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ABSTRACT

We have implemented a cell-wise, block-Gauss-Seidel (bGS) iterative algorithm, for the solution
of the S, transport equations on the Roadrunner hybrid, parallel computer architecture. A compute
node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell
Broadband Engine™ (Cell/B.E.)". LAPACK routines have been ported to the Cell/B.E. in order to
make use of its parallel Synergistic Processing Elements (SPEs). The bGS algorithm is based on
the LU factorization and solution of a linear system that couples the fluxes for all S, angles and
energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the
higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the parallel
LAPACK routines are used to compute a solution, which is then transferred back to the Opteron,
where the rest of the computations for the S, transport problem take place. Compared to standard
parallel machines, a hundred-fold speedup of the bGS was observed on the hybrid Roadrunner
architecture. Numerical experiments with strong and weak parallel scaling demonstrate the bGS
method is viable and compares favorably to full parallel sweeps (FPS) on two-dimensional,
unstructured meshes when it is applied to optically thick, multi-material problems. As expected,
however, it is not as efficient as FPS in optically thin problems.

Key Words: neutral particle transport, hybrid parallel computer architecture.

1. INTRODUCTION

We recently analyzed the stability and convergence of the one-group, cell-wise block-Jacobi
(bBJ) and cell-wise block-Gauss-Seidel (bGS) algorithms for solving the S, transport equations
in two dimensions [l]. These iterative solution methods were specifically targeted for
implementation on the Roadrunner [2] class of hybrid parallel computers, several of which have
been assembled at Los Alamos National Laboratory (LANL) [3]. Fourier analysis indicates that
both algorithms are rapidly convergent in problems with optically thick mesh cells and bGS
approaches the asymptotic, thick-cell regime at convergence rates higher than bBJ.

We have implemented the bGS iteration on the Roadrunner machines at LANL with the
expectation that the combination of fast factorization algorithms available on the Cell/B.E. and
rapid convergence rate associated with the bGS algorithm will make the bGS iteration
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competitive with the full parallel transport sweeps (FPS) that is typically used in parallel S,
transport applications [4,5]. Specifically, we investigate the range of problems for which the bGS
algorithm is more efficient than FPS on unstructured meshes.

The remainder of the paper is organized as follows. In Sec. 2 we discuss how bGS is applied to
the multi-group S, equations. Single- and dual-threaded strategies for the numerical
implementation of multi-group bGS on Roadrunner are illustrated in Sec. 3. Numerical results
are discussed in Sec. 4. Finally, in Sec. 5 we present a summary of our main findings and
conclusions.

2. MULTI-GROUP CELL-WISE BLOCK-GAUSS-SEIDEL (bGS) ALGORITHM

2.1. Review of one-group formulation of bGS

The bGS algorithm for the steady-state, one-group, non-multiplying transport equation with
isotropic scattering is based on an operator splitting of

(L-SD)y =g, )

where L, S and D represent the “streaming plus total interaction” operator, the scattering
operator, and the “discrete-to-moment” operator (which represents integration over all S, angles,)
respectively; y is the angular flux and ¢ is the fixed source. The cell-wise bGS splitting of the L

operator is L= I+ L, , where L, acts on the angular fluxes within a mesh cell and L, acts on all

the angular fluxes whose directions are oriented such that they are incoming relative to the faces
of neighboring mesh cells [1]. Within this splitting, Eq. (1) is written in the form

*

[1+(L‘;-SD)"LJW=(L:—SD)“‘q, )

where 7 is the identity operator. This corresponds to a linear system for all S, angles and all
spatial degrees of freedom (we use a Discontinuous Finite Element Method (DFEM) on triangles
[6].) Equation (2) is solved iteratively with restarted Generalized Minimum Residual (GMRES)

. . . * = . .
such that, for each iteration, the action of the (LC —SD) operator is computed using a LU

decomposition for any mesh cell on a parallel sub-domain. Specifically, all angular fluxes for all
the spatial degrees of freedom on a given mesh cell are computed simultaneously, one mesh cell
at a time. The ordering in which this “bGS-sweep” takes place depends only on the numbering of
the mesh. The distinction between the bBJ and bGS algorithms is that for bGS the most recently

computed angular fluxes are used when the term involving L, is constructed for a given mesh
cell, while for bBJ this term uses angular fluxes that are “lagged” from the previous iteration [1].
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2.2. Multi-group formulation of bGS

We consider the steady-state, multi-group transport problem using two energy groups to illustrate
the concepts presented during this discussion. Later, results with more groups will be presented.
The two-group homogeneous transport problem is, in operator notation,

{Q'VWI toy, =04,0, +05,P, 3)

Q-Vy, + 0oy, =05 P +05,P,

The terms on the left side in Eq. (3) are the “streaming plus total interaction” operators for each
group and the scalar fluxes on the right side of Eq. (3) are the integral of the group angular fluxes
over all angles, performed via the “discrete-to-moment” operator for each group. The oy, cross-

sections represent isotropic scattering from group ; into group i.

The coupled system in Eq. (3) is often solved with source iteration (SI) which is written for
iteration ¢ as

£+ = £
‘//1( i :|:Ll 0} {0511 0—512}{1) 0} ‘//1() ()
y/gm) 0 L] [6sn Os»][0 D l//y)
On a parallel computer, it is the block inverses on the right side of Eq. (4) that are computed with
FPS. The FPS forms the bulk of the computational effort in a S, transport calculation. Efficiency

of the FPS degrades as the number of processors increases. Note that this version of SI does not
use nested, within-group iterations typically used in transport codes.

The two-group bGS algorithm employs the same spatial splitting of the group “streaming plus
total interaction” operators, as described in Sec. 2.1, for each of the two groups. In this case, at
iteration /, the bGS algorithm is:

I+ * -1 * ¢
V/l(‘ ! - |:Lcl 0 :l_{onsn 05,2}{D 0} {Lm 0 J ‘//1(/) (5)

t//ﬁ“‘) 0 L, Osn Ospn |0 D 0 L, l//gt)
Again, the bGS variation on bBJ uses a mix of updated fluxes y/(é”) and lagged fluxes w(")

operated on by the L, operators, which depends on the numbering of the mesh cells. The
combination of operations on the right side of Eq. (5) is the bGS-sweep.

The convergence rate of SI is the spectral radius of the matrix on the right side of Eq. (4). Fourier
analysis indicates that the flat error mode is the dominant eigenvalue. Because that error mode is
constant in space, particle streaming can be ignored and we can compute the spectral radius of
the iteration matrix on the right side of
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+ -1 ¢
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to investigate the asymptotic convergence rate of SI. That is, if we let

T, :(Zr)_l T, :[0_1 0 } {O-sn 0_512} 7

0 o, Os21 Osxn

the two-group spectral radius is

Psizg = maX|Eig(Tsng )‘ (8)

The scattering cross-sections in Eq. (7) must satisfy the inequalities:

O, +0,, S0
{ Sl 521 1 (9)

O, + 05y S0,

If equality holds in Eq. (9), then the spectral radius of the Tg,,, matrix is exactly equal to I,
regardless of the numerical values of the cross-sections. This result applies for any number of

energy groups. For example, we devise a problem for which p for two-group SI is 0.9999 by
enforcing the constraint:

g1, + 0y =0.99990,
= gz, =0.9999. (10)

Cga + 0y =0.99990,

In this case, source iteration would converge slowly.

On the other hand, the convergence of GMRES depends on the shape of the eigenvalue spectrum
and not just the size of the dominant eigenvalue [7]. Random scattering matrices can be used to
generate an iteration matrix whose spectrum is widely distributed in the complex plane, with
eigenvalues that are small relative to the size of the spectrum, a situation in which GMRES
would converge slowly. Therefore, we will devise problems for which both SI and GMRES
converge slowly by generating a dense, random, scattering matrix and compute the total cross-
sections from the constraints that fix p~ 1.

We begin constructing such a multi-group problem with G energy groups by creating a random
G x G matrix R, with entries 7, in the range [0,1], and re-normalize the elements on each row
of matrix R so that their sum equals 1. We then use the re-nomarlized matrix elements to
construct the scattering cross-section matrix
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v,
=—%—, g.2'=l..,G. (11)
ngg' |

=1

O—Sgg'

g

Note that re-normalization is not strictly necessary to obtain a desired p for multi-group SI. We
do so only to ensure the total cross-sections obtained in each group are not far from unity. If we
take the total cross-sections to be proportional to the sums of the entries on the columns of the
scattering matrix

G
o, =(1+a, )Y 05 g'=1..G, (12)

&=l

then coefficients a, are obtained as follows:
ag,:l+(u—/)rg., g'=1.,G, (13)

where rg- is a random value on [0,1], such that the a coefficients have random values on [/u].
For example, by selecting /=107 and =107, we obtain p for multi-group SI comprised
between 0.9999 and 0.99999. If / =u =107", then p is exactly equal to 0.9999. Physically, this
means that each « coefficient introduces a small neutron absorption in its corresponding energy

group.

To verify this procedure for multi-group SI, we compare the value of p predicted via Eq. (8) with
Fourier analysis for two-group SI, using cross-sections obtained by selecting /=10 and
u=10". This leads to scattering cross-sections o, =6.1789x10™", o, =3.8211x107",

O¢y =9.2747x107 and o, =7.2534x107°, and total cross-sections o, =1.5454 and
0, =4.5468x107", in c¢m™'. Using these values in Eq. (8) leads to pg,, =0.99995 for this

model problem. Fourier analysis on a four-triangle, lem x lem square with level-symmetric Sy
quadrature gives the same result. We have verified, as well, that the maximum eigenvalue is
found at the Fourier wave numbers A4, = A,=0, namely, it is the flat error mode which is most

slowly attenuated by multi-group SI.

Fourier analysis for two-group SI was also compared with numerical results obtained from a
multi-group FPS implementation in 2D Cartesian coordinates. Measured estimates for p obtained
for the model problem on an 7/ x J domain are compared with the Fourier analysis in Table I for
a sequence of meshes of squares with sides of length dx =dy. Every Cartesian element in the
mesh is subdivided into four triangular cells. The difference in the results presented in Table I is
explained because the Fourier analysis is over an infinite medium whereas the actual spectrum
incorporates the effect of particle leakage at the boundaries of the problem, for which vacuum
boundary conditions were specified. As the mesh size is increased, for a given element width, the
effect of leakage becomes less significant. Overall the spectral properties of multi-group SI
appear to be similar to the well known spectral properties of one-group SI.

2011 International Conference on Mathematics and Computational Methods Applied to 5/15
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Table I. Theoretical and computed spectral radius of two-group SI

dx=dy | 10 10’ 10" 10" 10" 10™ 10" 10*°
1x1 ] 0.06336 | 0.41485 | 0.91905 | 0.99831 | 0.99993 | 0.99995 | 0.99995 | 0.99995
2x2 | 0.11910 | 0.60015 | 0.97183 | 0.99954 | 0.99994 | 0.99995 | 0.99995 | 0.99995
4x4 | 0.21469 | 0.77284 [ 0.99186 | 0.99986 | 0.99995 | 0.99995 | 0.99995 | 0.99995
8x8 | 0.35891 | 0.89521 | 0.99778 | 0.99992 | 0.99995 | 0.99995 | 0.99995 | 0.99995
16x16 | 0.54046 | 0.96118 | 0.99939 | 0.99994 | 0.99995 | 0.99995 | 0.99995 | 0.99995
32x32 | 0.72195 | 0.98798 | 0.99981 | 0.99995 | 0.99995 | 0.99995 | 0.99995 [ 0.99995
64x64 | 0.86236 | 0.99664 | 0.99991 | 0.99995 | 0.99995 | 0.99995 | 0.99995 [ 0.99995
Fourier | 0.99995 | 0.99995 | 0.99995 | 0.99995 | 0.99995 | 0.99995 | 0.99995 | 0.99995

Table II compares Fourier analysis of two-group bGS to a numerical implementation for the
same problem as in Table I. Again, the results for multi-group bGS are similar to those for one
group [1], that is, multi-group bGS is rapidly convergent in problems with optically thick cells,
even for the highly scattering model problem, while convergence degrades for problems
containing optically thin cells. This is the reverse of SI, which converges more quickly when

cells are optically thin and more slowly when cells are thick.

Table II. Theoretical and computed spectral radius of two-group bGS

dx=dy| 10" 10° 10" 10" 10" 10™ 10" 10*°
1x1 | 0.02209 | 0.13220 | 0.52027 | 0.90705 | 0.96422 | 0.78241 [ 0.22617 [ 0.01563
2x2 | 0.22834 | 0.49514 | 0.83448 | 0.97496 | 0.97528 | 0.84453 | 0.30419 | 0.01916
4x4 ] 0.54655 [ 0.77117 | 0.94952 | 0.99128 | 0.97780 | 0.85753 | 0.32751 | 0.02111
8x8 | 0.78134 | 0.91477 | 0.98602 | 0.99553 | 0.97889 | 0.86289 | 0.33598 | 0.02178
16x16 | 0.90729 | 0.97268 | 0.99614 | 0.99660 | 0.97915 | 0.86437 | 0.33831 | 0.02197
32x32 | 0.96410 | 0.99211 | 0.99879 | 0.99687 | 0.97918 | 0.86477 | 0.33891 | 0.02203
64x64 | 0.98728 | 0.99785 [ 0.99947 | 0.99694 | 0.97927 | 0.86487 | 0.33911 | 0.02204
Fourier | 0.99999 | 0.99997 | 0.99970 | 0.99696 | 0.97932 | 0.86487 | 0.33911 | 0.02204

3. IMPLEMENTATION OF MULTI-GROUP bGS ON ROADRUNNER

The LANL Roadrunner machine has a massively parallel, hybrid computing architecture
separated into several layers of communication pathways and processor types. While this idea is
not completely new, Roadrunner was the first supercomputer to break the Petaflop “barrier”. The
smallest logical building block is commonly referred to as a “TriBlade” which consists of an
IBM LS21 blade connected to two QS22 blades using a special expansion card for the quad PCle
8x interconnect; see Fig. 1. Each of the cores in the LS21 two dual-core Opterons is connected to
a Cell/B.E. CPU using a PCle x8 bus. Each of the two QS22 blades has two IBM PowerXCell 8i
Cell/B.E CPUs. Each PowerXCell 8 CPU consists of a dual threaded 64-bit PowerPC core
(Power Processing Element - PPE) connected to 8 Synergistic Processing Elements (SPE). The
SPEs are designed for running compute-intensive applications but depend on the PPE to run the
operating system. In turn, the PPE depends on the SPEs to provide the bulk of the compute
power.

2011 International Conference on Mathematics and Computational Methods Applied to 6/15
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Compute Node - TriBlade

IB 4x [IB 4x

P el

/ LS21 expansion

Figure 1. Compute node of Roadrunner hybrid architecture.

Each TriBlade can either be configured as four MPI nodes consisting of one Opteron core
connected to a PPE and eight SPEs or two MPI nodes consisting of two Opteron cores connected
to a single PPE and sixteen SPEs. Overall each TriBlade has over 400 GFlops double-precision,
8 GB Opteron memory, and 8 GB of Cell/B.E. memory.

The TriBlades can be clustered together using first-level infiniband (IB) switches into connected
units (CUs), each of which has up to 180 TriBlades (or up to 720 MPI ranks). Redundant second
level IB switches are used to connect the CUs together. Several machine configurations are
available at LANL with double-precision computation rates of up to 1 Petaflop.

3.1. Single-Threaded Hybrid Implementation of bGS

The bGS-sweep can be executed on the cores on the Opteron blades, without taking advantage of
the Cell/B.E. processors. Numerical experiments shown later illustrate that the bGS algorithm is
not viable in this case. This is because the times for the LU factorization and solution on which
the algorithm is based increase cubically with the size of the linear system. For multi-group S,
transport, this means the algorithm can only be applied for a very small number of energy groups
and S, quadratures. The Cell/B.E. implementation of the LU decomposition in LAPACK [8],
which exploits up to 16 SPEs, scales much better with the size of the linear system. A hybrid
implementation of the bGS algorithm restores the viability of the method because of the lower
computational cost of the LU factorizations for typical numbers of energy groups and S,
quadrature orders.

The basic bGS-sweep is written in pseudo-code in Fig. 2. For a given mesh cell, the size N is
computed, which is the product of the number of S, angles, the spatial degrees of freedom on the
mesh cell (three for DFEM on triangles,) and the number of coupled energy groups. The matrix
A and right hand side b are constructed and a LU factorization and solution of matrix A
computed. Finally, we store the cell angular fluxes in the global solution vector of angular fluxes
before moving to the next cell. The rest of the S, transport computations take place outside the
bGS-sweep code.

2011 International Conference on Mathematics and Computational Methods Applied to 7/15
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Opteron
— Compute N

Build A
Build b
Factorize A
Solve Ax=b

L Store x in solution

Figure 2. bGS computational kernel: traditional Opteron-only implementation.

The most straightforward way to implement the above procedure on the Roadrunner architecture,
and the one which requires the least modification of the original code, 1s to move the LU
factorization, circled in Fig. 2, to the PPE as shown in Fig. 3. In this case, the Opteron still
computes N and builds A and b. The Opteron signals the PPE that a linear system is ready to be
solved at that point by writing N into the PPE mailbox. The mailbox is a communication
mechanism whereby an unsigned integer can rapidly be transferred from the Opteron to the PPE.
Since A and b can be large, the most efficient way for the Opteron to make them available to the
PPE is to “share” memory for A and b with the PPE. This gives the PPE unidirectional access to
the data so that the PPE then gets the data for A and b and proceeds with the LU factorization
and solution via the Cell/B.E. implementation of the LAPACK routines.

Opteron PPE
—> Compute N |

Build A |

Build b |

Mailbox write N R T Mailbox read N  <—
I Get A and wait
| Get b and wait
| Factorize A
I Solve Ax=b
I Put x and wait

Mailbox read flag o Mailbox write flag —

— Store x in solution

Figure 3. bGS computational kernel: single-threaded hybrid implementation.

The PPE puts the solution into the Opteron memory space and sends a mailbox signal to the
Opteron indicating that the solution for this computational cell is available for retrieval, at which
point it is stored in the global solution vector of angular fluxes.
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3.2. Dual-Threaded Hybrid Implementation of bGS

The single-threaded hybrid implementation discussed in Sec. 3.1 is straightforward but it has a
drawback, namely the Opteron is idle while the PPE is working, and vice versa. Computational
efficiency of the bGS-sweep is improved by overlapping communication and computation using
multithreading techniques [9], as shown in Fig. 4.

Opteron Comp Opteron Comm PPE Comm PPE Comp
thread thread thread thread
Compute N, I
Build A;
Build by |
———— A, and b; ready —
—» Compute N, Mailbox write N; —l—P Mailbox read N,
Build A; Get A, and wait

A, ready
—» Get by and wait Factorize A
by ready —————
=» Mailbox read N, Solve A x;=by
Get A; and wait
X, ready
A, ready

I
1
I
| PR
l Put x; and wait
I
|
T
1

A, ready —————————— 4=
Mailbox write N,

Mailbox read flag < Mailbox write flag
— .y reagy ———————
Store x4 in solution
Build b,

b, ready

» Mailbox read N,
—— Swap 1 and 2

Mailbox write N,

—— Swap 1and 2

Figure 4. bGS computational kernel: dual-threaded hybrid implementation.

Communication (Comm) and computation (Comp) threads take place simultaneously on both the
Opteron and the PPE, using two buffers denoted with the 1 and 2 subscripts in Fig 4. A Comp
thread on the Opteron starts by computing N1 and building A; and b4. The Opteron Comm thread
then writes N1 in the PPE mailbox, but the Comp thread is not idle; it starts computing N, and
building the next matrix Az. Concurrently, the PPE Comm thread receives N1 and is ready to get
A1. As soon as A; is received, the PPE Comp thread performs a LU factorization. Once by is
available, it computes the solution x1. Meanwhile the PPE Comm thread receives N, and then
Az, and so on. Since b, depends on x4 for bGS, the Opteron builds by after storing x4 and re-uses
N> to flag the PPE that b, is ready. Overlapping of the threads takes place by swapping the
buffers, illustrated by the loops in Fig. 4. Race conditions between threads are avoided using
semaphores indicated by the “ready” labeled horizontal lines spanning the Comp and Comm
threads. Appropriate conditions (not shown) ensure that the loops are exited once a bGS-sweep is
completed.
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3.3. Speedup of the Hybrid Implementation of bGS

To validate the speedup provided by the single- and dual- threaded hybrid implementations of
bGS, we used a 8x8 grid of squares, each of which is 10™em on a side, and was further
subdivided into four triangular cells for every square a total of 256 mesh cells. Scattering ratio
c=099, ¢ =1cm ', a uniform fixed source of 1m s~ and vacuum boundary conditions were
specified. Square Chebyshev Legendre (SCL) quadratures vary from order n =2 to n = 40, such
that the linear systems sizes vary as N = 3’

Figure 5 shows the execution times for the GMRES(20) solution, to a relative convergence
tolerance of 107 using different numbers of processors, Np = 4, 8, 16, for the same problem. The
Opteron-only implementation of bGS is labeled GSOP, while GSST and GSDT refer to the
single- and dual-threaded hybrid implementations of bGS, respectively, using 16 SPEs for every
process.

10000 = % +
m Y ¢
= Ly
| | 2 4
A -
@ & *
1000 T,
& . - #GSOPNp=4
" ; £l ~ . - GSOPNp=8
& [ | i A o A p=
100 i — =g 4 ry Y
.= = [ ] A i & ¢ GSOPNp=16
- o
» A B -
= 10 Amc i 2 mGSST Np=4
£ A
= 'R AGSST Np=8
'g =A"
5 118 ©GSST Np=16
n 4%
GSDT Np=4
-
»
0.1
N GSDT Np=8
d
o GSDT Np=16
001 £
3
0.001 . ¢ , .
0 1000 2000 3000 4000 5000

N

Figure 5. Speedup of bGS on the hybrid architecture.

The dual-threaded, double-buffered version of bGS is almost twice as fast as single-threaded
version because the communication and computation threads are completely overlapped. When
N is less than about 300, the hybrid implementations are slower than the Opteron-only
implementation, because of the overhead associated with moving data between the Opteron and
the PPE. When the linear system size increases, the LU decomposition time on the Opteron-only
implementation begins to dominate, while the hybrid solution times increase at a much slower
rate, such that the hybrid implementations are up 100 times faster.
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4. NUMERICAL RESULTS

We now compare our bGS-sweep implementation to FPS for a more complex problem which
comprises two square regions, an outer region 5m wide surrounding an inner region 2.5m wide.
The outer region contains material 1 and the inner region material 2. Figure 6 shows the
configurations that we used to construct four problems of increasing material heterogeneity.
Because bGS performs well in optically thick problems, Mat 1 is chosen to be optically thick and
characterized by a scattering ratio of 0.9999. The properties of Mat 2 are then varied in such a
way that the convergence rate of GMRES for the FPS implementation is adversely affected. In
the figures and tables that follow, the label Hom stands for a homogeneous problem while the
label Het identifies the heterogeneous problems. The first digit in the homogeneous problems is
used to denote the exponent in the total cross-section, while the first and second digits of the
heterogeneous problems indicates the exponents in the cross-sections for the heterogeneous
problems in Mat 1 and Mat 2, respectively.

5m =Mat1(g=1): 5,=1.0001e+6 m™*
Mat 1 o5 = 1.e+t6 m'!
=Mat 2 (g=1):
* Hom66: o,=0,
O5,=0
Mat 2 oo

*Het66: o©,=1.e+6 m"
Os,=0.9999e+6 m""

*Het65: o©,=1.e+5m!
05,=0.999e+5 m-!

*Het64: o©,=1.e+4 m™

0 5m C5,=0.99e+4 m-!

Figure 6. Two-region configuration.

As long as the inner region is not too optically thin, we expect that the bGS convergence will be
fairly insensitive to material discontinuities. The spatially discretized problem is solved on an
unstructured triangular mesh, comprising 10454 mesh cells and we vary the number of energy
groups used in each of the four problems: 1, 2, 10, and 20. We use an S, level symmetric angular
quadrature, which has 12 discrete ordinates. Thus, the dimension of linear systems increases with
increasing number of groups. For the multi-group extensions of these four problems we construct
the scattering and total cross-sections for a material as described in Sec. 2.2 in such a way as to
ensure that the eigenvalue of maximum magnitude for the multi-group SI iteration is equal to the
scattering ratio selected for the material in the one-groug; cases. We assume vacuum boundary
conditions and a fixed uniform source of strength lcm s ™', throughout both material regions.
Solutions are computed using GMRES(50) to a relative convergence tolerance of 107°.

4.1. Strong Scaling of bGS and FPS

Strong scaling is measured by increasing the number of processors employed in the parallel
computation, from 32 to 512 in powers of 2. The results of the strong scaling are reported in Fig.
7, showing the solution times and number of iterations versus the number of processors, plotted
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separately for each of the various number of energy groups. Solid markers connected with solid
lines refer to the dual-threaded implementation of bGS (GSDT), and non-filled markers with
dashed lines refer to the (Opteron-only) implementation of FPS (PSWP).

For g=1, solution times with the bGS implementation are fairly constant for the four types of
problems, while the FPS implementation solution times increase with increasing material
heterogeneity. For a given problem and number of groups, the number of iterations for FPS is
constant with respect to Np. The slight increase in the number of iterations for bGS, as Np is
increased, is a consequence of the effect of processor interfaces on the spectral properties of bGS

[1] because the terms involving L, on the parallel-decomposed mesh boundaries are always

lagged. The bGS implementation also displays better scaling properties than the FPS
implementation, for which the dependencies between processors result in a sweep schedule that
scales poorly as Np becomes large [4,5]. This becomes evident on more than 256 processors.

Similar results are observed for the g =2 and g = 10 calculations. For g = 20, the bGS
implementation slows down relative to the FPS implementation due to the increasing size of the
linear systems for a larger numbers of groups. Even though the execution times are slower, the
scaling of the bGS implementation is better than the FPS implementation because bGS requires
fewer iterations compared to FPS. Even for a homogeneous configuration, convergence of the
multi-group problems slows as a consequence of the eigenvalue distribution arising out of the
randomly generated multi-group scattering operator; this effect is more pronounced for the FPS
implementation than for the bGS implementation.

4.2. Weak Scaling of bGS and FPS

We compared weak scaling by considering the strong scaling unstructured triangular mesh,
comprising 10454 cells, that was used for the initial number of processors, Np = 32. We
generated a sequence of meshes such that the average number of cells per processor is roughly
the same as for the initial mesh, that is, 326 mesh cells per processor. In other words, as the
number of processors is increased for the fixed-sized problem domain, the mesh is increasingly
refined and the spatial discretization becomes increasingly resolved.

Results in Fig. 8 show that the bGS implementation on the hybrid architecture displays better
weak scaling than the FPS implementation and can be competitive with FPS, once the number of
processors becomes large enough. This is again due to scheduling dependencies among parallel
sub-domains associated with the FPS implementation and to the resilience of the GMRES
solution using the bGS splitting in the presence of material discontinuities. The increase in
GMRES iterations for bGS is due to the triangles becoming progressively optically thinner as the
meshes are refined and the fact that bGS spectral properties degrade as the cells become thinner.

S. CONCLUSIONS

We have implemented a multi-group dual-threaded, double-buffered version of the bGS-sweep
on the Roadrunner hybrid computer architecture. When combined with the Cell/B.E.
implementation of a LU decomposition and solution, we have shown that the bGS splitting is a
viable solution algorithm, when solved with GMRES on the Opteron level of this architecture.
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Figure 7. Strong scaling of bGS compared to FPS.
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Figure 8. Weak scaling of bGS compared to FPS.
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We observed that the bGS implementation outperformed the traditional FPS implementation on
large numbers of processors by virtue of superior strong and weak scaling. While bGS holds the
potential of being an efficient algorithm for massively parallel transport calculations in the model
problems we devised for our numerical experiments, further refinements to the algorithm
involving energy-splitting strategies will be investigated in order to solve problems for
applications with realistic data and large numbers of energy groups.

The speed-up and scalings we observed, while impressive, are not sufficient to make bGS
competitive with the FPS algorithms under all circumstances. Other hybrid architectures using
even faster accelerators, such as those based on General Purpose Graphics Processing Units
(GPGPUs) or Field-Programmable Gate Arrays (FPGAs,) hold the potential to further speed-up a
LU factorization on which the bGS implementation is based. The overlapped dual-threaded
approach to the bGS-sweep could be applied to other hybrid architectures.
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