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ABSTRACT 

We have implemented a cell-wise, block-Gauss-Seidel (bGS) iterative algorithm, for the solution 
of the S" transport equations on the Roadrunner hybrid, parallel computer architecture. A compute 
node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell 
Broadband Engine™ (CelllB.E.)'. LAPACK routines have been ported to the CellfB.E. in order to 
make use of its parallel Synergistic Processing Elements (SPEs). The bGS algorithm is based on 
the LU factorization and solution of a linear system that couples the fluxes for all S" angles and 
energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the 
higher-level Opteron processors, a linear system is transferred to the CellfB.E. and the parallel 
LAPACK routines are used to compute a solution, which is then transferred back to the Opteron, 
where the rest of the computations for the S" transport problem take place. Compared to standard 
parallel machines, a hundred-fold speedup of the bGS was observed on the hybrid Roadrunner 
architecture. Numerical experiments with strong and weak parallel scaling demonstrate the bGS 
method is viable and compares favorably to full parallel sweeps (FPS) on two-dimensional, 
unstructured meshes when it is applied to optically thick, multi-material problems. As expected, 
however, it is not as efficient as FPS in optically thin problems. 

Key Words: neutral particle transport, hybrid parallel computer architecture. 

1. INTRODUCTION 

We recently analyzed the stability and convergence of the one-group, cell-wise block-Jacobi 
(bBJ) and cell-wise block-Gauss-Seidel (bGS) algorithms for solving the Sn transport equations 
in two dimensions [1]. These iterative solution methods were specifically targeted for 
implementation on the Roadrunner [2] class of hybrid parallel computers, several of which have 
been assembled at Los Alamos National Laboratory (LANL) [3]. Fourier analysis indicates that 
both algorithms are rapidly convergent in problems with optically thick mesh cells and bGS 
approaches the asymptotic, thick-cell regime at convergence rates higher than bBJ. 

We have implemented the bGS iteration on the Roadrunner machines at LANL with the 
expectation that the combination of fast factorization algorithms available on the Cell/B.E. and 
rapid convergence rate associated with the bGS algorithm will make the bGS iteration 
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competitive with the full parallel transport sweeps (FPS) that is typically used in parallel Sn 
transport applications [4,5]. Specifically, we investigate the range of problems for which the bGS 
algorithm is more efficient than FPS on unstructured meshes. 

The remainder of the paper is organized as follows. In Sec. 2 we discuss how bGS is applied to 
the multi-group Sn equations. Single- and dual-threaded strategies for the numerical 
implementation of multi-group bGS on Roadrunner are illustrated in Sec. 3. Numerical results 
are discussed in Sec. 4. Finally, in Sec. 5 we present a summary of our main findings and 
conclusions. 

2. MULTI-GROUP CELL-WISE BLOCK-GAUSS-SEIDEL (bGS) ALGORITHM 

2.1. Review of one-group formulation of bGS 

The bGS algorithm for the steady-state, one-group, non-multiplying transport equation with 
isotropic scattering is based on an operator splitting of 

( L - SD) '1/ = q , (1) 

where L, Sand D represent the "streaming plus total interaction" operator, the scattering 
operator, and the "discrete-to-moment" operator (which represents integration over all Sn angles,) 
respectively; '1/ is the angular flux and q is the fixed source. The cell-wise bGS splitting of the L 

operator is L = ( + L: ' where ( acts on the angular fluxes within a mesh cell and L: acts on all 

the angular fluxes whose directions are oriented such that they are incoming relative to the faces 
of neighboring mesh cells [I]. Within this splitting, Eq. (1) is written in the fOITIl 

[1 + (( - SD )-1 L: ] '1/ = (L: _ SD )-1 q, (2) 

where 1 is the identity operator. This corresponds to a linear system for all Sn angles and all 
spatial degrees of freedom (we use a Discontinuous Finite Element Method (DFEM) on triangles 
[6].) Equation (2) is solved iteratively with restarted Generalized Minimum Residual (GMRES) 

such that, for each iteration, the action of the (( - SD t operator is computed using a LV 

decomposition for any mesh cell on a parallel sub-domain. Specifically, all angular fluxes for all 
the spatial degrees of freedom on a given mesh cell are computed simultaneously, one mesh cell 
at a time. The ordering in which this "bGS-sweep" takes place depends only on the numbering of 
the mesh. The distinction between the bBJ and bGS algorithms is that for bGS the most recently 

computed angular fluxes are used when the term involving L: is constructed for a given mesh 

cell , while for bBJ this teITIl uses angular fluxes that are "lagged" from the previous iteration [I]. 
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2.2. Multi-group formulation of bGS 

We consider the steady-state, multi-group transport problem using two energy groups to illustrate 
the concepts presented during this discussion. Later, results with more groups will be presented. 
The two-group homogeneous transport problem is, in operator notation, 

{~. V' Ifl + CYllfl =_CYS11<P1 + CYSI2 <P 2 

Q'V'lf2 +CY2lf2 -CYS21 <P 1 + CYs 22 <V 2 

(3) 

The terms on the left side in Eg. (3) are the "streaming plus total interaction" operators for each 
group and the scalar fluxes on the right side ofEg. (3) are the integral of the group angular fluxes 
over all angles, performed via the "discrete-to-moment" operator for each group. The CYSij cross-

sections represent isotropic scattering from group j into group i. 

The coupled system in Eg. (3) is often solved with source iteration (SI) which is written for 
iteration R as 

(4) 

On a parallel computer, it is the block inverses on the right side ofEg. (4) that are computed with 
FPS. The FPS forms the bulk of the computational effort in a Sn transport calculation. Efficiency 
of the FPS degrades as the number of processors increases. Note that this version of SI does not 
use nested, within-group iterations typically used in transport codes. 

The two-group bGS algorithm employs the same spatial splitting of the group "streaming plus 
total interaction" operators, as described in Sec. 2.1, for each of the two groups. In this case, at 
iteration R, the bGS algorithm is: 

(5) 

Again, the bGS variation on bBJ uses a mix of updated fluxes 1f(!+I) and lagged fluxes If (t) 

operated on by the L: operators, which depends on the numbering of the mesh cells. The 

combination of operations on the right side of Eg. (5) is the bGS-sweep. 

The convergence rate ofS1 is the spectral radius of the matrix on the right side ofEg. (4). Fourier 
analysis indicates that the flat error mode is the dominant eigenvalue. Because that error mode is 
constant in space, particle streaming can be ignored and we can compute the spectral radius of 
the iteration matrix on the right side of 
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l[ 
(()) 

()512 <1>1 

() 522 <1>~t)' 
(6) 

to investigate the asymptotic convergence rate of SI. That is, if we let 

(7) 

the two-group spectral radius is 

(8) 

The scattering cross-sections in Eq. (7) must satisfy the inequalities: 

(9) 

If equality holds in Eq. (9), then the spectral radius of the T512 g matrix is exactly equal to 1, 

regardless of the numerical values of the cross-sections. This result applies for any number of 
energy groups. For example, we devise a problem for which p for two-group SI is 0.9999 by 
enforcing the constraint: 

(10) 

In this case, source iteration would converge slowly. 

On the other hand, the convergence of GMRES depends on the shape of the eigenvalue spectrum 
and not just the size of the dominant eigenvalue [7] . Random scattering matrices can be used to 
generate an iteration matrix whose spectrum is widely distributed in the complex plane, with 
eigenvalues that are small relative to the size of the spectrum, a situation in which GMRES 
would converge slowly. Therefore, we will devise problems for which both SI and GMRES 
converge slowly by generating a dense, random, scattering matrix and compute the total cross­
sections from the constraints that fix p ~ 1. 

We begin constructing such a multi-group problem with G energy groups by creating a random 
G x G matrix R, with entries r gg · in the range [0, I], and re-normalize the elements on each row 
of matrix R so that their sum equals 1. We then use the re-nomarlized matrix elements to 
construct the scattering cross-section matrix 
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_ rgg , 
O"Sgg' --c--' g,g'=l, .. ,G. (11) 

L~~' 
g'=1 

Note that re-nonnalization is not strictly necessary to obtain a desired p for multi-group SI. We 
do so only to ensure the total cross-sections obtained in each group are not far from unity. If we 
take the total cross-sections to be proportional to the sums of the entries on the columns of the 
scattering matrix 

G 

O"g' =(l+ag')LO"sgg" g'=l, .. ,G, (12) 
g=1 

then coefficients a g , are obtained as follows: 

ag , =I+(u-/)rg" g'=l, .. ,G, (13) 

where rg' is a random value on [0,1], such that the a coefficients have random values on [/,u]. 
For example, by selecting 1= 10-5 and u = 10-4

, we obtain p for multi-group SI comprised 

between 0.9999 and 0.99999. If 1= u = 10-4
, then p is exactly equal to 0.9999. Physically, this 

means that each a coefficient introduces a small neutron absorption in its corresponding energy 
group. 

To verify this procedure for multi-group SI, we compare the value of p predicted via Eq. (8) with 

Fourier analysis for two-group SI, using cross-sections obtained by selecting 1= 10-5 and 

u=lO--4. This leads to scattering cross-sections O"SII =6.l789xlO-I, 0"S!2 =3.82llxlO-I, 

O"S21=9.2747xlO-1 and O"s22=7.2534xlO-2, and total cross-sections 0"1=l.5454 and 

0"2 = 4.5468 x 1 0-1, in ern-I. Using these values in Eq. (8) leads to PSl2g = 0.99995 for this 

model problem. Fourier analysis on a four-triangle, lern x lern square with level-symmetric S4 
quadrature gives the same result. We have verified, as well, that the maximum eigenvalue is 
found at the Fourier wave numbers Ax = Ay = 0, namely, it is the flat error mode which is most 

slowly attenuated by multi-group SI. 

Fourier analysis for two-group SI was also compared with numerical results obtained from a 
multi-group FPS implementation in 2D Cartesian coordinates. Measured estimates for p obtained 
for the model problem on an I x J domain are compared with the Fourier analysis in Table I for 
a sequence of meshes of squares with sides of length dx = dy. Every Cartesian element in the 
mesh is subdivided into four triangular cells. The difference in the results presented in Table I is 
explained because the Fourier analysis is over an infinite medium whereas the actual spectrum 
incorporates the effect of particle leakage at the boundaries of the problem, for which vacuum 
boundary conditions were specified. As the mesh size is increased, for a given element width, the 
effect of leakage becomes less significant. Overall the spectral properties of mUlti-group SI 
appear to be similar to the well known spectral properties of one-group SI. 
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Table I. Theoretical and computed spectral radius of two-group SI 

dx=dy 10-1 IOu 10+1 10+2 10+3 10+4 10+5 10+6 

1x1 0.06336 0.41485 0.91905 0.99831 0.99993 0.99995 0.99995 0.99995 
2x2 0.11910 0.60015 0.97183 0.99954 0.99994 0.99995 0.99995 0.99995 
4x4 0.21469 0.77284 0.99186 0.99986 0.99995 0.99995 0.99995 0.99995 
8x8 0.35891 0.89521 0.99778 0.99992 0.99995 0.99995 0.99995 0.99995 

16x16 0.54046 0.96118 0.99939 0.99994 0.99995 0.99995 0.99995 0.99995 
32x32 0.72195 0.98798 0.99981 0.99995 0.99995 0.99995 0.99995 0.99995 
64x64 I 0.86236 0.99664 0.99991 0.99995 0.99995 0.99995 0.99995 0.99995 

Fourier . 0.99995 0.99995 0.99995 0.99995 0.99995 . 0.99995 0.99995 0.99995 

Table II compares Fourier analysis of two-group bGS to a numerical implementation for the 
same problem as in Table 1. Again, the results for multi-group bGS are similar to those for one 
group [I], that is, mUlti-group bGS is rapidly convergent in problems with optically thick cells, 
even for the highly scattering model problem, while convergence degrades for problems 
containing optically thin cells. This is the reverse of SI, which converges more quickly when 
cells are optically thin and more slowly when cells are thick. 

Table II. Theoretical and computed spectral radius of two-group bGS 

dx=dy 10-1 IOU 10+1 10+2 10+3 10+4 10+5 10+6 

1x1 0.02209 0.13220 0.52027 0.90705 0.96422 0.78241 0.22617 0.01563 
2x2 0.22834 0.49514 0.83448 0.97496 0.97528 0.84453 0.30419 0.01916 
4x4 0.54655 0.77117 0.94952 0.99128 0.97780 0.85753 0.32751 0.02111 
8x8 0.78134 0.91477 0.98602 0.99553 0.97889 0.86289 0.33598 0.02178 

16x16 0.90729 0.97268 0.99614 0.99660 0.97915 0.86437 0.33831 0.02197 
32x32 0.96410 0.99211 0.99879 0.99687 0.97918 0.86477 0.33891 0.02203 
64x64 0.98728 0.99785 0.99947 0.99694 0.97927 0.86487 0.33911 0.02204 

Fourier 0.99999 0.99997 0.99970 0.99696 0.97932 0.86487 0.33911 0.02204 

3. IMPLEMENTATION OF MULTI-GROUP bGS ON ROADRUNNER 

The LANL Roadrunner machine has a massively parallel, hybrid computing architecture 
separated into several layers of communication pathways and processor types. While this idea is 
not completely new, Roadrunner was the first supercomputer to break the Petaflop "barrier". The 
smallest logical building block is commonly referred to as a "TriBlade" which consists of an 
IBM LS21 blade connected to two QS22 blades using a special expansion card for the quad PCle 
8x interconnect; see Fig. I. Each of the cores in the LS21 two dual-core Opterons is connected to 
a Cell/B.E. CPU using a PCIe x8 bus. Each of the two QS22 blades has two IBM PowerXCell 8i 
Cell/B.E CPUs. Each PowerXCeli 8i CPU consists of a dual threaded 64-bit PowerPC core 
(Power Processing Element - PPE) connected to 8 Synergistic Processing Elements (SPE). The 
SPEs are designed for running compute-intensive applications but depend on the PPE to run the 
operating system. In tum, the PPE depends on the SPEs to provide the bulk of the compute 
power. 
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OS22 Compute Node - TriBlade 

LS21 

Figure 1. Compute node of Roadrunner hybrid architecture. 

Each TriBlade can either be configured as four MP! nodes consisting of one Opteron core 
connected to a PPE and eight SPEs or two MP! nodes consisting of two Opteron cores connected 
to a single PPE and sixteen SPEs. Overall each TriBlade has over 400 GFlops double-precision, 
8 GB Opteron memory, and 8 GB ofCeII/B.E. memory. 

The TriBlades can be clustered together using first-level infiniband (IB) switches into connected 
units (CU s), each of which has up to 180 TriBlades (or up to 720 MP! ranks). Redundant second 
level IB switches are used to connect the CUs together. Several machine configurations are 
available at LANL with double-precision computation rates of up to 1 Petaflop. 

3.1. Single-Threaded Hybrid Implementation of bGS 

The bGS-sweep can be executed on the cores on the Opteron blades, without taking advantage of 
the CelllB.E. processors. Numerical experiments shown later illustrate that the bGS algorithm is 
not viable in this case. This is because the times for the LU factorization and solution on which 
the algorithm is based increase cubically with the size of the linear system. For mUlti-group Sn 
transport, this means the algorithm can only be applied for a very small number of energy groups 
and Sn quadratures. The Cell/B.E. implementation of the LU decomposition in LAPACK [8], 
which exploits up to 16 SPEs, scales much better with the size of the linear system. A hybrid 
implementation of the bGS algorithm restores the viability of the method because of the lower 
computational cost of the LU factorizations for typical numbers of energy groups and Sn 
quadrature orders. 

The basic bGS-sweep is written in pseudo-code in Fig. 2. For a given mesh cell, the size N is 
computed, which is the product of the number of Sn angles, the spatial degrees of freedom on the 
mesh cell (three for DFEM on triangles,) and the number of coupled energy groups. The matrix 
A and right hand side b are constructed and a LU factorization and solution of matrix A 
computed. Finally, we store the cell angular fluxes in the global solution vector of angular fluxes 
before moving to the next cell. The rest of the Sn transport computations take place outside the 
bGS-sweep code. 
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Opteron 

-+ Compute N 

Build A 

Build b 

Factorize A 

Solve Ax=b 

- Store x in solution 

Figure 2. bGS computational kernel: traditional Opteron-only implementation. 

The most straightforward way to implement the above procedure on the Roadrunner architecture, 
and the one which requires the least modification of the original code, is to move the LU 
factorization, circled in Fig. 2, to the PPE as shown in Fig. 3. In this case, the Opteron still 
computes N and builds A and b. The Opteron signals the PPE that a linear system is ready to be 
solved at that point by writing N into the PPE mailbox. The mailbox is a communication 
mechanism whereby an unsigned integer can rapidly be transferred from the Opteron to the PPE. 
Since A and b can be large, the most efficient way for the Opteron to make them available to the 
PPE is to "share" memory for A and b with the PPE. This gives the PPE unidirectional access to 
the data so that the PPE then gets the data for A and b and proceeds with the LU factorization 
and solution via the CelllB.E. implementation of the LAPACK routines. 

Opteron 

Compute N 
Build A 

Build b 
Mailbox write N 

Mailbox read flag "'-~I--­
Store x in solution 

PPE 

Mailbox read N 
Get A and wait 
Get b and wait 
Factorize A 
Solve AX=b 
Put x and wait 
Mailbox write flag 

Figure 3. bGS computational kernel: single-threaded hybrid implementation. 

The PPE puts the solution into the Opteron memory space and sends a mailbox signal to the 
Opteron indicating that the solution for this computational cell is available for retrieval, at which 
point it is stored in the global solution vector of angular fluxes. 
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3.2. Dual-Threaded Hybrid Implementation of bGS 

The single-threaded hybrid implementation discussed in Sec. 3.1 is straightforward but it has a 
drawback, namely the Opteron is idle while the PPE is working, and vice versa. Computational 
efficiency of the bGS-sweep is improved by overlapping communication and computation using 
multithreading teclmiques [9], as shown in Fig. 4. 

Opteron Comp 
thread 

Compute N1 
BuildA1 
Build bl 

Opteron Comm 
thread 

---- AI and b l ready ----

PPE Comm 
thread 

Compute N2 Mailbox write Nl --t--., Mailbox read N1 
Build A2 Get Al and wait 

PPE Comp 
thread 

----AI ready ----

Get b l and wait Factorize A I J 
-----A2 ready ----bl ready ----

Mailbox write N2 -+-.......... Mailbox read N2 Solve A I Xl = b1 

Get A2 and wait 
---- XI ready ----
----A2 ready ----

Mailbox read flag .... +-....... -
----- Xl ready -----­
Store Xl in solution 
Build ~ 
----- b2 ready -----­

Mailbox write N2 ~~I--+" 
Swap 1 and 2 

Put Xl and wait 
Mailbox write flag 

Mailbox read N2 
Swap 1 and 2 

Figure 4. bGS computational kernel: dual-threaded hybrid implementation. 

Communication (Comm) and computation (Comp) threads take place simultaneously on both the 
Opteron and the PPE, using two buffers denoted with the I and 2 subscripts in Fig 4. A Comp 
thread on the Opteron starts by computing N1 and building A1 and b1. The Opteron Comm thread 
then writes N1 in the PPE mailbox, but the Comp thread is not idle; it starts computing N2 and 
building the next matrix A2 . Concurrently, the PPE Comm thread receives N1 and is ready to get 
A1. As soon as A1 is received, the PPE Comp thread performs a LU factorization . Once b1 is 
available, it computes the solution X1 . Meanwhile the PPE Comm thread receives N2 and then 
A2, and so on. Since b2 depends on X1 for bGS, the Opteron builds b2 after storing X1 and re-uses 
N2 to flag the PPE that b2 is ready. Overlapping of the threads takes place by swapping the 
buffers, illustrated by the loops in Fig. 4. Race conditions between threads are avoided using 
semaphores indicated by the "ready" labeled horizontal lines spanning the Comp and Comm 
threads. Appropriate conditions (not shown) ensure that the loops are exited once a bGS-sweep is 
completed. 
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3.3. Speedup of the Hybrid Implementation of bGS 

To validate the speedup provided by the single- and dual-threaded hybrid implementations of 
bGS, we used a 8x8 grid of squares, each of which is 1O+4em on a side, and was further 
subdivided into four triangular cells for every square - a total of 256 mesh cells. Scattering ratio 
e = 0.99, (J = 1em -I, a uniform fixed source of 1m -3S -I and vacuum boundary conditions were 
specified. Square Chebyshev-Legendre (SCL) quadratures vary from order n = 2 to n = 40, such 
that the linear systems sizes vary as N = 3n2

. 

Figure 5 shows the execution times for the GMRES(20) solution, to a relative convergence 
tolerance of 10-5 using different numbers of processors, Np = 4,8, 16, for the same problem. The 
Opteron-only implementation of bGS is labeled GSOP, while GSST and GSDT refer to the 
single- and dual-threaded hybrid implementations of bGS, respectively, using 16 SPEs for every 
process. 

10000 ..------------------:-. - --- ..... -------, 
• • • • • • • • • • 

1000 ~-----.=-~:~.~~.-------------~ 
• • • • • • • • • • • .. 

100 ~-~ .... -----~.~~_r-2.~~:--~;~~~~~~---~~~~ 
& .. !: : . : ... ,. 

• .!!!. ... . m ~ ! ~ ~ 
~ 10 ~~.~~.LTi ~Q~~~ 7.-y -~--------------~ 
.~ . - " 

';; It ~ 

~ ~ 6 ~ 
0: .. (;~ 
r.n A <;. 

'1 0.1 ~---------------------____1 

3 
t 0.01 ~---------------------____j 

0.001 +-------r-----,---------,----~---____j 

o 1000 2000 3000 4000 5000 

N 

Figure 5. Speedup of bGS on the hybrid architecture. 

. GSOPNp=4 

. GSOPNp=8 

• GSOP Np= 16 

. GSST Np = 4 

. GSST Np = 8 

. GSSTNp=16 

GSDT Np =4 

GSDT Np=8 

GSDTNp=16 

The dual-threaded, double-buffered version of bGS is almost twice as fast as single-threaded 
version because the communication and computation threads are completely overlapped. When 
N is less than about 300, the hybrid implementations are slower than the Opteron-only 
implementation, because of the overhead associated with moving data between the Opteron and 
the PPE. When the linear system size increases, the LU decomposition time on the Opteron-only 
implementation begins to dominate, while the hybrid solution times increase at a much slower 
rate, such that the hybrid implementations are up 100 times faster. 
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4. NUMERICAL RESULTS 

We now compare our bGS-sweep implementation to FPS for a more complex problem which 
comprises two square regions, an outer region 5m wide surrounding an inner region 2.5m wide. 
The outer region contains material 1 and the inner region material 2. Figure 6 shows the 
configurations that we used to construct four problems of increasing material heterogeneity. 
Because bGS performs well in optically thick problems, Mat 1 is chosen to be optically thick and 
characterized by a scattering ratio of 0.9999. The properties of Mat 2 are then varied in such a 
way that the convergence rate of GMRES for the FPS implementation is adversely affected . In 
the figures and tables that follow, the label Hom stands for a homogeneous problem while the 
label Het identifies the heterogeneous problems. The first digit in the homogeneous problems is 
used to denote the exponent in the total cross-section, while the first and second digits of the 
heterogeneous problems indicates the exponents in the cross-sections for the heterogeneous 
problems in Mat 1 and Mat 2, respectively. 

5 m ....-------------, 

Mat 1 

Mat2 

o 5m 

• Mat 1 (9=1): 0"1=1.0001e+6 m-l 

O"SI = 1.e+6 m-l 

• Mat 2 (9= 1): 

• Hom66: 0"2=0"1 

0"S2 = O"SI 

• Het66: 0"2 = 1.e+6 m-l 

O"S2= O.999ge+6 m-l 

• Het65: 0"2 = 1.e+5 m·l 

0" S2 = O.99ge+5 m-l 

• Het64: 0"2= 1.e+4 m-l 

O"S2 = O.9ge+4 m-l 

Figure 6. Two-region configuration. 

As long as the inner region is not too optically thin, we expect that the bGS convergence will be 
fairly insensitive to material discontinuities . The spatially discretized problem is solved on an 
unstructured triangular mesh, comprising 10454 mesh cells and we vary the number of energy 
groups used in each of the four problems: 1,2, 10, and 20. We use an S4 level symmetric angular 
quadrature, which has 12 discrete ordinates. Thus, the dimension oflinear systems increases with 
increasing number of groups . For the multi-group extensions of these four problems we construct 
the scattering and total cross-sections for a material as described in Sec. 2.2 in such a way as to 
ensure that the eigenvalue of maximum magnitude for the multi-group SI iteration is equal to the 
scattering ratio selected for the material in the one-grou~ cases. We assume vacuum boundary 
conditions and a fixed uniform source of strength 1 em - s -I , throughout both material regions. 
Solutions are computed using GMRES(50) to a relative convergence tolerance of 10-5

. 

4.1. Strong Scaling of bGS and FPS 

Strong scaling is measured by increasing the number of processors employed in the parallel 
computation, from 32 to 512 in powers of 2. The results of the strong scaling are reported in Fig. 
7, showing the solution times and number of iterations versus the number of processors, plotted 
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separately for each of the various number of energy groups. Solid markers connected with solid 
lines refer to the dual-threaded implementation of bGS (GSDT), and non-filled markers with 
dashed lines refer to the (Opteron-only) implementation of FPS (PSWP). 

For g = I, solution times with the bGS implementation are fairly constant for the four types of 
problems, while the FPS implementation solution times increase with increasing material 
heterogeneity. For a given problem and number of groups, the number of iterations for FPS is 
constant with respect to Np. The slight increase in the number of iterations for bGS, as Np is 
increased, is a consequence of the effect of processor interfaces on the spectral properties of bGS 

[1] because the terms involving L: on the parallel-decomposed mesh boundaries are always 

lagged. The bGS implementation also displays better scaling properties than the FPS 
implementation, for which the dependencies between processors result in a sweep schedule that 
scales poorly as Np becomes large [4,5]. This becomes evident on more than 256 processors. 

Similar results are observed for the g = 2 and g = 10 calculations. For g = 20, the bGS 
implementation slows down relative to the FPS implementation due to the increasing size of the 
linear systems for a larger numbers of groups. Even though the execution times are slower, the 
scaling of the bGS implementation is better than the FPS implementation because bGS requires 
fewer iterations compared to FPS. Even for a homogeneous configuration, convergence of the 
multi-group problems slows as a consequence of the eigenvalue distribution arising out of the 
randomly generated multi-group scattering operator; this effect is more pronounced for the FPS 
implementation than for the bGS implementation. 

4.2. Weak Scaling of bGS and FPS 

We compared weak scaling by considering the strong scaling unstructured triangular mesh, 
comprising 10454 cells, that was used for the initial number of processors, Np = 32. We 
generated a sequence of meshes such that the average number of cells per processor is roughly 
the same as for the initial mesh, that is, 326 mesh cells per processor. In other words, as the 
number of processors is increased for the fixed-sized problem domain, the mesh is increasingly 
refined and the spatial discretization becomes increasingly resolved. 

Results in Fig. 8 show that the bGS implementation on the hybrid architecture displays better 
weak scaling than the FPS implementation and can be competitive with FPS, once the number of 
processors becomes large enough. This is again due to scheduling dependencies among parallel 
sub-domains associated with the FPS implementation and to the resilience of the GMRES 
solution using the bGS splitting in the presence of material discontinuities. The increase in 
GMRES iterations for bGS is due to the triangles becoming progressively optically thinner as the 
meshes are refined and the fact that bGS spectral properties degrade as the cells become thinner. 

5. CONCLUSIONS 

We have implemented a multi-group dual-threaded, double-buffered version of the bGS-sweep 
on the Roadrunner hybrid computer architecture. When combined with the Cell/B.E. 
implementation of a LV decomposition and solution, we have shown that the bGS splitting is a 
viable solution algorithm, when solved with GMRES on the Opteron level of this architecture. 
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Figure 7. Strong scaling of bGS compared to FPS. 
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We observed that the bGS implementation outperfonned the traditional FPS implementation on 
large numbers of processors by virtue of superior strong and weak scaling. While bGS holds the 
potential of being an efficient algorithm for massively parallel transport calculations in the model 
problems we devised for our numerical experiments, further refinements to the algorithm 
involving energy-splitting strategies will be investigated in order to solve problems for 
applications with realistic data and large numbers of energy groups. 

The speed-up and scalings we observed, while impressive, are not sufficient to make bGS 
competitive with the FPS algorithms under all circumstances. Other hybrid architectures using 
even faster accelerators, such as those based on General Purpose Graphics Processing Units 
(GPGPUs) or Field-Programmable Gate Arrays (FPGAs,) hold the potential to further speed-up a 
LU factorization on which the bGS implementation is based. The overlapped dual-threaded 
approach to the bGS-sweep could be applied to other hybrid architectures. 
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