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Rough Heuristics
Continuum grid size:

• pore throats 4− 8 unknowns→ 30 unknowns per grain + throat
• ∼ 10 “grains” to form REV

↪→ ∼ 3002 unknowns, per continuum REV (in 2D)

Time constraints:
• LB requires v/c� 1 ≈ 10−1

↪→ ∼ 3× 103 timesteps to cross a single continuum cell.

Basic continuum problem: 1002 continuum cells
↪→ ∼ 3× 105 timesteps to cross continuum domain
↪→ ∼ 30002 unknowns in domain

For a 10 µm grid size, our domain is ∼ 30 cm, and (assuming water) ran for ∼ 50 s.

∼ 1 hour on 512 CPU cores.
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Pore-scale methodology: the Lattice Boltzmann Method
• Why the LB method?

• Fully parallel algorithm
• Easy to implement in complex geometries
• Interfacial dynamics are automatic (no interface tracking)

• Single phase LB method:
• Solves the discrete Boltzmann eq. for a distribution of particles fi(x, t)

fi(x + ei∆t, t + ∆t) − fi(x, t)︸ ︷︷ ︸
Streaming

= Λ
[
f eq
i (x, t) − fi(x, t)

]︸ ︷︷ ︸
Collision

• ei is the discretized velocity
• f eq

i is the equilibrium distribution function
• Λ is the relaxation operator

ρ =
∑

i

fi ρu =
∑

i

fiei p = c2
sρ ν = c2

s (τ − 0.5)∆t

• Navier-Stokes:
∂ρ

∂t
+∇ · (ρu) = 0

∂ (ρu)
∂t

+∇ · (ρuu) = −∇p +∇ ·
[
µ
(
∇u + (∇u)T

)]
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https://software.lanl.gov/taxila/trac

• Brings together many advances in the LBM from LANL into a single software
framework.

• Released as open source software to further enhance collaboration and
engage the LB community.

• Taxila:
• solves both single-, multi-phase and multicomponent flow in complex geometries for

in 2D and 3D.
• demonstrates strong scaling to hundreds of thousands of cores.
• leverages the Portable, Extensible Toolkit for Scientific Computation (PETSc) for

data structures, communication, and parallel I/O.

• Coupled to PFloTran, which allows for micro-scale reactive transport
modeling and hybrid, multi-scale modeling.
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Overlapping domain decomposition (Schwarz 1870)

• Initially applied to identical equations in each domain as a method
of solving complex domains.

• Can apply to different physical equations, assuming the physics are
equivalent in the overlap region.
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Hybrid solution process

Idea: use overlapping domain decomposition with an overlap where the pore-scale
Navier-Stokes system upscales to the continuum Darcy system.
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LB

M • Calculate consistent properties within the
overlap (φ,K)

• Initialize pressure, flow everywhere,
setting boundary conditions from the initial
condition.

• do t = 0...tfinal:
• Advance each subdomain by ∆t using

BCs
• Interpolate continuum domain pressure to

form BC for LBM.
• Integrate LBM mass flux (or pressure) to

form BC for Continuum.
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Verification: Flow along a fracture
velocity magnitude [m/s]
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• LB domain of resolution 1000x400, continuum domains with resolution 10x10
• Mean velocity in the LBM domain (including zero velocity in the wall nodes) are

equal to the Darcy velocity in the overlap region.
• Verification: Total flux of the hybrid calculation is equal (to tolerance) to the total

flux of a LB simulation on the full domain.
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Flow across a fracture
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Flow across a fracture (left to right)
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Pressure field across the fracture in the continuum region (blue) and pore-scale region (red).
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Porescale chemistry: Coupling LBM (flow) to PFLOTRAN (reactive transport)

Finite volume

LBM node
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Porescale chemistry: Coupling LBM (flow) to PFLOTRAN (reactive transport)
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Porescale chemistry: Coupling LBM (flow) to PFLOTRAN (reactive transport)
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Hybrid Extension to Reactive Transport
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Conclusions
Introduction and Motivation

• In spatially and temporally localized instances, capturing sub-reservoir scale information
is necessary.

• Capturing sub-reservoir scale information everywhere is neither necessary, nor
computationally possible.

The lattice Boltzmann Method for solving pore-scale systems.
• At the pore-scale, LBM provides an extremely scalable, efficient way of solving

Navier-Stokes equations on complex geometries.

Coupling pore-scale and continuum scale systems via domain decomposition.
• By leveraging the interpolations implied by pore-scale and continuum scale

discretizations, overlapping Schwartz domain decomposition is used to ensure continuity
of pressure and flux.

• This approach is demonstrated on a fractured medium, in which Navier-Stokes equations
are solved within the fracture while Darcy’s equation is solved away from the fracture

• Coupling reactive transport to pore-scale flow simulators allows hybrid approaches to be
extended to solve multi-scale reactive transport.
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