several wells (Malama-ki, GTW-3, and MW-2) within the zone of
low electrical resistivity, thus confirming the geophysical interpretation.

Shallow groundwater velocities in the region of the LERZ are uncertain because hydraulic
conductivities have been measured in only a few places. Direct measurements from well tests and
analyses of tidal fluctuations indicate that hydraulic conductivities range between approximately
900 and 4000 m/day (3000 and 13,000 ft/day) outside the LERZ and about one-tenth that inside
the LERZ (M&E Pacific, Inc., 1987). Imada (1984) modeled groundwater flow in the Puna
District using assumed hydraulic conductivities of about 4600, 900, and 10 m/day (15,000, 3000,
and 30 ft/day) in nonrift, eastern, and western halves of the LERZ, respectively. Water-table
elevations predicted from the model (using various hydraulic conductivities) were compared with
measured water-table elevations at a few locations. The best match between predicted and
observed water-table elevations were obtained using the above hydraulic conductivities. In a
similar study, hydraulic conductivities calculated by Takasaki (1993) range from approximately 900
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to 2700 m/day (3000 to 9000 ft/day) in dike-free lavas of the LERZ, 1800 m/day (6000 ft/day)
north of the LERZ, 900 m/day (3000 ft/day) south of the LERZ, and 1.5 to 9 m/day (5 to
30 ft/day) in the dike-impounded MERZ. ’

Sorey and Colvard (1994) used these hydraulic conductivity (k) estimates, watertable
gradients (7) from Fig. 6, and an assumed porosity (n) of 10% to calculate shallow groundwater
velocities (v) in the LERZ. The groundwater velocity is determined using Darcy’s law:

v =kiln . 1)

Order-of-magnitude groundwater velocity estimates range from about 3 to 30 m/day (10 to
100 ft/day) in dike-free regions to less than 0.3 to 3 m/day (1 to 10 ft/day) where there is dike-
impounded shallow groundwater. Imada (1984) obtained groundwater velocities of about 0.03 to
3.3 m/day (0.1 to 11 ft/day) for the LERZ, the higher values being applicable to the region east of
HGP-A where there is no dike-impounded shallow groundwater.

7. GROUNDWATER USE IN THE PUNA DISTRICT

Groundwater is currently being withdrawn for domestic use from eight large-capacity wells
in the Pahoa, Kapoho, and Kalapana regions. Locations of these wells (six wells which are north
of the LERZ) are shown in Fig. 1 and Table 10. The Kapho shaft and Keauohana wells are
shown in Figs. 2 and 3, respectively. Production, temperature, and chloride concentration data for
these wells are presented in Table 10. Production data for Hawaii County Department of Water v
Supply (DWS) wells were obtained for the years 1988 through 1991. The production data for the
wells of the Miller and Lieb Water Company (MLWC) and the Hawaiian Shores Community
Association (HSCA) wells are more recent (1992). Information concerning these wells was
provided to Sorey and Colvard (1994) by DWS and Hawaii State Department of Land and
Natural Resources (DLNR) from open-file data. The overall average groundwater withdrawal rate
for these wells (without regard to groundwater withdrawal records representing different time
intervals) is 815 gpm.

Most of the 1989 to 1992 groundwater withdrawals listed in Table 10 were from wells in
the Pahoa region north of the LERZ. Together, these five wells accounted for 722 of the
815 gpm average withdrawal rate. The DWS’s Pahoa system supplies approximately 2400 people
through 787 service hookups. MLWC and HSCA connect to another 1100 service hookups in the
Pahoa region. Water from these wells has a relatively low temperature and low chloride
concentration compared to other wells in the Puna District (based on Table 10, which was
compiled from data provided by Sorey and Colvard 1994).

Smaller groundwater withdrawals occur from wells in and south of the LERZ. One well
(Kapoho Shaft) is in the LERZ, and two others (Keauohana 1 and 2) are south of the LERZ.
The combined groundwater systems in and south of the LERZ (Kapoho and Kalapana systems)
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connect to only 91 service hookups. Water from these wells has a relatively high temperature and
high chloride concentration compared to wells supplying the Pahoa system. Other high-yield
(2300 gpm) wells which have been drilled in the LERZ also exhibit high water temperatures
and/or high chloride concentrations, as indicated in Table 3.

Future water users on the Pahoa system include a proposed golf course and housing
development near Pohoiki (south of the LERZ). Although Pohoiki is currently served by the
Kapoho Shaft well (in the LERZ), future requirements at Pohoiki may be provided by wells in
the Pahoa system as suggested by Sorey and Colvard (1994).

Rain catchment systems are used for water supply in areas not serviced by county or water
company wells. Catchment systems also are used as backup sources of supply in the event of well
supply system failures. To date, contacts with various agencies in Hawaii have failed to provide
maps or inventories of water catchment systems in the Puna District.

Historical water requirements for the existing PGV geothermal development have been
low. Although two wells were drilled for water supply (MW-1 and MW-3), most of the water
consumption for drilling and plant operations has been provided by the DWS well system because
of its higher quality (compare Tables 2 and 3). Under normal operations, water is needed for
drilling in the upper 600 m (2000 ft). Most water used in drilling does not return to the surface
(i.e., lost circulation) for reuse. Flow rates of about 60 gpm per well are required for a period of
about two weeks. A significant amount of water also was used to quench uncontrolled venting of
geothermal fluid from PGV’s KS-8 well during an accidental blowout in June 1991. The existing
PGV plant is air-cooled (forced draft), and does not require cooling water.
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