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ABSTRACT 
 

Results and analysis pertaining to the simulation of the Guderley converging shock wave test 
problem (and associated code verification hydrodynamics test problems involving converging 
shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-
dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are 
utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh 
refinement capability. For the 2D simulations, a ‘Surrogate Guderley’ test problem is developed 
and used to obviate subtleties inherent to the true Guderley solution’s initialization on a square 
grid, while still maintaining a high degree of fidelity to the original problem, and minimally 
straining the general credibility of associated analysis and conclusions. 
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I. INTRODUCTION AND PREVIOUS RESULTS 

An effort to simulate the Guderley converging shock wave problem (a member of the enhanced 
Tri-Lab Test Suite or eTLTS1) in one or more LANL ASC codes has been ongoing since 2006.2-4 
To date, this effort has culminated in a modern canonical definition of the Guderley test 
problem5, and contributions to the Eulerian Applications Project (EAP) including a code 
verification/spatial convergence rate study using the xRAGE compressible flow solver6, an 
implementation of the Guderley problem in the EAP test suite, and the construction of a more 
comprehensive set of preliminary results7,8. 
.  
The Guderley test problem itself is based on the self-similar implosion model first investigated 
by Guderley8 (and independently by Sedov and Stanyukovich9), and examined in detail by many 
others, including Lazarus10 and Ramsey3. In this problem, an infinitely strong shock wave of 
indeterminate origin converges in one-dimensional (1D) cylindrical or spherical symmetry 
through a polytropic, quiescent, negligible-pressure/specific internal energy (SIE) gas with 
arbitrary adiabatic index γ and uniform density ρ0. The shock proceeds to focus on the point or 
axis of symmetry at r = 0 (resulting in ostensibly infinite pressure, velocity, etc.) and reflect back 
out into the incoming perturbed gas. 
 
Many authors (e.g., Caramana and Whalen11) have investigated versions of the Guderley 
problem in the context of code verification. A recent effort – possibly the first to include a formal 
spatial convergence analysis of a compressible flow solver using the Guderley problem – was 
made by Ramsey, et al.6, using the xRAGE code and 1D spherical symmetry. First order L1-norm 
spatial convergence was observed for both the converging and diverging phases of the problem. 
 
The current study is concerned with simulations of the spherically-symmetric Guderley problem, 
especially on 2D axi-symmetric, square grids with and without adaptive mesh refinement (AMR) 
capability enabled. To this end, in Sec. II a Guderley-like test problem is introduced to facilitate 
initialization in LANL ASC codes. Various 1D results are presented and analyzed In Sec. III, and 
various 2D results are presented and analyzed in Sec. IV. A summary and recommendations for 
further study are presented in Sec. V; extensive additional content appears in Appendices A-E. 
 
 
II. DEFINITION OF THE SURROGATE GUDERLEY PROBLEM 
 
The principal concern of this study – the simulation of the spherical Guderley problem on an 
Eulerian, 2D axi-symmetric, square grid – may present an initialization-related subtlety in 
addition to those encountered for the Guderley problem on uniform 1D grids. 
 
Since the spherical Guderley velocity field is spherically symmetric, its initialization in a 2D axi-
symmetric square grid may, depending on code input archetype, require velocity (v) 
decomposition and input according to 
 
 v௥ = vோ cos ߠ ,  
 v௭ = vோ sin ߠ , (1)
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where θ denotes the angle between the velocity vector and the cylindrical radial axis, R denotes 
the spherical radial coordinate, r denotes the cylindrical radial coordinate, and z denotes the 
cylindrical z-coordinate, such that 
 
 ܴଶ = ඥݎଶ + ଶݖ . (2)

 
In these cases, where velocity vector initialization is required (as is the case in xRAGE), cell-
averaged values corresponding to Eq. (1) must be specified for each computational zone, in 
addition to remaining consistent cell-averaged flow quantities (e.g., density and SIE). The 
modification of an existing Guderley exact solution code to provide data of this type represents 
an ongoing but currently incomplete task. 
 
In parallel with the code development effort, a new, Guderley-like test problem has been 
developed to circumvent velocity vector initialization. This ‘Surrogate Guderley Problem’ (SGP) 
consists of two concentric spherical regions in a γ = 1.4 gas, is essentially a two-region ‘spherical 
shock tube’ (or a ‘spherical driven implosion,’ as noted by Whalen12), and is defined in Table I. 
 
Parameter Inner spherical region Outer spherical region 
Inner radius 0.0 4.0 
Outer radius 4.0 10.0 
Initial density 1.0 6.0 
Initial specific internal energy (SIE) 1.0e-10 0.06 
Initial velocity 0.0 0.0 

Table I: Surrogate Guderley problem (SGP) definition. The SGP may be defined using these parameters in 
any consistent set of units (e.g., cgs, ‘HE’). 

 
The configuration described in Table I does not result in any known closed-form mathematical 
solution to the Euler equations, but like the Guderley problem it ultimately results in the 
formation of a strong converging shock wave that reflects about the spherical origin. While the 
converging and reflected shocks are in the vicinity of the origin, the SGP is expected to limit – at 
least in a qualitative sense – to the true Guderley solution. 
 
The SGP is intended to be significantly easier to initialize in compressible flow codes than its 
conventional counterpart (e.g., on grids not aligned with the Guderley initial velocity vector), 
and despite the fact that it represents a calculation verification test problem, it is expected to 
capture the general flow behavior exhibited by the Guderley problem.  
 
 
II.A. Guderley/Surrogate Guderley Problem Comparison 
 
An effective method for comparing 1D spherical Guderley and SGP simulation results is to plot 
the converging and reflected shock positions as a function of time for both problems. The 
Guderley solution for this trajectory [RS(t)] is given by 
 
 ܴௌሺݐሻ = ൜ ݇ሺݐ଴ − ሻఈݐ , ݐ ≤ ݐ଴ܾ݇ሺݐ − ଴ሻఈݐ , ݐ > ଴ (3)ݐ
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 Stop time = 20.0 s 
 Boundary condition at r = 10 cm: code default (reflective BC13) 
 Initial uniform grid spacing (for calculation verification analysis):  

o dr = 0.02 cm (coarse)  
o dr = 0.01 cm (medium)  
o dr = 0.005 cm (fine)  
o dr = 0.005/29 cm = 9.765625 x 10-6 cm (benchmark) 

In each case, the choice of initial grid spacing places the material interface at a zone boundary. 

 
III.A. Uniform Grid 
 
The results of four simulations performed using the above settings (and the four choices of grid 
spacing dr) are shown in Figs. 3a (an example of convergent flow) and 3b (an example of 
divergent flow); additional results are provided in Appendix A. 
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FFigure 3a: 1D spherical SGPP results at t == 13 s (convergging flow). 
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In Figs. 3a and 3b, the point-wise ‘error’ for each flow variable is calculated according to 
 
 Δ ௗ݂௥ሺݎ, ሻݐ = | ୰݂ୣ୤ሺݎ, ሻݐ − ௗ݂௥ሺݎ, |ሻݐ , (5)
 
where  f(r,t) denotes a flow variable (i.e., density, SIE, pressure, or velocity) centered at r and 
cell-averaged over the corresponding grid element, the ‘ref’ subscript denotes the reference 
solution, and the ‘dr’ subscript denotes the a solution calculated using the grid spacing dr. 
 
Figures 3a and 3b show that all SGP flow variables appear to converge in a global sense to the 
reference solution as the grid spacing is refined; the quantitative behavior of this convergence 
will be assessed in Sec. III.C. Furthermore, localized quantities (e.g., shock location, behavior as 
r → 0 for diverging flow) also appear to converge to the reference solution. 
 
 
III.B. Adaptive Mesh Refinement 
 
To enable the xRAGE AMR capability, additional settings beyond those prescribed at the 
beginning of Sec. III must be employed. In all 1D spherical simulations, the following code 
options pertaining to AMR were used, but are not necessary unique: 

 A maximum of 10 refinement levels are allowed 
 pctdiv = 0.001: this setting specifies the percentage change in a zone’s maximum 

pressure required to subdivide that zone. If the estimated increase in pressure of a zone is 
greater than pctdiv multiplied by the maximum pressure that has occurred in that zone 
during the simulation, the zone is marked for refinement. 

As was the case in Sec. III.A., the results of three simulations performed using the above settings 
(and the coarse/medium/fine initial grid spacings) are shown in Figs. 4a and 4b for the same 
times used in Figs. 3a and 3b; additional results are provided in Appendix A. 
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III.C. Simulation Comparison Metrics 
 
Several quantities are available for the quantitative assessment of SGP calculations with respect 
to the benchmark solution. One such metric is the time-behavior of the global L1 error norm for 
each flow variable f, given approximately by 
 
ଵሺܮ  ௗ݂௥ሻ ≈ ∑ | ୰݂ୣ୤ሺݎ௜, ሻݐ − ௗ݂௥ሺݎ௜, ሻ|௜ݐ ∑ ݅௜ , (6)

 
and calculated for simulations performed with and without AMR enabled. In Eq. (6), the i-
indices correspond to cell-averaged quantities over individual computational zones centered at a 
sequence of ri values (i.e., fdr(ri,t) is the average value of fdr over the zone with width dr, centered 
at ri). The summations therefore approximate L1(fdr) as the unweighted average of the 
zone-by-zone L1 error within the analysis domain, with respect to the benchmark solution. 
Various evaluations of Eq. (6) are provided in Table II. 
 
With approximate L1 error norm data available, it is straightforward to construct an estimate of 
the L1 norm spatial convergence rate with respect to the benchmark solution, for each time and 
simulation archetype (i.e., with and without AMR enabled). Using the standard error ansatz, 
 
 lnሾܮଵሺ݂ሻሿ = ܣ + ܤ lnሺ݀ݎሻ , (7)
 
the convergence premultiplier exp(A) and convergence rate B can be calculated for each variable, 
time, and simulation archetype by fitting Eq. (7) to the data appearing in Table II. Example 
calculations of this type are shown in Fig. 6, and various convergence rates are provided in Table 
III. 
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time 
Without AMR With AMR 

Density SIE Pressure Velocity Density SIE Pressure Velocity

Initial dr = 0.02 cm 

t = 12 1.4e-1 4.3e-4 1.6e-3 2.5e-3 3.8e-1 2.4e-3 7.8e-3 1.8e-2 
t = 13 2.4e-1 7.5e-4 3.0e-3 3.8e-3 5.0e-1 5.3e-3 1.5e-2 3.1e-2 
t = 14 1.4e0 1.9e-2 1.1e-1 5.3e-2 5.9e-1 2.6e-2 8.2e-2 6.2e-2 
t = 15 5.9e0 3.2e-2 2.5e-1 5.0e-3 3.7e0 5.6e-2 2.3e-1 9.1e-3 
t = 16 5.0e0 3.2e-2 1.2e-1 3.2e-3 3.3e0 1.8e-2 1.4e-1 7.6e-3 
t = 17 4.9e0 3.3e-2 8.5e-2 3.2e-3 3.5e0 2.0e-2 1.1e-1 7.1e-3 

Initial dr = 0.01 cm 

t = 12 5.3e-2 1.6e-4 6.1e-4 1.0e-3 3.1e-1 2.0e-3 6.5e-3 1.5e-2 
t = 13 1.0e-1 3.7e-4 1.5e-3 2.0e-3 4.0e-1 4.3e-3 1.2e-2 2.5e-2 
t = 14 8.1e-2 9.0e-3 6.4e-2 2.9e-2 4.0e-1 2.0e-2 6.0e-2 5.0e-2 
t = 15 3.3e0 2.8e-2 1.5e-1 4.0e-3 2.8e0 4.1e-2 1.8e-1 7.0e-3 
t = 16 2.3e0 2.8e-2 5.7e-2 1.5e-3 2.5e0 2.3e-2 1.0e-1 5.6e-3 
t = 17 2.0e0 2.8e-2 3.2e-2 1.2e-3 2.9e0 2.9e-2 9.5e-2 6.2e-3 

Initial dr = 0.005 cm 

t = 12 2.8e-2 1.0e-4 3.2e-4 6.1e-4 2.0e-1 1.4e-3 4.1e-3 1.0e-2 
t = 13 4.8e-2 2.0e-4 8.3e-4 1.2e-3 3.0e-1 3.2e-3 9.2e-3 1.9e-2 
t = 14 4.4e-1 5.0e-3 3.6e-2 1.7e-2 2.3e-1 1.2e-2 3.7e-2 3.0e-2 
t = 15 1.3e0 2.4e-2 5.9e-2 1.0e-3 1.6e0 4.6e-2 1.0e-1 4.3e-3 
t = 16 1.1e0 2.4e-2 2.8e-2 7.2e-4 1.6e0 3.2e-2 6.7e-2 3.8e-3 
t = 17 1.0e0 2.4e-2 1.9e-2 7.5e-4 1.6e0 7.5e-2 4.9e-2 3.3e-3 

Table II: Global L1 error norms for various 1D spherical SGP calculations. A bold number indicates a 
smaller L1 error norm estimate in comparison to the counterpart value.  
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time 
Without AMR With AMR 

Density SIE Pressure Velocity Density SIE Pressure Velocity
t = 12 1.15 1.03 1.13 1.01 0.47 0.39 0.46 0.41 
t = 13 1.15 0.96 0.92 0.85 0.36 0.36 0.34 0.35 
t = 14 0.87 0.90 0.80 0.82 0.68 0.53 0.58 0.51 
t = 15 1.07 0.20 1.04 1.03 0.58 0.15 0.58 0.53 
t = 16 1.12 0.21 1.08 1.08 0.52 -0.43 0.55 0.50 
t = 17 1.12 0.22 1.07 1.04 0.56 -0.95 0.59 0.56 

Table III: L1 norm spatial convergence rates for 1D spherical SGP calculations. 
 
 
Tables II and III and Fig. 6 show that for simulations without AMR options enabled, the spatial 
L1 error norm converges at or near first order for all variables in the converging flow regime. A 
small convergence rate degradation is evident at t = 14 s; this phenomenon is due to the close 
proximity of the converging shock to the origin at that time (and associated rapid growth of the 
various flow variables). The near-linear convergence rate trend is restored after shock reflection 
for all variables except the SIE, which exhibits a markedly sub-linear convergence rate in the 
diverging flow regime. Figure 3b reveals no immediately obvious explanation for this behavior, 
but it is possible that a wall-heating effect or default code option (see Appendix B) is 
contributing to the degraded convergence rate.  
 
For calculations with AMR options (as outlined at the beginning of Sec. III.B) enabled, Tables II 
and III and Fig. 6 show universally degraded convergence rates in comparison with the uniform-
grid simulations. Otherwise, the AMR simulation convergence rates follow similar trends as 
previously discussed; however, in this case, negative convergence rates are observed in the SIE 
field in the divergent flow regime. It is possible that the choice of AMR parameters may 
exacerbate the trends already observed for the uniform-grid simulations. 
 
Furthermore, Table II shows that in most cases (but not all), enabling AMR options degrades the 
spatial L1 norm that would otherwise be obtained in the absence of those options. In addition to 
the convergence rate data, this phenomenon suggests that a different set of AMR options should 
be investigated, or, since the initial grid spacing is evidently refined enough for convergence to 
be observed, a coarser set of initial spacings should be employed when AMR settings are to be 
activated.  
 
 
IV. THE SURROGATE GUDERLEY PROBLEM IN 2D AXI-SYMMETRY 
 
Constructing a 2D axi-symmetric SGP setup in xRAGE (v1109.02) is only slightly more 
complicated than the 1D spherical case (see Appendix E). In all 2D simulations, the following 
code options were used but are not necessarily unique: 

 Code default units (cgs) 
 Specific heat cv = 1.0 erg/(g-eV), so temperature and SIE are equivalent 
 Adaptive time step 
 Stop time = 20.0 s 
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 Boundary condition at r = 0 cm: code default (symmetric/reflective BC) 
 Boundary condition at r = 10 cm: code default (reflective BC13) 
 Boundary condition at z = 0 cm: code default (rigid wall BC) 
 Boundary condition at z = 10 cm: code default (reflective BC) 
 Initial uniform grid spacing (for calculation verification analysis):  

o dr = dz = 0.04 cm (coarse)  
o dr = dz = 0.02 cm (medium)  
o dr = dz =0.01 cm (fine)  

The initialization provided above does not guarantee that the contact surface between the dense 
and rarefied gases coincides with zone boundaries; in general this will not be the case for a 
circular contact surface on a square grid. In many instances the contact surface may pass through 
initial computational zone boundaries and vertices, or within corresponding zones themselves.  
 
In xRAGE, ‘mixed zone’ initialization is addressed through the use of the numfine parameter. 
For example, if a computational zone contains a contact surface separating two sub-zone regions 
with uniform densities ρ1 and ρ2, allocated according to initially unknown volume fractions f1 
and f2 (see Fig. 7), then the zone-averaged density is given by 
 
௭ߩ̅  = ଵߩ ଵ݂ + ଶߩ ଶ݂ . (8)
 
Various settings of the numfine parameter control how the volume fractions are determined, and 
thus how Eq. (8) is approximated. If numfine = 1, the density ρs is sampled at a single location 
within a zone (the center). If ρs = ρ1, then f1 = 1 and f2 = 0. If ρs = ρ2, then f1 = 0 and f2 = 1. 
Choices of numfine > 1 correspond to increasingly rigorous sampling of mixed zones, 
increasingly accurate estimates of f1 and f2, and the generation of less ‘jagged’ initial data (see 
Appendix B). 
 
 
IV.A. Uniform Grid 
 
The results of one simulation performed using the above settings and dr = dz = 0.01 cm are 
shown as contour plots in Figs. 8a (an example of convergent flow) and 8b (an example of 
divergent flow) and ‘line-out plots’ in conjunction with the 1D spherical benchmark solution in 
Figs. 8c and 8d; additional results are provided in Appendix A. 
 
The line-out plots (of which the error plots appearing in Figs. 9a and 9b, and Figs. 8c and 8d are 
also examples) are constructed using Eq. (2): every flow data value parameterized by an (r,z) 
zone center or vertex can be equivalently parameterized according to the corresponding 
‘spherical radius’ R. Furthermore, angle-parameterized data can be constructed for each (r,z) 
zone center or vertex with the transformation 
 
ߠ  = arctan ቀݎݖቁ , (9)

 
so that, for example, the θ = 45-degree line corresponds to the collection of zones with r = z 
center or vertex coordinates. Additional θ-lines can also be defined: the θ = 0-degree line 
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Furthermore, Fig. 10f provides an example of how the AMR grid refines and relaxes as the 
simulation proceeds. Starting at initialization (see Fig. 9), the converging shock is enveloped by 
a refinement ‘ring’ that is preceded and followed by additional layers of lower refinement. In the 
divergent flow regime, the AMR grid shows extensive, persistent, maximum-level refinement 
that begins to relax near the origin only for very late times; this phenomenon is likely due to the 
presence of a steep density gradient behind the reflected shock. 
 
Figure 10f also shows the presence of a semi-regular pattern much like that observed in Fig. 9; 
the effect of this pattern (and the AMR settings that produced it) will be examined further in a 
future study, as additional supporting calculations with different AMR settings will be needed to 
fully assess the effect. 
 
 
IV.C. Simulation Comparison Metrics 
 
The quantitative analysis metrics used in Sec. III.C for 1D spherical simulations are also 
applicable for 2D axi-symmetric simulations. In L1 error norm calculations, however, 2D axi-
symmetric data must be compared to 1D spherical benchmark data. Thus, every (r,z)  zone center 
or vertex to which 2D cell-averaged data is referenced must be ‘collapsed’ to a 1D spherical 
radial position R using Eq. (2). The result of this operation is a set of 1D spherical data with 
ordinates not necessarily identical to or otherwise explicitly contained within the set of reference 
solution ordinates. Therefore, an interpolation strategy must be used in the evaluation of Eqs. (5) 
and (6). 
 
In this study, the Mathematica16 interpolation function (instantiated as 3rd order polynomial 
interpolation between collections of successive data points) is used to construct quasi-continuous 
data from the 1D spherical benchmark SGP solution; the resulting function can then be evaluated 
at any R-ordinate selected by the collapsed 2D axi-symmetric solution, as can Eqs. (5) and (6). 
The results of this process appear in Table IV. 
 
From the data appearing in Table IV, L1 norm spatial convergence rates can be constructed in the 
same manner as done in Sec. III.C; the results of these calculations are provided in Fig. 11 and 
Table V. 
 
Tables IV and V and Fig. 11 show that for simulations without AMR options enabled, the spatial 
L1 error norm converges at or near first order for all variables in the converging flow regime. A 
small convergence rate degradation is evident at t = 14 s; this phenomenon is due to the close 
proximity of the converging shock to the origin at that time (and associated rapid growth of the 
various flow variables). The near-linear convergence rate trend is restored after shock reflection 
for all variables except the SIE, which exhibits a markedly sub-linear convergence rate in the 
diverging flow regime. 
 
For calculations with AMR options (as outlined at the beginning of Sec. III.B) enabled, Tables 
IV and V and Fig. 11 show universally degraded and sometimes negative convergence rates in 
comparison with the uniform-grid simulations. 
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Furthermore, Table IV shows that in some cases (but not all), enabling AMR options degrades 
the spatial L1 norm that would otherwise be obtained in the absence of those options. In addition 
to the convergence rate data, this phenomenon suggests that a different set of AMR options 
should be investigated, or, since the initial grid spacing is evidently refined enough for 
convergence to be observed, a coarser set of initial spacings should be employed when AMR 
settings are to be activated. 
 
 

time 
Without AMR With AMR 

Density SIE Pressure Velocity Density SIE Pressure Velocity

Initial dr = dz = 0.04 cm 

t = 12 4.4e-1 1.4e-3 3.5e-2 1.1e-2 2.2e-1 1.3e-3 4.7e-3 1.7e-2 
t = 13 6.0e-1 1.7e-3 5.5e-3 1.0e-2 3.6e-1 2.6e-3 1.1e-2 2.4e-2 
t = 14 5.8e-1 4.9e-3 4.2e-2 1.5e-2 7.5e-1 6.1e-3 5.6e-2 2.0e-2 
t = 15 3.6e0 4.3e-3 1.6e-1 6.9e-3 5.8e-1 7.7e-4 3.1e-2 1.5e-3 
t = 16 4.5e0 5.0e-3 1.3e-1 7.0e-3 6.7e-1 7.4e-4 2.0e-2 1.3e-3 
t = 17 7.0e0 7.0e-3 1.2e-1 8.6e-3 1.1e0 1.0e-3 1.8e-2 1.8e-3 

Initial dr = dz = 0.02 cm 

t = 12 2.1e-1 6.6e-4 1.9e-2 4.9e-3 3.9e0 3.6e-2 9.6e-2 2.2e-1 
t = 13 3.0e-1 7.7e-4 3.0e-3 4.9e-3 2.5e-1 1.9e-3 7.8e-3 1.9e-2 
t = 14 3.0e-1 4.0e-3 2.7e-2 1.1e-2 7.3e-1 9.4e-3 6.6e-2 2.8e-2 
t = 15 1.7e0 2.6e-3 7.8e-2 3.8e-3 5.7e-1 6.8e-4 3.2e-2 1.3e-3 
t = 16 2.3e0 3.4e-3 6.3e-2 3.8e-3 6.1e-1 4.8e-4 2.4e-2 1.2e-3 
t = 17 3.2e0 4.6e-3 5.4e-2 4.6e-3 1.0e0 5.1e-4 3.2e-2 2.1e-3 

Initial dr = dz = 0.01 cm 

t = 12 9.0e-2 3.1e-4 1.0e-2 2.9e-3 1.5e-1 1.1e-3 3.0e-3 1.3e-2 
t = 13 1.3e-1 3.6e-4 1.5e-3 2.4e-3 1.8e-1 1.4e-3 5.6e-3 1.5e-2 
t = 14 2.3e-1 6.9e-3 2.3e-2 1.9e-2 6.4e-1 1.5e-2 7.3e-2 3.9e-2 
t = 15 8.5e-1 1.7e-3 4.0e-2 2.0e-3 1.2e0 1.0e-3 7.4e-2 2.8e-3 
t = 16 1.1e0 2.4e-3 3.1e-2 2.1e-3 2.1e0 8.5e-4 9.2e-2 4.3e-3 
t = 17 1.5e0 3.1e-3 2.5e-2 2.4e-3 1.9e0 6.9e-4 6.2e-2 3.8e-3 

Table IV: Global L1 error norms for various 2D axi-symmetric SGP calculations. A bold number indicates a 
smaller L1 error norm estimate in comparison to the counterpart value. 
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IV.D. Calculation Efficiency 
 
An additional metric considered for 2D axi-symmetric calculations involves the ‘wall clock time’ 
(WCT) elapsed during the completion of a simulation. For this metric, a uniform grid spacing 
setup is constructed so that the simulation wall clock time approximately coincides with that 
elapsed during an AMR simulation. A variety of standard metrics can then be compared between 
the two simulations (see Tables VI and VII). 
 

Metrics dr = 0.04 cm (with AMR) dr = 0.0063 cm (uniform) 

t = 12 

WCT (hr) 0.3599 0.3386 
# cells 19672 50193 
L1(ρ) 4.4e-1 4.8e-2 
L1(e) 1.4e-3 1.7e-4 
L1(P) 3.5e-2 5.0e-4 
L1(vs) 1.1e-2 1.8e-3 

t = 13 

WCT (hr) 0.4003 0.3808 
# cells 12921 44122 
L1(ρ) 6.0e-1 6.5e-2 
L1(e) 1.7e-3 1.9e-4 
L1(P) 5.5e-3 8.4e-4 
L1(vs) 1.0e-2 1.5e-3 

t = 14 

WCT (hr) 0.4518 0.4349 
# cells 18270 19164 
L1(ρ) 5.8e-1 2.0e-1 
L1(e) 4.9e-3 9.6e-4 
L1(P) 4.2e-2 9.0e-3 
L1(vs) 1.5e-2 2.8e-3 

t = 15 

WCT (hr) 0.4940 0.4786 
# cells 95198 19164 
L1(ρ) 3.6e0 4.8e-1 
L1(e) 4.3e-3 1.2e-3 
L1(P) 1.6e-1 2.1e-2 
L1(vs) 6.9e-3 1.2e-3 

t = 16 

WCT (hr) 0.5197 0.5040 
# cells 92213 19164 
L1(ρ) 4.5e0 6.3e-1 
L1(e) 5.0e-3 1.7e-3 
L1(P) 1.3e-1 1.6e-2 
L1(vs) 7.0e-3 1.3e-3 

t = 17 

WCT (hr) 0.5381 0.5228 
# cells 82765 15885 
L1(ρ) 7.0e0 8.0e-1 
L1(e) 7.0e-3 2.3e-3 
L1(P) 1.2e-1 1.3e-2 
L1(vs) 8.6e-3 1.4e-3 

Table VI: Uniform grid and AMR simulations as benchmarked by equal wall clock times (on the LANL 
‘yellowrail’ HPC cluster, 256 PEs/simulation). 
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Metrics dr = 0.02 cm (with AMR) dr = 0.0046 cm (uniform) 

t = 12 

WCT (hr) 0.8988 0.8845 
# cells 41415 93810 
L1(ρ) 2.1e-1 3.4e-2 
L1(e) 6.6e-4 1.1e-4 
L1(P) 1.9e-2 3.8e-4 
L1(vs) 4.9e-3 1.2e-3 

t = 13 

WCT (hr) 1.0035 1.0076 
# cells 27127 44122 
L1(ρ) 3.0e-1 4.6e-2 
L1(e) 7.7e-4 1.3e-4 
L1(P) 3.0e-3 6.5e-4 
L1(vs) 4.9e-3 1.1e-3 

t = 14 

WCT (hr) 1.1451 1.1572 
# cells 23065 36651 
L1(ρ) 3.0e-1 1.4e-1 
L1(e) 4.0e-3 6.6e-4 
L1(P) 2.7e-2 6.4e-3 
L1(vs) 1.1e-2 2.1e-3 

t = 15 

WCT (hr) 1.2422 1.2663 
# cells 122837 36651 
L1(ρ) 1.7e0 3.4e-1 
L1(e) 2.6e-3 9.5e-4 
L1(P) 7.8e-2 1.4e-2 
L1(vs) 3.8e-3 8.6e-4 

t = 16 

WCT (hr) 1.2979 1.3330 
# cells 49101 36651 
L1(ρ) 2.3e0 4.4e-1 
L1(e) 3.4e-3 1.3e-3 
L1(P) 6.3e-2 1.1e-2 
L1(vs) 3.8e-3 9.2e-4 

t = 17 

WCT (hr) 1.33995 1.3840 
# cells 60161 36651 
L1(ρ) 3.2e0 5.5e-1 
L1(e) 4.6e-3 1.7e-3 
L1(P) 5.4e-2 8.7e-3 
L1(vs) 4.6e-3 1.1e-3 

Table VII: Uniform grid and AMR simulations as benchmarked by equal wall clock times (on the LANL 
‘yellowrail’ HPC cluster, 256 PEs/simulation). 

 
Tables VI and VII show that for equal wall clock time, both uniform-grid simulations result in 
fewer computational zones and universally-better L1 error norms for all variables, at all 
simulation times of interest. This result, in conjunction with those already presented, suggest that 
the AMR settings used for the 2D axi-symmetric studies should be adjusted and assessed for 
utility in the context of the SGP and related test problems. 
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V. SUMMARY AND RECOMMENDATIONS FOR FUTURE STUDY 
 
This report has provided details and explanation surrounding the simulation of two converging 
shock wave test problems in the LANL ASC code xRAGE: the Guderley problem, and a newly 
developed surrogate Guderley problem (SGP). Simulations of one of these problems were 
conducted in 1D spherical symmetry and on square grids in 2D axi-symmetry, with and without 
select adaptive mesh refinement (AMR) options enabled. A variety of qualitative and 
quantitative comparison metrics were determined for most of the problems simulated. 
 
A principal conclusion of this work is that AMR options can be applied to converging shock 
problems in both 1D and 2D, and that associated qualitative metrics seem promising. From the 
quantitative standpoint, however, it appears that further investigation into additional xRAGE 
AMR settings is warranted. According to the xRAGE code manual and online documentation, 
there are at least two additional AMR options that can be used, and numerous variations and 
parameter settings within each broader class. It remains to be seen what effect, if any, these 
additional options will have on the oscillation and other phenomena seen in both 1D and 2D 
result sets. 
 
In addition, this report has made use of only a few quantitative comparison metrics, most 
prominently the spatial L1 error norm and its convergence characteristics using a specific set of 
initial grid resolutions. Other metrics that should be considered in future studies include (but are 
not limited) shock positions, the central post-shock pressure at a given time, and temporal 
convergence characteristics. Additional spatial convergence characteristics (e.g., the efficiency 
metric as used in Sec. IV.C) might also be considered or devised for AMR calculations. Inter-
code comparisons may also prove useful from both the qualitative and quantitative standpoints. 
 
In any event, this work represents only the initial effort of the large body of work that will need 
to be completed for a thorough and accurate assessment of the relevant xRAGE code 
capabilities. 
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APPENDIX B: EVALUATION OF VARIOUS xRAGE CODE SETTINGS 
 
Two versions of the xRAGE code (v1009 and v1109) and a variety of code settings were used to 
generate the 1D spherical AMR results that appear in Sec. III.B.  
 
 
B.1: The ‘numfine’ Option 
 
Results similar to those presented in Sec. IV.A are provided in Figs. B.1-B.8 for two choices of 
the numfine parameter: numfine = 1 and numfine = 5. The numfine = 5 results correspond to a 
‘smoother’ contact profile at initialization (see Fig. 7) than otherwise used throughout the 
entirety of this report. 
 
Figures B.1-B.4 exemplify the effect of the two different numfine settings on the structure of the 
converging shock wave. The density, SIE, and pressure results appear largely invariant with 
respect to the selected settings. Some differences are evident in the velocity results, however: 
Figs. B.1 and B.4 most readily show that the numfine = 5 case exhibits both fewer and less 
pronounced irregularities in the converging shock structure. 
 
Figures B.5-B.8 exemplify the effect of the two different numfine settings on the structure of the 
reflected shock wave. The density, SIE, and pressure results again appear to be largely invariant 
with respect to the selected settings. Differences are again evident in the velocity results: Figs. 
B.5 and B.8 show that the numfine = 5 results are again subject to less irregularity in the vicinity 
of the reflected shock wave, but in this case a localized ‘hot spot’ of increased velocity  is 
evident within the solution field. 
 
A full assessment of the numfine parameter’s influence on the SGP solution and its convergence 
properties at additional times will be reserved for a future study. 
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APPENDIX C: CYLINDRICAL GUDERLEY PROBLEM WITH 2D AXI-SYMMETRY 
 
Recently, an informal series of cylindrical Guderley calculations was performed in xRAGE 
(v1109.02) in 2D axi-symmetric geometry, on a square, uniform grid. Setup for these 
calculations is relatively simple and follows essentially the same procedure outlined by Ramsey, 
et al.6 for 1D calculations.  
 
Under 2D axi-symmetry, any cylindrical Guderley solution is invariant with respect to the z-
direction, and is initialized with r-dependence only, as shown for γ = 1.4 in Fig. C.1, over the 
domain r = (0,4) and z = (0,4) cm. For this simulation, the following code options were used but 
are not necessarily unique: 

 Code default units (cgs) 
 Specific heat cv = 1.0 erg/(g-eV), so temperature and SIE are equivalent 
 Adaptive time step 
 Stop time = 2.0 s 
 Boundary condition at r = 0 cm: code default (symmetric/reflective BC) 
 Boundary condition at r = 4 cm: code default (reflective BC13) 
 Boundary condition at z = 0 cm: code default (rigid wall BC) 
 Boundary condition at z = 4 cm: code default (reflective BC) 
 Initial uniform grid spacing dx = dy = 0.04 cm 
 Benchmark solution: 1D cylindrical SGP with dr = 0.001 cm 

This initialization corresponds to convergent flow with the shock located at r = 1.0 at t = 0.0, and 
zone initializations using point-wise Guderley solution values of density, SIE, and velocity 
evaluated at the zone centers (as opposed to cell-averaged initialization using conserved 
quantities, as discussed at length by Ramsey, et al.6). 
 
As the simulation proceeds, the Guderley converging shock proceeds symmetrically in the r-
direction; in effect, as if the z-dependence is not included. The converging shock reflects off the 
entire length of the z-axis at t = 1.0, and a symmetric reflected shock forms and propagates 
outward. 
 
As observed in 1D spherical simulations by Ramsey, et al.6, the cylindrical calculations exhibit 
boundary rarefaction errors due to the selection of the xRAGE default boundary condition on the 
outer r-axis. No such rarefactions are evident on the problem’s other boundaries, nor is any 
symmetry-breaking immediately evident at the selected times of interest. 
 
Figures C.1-C.3 represent the extent to date under which the cylindrical Guderley problem has 
been investigated using 2D axi-symmetry. A more comprehensive investigation would by 
necessity involve an initialization using cell-averaged quantities, and perhaps involve 
quantitative comparison to 1D cylindrical results (e.g., convergence analyses). This effort will be 
reserved for a future study. 
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APPENDIX D: SURROGATE GUDERLEY PROBLEM FOR 2D CARTESIAN 
GEOMETRY 
 
Constructing a 2D Cartesian SGP setup in xRAGE (v1109.02) is very similar to the 2D axi-
symmetric case, and is intended to isolate asymmetric wall-heating in the divergent flow regime 
as an axi-symmetric phenomenon. For these simulations, the following code options were used 
but are not necessarily unique: 

 Code default units (cgs) 
 Specific heat cv = 1.0 erg/(g-eV), so temperature and SIE are equivalent 
 Adaptive time step 
 Stop time = 30.0 s 
 Boundary condition at x = 0 cm: code default (symmetric/reflective BC) 
 Boundary condition at x = 10 cm: code default (reflective BC13) 
 Boundary condition at y = 0 cm: code default (rigid wall BC) 
 Boundary condition at y = 10 cm: code default (reflective BC) 
 Initial uniform grid spacing dx = dy = 0.04 cm 
 Benchmark solution: 1D cylindrical SGP with dr = 0.001 cm 
 AMR settings (where applicable): 

o A maximum of 5 refinement levels are allowed 
o pctdiv = 0.001 

The 2D Cartesian SGP is not otherwise identical to its 2D axi-symmetric counterpart: in the 
former problem shocks will not propagate as quickly in the absence of a curvilinear ordinate (and 
thus the increased stop time, as compared to the 1D spherical and 2D axi-symmetric cases). Even 
so, the 2D Cartesian SGP is useful for the intended purpose. 

Initialization of the 2D Cartesian SGP on a square mesh with and without AMR is subject to the 
same xRAGE subtleties as discussed in Sec. IV. 
 
 
D.1: Uniform Grid 
 
Figures D.1-D.4 show selected converging regime (Figs. D.1 and D.3) and diverging regime 
(Figs. D.2 and D.4) results of a 2D Cartesian SGP calculation, intended only to address the 
asymmetric wall-heating phenomenon. 
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Fiigure D.1: 2D Cartesian SGGP results at t
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FFigure D.2: 2DD Cartesian SGGP results at tt = 20 s (divergging flow). 
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Figuree D.3: 2D Carrtesian SGP linne-out results at t = 14 s (coonverging flow
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Figuree D.6: 2D Carttesian SGP ressults at t = 20 s (diverging flflow) with AM
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Figure D.7: 2D Cartesiann SGP line-outt results at t = = 14 s (convergging flow) with
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APPENDIX E: SAMPLE xRAGE INPUT DECKS 
 
E.1: 1D  Spherical Symmetry 
 
! 1D spherical shock tube problem, gamma = 1.4 
! 512000 uniform initial zones over r = (0,10) 
! no AMR 
! Built by S.D. Ramsey, 1/5/12 
! 
!----------------------------------------------------- 
! CALCULATIONAL CONTROL VARIABLES 
!----------------------------------------------------- 
! 
pname = rsst_no_amr 
kread = -1                                      
ncmax = 5000000                                 
tmax = 20.0                                     
tedit = 1.0                                     
dtname = 1.0                                    
dodmpxdt = .true.                               
ncedit = 0                                      
modcyc = 1000                                   
uselast = .false.                               
mincellpe = 1                                   
maxcellpe = 1000000 
!                                               
dohydro = .true.                                
doheat = .false.                                
dorad = .false.                                 
! 
!norecon = .false.                               
! 
!----------------------------------------------------- 
! ZONING AND AMR SPECIFICATION 
!----------------------------------------------------- 
! 
cylin = .false.                                 
sphere = .true.                                 
! 
imxset =  512000                                  
dxset =  1.9531250E-05                                   
!                                               
!numlev = 10                                     
!mxcells = 2000000                               
!pctdiv = 1.e-3                                  
sizemat(1) = 1.9531250E-05           
! 
!----------------------------------------------------- 
! MATERIAL AND EQUATION OF STATE SPECIFICATION 
!----------------------------------------------------- 
! 
numfine = 1                                     
nummat = 1                                      
keos = 0                                        
matdef(16,1) = 0.4                              
matdef(30,1) = 1.0                              



LA-UR-12-0XXXX  Page 99 of 100  

numreg =  2                                     
! 
typreg(1) = 1 
diareg(1,1) = 20.0 
xreg(1,1) = 0.0 
matreg(1) = 1 
rhoreg(1) = 6.0 
siereg(1) = 0.06 
rdreg(1) = 0.0 
! 
typreg(2) = 1 
diareg(1,2) = 8.0 
xreg(1,2) = 0.0 
matreg(2) = 1 
rhoreg(2) = 1.0 
siereg(2) = 1.0e-10 
rdreg(2) = 0.0 
! 
 
E.2: 2D Axi-Symmetry 
 
! 2D (r,z) spherical shock tube problem, gamma = 1.4 
! 1000 x 1000 uniform zones over r = (0,10) and z = (0,10) 
! do not include AMR 
! Built by S.D. Ramsey, 9/22/11 
! 
!----------------------------------------------------- 
! CALCULATIONAL CONTROL VARIABLES 
!----------------------------------------------------- 
! 
pname = rsst2d_amr 
kread = -1                      
ncmax = 10000000                
tmax = 20.0                     
tedit = 1.0                     
dtname = 1.0                    
dodmpxdt = .true.               
ncedit = 0                      
modcyc = 1000                   
uselast = .false.               
mincellpe = 1                   
maxcellpe = 10000000 
! 
dohydro = .true.                
doheat = .false.                
dorad = .false.                 
! 
norecon = .true.                
! 
!----------------------------------------------------- 
! ZONING AND AMR SPECIFICATION 
!----------------------------------------------------- 
! 
cylin = .true.                  
sphere = .false.                
! 
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imxset = 1000                   
jmxset = 1000 
dxset = 0.01                    
dyset = 0.01 
! 
!numlev = 5                     
!mxcells = 2000000              
!pctdiv = 1.e-3                 
! 
sizemat(1) = 0.01     
! 
!----------------------------------------------------- 
! MATERIAL AND EQUATION OF STATE SPECIFICATION 
!----------------------------------------------------- 
! 
numfine = 1                     
nummat = 1                           
keos = 0                             
matdef(16,1) = 0.4                   
matdef(30,1) = 1.0                   
numreg =  2                          
! 
matreg(1) = 1 
rhoreg(1) = 6.0 
siereg(1) = 0.06 
xdreg(1) = 0.0 
ydreg(1) = 0.0 
xlreg(1) = 0.0 
xrreg(1) = 10.0 
ybreg(1) = 0.0 
yareg(1) = 10.0 
! 
typreg(2) = 1 
diareg(1,2) = 8.0 
xreg(1,2) = 0.0 
yreg(1,2) = 0.0 
matreg(2) = 1 
rhoreg(2) = 1.0 
siereg(2) = 0.0 
xdreg(2) = 0.0 
ydreg(2) = 0.0 
! 
 
 


