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ABSTRACT

Results and analysis pertaining to the simulation of the Guderley converging shock wave test
problem (and associated code verification hydrodynamics test problems involving converging
shock waves) in the LANL ASC radiation-hydrodynamics code xXRAGE are presented. One-
dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are
utilized and evaluated in this study, as is an instantiation of the xXRAGE adaptive mesh
refinement capability. For the 2D simulations, a ‘Surrogate Guderley’ test problem is developed
and used to obviate subtleties inherent to the true Guderley solution’s initialization on a square
grid, while still maintaining a high degree of fidelity to the original problem, and minimally
straining the general credibility of associated analysis and conclusions.
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I. INTRODUCTION AND PREVIOUS RESULTS

An effort to simulate the Guderley converging shock wave problem (a member of the enhanced
Tri-Lab Test Suite or eTLTS') in one or more LANL ASC codes has been ongoing since 2006.**
To date, this effort has culminated in a modern canonical definition of the Guderley test
problem’, and contributions to the Eulerian Applications Project (EAP) including a code
verification/spatial convergence rate study using the xRAGE compressible flow solver’, an
implementation of the Guderley problem in the EAP test suite, and the construction of a more
comprehensive set of preliminary results’™®.

The Guderley test problem itself is based on the self-similar implosion model first investigated
by Guderley® (and independently by Sedov and Stanyukovich®), and examined in detail by many
others, including Lazarus'® and Ramsey”. In this problem, an infinitely strong shock wave of
indeterminate origin converges in one-dimensional (1D) cylindrical or spherical symmetry
through a polytropic, quiescent, negligible-pressure/specific internal energy (SIE) gas with
arbitrary adiabatic index y and uniform density po. The shock proceeds to focus on the point or
axis of symmetry at » = 0 (resulting in ostensibly infinite pressure, velocity, etc.) and reflect back
out into the incoming perturbed gas.

Many authors (e.g., Caramana and Whalen'') have investigated versions of the Guderley
problem in the context of code verification. A recent effort — possibly the first to include a formal
spatial convergence analysis of a compressible flow solver using the Guderley problem — was
made by Ramsey, et al.®, using the XRAGE code and 1D spherical symmetry. First order L;-norm
spatial convergence was observed for both the converging and diverging phases of the problem.

The current study is concerned with simulations of the spherically-symmetric Guderley problem,
especially on 2D axi-symmetric, square grids with and without adaptive mesh refinement (AMR)
capability enabled. To this end, in Sec. II a Guderley-like test problem is introduced to facilitate
initialization in LANL ASC codes. Various 1D results are presented and analyzed In Sec. III, and
various 2D results are presented and analyzed in Sec. IV. A summary and recommendations for
further study are presented in Sec. V; extensive additional content appears in Appendices A-E.

I1. DEFINITION OF THE SURROGATE GUDERLEY PROBLEM

The principal concern of this study — the simulation of the spherical Guderley problem on an
Eulerian, 2D axi-symmetric, square grid — may present an initialization-related subtlety in
addition to those encountered for the Guderley problem on uniform 1D grids.

Since the spherical Guderley velocity field is spherically symmetric, its initialization in a 2D axi-
symmetric square grid may, depending on code input archetype, require velocity (v)

decomposition and input according to

vV, = Vg cC0sf,
v, =Vvgsinf, (1)
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where 0 denotes the angle between the velocity vector and the cylindrical radial axis, R denotes
the spherical radial coordinate, » denotes the cylindrical radial coordinate, and z denotes the
cylindrical z-coordinate, such that

R = 77T, @

In these cases, where velocity vector initialization is required (as is the case in XRAGE), cell-
averaged values corresponding to Eq. (1) must be specified for each computational zone, in
addition to remaining consistent cell-averaged flow quantities (e.g., density and SIE). The
modification of an existing Guderley exact solution code to provide data of this type represents
an ongoing but currently incomplete task.

In parallel with the code development effort, a new, Guderley-like test problem has been
developed to circumvent velocity vector initialization. This ‘Surrogate Guderley Problem’ (SGP)
consists of two concentric spherical regions in a y = 1.4 gas, is essentially a two-region ‘spherical
shock tube’ (or a ‘spherical driven implosion,” as noted by Whalen'?), and is defined in Table I.

Parameter Inner spherical region Outer spherical region
Inner radius 0.0 4.0
Outer radius 4.0 10.0
Initial density 1.0 6.0
Initial specific internal energy (SIE) 1.0e-10 0.06
Initial velocity 0.0 0.0

Table I: Surrogate Guderley problem (SGP) definition. The SGP may be defined using these parameters in
any consistent set of units (e.g., cgs, ‘HE’).

The configuration described in Table I does not result in any known closed-form mathematical
solution to the Euler equations, but like the Guderley problem it ultimately results in the
formation of a strong converging shock wave that reflects about the spherical origin. While the
converging and reflected shocks are in the vicinity of the origin, the SGP is expected to limit — at
least in a qualitative sense — to the true Guderley solution.

The SGP is intended to be significantly easier to initialize in compressible flow codes than its
conventional counterpart (e.g., on grids not aligned with the Guderley initial velocity vector),
and despite the fact that it represents a calculation verification test problem, it is expected to
capture the general flow behavior exhibited by the Guderley problem.

I1.A. Guderley/Surrogate Guderley Problem Comparison
An effective method for comparing 1D spherical Guderley and SGP simulation results is to plot
the converging and reflected shock positions as a function of time for both problems. The

Guderley solution for this trajectory [Rs(?)] is given by

(k@ —t)*, t<t
Rs(®) = {kb(v?— to)%, t> tz (3)
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where the similarity exponent & = 0.717 and the trajectory multiplier » = 0.492 for y = 1.4 and
spherical symmetry®. Equation (2) also contains two arbitrary dimensional constants, the time
offset #, and the scaling parameter k. Setting these parameters to #) = 14.05 and £ = 0.58 (in any
consistent set of units) allows the Guderley solution to be scaled to the SGP solution, as shown in
Fig. 1. Under this choice of scaling, the two solutions are in close agreement for a wide range of
times of interest, but begin to substantially deviate as the SGP shock moves sufficiently far from
the origin.

0.8

0.6

shock position

0.4

(3 N ) S T T TN ST T | TN T T T T T NS T T T

12 13 14 15 16 17 18

time

Figure 1: Shock space-time trajectories for the scaled/translated Guderley (solid black line)/surrogate
Guderley (dashed gray line) problems.

The values of ) and & can also be used to translate and scale the Guderley density (p), velocity
(u), and pressure (P) profiles for comparison with 1D spherical SGP simulation results. The
Guderley solution is given by

p =pog(&)

u = Re()v(8)

P = poR;(t)m(§)
& =1/Rs(t)

4)

where the over-dot represents time differentiation, and g, v, and x are dimensionless functions of
the dimensionless independent variable £, determined by the solution of a double nonlinear
eigenvalue problem depending only on the choice of symmetry and adiabatic index®. The
members of Eq. (4) are plotted in Fig. 2 for spherical symmetry, y = 1.4, t, = 14.05, k= 0.58, and
two selected times (with the corresponding SGP results). As was the case in Fig. 1, the two
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solutions are in close agreement, but will diverge in accordance with the shock trajectory
behavior.

t=13s t=15s
2.0——— ——1— e P 15 v —r—r
0.1«density (g/cm?) 0.1xdensity (g/cm®)
velocity (cm/s) 1 10svelocity (cm/s)
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Figure 2: Scaled/translated Guderley (solid)/SGP (dashed) solutions at ¢ = 13 (converging flow) and ¢ = 15
(diverging flow).

In Fig. 2, a truncated ‘analysis domain’ is being employed. Beyond this radius, the SGP flow
begins to couple with additional, non-Guderley (i.e., irrelevant for the purposes of surrogacy)
flow features that result from the problem’s initialization as a spherical shock tube problem.
Figure 2 shows, however, that within the analysis domain (i.e., near » = 0, where the SGP
solution limits to the Guderley solution) the SGP closely follows a scaled and translated form of
the canonical Guderley problem’, including all major flow features in both the converging and
diverging flow regimes.

As the SGP is effectively equivalent to the Guderley problem when the shocks are near » =0,
and it is likely easier to initialize in compressible flow codes, it will be used throughout the
remainder of this work to provide assessments of the XRAGE compressible flow solver in its
simulation of archetypal converging shock wave problems.

I11. THE SURROGATE GUDERLEY PROBLEM IN 1D SPHERICAL SYMMETRY

Constructing a 1D spherical SGP setup in xRAGE (v1109.02) represents a mostly trivial exercise
(see Appendix E). In all 1D simulations, the following code options were used but are not
necessarily unique:

e Code default units (cgs)
e Specific heat ¢, = 1.0 erg/(g-eV), so temperature and SIE are equivalent
e Adaptive time step
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e Stop time =20.0 s

e Boundary condition at » = 10 cm: code default (reflective BC")

e Initial uniform grid spacing (for calculation verification analysis):
0 dr=0.02 cm (coarse)

0 dr=0.01 cm (medium)
0 dr=0.005 cm (fine)
0 dr=0.005/2° cm=9.765625 x 10 cm (benchmark)

In each case, the choice of initial grid spacing places the material interface at a zone boundary.

I1.A. Uniform Grid
The results of four simulations performed using the above settings (and the four choices of grid

spacing dr) are shown in Figs. 3a (an example of convergent flow) and 3b (an example of
divergent flow); additional results are provided in Appendix A.
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Figure 3a: 1D spherical SGP results at # = 13 s (converging flow).
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Figure 3b: 1D spherical SGP results at # = 15 s (diverging flow).

LA-UR-12-0XXXX

1apl (g/em®)

13 | (erg/g)

IA | (dyn/em?)

1A | (cm/s)

Density error, t = 1505

T
b s
\\_-M_

1} : zad

'._ ‘__.u-.-.._.____-"

e

0.1 P .,
\ !
oot 3 dr=0.02cm |}
. dr=0.01cm
dr = 0.005cm
PR S T T T S R S S T |
0.0 0.2 0.4 0.6 0.8 1.0
r (cm)

SIE error, t = 15.0s
dr=0.02cm | ]
dr =0.01 cm
dr = 0.005cm

0.01
0.001
1074
r (cm)
Preessure error, t = 15.0 5
T T T
L o dr=0.02cm
Tty dr=0.01cm
s dr = 0.005 cm
0.01 ¢
1074
107" .
s N L M)
0.0 0.2 0.4 0.6 0.8 1.0
r (em)
Velocity error, t = 150
0.1 2 dr=0.02cm |
dr=0.01cm
dr = 0,005 cm
0.01
0.001
107
107
10" 1
PR T SR W T W TR T T S T R SR
0.0 0.2 0.4 0.6 0.8 L0

r (em)

Page 10 of 100



In Figs. 3a and 3b, the point-wise ‘error’ for each flow variable is calculated according to

Afdr(rl t) = |fref(r’ t) - fdr(r’ t)l ’ (5)

where f(r,f) denotes a flow variable (i.e., density, SIE, pressure, or velocity) centered at » and
cell-averaged over the corresponding grid element, the ‘ref” subscript denotes the reference
solution, and the ‘dr’ subscript denotes the a solution calculated using the grid spacing dr.

Figures 3a and 3b show that all SGP flow variables appear to converge in a global sense to the
reference solution as the grid spacing is refined; the quantitative behavior of this convergence
will be assessed in Sec. III.C. Furthermore, localized quantities (e.g., shock location, behavior as
r — 0 for diverging flow) also appear to converge to the reference solution.

111.B. Adaptive Mesh Refinement

To enable the xRAGE AMR capability, additional settings beyond those prescribed at the
beginning of Sec. III must be employed. In all 1D spherical simulations, the following code
options pertaining to AMR were used, but are not necessary unique:

¢ A maximum of 10 refinement levels are allowed

e pctdiv=0.001: this setting specifies the percentage change in a zone’s maximum
pressure required to subdivide that zone. If the estimated increase in pressure of a zone is
greater than pctdiv multiplied by the maximum pressure that has occurred in that zone
during the simulation, the zone is marked for refinement.

As was the case in Sec. III.A., the results of three simulations performed using the above settings
(and the coarse/medium/fine initial grid spacings) are shown in Figs. 4a and 4b for the same
times used in Figs. 3a and 3b; additional results are provided in Appendix A.
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Figure 4a: 1D spherical SGP results at ¢ = 13 s (converging flow) with AMR enabled.
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Figure 4b: 1D spherical SGP results at ¢ = 15 s (diverging flow) with AMR enabled.
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In Figs. 4a and 4b, Eq. (5) is again used to calculate the error for each flow variable; no
interpolation of the reference solution is required since it is defined on a grid corresponding to
the finest resolution used in 1D spherical AMR simulations.

Figures 4a and 4b show that all SGP flow variables appear to converge in a global sense to the
reference solution as the grid spacing is refined, albeit not as cleanly as in the previous case; the
quantitative behavior of this convergence will be assessed in Sec. III.C. Furthermore, localized
quantities (e.g., shock location, behavior as » — 0 for diverging flow) also appear to converge in
some sense to the reference solution.

Despite evidence of global and local convergence trends, a prominent error is evident in the

t =15 flow fields as » — 0. This error is most prominent in the velocity field, and is perhaps best
characterized as an ‘oscillation.” This phenomenon does not manifest itself in simulations
without AMR, and additional evidence (see Appendices A and B) suggests that it grows as time
evolves in the diverging flow regime.

Additional information pertaining to this phenomenon is presented in Appendix B, where it is
revealed that the error may be created and influenced by many mechanisms, including (but not
limited to) improper energy mapping into subdivided AMR zones, internal code physical unit
inconsistencies, and numerical round-off"’. Regardless of the source, this error warrants
additional, dedicated investigation in a future study.

In addition to flow variable information, plots of the AMR level vs. position for two different
times are provided in Fig. 5. These results (and additional results appearing in Appendix A)
show that a region of mesh refinement surrounds both the converging and diverging shock
waves, and that the computational grid begins to de-refine near the origin, behind the reflected
shock wave.
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Figure 5: 1D spherical SGP AMR level results at ¢ = 13 s (converging flow) and 15 s (diverging flow).
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I11.C. Simulation Comparison Metrics

Several quantities are available for the quantitative assessment of SGP calculations with respect
to the benchmark solution. One such metric is the time-behavior of the global L, error norm for
each flow variable f, given approximately by

Zilfref(ri' t) - fdr(rif t)l
il ’

L1 (fdr) ~ (6)

and calculated for simulations performed with and without AMR enabled. In Eq. (6), the i-
indices correspond to cell-averaged quantities over individual computational zones centered at a
sequence of 7; values (i.e., fz(7;,t) is the average value of £, over the zone with width dr, centered
at ;). The summations therefore approximate L;(f;) as the unweighted average of the
zone-by-zone L; error within the analysis domain, with respect to the benchmark solution.
Various evaluations of Eq. (6) are provided in Table II.

With approximate L; error norm data available, it is straightforward to construct an estimate of
the L; norm spatial convergence rate with respect to the benchmark solution, for each time and
simulation archetype (i.e., with and without AMR enabled). Using the standard error ansatz,

In[L,(f)] = A+ B In(dr), (7
the convergence premultiplier exp(4) and convergence rate B can be calculated for each variable,
time, and simulation archetype by fitting Eq. (7) to the data appearing in Table II. Example

calculations of this type are shown in Fig. 6, and various convergence rates are provided in Table
II1.
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fime Without AMR With AMR
Density | SIE | Pressure | Velocity | Density | SIE | Pressure | Velocity
Initial dr = 0.02 cm
t=12 1.4e-1 4.3e-4 1.6e-3 2.5e-3 3.8e-1 2.4e-3 7.8e-3 1.8e-2
t=13 2.4e-1 7.5e-4 3.0e-3 3.8e-3 5.0e-1 5.3e-3 1.5e-2 3.1e-2
t=14 1.4e0 1.9e-2 I.1le-1 5.3e-2 5.9e-1 2.6e-2 8.2e-2 6.2e-2
t=15 5.9¢0 3.2e-2 2.5e-1 5.0e-3 3.7e0 5.6e-2 2.3e-1 9.1e-3
t=16 5.0e0 3.2e-2 1.2e-1 3.2e-3 3.3e0 1.8e-2 1.4e-1 7.6e-3
t=17 4.9¢0 3.3e-2 8.5e-2 3.2e-3 3.5e0 2.0e-2 1.1e-1 7.1e-3
Initial dr = 0.01 cm
t=12 5.3e-2 1.6e-4 6.1e-4 1.0e-3 3.1e-1 2.0e-3 6.5¢-3 1.5e-2
t=13 1.0e-1 3.7e-4 1.5e-3 2.0e-3 4.0e-1 4.3e-3 1.2e-2 2.5¢e-2
t=14 8.1e-2 9.0e-3 6.4e-2 2.9e-2 4.0e-1 2.0e-2 6.0e-2 5.0e-2
t=15 3.3e0 2.8e-2 1.5e-1 4.0e-3 2.8e0 4.1e-2 1.8e-1 7.0e-3
t=16 2.3e0 2.8e-2 5.7e-2 1.5e-3 2.5¢0 2.3e-2 1.0e-1 5.6e-3
t=17 2.0e0 2.8e-2 3.2e-2 1.2e-3 2.9¢0 2.9e-2 9.5¢-2 6.2e-3
Initial dr = 0.005 cm
t=12 2.8e-2 1.0e-4 3.2e-4 6.1le-4 2.0e-1 1.4e-3 4.1e-3 1.0e-2
t=13 4.8e-2 2.0e-4 8.3e-4 1.2e-3 3.0e-1 3.2e-3 9.2e-3 1.9e-2
t=14 4.4e-1 5.0e-3 3.6e-2 1.7e-2 2.3e-1 1.2e-2 3.7e-2 3.0e-2
t=15 1.3e0 2.4e-2 5.9e-2 1.0e-3 1.6e0 4.6e-2 1.0e-1 4.3e-3
t=16 1.1e0 2.4e-2 2.8e-2 7.2e-4 1.6e0 3.2e-2 6.7e-2 3.8e-3
t=17 1.0e0 2.4e-2 1.9e-2 7.5e-4 1.6e0 7.5¢e-2 4.9e-2 3.3e-3

Table I1: Global L, error norms for various 1D spherical SGP calculations. A bold number indicates a
smaller L; error norm estimate in comparison to the counterpart value.
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Figure 6: L; norm spatial convergence curves for 1D spherical SGP, at ¢ = 13 s (converging flow) and 15 s
(diverging flow).
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fime Without AMR With AMR
Density SIE Pressure | Velocity | Density SIE Pressure | Velocity

t=12 1.15 1.03 1.13 1.01 0.47 0.39 0.46 0.41
t=13 1.15 0.96 0.92 0.85 0.36 0.36 0.34 0.35
t=14 0.87 0.90 0.80 0.82 0.68 0.53 0.58 0.51
t=15 1.07 0.20 1.04 1.03 0.58 0.15 0.58 0.53
t=16 1.12 0.21 1.08 1.08 0.52 -0.43 0.55 0.50
t=17 1.12 0.22 1.07 1.04 0.56 -0.95 0.59 0.56

Table I11: L; norm spatial convergence rates for 1D spherical SGP calculations.

Tables II and IIT and Fig. 6 show that for simulations without AMR options enabled, the spatial
L error norm converges at or near first order for all variables in the converging flow regime. A
small convergence rate degradation is evident at # = 14 s; this phenomenon is due to the close
proximity of the converging shock to the origin at that time (and associated rapid growth of the
various flow variables). The near-linear convergence rate trend is restored after shock reflection
for all variables except the SIE, which exhibits a markedly sub-linear convergence rate in the
diverging flow regime. Figure 3b reveals no immediately obvious explanation for this behavior,
but it is possible that a wall-heating effect or default code option (see Appendix B) is
contributing to the degraded convergence rate.

For calculations with AMR options (as outlined at the beginning of Sec. II1.B) enabled, Tables II
and III and Fig. 6 show universally degraded convergence rates in comparison with the uniform-
grid simulations. Otherwise, the AMR simulation convergence rates follow similar trends as
previously discussed; however, in this case, negative convergence rates are observed in the SIE
field in the divergent flow regime. It is possible that the choice of AMR parameters may
exacerbate the trends already observed for the uniform-grid simulations.

Furthermore, Table II shows that in most cases (but not all), enabling AMR options degrades the
spatial L; norm that would otherwise be obtained in the absence of those options. In addition to
the convergence rate data, this phenomenon suggests that a different set of AMR options should
be investigated, or, since the initial grid spacing is evidently refined enough for convergence to
be observed, a coarser set of initial spacings should be employed when AMR settings are to be
activated.

IV. THE SURROGATE GUDERLEY PROBLEM IN 2D AXI-SYMMETRY

Constructing a 2D axi-symmetric SGP setup in XRAGE (v1109.02) is only slightly more
complicated than the 1D spherical case (see Appendix E). In all 2D simulations, the following
code options were used but are not necessarily unique:

e (Code default units (cgs)

e Specific heat ¢, = 1.0 erg/(g-eV), so temperature and SIE are equivalent
e Adaptive time step

e Stop time =20.0s

LA-UR-12-0XXXX Page 18 of 100




Boundary condition at » = 0 cm: code default (symmetric/reflective BC)
Boundary condition at 7 = 10 cm: code default (reflective BC")
Boundary condition at z = 0 cm: code default (rigid wall BC)
Boundary condition at z = 10 cm: code default (reflective BC)
Initial uniform grid spacing (for calculation verification analysis):

O dr=dz=0.04 cm (coarse)

O dr=dz=0.02 cm (medium)

0 dr=dz=0.01 cm (fine)

The initialization provided above does not guarantee that the contact surface between the dense
and rarefied gases coincides with zone boundaries; in general this will not be the case for a
circular contact surface on a square grid. In many instances the contact surface may pass through
initial computational zone boundaries and vertices, or within corresponding zones themselves.

In xRAGE, ‘mixed zone’ initialization is addressed through the use of the numfine parameter.
For example, if a computational zone contains a contact surface separating two sub-zone regions
with uniform densities p; and p», allocated according to initially unknown volume fractions f,
and £, (see Fig. 7), then the zone-averaged density is given by

Pz = p1fi + P2f2 - )

Various settings of the numfine parameter control how the volume fractions are determined, and
thus how Eq. (8) is approximated. If numFfine = 1, the density p;, is sampled at a single location
within a zone (the center). If p; = py, then f; = 1 and f, = 0. If p; = p,, then fi =0 and f, = 1.
Choices of numfine > 1 correspond to increasingly rigorous sampling of mixed zones,
increasingly accurate estimates of /| and f,, and the generation of less ‘jagged’ initial data (see
Appendix B).

IVV.A. Uniform Grid

The results of one simulation performed using the above settings and dr = dz = 0.01 cm are
shown as contour plots in Figs. 8a (an example of convergent flow) and 8b (an example of
divergent flow) and ‘line-out plots’ in conjunction with the 1D spherical benchmark solution in
Figs. 8c and 8d; additional results are provided in Appendix A.

The line-out plots (of which the error plots appearing in Figs. 9a and 9b, and Figs. 8c and 8d are
also examples) are constructed using Eq. (2): every flow data value parameterized by an (7,z)
zone center or vertex can be equivalently parameterized according to the corresponding
‘spherical radius’ R. Furthermore, angle-parameterized data can be constructed for each (r,z)
zone center or vertex with the transformation

6 = arctan (;) , 9)

so that, for example, the § = 45-degree line corresponds to the collection of zones with » =z
center or vertex coordinates. Additional #-lines can also be defined: the 6 = 0-degree line
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corresponds to the collection of zones along the r-axis, while the § = 90-degree line corresponds
to the collection of zones along the z-axis (see Figs. 8c and 8d). This nomenclature will be used
in numerous figures throughout the remainder of this report.

initialization

e

numfine =1 numfine > 1

-
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= =—===tl======
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Figure 7: Notional SGP initialization on a square axi-symmetric grid, and effect of archetypal numfine
parameter settings. Note that for numfine > 1, the initial data is ‘smeared out’ over a number of zones.
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Figure 8a: Left — 2D axi-symmetric SGP results for dr = dz = 0.01 cm at ¢ = 13 s (converging flow). Right —
solution error on three different grids, calculated using Eq. (5).
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Figure 8b: Left — 2D axi-symmetric SGP results for dr = dz = 0.01 cm at ¢ = 15 s (diverging flow). Right —
solution error on three different grids, calculated using Eq. (5).
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Figure 8c: 2D axi-symmetric SGP line-out results for dr = dz = 0.01 cm at ¢ = 13 s (converging flow).
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Figure 8d: 2D axi-symmetric (fine grid) SGP line-out results for dr = dz = 0.01 cm at ¢ = 15 s (diverging flow).
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Figure 8e: 2D axi-symmetric (fine grid) SGP velocity vector results for dr = dz = 0.01 cm at ¢ = 13 s (left,
converging flow) and 15 s (right, diverging flow).

Figures 8a, 8c, and the first member of Fig. 8¢ show that SGP solution stays maintains a high
degree of symmetry during the convergent flow phase, with some small on-axis perturbations
evident. Figures 8b, 8d, and the second member of Fig. 8¢ show that more marked flow
asymmetries develop in the diverging flow regime, particularly in the density, SIE, and velocity
fields along the boundaries. Most notably, an asymmetric wall-heating effect localized along the
z-axis is seen to develop while the flow is diverging, but beyond the reflected shock the flow
fields appear to maintain their pre-focus symmetry.

There is evidence that the asymmetric wall heating effect is not unique to XRAGE, and it has
reportedly been observed in other compressible flow solvers'®. The canonical explanation for this
effect is given in terms of the difference between the » and z coordinates in 2D axi-symmetry: z
is a linear coordinate, while 7 is a curvilinear coordinate. Thus, even though the 2D axi-
symmetric grid may appear to be square, there are fundamental geometric differences between
grid structures in the two ordinate directions. This difference leads to a more prominent wall
heating error in the ‘more curvilinear’ direction (as opposed to the strictly linear direction), as
often observed in Noh problem simulations'”, and discussed further in Appendix D.

IVV.B. Adaptive Mesh Refinement

To enable the xRAGE AMR capability, additional settings beyond those prescribed at the
beginning of Sec. IV must again be employed. In all 2D axi-symmetric simulations, the
following code options pertaining to AMR were used, but are not necessary unique:

e A maximum of 5 refinement levels are allowed
e pctdiv=0.001
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Although it was not observed in the 1D spherical simulations (because at initialization, the
interface corresponded to a computational zone boundary), the XRAGE AMR algorithms allow
for mesh refinement at initialization, before any hydrodynamic computations occur. This
functionality is separate from the numfine interface reconstruction capability discussed in Sec.
IV.A, and at initialization allows for an ostensibly more accurate depiction of a circular interface
imprinted upon a square grid. For the problem under consideration, an example of such an initial
refinement appears in Fig. 9.

AMR Ivl

&

Figure 9: Initial AMR refinement of SGP initialization on a dr = dz = 0.01 cm 2D axi-symmetric grid.

Figure 9 shows that at initialization, the highest level of refinement exists around the contact
surface, while lower levels are spread around the finest-level structure. A semi-regular pattern
appears to be contained within the initial grid; this effect will likely be influenced by the choice
of AMR parameters and its impact on the remainder of the simulation has yet to be assessed.

As was the case in Sec. I[V.A., the results of an initial dr = dz = 0.01 cm simulation performed

using the above settings are shown in Figs. 10a-d for the same times used in Figs. 10a-d;
additional results appear in Appendix A.
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Figure 10b: Left — 2D axi-symmetric SGP results for initial dr = dz = 0.01 cm at # = 15 s (diverging flow) with

AMR enabled. Right — solution error on three different grids, calculated using Eqg. (5).
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Figure 10c: 2D axi-symmetric SGP line-out results for initial dr = dz = 0.01 cm at ¢ = 13 s (converging flow)
with AMR enabled.
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Figure 10d: 2D axi-symmetric SGP line-out results for initial dr = dz = 0.01 cm at # = 15 s (diverging flow)
with AMR enabled.
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Figure 10e: 2D axi-symmetric SGP velocity vector results for initial dr = dz = 0.01 cm at £ = 13 s (left,
converging flow) and 15 s (right, diverging flow) with AMR enabled.
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Figure 10f: 2D axi-symmetric SGP AMR level results for initial dr = dz = 0.01 cm at ¢ = 13 s (left, converging
flow) and 15 s (right, diverging flow).

Figures 8 and 10 show that the use of AMR leads to a noticeable sharpening of the shock
structure in both the converging and diverging flow regimes. As was seen in the uniform-grid
simulations, the AMR simulations maintain a high degree of symmetry during the converging
flow phase, though some near-origin asymmetry is still evident (but reduced) in the diverging
regime. It appears from Fig. 10b that the wall heating error is significantly reduced through the
use of AMR, although it is still present and still asymmetric. Aside from these general trends, a
noticeable feature appearing in Fig. 12¢ is a compact SIE/velocity ‘spike’ (and corresponding
density ‘anti-spike’) located near » = 0.05 cm at = 15 s. This flow feature does not appear to be
tied to either of the problem boundaries, and is likely a manifestation of the oscillation
phenomenon discussed in Sec. III.B (and Appendix B).
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Furthermore, Fig. 10f provides an example of how the AMR grid refines and relaxes as the
simulation proceeds. Starting at initialization (see Fig. 9), the converging shock is enveloped by
a refinement ‘ring’ that is preceded and followed by additional layers of lower refinement. In the
divergent flow regime, the AMR grid shows extensive, persistent, maximume-level refinement
that begins to relax near the origin only for very late times; this phenomenon is likely due to the
presence of a steep density gradient behind the reflected shock.

Figure 10f also shows the presence of a semi-regular pattern much like that observed in Fig. 9;
the effect of this pattern (and the AMR settings that produced it) will be examined further in a
future study, as additional supporting calculations with different AMR settings will be needed to
fully assess the effect.

IV.C. Simulation Comparison Metrics

The quantitative analysis metrics used in Sec. III.C for 1D spherical simulations are also
applicable for 2D axi-symmetric simulations. In L, error norm calculations, however, 2D axi-
symmetric data must be compared to 1D spherical benchmark data. Thus, every (r,z) zone center
or vertex to which 2D cell-averaged data is referenced must be ‘collapsed’ to a 1D spherical
radial position R using Eq. (2). The result of this operation is a set of 1D spherical data with
ordinates not necessarily identical to or otherwise explicitly contained within the set of reference
solution ordinates. Therefore, an interpolation strategy must be used in the evaluation of Egs. (5)
and (6).

In this study, the Mathematica'® interpolation function (instantiated as 3" order polynomial
interpolation between collections of successive data points) is used to construct quasi-continuous
data from the 1D spherical benchmark SGP solution; the resulting function can then be evaluated
at any R-ordinate selected by the collapsed 2D axi-symmetric solution, as can Egs. (5) and (6).
The results of this process appear in Table IV.

From the data appearing in Table IV, L; norm spatial convergence rates can be constructed in the
same manner as done in Sec. I11.C; the results of these calculations are provided in Fig. 11 and
Table V.

Tables IV and V and Fig. 11 show that for simulations without AMR options enabled, the spatial
L, error norm converges at or near first order for all variables in the converging flow regime. A
small convergence rate degradation is evident at # = 14 s; this phenomenon is due to the close
proximity of the converging shock to the origin at that time (and associated rapid growth of the
various flow variables). The near-linear convergence rate trend is restored after shock reflection
for all variables except the SIE, which exhibits a markedly sub-linear convergence rate in the
diverging flow regime.

For calculations with AMR options (as outlined at the beginning of Sec. II1.B) enabled, Tables

IV and V and Fig. 11 show universally degraded and sometimes negative convergence rates in
comparison with the uniform-grid simulations.
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Furthermore, Table IV shows that in some cases (but not all), enabling AMR options degrades
the spatial L; norm that would otherwise be obtained in the absence of those options. In addition
to the convergence rate data, this phenomenon suggests that a different set of AMR options
should be investigated, or, since the initial grid spacing is evidently refined enough for
convergence to be observed, a coarser set of initial spacings should be employed when AMR
settings are to be activated.

fime Without AMR With AMR
Density | SIE | Pressure | Velocity | Density | SIE | Pressure | Velocity
Initial dr = dz = 0.04 cm
t=12 4.4e-1 1.4e-3 3.5¢e-2 1.1e-2 2.2e-1 1.3e-3 4.7e-3 1.7e-2
t=13 6.0e-1 1.7e-3 5.5e-3 1.0e-2 3.6e-1 2.6e-3 1.1e-2 2.4e-2
t=14 5.8e-1 4.9e-3 4.2e-2 1.5e-2 7.5e-1 6.1e-3 5.6e-2 2.0e-2
t=15 3.6e0 4.3e-3 1.6e-1 6.9¢-3 5.8e-1 7.7e-4 3.1e-2 1.5e-3
t=16 4.5¢0 5.0e-3 1.3e-1 7.0e-3 6.7e-1 7.4e-4 2.0e-2 1.3e-3
t=17 7.0e0 7.0e-3 1.2e-1 8.6e-3 1.1e0 1.0e-3 1.8e-2 1.8e-3
Initial dr = dz = 0.02 cm
t=12 2.1e-1 6.6e-4 1.9e-2 4.9e-3 3.9¢0 3.6e-2 9.6e-2 2.2e-1
t=13 3.0e-1 7.7e-4 3.0e-3 4.9e-3 2.5e-1 1.9¢-3 7.8e-3 1.9e-2
t=14 3.0e-1 4.0e-3 2.7e-2 1.1e-2 7.3e-1 9.4e-3 6.6¢e-2 2.8e-2
t=15 1.7¢0 2.6e-3 7.8e-2 3.8e-3 5.7e-1 6.8e-4 3.2e-2 1.3e-3
t=16 2.3e0 3.4e-3 6.3¢e-2 3.8e-3 6.le-1 4.8e-4 2.4e-2 1.2e-3
t=17 3.2¢0 4.6e-3 5.4e-2 4.6¢-3 1.0e0 5.1e-4 3.2e-2 2.1e-3
Initial dr = dz = 0.01 cm
t=12 9.0e-2 3.1e-4 1.0e-2 2.9e-3 1.5e-1 1.1e-3 3.0e-3 1.3e-2
t=13 1.3e-1 3.6e-4 1.5e-3 2.4e-3 1.8e-1 1.4e-3 5.6e-3 1.5e-2
t=14 2.3e-1 6.9e-3 2.3e-2 1.9e-2 6.4e-1 1.5e-2 7.3e-2 3.9e-2
t=15 8.5e-1 1.7e-3 4.0e-2 2.0e-3 1.2e0 1.0e-3 7.4e-2 2.8e-3
t=16 1.1e0 2.4e-3 3.1e-2 2.1e-3 2.1e0 8.5e-4 9.2e-2 4.3e-3
t=17 1.5e0 3.1e-3 2.5e-2 2.4e-3 1.9¢0 6.9e-4 6.2e-2 3.8e-3

Table IV: Global L; error norms for various 2D axi-symmetric SGP calculations. A bold number indicates a
smaller L; error norm estimate in comparison to the counterpart value.
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Figure 11: L; norm spatial convergence curves for 2D axi-symmetric SGP simulations with and without
AMR, at # = 13 s (converging flow) and 15 s (diverging flow).

time Without AMR With AMR
Density SIE Pressure | Velocity | Density SIE Pressure | Velocity

t=12 1.14 1.10 0.89 0.97 0.29 0.17 0.32 0.18
t=13 1.08 1.14 0.92 1.07 0.49 0.46 0.47 0.36
t=14 1.09 0.83 0.86 0.61 0.12 -0.65 -0.19 -0.48
t=15 1.04 0.69 1.01 0.89 -0.51 -0.21 -0.64 -0.42
t=16 1.00 0.54 1.01 0.88 -0.83 -0.10 -1.10 -0.87
t=17 1.13 0.60 1.15 0.92 -0.35 0.28 -0.89 -0.54

Table V: L, norm spatial convergence rates for various 2D axi-symmetric SGP calculations.
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IV.D. Calculation Efficiency

An additional metric considered for 2D axi-symmetric calculations involves the ‘wall clock time’
(WCT) elapsed during the completion of a simulation. For this metric, a uniform grid spacing
setup is constructed so that the simulation wall clock time approximately coincides with that
elapsed during an AMR simulation. A variety of standard metrics can then be compared between
the two simulations (see Tables VI and VII).

Metrics dr = 0.04 cm (with AMR) | dr=0.0063 cm (uniform)
WCT (hr) 0.3599 0.3386
# cells 19672 50193
=12 Li(p) 4.4e-1 4.8e-2
Li(e) 1.4e-3 1.7e-4
Li(P) 3.5¢-2 5.0e-4
Li(vs) 1.1e-2 1.8e-3
WCT (hr) 0.4003 0.3808
# cells 12921 44122
f= 13 Li(p) 6.0e-1 6.5e-2
Li(e) 1.7¢-3 1.9¢e-4
Li(P) 5.5e-3 8.4¢-4
Li(vs) 1.0e-2 1.5e-3
WCT (hr) 0.4518 0.4349
# cells 18270 19164
f= 14 Li(p) 5.8e-1 2.0e-1
Li(e) 4.9¢-3 9.6e-4
Li(P) 4.2¢-2 9.0e-3
Li(vs) 1.5e-2 2.8e-3
WCT (hr) 0.4940 0.4786
# cells 95198 19164
f= 15 Li(p) 3.6e0 4.8e-1
Li(e) 4.3e-3 1.2e-3
L(P) 1.6e-1 2.1e-2
Li(vs) 6.9¢-3 1.2e-3
WCT (hr) 0.5197 0.5040
# cells 92213 19164
‘=16 Li(p) 4.5e0 6.3e-1
Li(e) 5.0e-3 1.7e-3
Li(P) 1.3e-1 1.6e-2
Li(vs) 7.0e-3 1.3e-3
WCT (hr) 0.5381 0.5228
# cells 82765 15885
P Li(p) 7.0e0 8.0e-1
Li(e) 7.0e-3 2.3e-3
Li(P) 1.2e-1 1.3e-2
Li(vs) 8.6e-3 1.4e-3

Table VI: Uniform grid and AMR simulations as benchmarked by equal wall clock times (on the LANL
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Metrics dr=0.02 cm (with AMR) | dr=0.0046 cm (uniform)
WCT (hr) 0.8988 0.8845
# cells 41415 93810
f= 12 Li(p) 2.1e-1 3.4e-2
Li(e) 6.6e-4 l.1e-4
Li(P) 1.9¢-2 3.8¢-4
Li(vs) 4.9¢-3 1.2e-3
WCT (hr) 1.0035 1.0076
# cells 27127 44122
(=13 Li(p) 3.0e-1 4.6¢-2
Li(e) 7.7e-4 1.3e-4
Li(P) 3.0e-3 6.5¢-4
Li(vs) 4.9¢-3 1.1e-3
WCT (hr) 1.1451 1.1572
# cells 23065 36651
f= 14 Li(p) 3.0e-1 1.4e-1
Li(e) 4.0e-3 6.6¢-4
Li(P) 2.7e-2 6.4e-3
Li(vs) 1.1e-2 2.1e-3
WCT (hr) 1.2422 1.2663
# cells 122837 36651
f= 15 Li(p) 1.7€0 3.4e-1
Li(e) 2.6e-3 9.5¢-4
Li(P) 7.8e-2 1.4e-2
Li(vs) 3.8e-3 8.6e-4
WCT (hr) 1.2979 1.3330
# cells 49101 36651
(=16 Li(p) 2.3e0 4.4e-1
Li(e) 3.4e-3 1.3e-3
Li(P) 6.3¢-2 1.1e-2
Li(vs) 3.8e-3 9.2¢e-4
WCT (hr) 1.33995 1.3840
# cells 60161 36651
f=17 Li(p) 3.2e0 5.5e-1
Li(e) 4.6¢-3 1.7e-3
Li(P) 5.4e-2 8.7e-3
Li(vs) 4.6¢-3 1.1e-3

Table VII: Uniform grid and AMR simulations as benchmarked by equal wall clock times (on the LANL

‘yellowrail’ HPC cluster, 256 PEs/simulation).

Tables VI and VII show that for equal wall clock time, both uniform-grid simulations result in
fewer computational zones and universally-better L, error norms for all variables, at all
simulation times of interest. This result, in conjunction with those already presented, suggest that
the AMR settings used for the 2D axi-symmetric studies should be adjusted and assessed for
utility in the context of the SGP and related test problems.
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V. SUMMARY AND RECOMMENDATIONS FOR FUTURE STUDY

This report has provided details and explanation surrounding the simulation of two converging
shock wave test problems in the LANL ASC code xRAGE: the Guderley problem, and a newly
developed surrogate Guderley problem (SGP). Simulations of one of these problems were
conducted in 1D spherical symmetry and on square grids in 2D axi-symmetry, with and without
select adaptive mesh refinement (AMR) options enabled. A variety of qualitative and
quantitative comparison metrics were determined for most of the problems simulated.

A principal conclusion of this work is that AMR options can be applied to converging shock
problems in both 1D and 2D, and that associated qualitative metrics seem promising. From the
quantitative standpoint, however, it appears that further investigation into additional xRAGE
AMR settings is warranted. According to the xXRAGE code manual and online documentation,
there are at least two additional AMR options that can be used, and numerous variations and
parameter settings within each broader class. It remains to be seen what effect, if any, these
additional options will have on the oscillation and other phenomena seen in both 1D and 2D
result sets.

In addition, this report has made use of only a few quantitative comparison metrics, most
prominently the spatial L; error norm and its convergence characteristics using a specific set of
initial grid resolutions. Other metrics that should be considered in future studies include (but are
not limited) shock positions, the central post-shock pressure at a given time, and temporal
convergence characteristics. Additional spatial convergence characteristics (e.g., the efficiency
metric as used in Sec. IV.C) might also be considered or devised for AMR calculations. Inter-
code comparisons may also prove useful from both the qualitative and quantitative standpoints.

In any event, this work represents only the initial effort of the large body of work that will need

to be completed for a thorough and accurate assessment of the relevant xRAGE code
capabilities.
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APPENDIX A: ADDITIONAL SIMULATION RESULTS

A.1: 1D Spherical Symmetry, Uniform Grid
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Figure A.2: 1D spherical SGP results at = 14 s.
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Figure A.4: 1D spherical SGP resultsat#=17 s.
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A.2: 1D Spherical Symmetry, Adaptive Mesh Refinement
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Figure A.5: 1D spherical SGP results at # = 12 s with AMR enabled.
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Figure A.6: 1D spherical SGP results at ¢t = 14 s with AMR enabled.
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Figure A.8: 1D spherical SGP results at # = 17 s with AMR enabled.
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A.3: 1D Spherical Symmetry, Simulation Comparison Metrics
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Figure A.10: L, norm spatial convergence curves for 1D spherical SGP at ¢ = 12, 14, 16, and 17 s.
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A.4: 2D Axi-Symmetry, Uniform Grid
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Figure A.11: Left — 2D axi-symmetric SGP results for dr = dz = 0.01 cm at # = 12 s. Right — solution error on
three different grids, calculated using Eq. (5).
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Figure A.13: Left — 2D axi-symmetric SGP results for dr = dz = 0.01 cm at ¢ = 14 s. Right — solution error on
three different grids, calculated using Eq. (5).
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Figure A.15: Left — 2D axi-symmetric SGP results for dr = dz = 0.01 cm at # = 16 s. Right — solution error on
three different grids, calculated using Eq. (5).
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Figure A.17: Left — 2D axi-symmetric SGP results for dr = dz = 0.01 cm at # = 17 s. Right — solution error on
three different grids, calculated using Eq. (5).
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Figure A.18: 2D axi-symmetric SGP line-out results for dr =dz = 0.0l cm at¢= 17 s.
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Figure A.19: Clockwise from top left — 2D axi-symmetric SGP velocity vector results for dr = dz = 0.01 cm at
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A.5. 2D Axi-Symmetry, Adaptive Mesh Refinement
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Figure A.20: Left — 2D axi-symmetric SGP results for initial dr = dz = 0.01 cm at = 12 s with AMR enabled.
Right - solution error on three different initial grids, calculated using Eq. (5).

r (cem)

LA-UR-12-0XXXX Page 60 of 100



L o o e 0.05 . . . : : : '
12} [All L [ Al
Odegrees |0 degrees
45 degrees 0.04f | 45 degrees
10 | 90 degrees ] [ [90 degrees
_ Benchmark - | Benchmark
E 8 :  0.03F
U s
® ®
> &
.E 6k - W L J
b Z 0.02f ]
T . 1
4+ 4
o.01f ]
2l ] ! 1
[y — P TP I PR T L al L O.M- L + 4 - L L
00 02 04 06 08 1.0 1.2 1.4 00 02 04 06 08 10 1.2 1.4
spherical r (cm) spherical r (cm)
t=12s t=12s
: . ' ! ! 5 E 1 C T T T T T T T ]
All ] 0.05F p
0.12F | " -
[ |0 degrees .
45 degrees 2 0.00f ]
0.10T 190 degrees z
"E Benchmark ‘;;_ -0.05F .
< o.08f 1 E ;
£ " | -oxf :
< > C ]
¥ [ 1 3 : ]
£ 0.06f 1 £ -o0.5F 3
3 I ] z : |
- F
£ oosf ] E —o20f A1l
I ] E E | 0 degrees
L | & -0.25f 45 degrees
0.02 1 t |90 degrees
] —0.30F | Benchmark
0.00 [ y 4 . 5 N N TR R B R Wi [T G &
"00 02 04 06 08 1.0 12 1.4 00 02 04 06 08 1.0 12 14
spherical r (cm) spherical r (cm)

Figure A.21: 2D axi-symmetric SGP line-out results for initial dr = dz = 0.01 cm at ¢ = 12 s with AMR enabled.
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Figure A.22: Left — 2D axi-symmetric SGP results for initial dr = dz = 0.01 cm at ¢ = 14 s with AMR enabled.
Right — solution error on three different initial grids, calculated using Eq. (5).
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Figure A.23: 2D axi-symmetric SGP line-out results for initial dr = dz = 0.01 cm at ¢ = 14 s with AMR enabled.
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Figure A.24: Left — 2D axi-symmetric SGP results for initial dr = dz = 0.01 cm at ¢ = 16 s with AMR enabled.
Right - solution error on three different initial grids, calculated using Eq. (5).
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Figure A.25: 2D axi-symmetric SGP line-out results for initial dr = dz = 0.01 cm at ¢ = 16 s with AMR enabled.
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Figure A.26: Left — 2D axi-symmetric SGP results for initial dr = dz =0.01 cm at = 17 s with AMR enabled.
Right — solution error on three initial different grids, calculated using Eq. (5).
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Figure A.27: 2D axi-symmetric SGP line-out results for initial dr = dz = 0.01 cm at ¢ = 17 s with AMR enabled.
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Figure A.28: Clockwise from top left — 2D axi-symmetric SGP velocity vector results for initial dr = dz = 0.01
cmatz=12, 14, 16, and 17 s with AMR enabled.
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A.6. 2D Axi-Symmetry, Simulation Comparison Metrics
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Figure A.30: Top to bottom — L; norm spatial convergence curves for 2D axi-symmetric SGP at ¢ = 12, 14, 16,
and 17 s. Left: without AMR. Right: with AMR enabled.
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APPENDIX B: EVALUATION OF VARIOUS xRAGE CODE SETTINGS

Two versions of the xRAGE code (v1009 and v1109) and a variety of code settings were used to
generate the 1D spherical AMR results that appear in Sec. I11.B.

B.1: The ‘numfine’ Option

Results similar to those presented in Sec. IV.A are provided in Figs. B.1-B.8 for two choices of
the numfine parameter: numfine = 1 and numfine = 5. The numfine = 5 results correspond to a
‘smoother’ contact profile at initialization (see Fig. 7) than otherwise used throughout the
entirety of this report.

Figures B.1-B.4 exemplify the effect of the two different numfine settings on the structure of the
converging shock wave. The density, SIE, and pressure results appear largely invariant with
respect to the selected settings. Some differences are evident in the velocity results, however:
Figs. B.1 and B.4 most readily show that the numfine = 5 case exhibits both fewer and less
pronounced irregularities in the converging shock structure.

Figures B.5-B.8 exemplify the effect of the two different numfine settings on the structure of the
reflected shock wave. The density, SIE, and pressure results again appear to be largely invariant
with respect to the selected settings. Differences are again evident in the velocity results: Figs.
B.5 and B.8 show that the numFfine = 5 results are again subject to less irregularity in the vicinity
of the reflected shock wave, but in this case a localized ‘hot spot’ of increased velocity is
evident within the solution field.

A full assessment of the numfine parameter’s influence on the SGP solution and its convergence
properties at additional times will be reserved for a future study.
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Figure B.1: 2D axi-symmetric SGP results for initial dr = dz = 0.04 cm at # = 13 s (converging flow).
Left — numfine = 1, right — numfine = 5.
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Figure B.2: 2D axi-symmetric SGP line-out results for dr = dz = 0.04 cm at ¢ = 13 s (converging flow),
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Figure B.4: 2D axi-symmetric SGP velocity vector results for initial dr = dz = 0.04 cm at # = 13 s (converging
flow). Left — numfine = 1, right — numfine = 5.
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Figure B.5: 2D axi-symmetric SGP results for initial dr = dz = 0.04 cm at ¢ = 15 s (diverging flow).
Left — numfine = 1, right — numfine = 5.

LA-UR-12-0XXXX Page 76 of 100



density (g/cm?)

pressure (dyn/cm?)

t=15s t=15s
- - . P . . . 2.0 T —r——r— v v
40: T ] All ]
140 Odegrees | - degrees ]
[ 45 degrees 45 degrees | 1
120¢ 90 degrees | L5 90 degrees | T
[ Benchmark | Benchmark | |
100 4 _ ]
: | = |
801 1 E L0 4
o : o ‘
60} \ 5 @ |
a0 5 ]
20} ] k o
. Ll
0 R S ] 0.0 I p "L""':"““"‘-‘-"ﬁ“"mv-'-w |
0. 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
spherical r (cm) spherical r (cm)
8 w—y T |(=15’| — t=15s
: 0 degrees 1 0 degrees
' 45 degrees = I'= 45 degrees
6 90 degrees | E 0.00¢ 90 degrees [
Benchmark E-. i Benchmark | |
' S -0.05]
af - = [ ]
F -0.10f .
? P
.2 1
2 ]
2F \ . £ -0.15r ]
& [ ]
"ﬁvnr"@“‘“__%‘.‘ e -0.20 :'
0 " n " 1 i i " L i i 1 " " i L " i A N L " I A 1-0
0.0 0.2 0.4 0.6 0.8 1.0 00 0.2 04 ae o

spherical r (cm)

spherical r (cm)

Figure B.6: 2D axi-symmetric SGP line-out results for dr = dz = 0.04 cm at # = 15 s (diverging flow),
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Figure B.7: 2D axi-symmetric SGP line-out results for dr = dz = 0.04 cm at ¢ = 15 s (diverging flow),
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Figure B.8: 2D axi-symmetric SGP velocity vector results for initial dr = dz = 0.04 cm at ¢ = 15 s (diverging
flow). Left — numfine = 1, right — numfine = 5.

B.2: ‘rpfix’ and ‘enforce_tiny_cutoff’ Options

XxRAGE contains three options that alter the way the code’s Riemann solver operates'®. These
options, rpfix, rpfixl, and rpfix2, address various solution inaccuracies (e.g., the choice of
units used in the Riemann solver, which may not be the same as the default code units).
Furthermore, the enforce_tiny_cutoff option allows a user to adjust the code’s numerical
floor setting closer to zero, effectively preventing it from truncating small numbers. Each of
these four options are true/false flags.

Figure B.9 shows the results of enabling the three rpfix flags in a 1D spherical AMR simulation
(Sec. IIL.B settings), using xRAGE v1009.02 (the enforce_tiny_cutoff option is not available
in this version of the code). Additional results using other combinations of the flags do not
appear to be as effective in reducing the near-origin oscillation at t = 15 s.

Figure B.9 shows that the use of all rpfix options reduces but does not eliminate the oscillation
error.
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Figure B.9: 1D spherical SGP velocity results at ¢ = 15 s (diverging flow), with AMR enabled and all rpfix
features enabled.

B.3: xRAGE v1009 and v1109

In the XRAGE v1109 release notes'’, it is stated that a ‘bug fix’ pertaining to ‘recon’ (i.e., the
AMR package) was implemented:

“Fixed a bug in recon where the energy values for new cells were not computed
and filled in. Energy values are used to compute state data for new cells, so
problems using AMR could see differences.”

Figure B.10 shows the difference between identical simulations run with xRAGE v1009.02 and
v1109.02.
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Figure B.10: 1D spherical SGP velocity results at £ = 15 s (diverging flow), with AMR enabled.

Figure B.10 shows that the reconstruction update implemented as part of v1109 significantly
reduces the oscillation error, even without additional flags activated. Figure B.10 also shows that
activating the same ‘optimal’ combination of rpfix and enforce_tiny_cutoff flags as
considered in Sec. A.1 results in the slight regrowth of the oscillation error. It is therefore
recommended that xRAGE v1109 (or later) be used for 1D spherical AMR simulations, but
without any additional flags activated (as has been done throughout the preceding study).
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APPENDIX C: CYLINDRICAL GUDERLEY PROBLEM WITH 2D AXI-SYMMETRY

Recently, an informal series of cylindrical Guderley calculations was performed in XRAGE
(v1109.02) in 2D axi-symmetric geometry, on a square, uniform grid. Setup for these
calculations is relatively simple and follows essentially the same procedure outlined by Ramsey,
et al.® for 1D calculations.

Under 2D axi-symmetry, any cylindrical Guderley solution is invariant with respect to the z-
direction, and is initialized with r-dependence only, as shown for y = 1.4 in Fig. C.1, over the
domain » = (0,4) and z = (0,4) cm. For this simulation, the following code options were used but
are not necessarily unique:

Code default units (cgs)

Specific heat ¢, = 1.0 erg/(g-eV), so temperature and SIE are equivalent
Adaptive time step

Stop time = 2.0 s

Boundary condition at » = 0 cm: code default (symmetric/reflective BC)
Boundary condition at 7 =4 cm: code default (reflective BC'?)
Boundary condition at z = 0 cm: code default (rigid wall BC)

Boundary condition at z =4 cm: code default (reflective BC)

Initial uniform grid spacing dx = dy = 0.04 cm

Benchmark solution: 1D cylindrical SGP with dr = 0.001 cm

This initialization corresponds to convergent flow with the shock located at »=1.0 at = 0.0, and
zone initializations using point-wise Guderley solution values of density, SIE, and velocity
evaluated at the zone centers (as opposed to cell-averaged initialization using conserved
quantities, as discussed at length by Ramsey, et al.®).

As the simulation proceeds, the Guderley converging shock proceeds symmetrically in the 7-
direction; in effect, as if the z-dependence is not included. The converging shock reflects off the
entire length of the z-axis at # = 1.0, and a symmetric reflected shock forms and propagates
outward.

As observed in 1D spherical simulations by Ramsey, et al.®, the cylindrical calculations exhibit
boundary rarefaction errors due to the selection of the xXRAGE default boundary condition on the
outer r-axis. No such rarefactions are evident on the problem’s other boundaries, nor is any
symmetry-breaking immediately evident at the selected times of interest.

Figures C.1-C.3 represent the extent to date under which the cylindrical Guderley problem has
been investigated using 2D axi-symmetry. A more comprehensive investigation would by
necessity involve an initialization using cell-averaged quantities, and perhaps involve
quantitative comparison to 1D cylindrical results (e.g., convergence analyses). This effort will be
reserved for a future study.
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Fig. C.1b: Initialization of a y = 1.4 cylindrical Guderley solution in a 2D axi-symmetric grid; velocity vectors.

LA-UR-12-0XXXX

Page 83 of 100



12 T 0.25 B T
10} ] ]
! ] 0.20} ]
—_— 8— T 1
O ]  0.15} i

- w .

- -
£ 1 ® ]
> e : ) ]
= | ] E 4
§ | ] % 0.10+ ]
s 4l i :
5l ] 0.05} ]
0 i L A 1 A ' i 1 1 A A AL 1 'l 'l 'l 'l " " " " 3y 3 3 3 1 3 i i i 1 i 3 1 3 j
0 1 2 3 4 0.000 1 2 3 4

' : j ] 0.0 T T -

0.6 /\ ]

3 -0.1F ]

0.5} ]

- ] -0.2} ]

™ -

| 1 - ]

L 0.4f - E [ ]

£ ] § -osf ]

E h F -

§ o-3f ] 8 -oaf ]

e $ i .
1= 4

& 0.2F 1 —0.5F 2

o.af -0.6f h

0.0 T S TSR —0.7: I T T -

o
N
“
-
o
N
w
-

r (cm) r (cm)
Figure C.1c: Initialization of a y = 1.4 cylindrical Guderley solution in a 2D axi-symmetric grid; scatter plots.
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Fig C.2b: Evolution of Fig. C.1 initialization to ¢ = 0.5 (converging flow); velocity vectors.
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Figure C.3b: Evolution of Fig. C.1 initialization to # = 1.5 (diverging flow); scatter plots.
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APPENDIX D: SURROGATE GUDERLEY PROBLEM FOR 2D CARTESIAN
GEOMETRY

Constructing a 2D Cartesian SGP setup in xXRAGE (v1109.02) is very similar to the 2D axi-
symmetric case, and is intended to isolate asymmetric wall-heating in the divergent flow regime
as an axi-symmetric phenomenon. For these simulations, the following code options were used
but are not necessarily unique:

Code default units (cgs)
Specific heat ¢, = 1.0 erg/(g-eV), so temperature and SIE are equivalent
Adaptive time step
Stop time = 30.0 s
Boundary condition at x = 0 cm: code default (symmetric/reflective BC)
Boundary condition at x = 10 cm: code default (reflective BC')
Boundary condition at y = 0 cm: code default (rigid wall BC)
Boundary condition at y = 10 cm: code default (reflective BC)
Initial uniform grid spacing dx = dy = 0.04 cm
Benchmark solution: 1D cylindrical SGP with dr = 0.001 cm
AMR settings (where applicable):
0 A maximum of 5 refinement levels are allowed
0 pctdiv=0.001

The 2D Cartesian SGP is not otherwise identical to its 2D axi-symmetric counterpart: in the
former problem shocks will not propagate as quickly in the absence of a curvilinear ordinate (and
thus the increased stop time, as compared to the 1D spherical and 2D axi-symmetric cases). Even
s0, the 2D Cartesian SGP is useful for the intended purpose.

Initialization of the 2D Cartesian SGP on a square mesh with and without AMR 1is subject to the
same XRAGE subtleties as discussed in Sec. IV.

D.1: Uniform Grid
Figures D.1-D.4 show selected converging regime (Figs. D.1 and D.3) and diverging regime

(Figs. D.2 and D.4) results of a 2D Cartesian SGP calculation, intended only to address the
asymmetric wall-heating phenomenon.
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Figure D.1: 2D Cartesian SGP results at # = 14 s (converging flow).
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Figure D.2: 2D Cartesian SGP results at # = 20 s (diverging flow).
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Figure D.3: 2D Cartesian SGP line-out results at ¢ = 14 s (converging flow).
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Figure D.4: 2D Cartesian SGP line-out results at # = 20 s (diverging flow).

Figures D.1-D.4 show that flow symmetry is better maintained in the 2D Cartesian (as opposed
to the 2D axi-symmetric case). No asymmetric wall heating error is visible in the SIE field at ¢ =
20 s, though a variety of other errors (due to the relatively low grid resolution) are present.
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D.2: Adaptive Mesh Refinement

Figures D.5-D.8 show converging regime (Figs. D.5 and D.7) and diverging regime (Figs. D.6
and D.8) results of a 2D Cartesian SGP calculation (with AMR settings enabled), intended only
to address the asymmetric wall-heating phenomenon.
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Figure D.5: 2D Cartesian SGP results at ¢ = 14 s (converging flow) with AMR.
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Figure D.6: 2D Cartesian SGP results at ¢ = 20 s (diverging flow) with AMR.
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Figure D.7: 2D Cartesian SGP line-out results at ¢ = 14 s (converging flow) with AMR.
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Figure D.8: 2D Cartesian SGP line-out results at £ = 20 s (diverging flow) with AMR.

Figures D.5-D.8 show that the use of AMR causes much sharper shock profiles to be generated
in the 2D Cartesian simulation. As was the previously the case, flow symmetry is better
maintained in the 2D Cartesian case (as opposed to the 2D axi-symmetric case). No asymmetric
wall heating error is visible in the SIE field at # = 20 s. The maximum error in the AMR
simulation appears to be found along the 45-degree line.

These results seem to confirm the hypothesis regarding asymmetric wall heating presented in

Sec. IV, though additional work must be done to quantitatively assess the quality of the 2D
Cartesian result sets.
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APPENDIX E: SAMPLE xRAGE INPUT DECKS

E.1: 1D Spherical Symmetry

1D spherical shock tube problem, gamma = 1.4
512000 uniform initial zones over r = (0,10)
no AMR

Built by S.D. Ramsey, 1/5/12

I CALCULATIONAL CONTROL VARIABLES

1
pname

= rsst_no_amr
kread = -1
ncmax = 5000000
tmax = 20.0
tedit = 1.0
dtname = 1.0
dodmpxdt = .true
ncedit = 0O
modcyc = 1000
uselast = _false.
mincellpe = 1
maxcel lpe = 1000000

1
dohydro = _true.

doheat = _.false.
dorad = .false.

1

Inorecon = .false.

cylin = .false.

sphere = _true.

!

imxset = 512000

dxset = 1.9531250E-05
1

Inumlev = 10

Imxcells = 2000000
Ipctdiv = 1.e-3
sizemat(l) = 1.9531250E-05
I

numfine = 1
nummat = 1

keos = 0
matdef(16,1) = 0.4
matdef(30,1) = 1.0
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numreg = 2
1

typreg(l) =1
diareg(1,1) = 20.0
xreg(l1,1) = 0.0
matreg(l) = 1
rhoreg(1) = 6.0
siereg(l) = 0.06
rdreg(1l) = 0.0

I

typreg(2) =1
diareg(1,2) = 8.0
xreg(1,2) = 0.0
matreg(2) = 1
rhoreg(2) = 1.0
siereg(2) = 1.0e-10

rdreg(2) = 0.0
1

E.2: 2D Axi-Symmetry

1 2D (r,z) spherical shock tube problem, gamma = 1.4

T 1000 x 1000 uniform zones over r = (0,10) and z = (0,10)
I do not include AMR

I Built by S.D. Ramsey, 9/22/11

1

pname

= rsst2d_amr
kread = -1
ncmax = 10000000
tmax = 20.0
tedit = 1.0
dtname = 1.0
dodmpxdt = .true
ncedit = 0
modcyc = 1000
uselast = _false.
mincellpe = 1
maxcel lpe = 10000000

1
dohydro = _true.

doheat = .false.
dorad = .false.

1

norecon = .true.

cylin = _true.
sphere = _false.
1
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imxset = 1000
Jmxset = 1000
dxset = 0.01
dyset = 0.01
1

Tnumlev = 5
Imxcells = 2000
Ipctdiv = 1.e-3
1

sizemat(1l) = O.
1

numfine = 1
nummat = 1
keos = 0
matdef(16,1)
matdef(30,1)
numreg = 2
1
matreg(l)
rhoreg(1)
siereg(l)
xdreg(1)
ydreg(1)
xlreg(l)
xrreg(l)
ybreg(1)
yareg(1l)
1

I n
[eNeoN )

typreg(2) =
diareg(1,2)
xreg(1,2)
yreg(1,2)
matreg(2)
rhoreg(2)
siereg(2)
xdreg(2) = 0.0
ydreg(2) = 0.0
1
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