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Abstract:

This talk will examine some mathematical methods for image
processing and the solution of underdetermined, linear inverse
problems. The talk will have a tutorial flavor, mostly accessible to
undergraduates, while still presenting research results. The primary
approach is the use of optimization problems. We will find that
relaxing the usual assumption of convexity will give us much better
results.

Slide 1 of 28



Image processing and
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Rick Chartrand

Los Alamos National Laboratory

June 26, 2012

In theory, there’s no
difference between theory
and practice. In practice,
there is.

–Yogi Berra
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Mathematical image processing

Mathematical image processing

Mathematics is used for many imaging tasks, such as denoising:

noisy image denoised image

Noisy images are produced by photography in low-light conditions,
some kinds of microscopy, ultrasound imaging, radiography of
dense objects, and many other scientific applications.
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Mathematical image processing

Mathematical image processing

Mathematics is used for many imaging tasks, such as denoising,
deblurring:

blurry image deblurred image

Blurry images arise in unsteady photography, imaging with
imperfect optics, and very-long-baseline radio astronomy.
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Mathematical image processing

Mathematical image processing

Mathematics is used for many imaging tasks, such as denoising,
deblurring, and reconstruction:

MRI data 3.5% sampled reconstruction

Inversion of measurement processes is necessary in radiography,
MRI, interferometric astronomy, and many other applications.
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Mathematical image processing

Image processing as multivariable calculus

An M ×N -pixel image can be regarded as a point in RM×N or
RMN .
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Mathematical image processing

Images as functions

For modeling purposes, it can be more convenient to regard an
image as a function of a continuous, 2-D variable.

100× 100 noisy
image

function on [0, 100]× [0, 100]
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Mathematical image processing

Variational image denoising

A common approach in image processing is to formulate an
optimization problem whose solution will have desirable properties.

For example, for image denoising, we can penalize oscillations:

min
u

1

2

∫
|∇u(x, y)|2 dx dy +

λ

2

∫
|u(x, y)− f(x, y)|2 dx dy.

The second term penalizes discrepancies between u and f , with
the value of λ controlling the balance.

The discrete analog is to minimize the following:

F (~u) =
1

2

MN∑
i=1

[
(Dx~u)2i + (Dy~u)2i

]
+
λ

2

MN∑
i=1

(ui − fi)2.

Dx and Dy are matrices for computing finite-difference
approximations of derivatives.
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Mathematical image processing

High-dimensional calculus

We can compute derivatives of F :

∇F (~u) =
(
DT
xDx +DT

yDy + λI
)
~u− λ~f,

∇2F (~u) = DT
xDx +DT

yDy + λI.

Since the Hessian of F is positive definite, we can solve our
optimization problem by solving the linear system∇F (~u) = 0.

The linear diffusion results in edges being blurred:
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Mathematical image processing

Total variation

An alternative is to use total variation (TV) regularization:

min
u

∫
|∇u|+

λ

2

∫
|u− f |2, or

min
~u
F (~u) :=

1

2

MN∑
i=1

√
(Dx~u)2i + (Dy~u)2i +

λ

2

MN∑
i=1

(ui − fi)2;

∇F (~u) = DT
x

Dx~u

|D~u|
+DT

y

Dy~u

|D~u|
+ λ(~u− ~f).

I Let ~u(0) = ~f .
I For any k ≥ 0, given ~u(k), let Qk be the diagonal matrix

having the values 1/|D~u(k)|. Then solve(
DT
xQkDx +DT

yQkDy + λI
)
~u(k+1) = λ~f .
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Mathematical image processing

Edge (non)preservation

The intensity diffuses along edges, but not
across them. We get sharp edges, but the
shape is not preserved:

This is because TV penalizes the length of edges in the image. For
example, if u = χE is the characteristic function of a set E,∫

|∇χE| = length(∂E).

Consequently, long edges surrounding little area will not be
preserved.
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Mathematical image processing

Preserving noisy shapes

Our fix is to modify the regularization term by introducing an
exponent p ∈ (0, 1), thereby softening the jump penalty:

min
u

∫
|∇u|p +

λ

2

∫
|u− f |2,

or

min
~u

1

2

MN∑
i=1

[
(Dx~u)2i + (Dy~u)2i ]

p/2 +
λ

2

MN∑
i=1

(ui − fi)2.

In the continuous setting, this penalizes a (2− p)-dimensional
measure of edges. The length of edges is not penalized.

The discrete implementation penalizes edge length less for smaller
p. Noise is still removed.
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Mathematical image processing

Examples

noisy image p = 2 p = 1 p = 3/4 p = 1/2 p = 1/4
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Sparse image reconstruction

Linear inverse problems

In many scientific applications, we have data ~b that constitute linear
measurements A~s of some object or state ~s, so that we need to
solve a linear system of equations, A~x = ~b.

There are many cases where we don’t have (or don’t want to have)
as many measurements as unknowns, making our linear system
underdetermined. What then?

X-ray CT: less radiation MRI: less time, less $ remote sensing: fewer
sensors
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Sparse image reconstruction

Prior knowledge

Key idea: real images are sparse (or compressible).

Almost all solutions consistent with
the data will be like this.

Only a minuscule fraction might look
like this.

All we need to exploit this is a way to extract sparse solutions to
linear systems.
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Sparse image reconstruction

Sparsity

A vector ~s (or matrix) is called sparse if most of its entries are zero.

More general notions of sparsity include:
I Transform sparsity: Ψ~s is sparse, for some linear

transformation Ψ. Examples: gradient; wavelet transforms.
I Sparse representation: ~s = Φ~x, for some sparse vector ~x and

linear transformation Φ. Examples: wavelet transforms,
learned dictionaries.
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Sparse image reconstruction

Exploiting sparsity

We can find sparse solutions to linear systems by solving
optimization problems with a sparsity-promoting penalty function.

min
~x
P (Ψ~x), subject to A~x = ~b,

or min
~x
P (~x), subject to AΦ~x = ~b.

A good penalty function puts a premium on being nonzero.
Generally P (~x) =

∑N
i=1 p(xi) for some function p. Examples:.
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Sparse image reconstruction

Abstracting length

The penalty functions P (~x) =
∑N
i=1 |xi|p can all be regarded as

measuring some notion of “size” of ~x.

When p = 2, this is the square of the length of the vector ~x, often
written ‖~x‖. Following this example, we define a more general
notion of length:

‖~x‖p :=

( N∑
i=1

|xi|p
)1/p

.

This is called the `p norm of ~x.

(When N =∞, `p itself is the set of sequences ~x where the
infinite series ‖~x‖p converges. This is a vector space, so one talks
about “`p spaces.” The ` is for Henri Lebesgue.)

Not quite one of these cases: ‖~x‖0 is the number of nonzero
components of ~x. Note ‖~x‖0 = limp→0 ‖x‖pp.
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Convexity, nonconvexity

Convex sets

A set E is convex iff E contains the line segment joining any two
points in E.

a convex set

a
b

a nonconvex set
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Convexity, nonconvexity

Convex functions

x

y = f(x)

a

f(a)

bta+ (1− t)b

f(b)
tf(a) + (1− t)f(b)

f(ta+ (1− t)b)

A function f : X → R̄ is convex iff its epigraph is a convex set,
where epi f = {(x, y) ∈ X × R̄ : y ≥ f(x)},

or, iff for all
a, b ∈ X and t ∈ [0, 1], f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b).
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Convexity, nonconvexity

Convexity and optimization

a convex function a strictly convex function

a nonconvex function

Convexity is desirable for optimization, as convex functions do not
have nonglobal minimizers. Strictly convex functions have unique
minimizers. Nonconvex functions can be very difficult to minimize.
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Examples

Phantom example
We reconstruct an image from samples of its Fourier transform:

min
~x
‖∇~x‖p, subject to (F~x)i = (F~s)i, for i ∈ S.

test image ~s 18 lines/6.9% sampled p = 1

9 lines/3.5% sampled p = 1 p = 1/2
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Examples

3-D tomography

Six radiographs allow reconstruction of a stalagmite segment:

radiograph isosurface

iso from end

z slice x slice y slice

(with Gary Sandine, LANL)
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Examples

Shortening MRI scans

Synthetic MRI example, 256× 256, 20% sampling, using both
wavelet-transform and gradient penalty terms:

image synthetically sampled reconstruction with p = 1 reconstruction with p = 1/2
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Examples

Interferometric imaging
Given a network of N telescopes, the correlation between the
electric field at each pair gives us

(N
2

)
Fourier-transform samples.

Radio astronomers use Earth-rotation synthesis to increase the
sampling. But what about geostationary objects?

test image 16 telescopes,
p = 1

16 telescopes,
p = 1/2

10 telescopes,
p = 1

10 telescopes,
p = 1/2
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10 telescopes,
p = 1

10 telescopes,
p = 1/2 Slide 27 of 28



Examples

Why might global minimization be possible?

Consider a smoothed penalty function, restricted to the feasible
plane A~x = ~b:

N∑
i=1

(
x2
i + ε

)p/2
.

A moderate ε fills in the local minima.
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Why might global minimization be possible?

Consider a smoothed penalty function, restricted to the feasible
plane A~x = ~b:
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i=1
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Examples

Why might global minimization be possible?

Consider a smoothed penalty function, restricted to the feasible
plane A~x = ~b:

N∑
i=1

(
x2
i + ε

)p/2
.

A moderate ε fills in the local minima.

ε = 0.001 Slide 28 of 28



Summary

Summary

I Many imaging problems can be tackled mathematically.
I Denoising with nonconvex penalty functions preserves shapes

better.
I Nonconvex penalty functions also allow more severely

underdetermined linear inverse problems to be solved.
I Smoothing the penalty function appears to keep algorithms

from converging to nonglobal minima.

math.lanl.gov/~rick
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