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U N C L A S S I F I E D 

Abstract 
Since the origin of quantum theory in the 1920’s, some of its practitioners (and founders!) have 

been troubled by some of its features, including indeterminacy, nonlocality and entanglement. The 
“collapse” process described in the Copenhagen Interpretation is suspect for several reasons, and the 
act of “measurement,” which is supposed to delimit its regime of validity, has never been 
unambiguously defined. In recent decades, nonlocality and entanglement have been studied 
energetically, both theoretically and experimentally, and the theory has been reinterpreted in 
imaginative ways, but many mysteries remain. 

We propose that it is necessary to replace the theory by one that is explicitly nonlinear and 
nonlocal, and does not distinguish between measurement and non-measurement regimes. We have 
constructed such a theory, for which the phase of the wavefunction plays the role of a hidden variable 
via the process of zitterbewegung. To capture this effect, the theory must be relativistic, even when 
describing nonrelativistic phenomena. It is formulated as a variational principle, in which Nature 
attempts to minimize the sum of two spacetime integrals. The first integral tends to drive the solution 
toward a solution of the standard quantum mechanical wave equation, and also enforces the Born rule 
of outcome probabilities. The second integral drives the collapse process. 

We demonstrate that the new theory correctly predicts the possible outcomes of the electron two-
slit experiment, including the infamous “delayed-choice” variant. We observe that it appears to resolve 
some long-standing mysteries, but introduces new ones, including possible retrocausality (a cause later 
than its effect). It is not clear whether the new theory is deterministic. 
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Outline 
§  Defining the task (view from 20,000 feet) 

§  What’s wrong with standard quantum mechanics? 
§  Characteristics of a new theory 
§  But are hidden-variable theories allowed? 

§  The proposed variational principle 
§  Nature minimizes a sum of integrals over all (or regions of) spacetime 
§  A1 term drives toward wave equation solution 
§  A2 term drives collapse 
§  A1 limits collapse rate 
§  A1 enforces Born rule 

§  Example calculation—the electron two-slit experiment 
§  Original and “delay-choice” variants 
§  Calculation of the original form of the experiment 
§  Prediction for the delayed-choice form 

§  Quantum mysteries old and new 
§  Where do we go from here? 

Slide 3 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

What’s wrong with standard quantum mechanics: 
Wave function versus “collapse” 
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Wave equation is linear, deterministic, and time-symmetric 

Collapse process is nonlinear, intrinsically random, and asymmetric in time; its 
workings are unknown and unknowable 

Regimes of validity depend on the answer to the question, “Is a measurement 
being made?”—but “measurement” is not well-defined 
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What’s wrong with standard quantum mechanics: 
Wave function versus “collapse” 
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Wave equation is linear, deterministic, and time-symmetric 

Collapse process is nonlinear, intrinsically random, and asymmetric in time; its 
workings are unknown and unknowable 

Regimes of validity depend on the answer to the question, “Is a measurement 
being made?”—but “measurement” is not well-defined 

 
If we have to go on with these damned quantum jumps, then I’m sorry that I ever got 
involved. 

 —E. Schrödinger, quoted by John Bell.  
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What’s wrong with standard quantum mechanics: 
Wave function versus “collapse” 
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Wave equation is linear, deterministic, and time-symmetric 

Collapse process is nonlinear, intrinsically random, and asymmetric in time; its 
workings are unknown and unknowable 

Regimes of validity depend on the answer to the question, “Is a measurement 
being made?”—but “measurement” is not well-defined 

 
If we have to go on with these damned quantum jumps, then I’m sorry that I ever got 
involved. 

 —E. Schrödinger, quoted by John Bell.  

[S]o long as the wave packet reduction is an essential component, and so long as we do 
not know exactly when and how it takes over from the Schrödinger equation, we do not 
have an exact and unambiguous formulation of our most fundamental physical theory. 

 —John Bell, “On wave packet reduction in the Coleman-Hepp model,” in J. S. Bell, Speakable and 
Unspeakable in Quantum Mechanics, 2nd ed. (Cambridge, 2004). 
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Who qualifies as an observer? 

So what do you do for the wavefunction of the universe? 

What’s wrong with standard quantum mechanics: 
Dependence on the observer 
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Who qualifies as an observer? 

So what do you do for the wavefunction of the universe? 

 

 

I recall that during one walk Einstein suddenly stopped, turned to me and asked 
whether I really believed that the moon exists only when I look at it. 

 —A. Pais, “Einstein and the quantum theory,” Rev. Mod. Phys. 51(4), 863 (1979). 

What’s wrong with standard quantum mechanics: 
Dependence on the observer 
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Who qualifies as an observer? 

So what do you do for the wavefunction of the universe? 

 

 

I recall that during one walk Einstein suddenly stopped, turned to me and asked 
whether I really believed that the moon exists only when I look at it. 

 —A. Pais, “Einstein and the quantum theory,” Rev. Mod. Phys. 51(4), 863 (1979). 

Was the world wavefunction waiting to jump for thousands of millions of years 
until a single-celled living creature appeared? Or did it it have to wait a little 
longer for some more highly qualified measurer—with a Ph.D.? 

 —John Bell, “Quantum mechanics for cosmologists,” in J. S. Bell, Speakable and 
Unspeakable in Quantum Mechanics, 2nd ed. (Cambridge, 2004). 

What’s wrong with standard quantum mechanics: 
Dependence on the observer 
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What’s wrong with standard quantum mechanics: 
More complaints 

I am suspicious of the following: 
Intrinsic randomness of nature 

Time asymmetry of the collapse process 

Re-interpretation of QM as a theory of the observer’s knowledge 
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We were all taught to accept these features, 
but is there an alternative? 
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Many other “fixes” have been proposed 
Here are a few (far from a complete list!): 
Pilot-wave theory 

 L. de Broglie (1927), D. Bohm (1952) 

Relative state (“many worlds”) interpretation 
 H. Everett (1957) 

Nonlinear Schrödinger equations 
 P. Pearle (1976) 

Stochastic wave equations, collapse theories 
 P. Pearle (1979), N. Gisin (1984), G. Ghirardi, A. Rimini, T. Weber (1986), L. Diosi (1990) 

Transactional interpretation 
 J. Cramer (1980) 

Decoherence 
 H. D. Zeh (1980), W. Zurek (1981 etc.) 

Consistent histories 
 R. Griffiths (1984) 
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Characteristics desired for the new theory 

§  Unified formulation for measurement, non-measurement regimes 

§  Phase of the wavefunction as a hidden variable 
§  Manifested in zitterbewegung (beats between positive- and negative-energy modes) 
§  Zitterbewegung frequency ~ 1020 Hz, so “hidden” from experimenters 
§  Relativistic formulation required (even for non-relativistic systems)  

§  Nonlinear, nonlocal form 
§  Nonlocality           integral form           variational principle 
§  Relativistic requirement            integrals over 4-D spacetime 

§  Consistent with the experimental record; e.g., satisfies the Born rule (the rule 
that outcome probabilities = square of initial amplitudes in original 
superposition) 
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But aren’t hidden-variable theories impossible? 
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U N C L A S S I F I E D 

They described a thought experiment with nonlocal effects that seem wrong—
unless one adds hidden variables to the theory (and thus keeps the effects 
local) 

 

 

 

 

 

 

 

But EPR’s disagreement with the orthodox (Copenhagen) interpretation 
appeared to be merely philosophical (that is, not experimentally testable) 

Einstein, Podolsky and Rosen (1935) thought 
experiment 
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entangled 
particles… 

separated 
in space: 

measurement of 
one of them… 

constrains result of 
measurements of 

the other! 
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John Bell (1964) discovered a way to resolve the 
dispute experimentally 

One makes a large number of EPR-type measurements, collecting statistics 

If nature is described by a local hidden-variable theory, statistics will satisfy the 
“Bell inequality.” 

On the other hand, standard quantum mechanics (SQM) will violate the Bell 
inequality. 

 

Many such experiments have been conducted (Clauser et al., Aspect et al., …) 
and always found to agree with SQM. 
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This rules out local hidden-variable theories. 
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Bell-type measurements still admit the possibility of 
nonlocal hidden-variable theories 

To those for whom nonlocality is anathema, Bell’s Theorem finally spells 
the death of the hidden-variables program. But not for Bell. None of the 
no-hidden-variables theorems persuaded him that hidden variables were 
impossible. What Bell's Theorem did suggest to Bell was the need to 
reexamine our understanding of Lorentz invariance…. “What is proved 
by impossibility proofs,” Bell declared, “is lack of imagination.” 

 —N. D. Mermin, “Hidden variables and the two theorems of John 
Bell,” Rev. Mod. Phys. 65(3), 803-815 (1993). 
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But didn’t von Neumann prove that hidden-variable 
theories are untenable? 

(1932) John von Neumann publishes “proof” that hidden-variable theories are 
not possible 

(1935) Grete Hermann points out fatal flaw in von Neumann’s argument—
unnoticed 

(1952) David Bohm publishes hidden-variables theory (based on work by de 
Broglie, 1927) that predicts same results as SQM (and thus cannot be 
disproved!)—gains little attention 

(published 1966) John Bell realizes that Bohm’s theory is an existence proof, 
and rediscovers von Neumann’s error 
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No, he didn’t. 
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The proposed variational principle (VP) 

§  Nature minimizes a sum of integrals over all (or regions of) spacetime 

 

§  A1 term drives solution toward solution of standard QM wave equation 

§  A2 term drives wavefunction collapse 

§  A1 limits collapse rate 

§  A1 enforces Born rule  

§     is constant and dimensionless (and presently unknown) 
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A1 term drives solution toward solution of standard 
QM wave equation 
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A2 term drives wavefunction collapse  

We minimize the position-momentum (and time-energy) uncertainty 

by defining 

 

 

 

 

(four-point integration). 

A superposition of states has greater uncertainty A2 than a pure state, so A2 
drives the wavefunction toward collapse. 
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Nonlocality of A2 term: 
Integration variables must be spacelike separated 

Two-point integral: 

 spacelike separated 

 spacelike separated, weighted 

 spacelike separated, weighted,  
  relativistically covariant 
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If                                      and                     vary slowly in time, 

we can use the property 

to write 

 

 

 

 

 

and then use ordinary 3-space orthonormality relations to evaluate integrals! 

The f  factor allows spacetime integrals to factor 

Slide 22 

δ(A1 + �A2) = 0

A1 ≡

�
R d4x ψ† (/π†

−m) (/π −m)ψ

m2
�
R d4x ψ† ψ

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y)

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

f(z) = u(−zµzµ) = u
�
|�z|2 − (z0)2

�

f(z) =
u(−zµzµ)

2|�z|

f(z) =
u(−zµzµ)

π
√
−zµzµ

x0
− y0

|�x− �y|

2|�x− �y|
�

dy0 f(x− y) = 1

O(x, y) = R(x)S(y)

ψ†(x)ψ(x)
�

d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

=

�
dt

�
d3x d3y ψ†(t, �x)ψ†(t, �y)R(t, �x)S(t, �y)ψ(t, �x)ψ(t, �y)

�
dy0 f(x− y)

=

�
dt

��
d3x ψ†(t, �x)R(t, �x)ψ(t, �x)

� ��
d3y ψ†(t, �y)S(t, �y)ψ(t, �y)

�

1

δ(A1 + �A2) = 0

A1 ≡

�
R d4x ψ† (/π†

−m) (/π −m)ψ

m2
�
R d4x ψ† ψ

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y)

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

f(z) = u(−zµzµ) = u
�
|�z|2 − (z0)2

�

f(z) =
u(−zµzµ)

2|�z|

f(z) =
u(−zµzµ)

π
√
−zµzµ

x0
− y0

|�x− �y|

2|�x− �y|
�

dy0 f(x− y) = 1

O(x, y) = R(x)S(y)

ψ†(x)ψ(x)
�

d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

=

�
dt

�
d3x d3y ψ†(t, �x)ψ†(t, �y)R(t, �x)S(t, �y)ψ(t, �x)ψ(t, �y)

�
dy0 f(x− y)

=

�
dt

��
d3x ψ†(t, �x)R(t, �x)ψ(t, �x)

� ��
d3y ψ†(t, �y)S(t, �y)ψ(t, �y)

�

1

δ(A1 + �A2) = 0

A1 ≡

�
R d4x ψ† (/π†

−m) (/π −m)ψ

m2
�
R d4x ψ† ψ

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y)

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

f(z) = u(−zµzµ) = u
�
|�z|2 − (z0)2

�

f(z) =
u(−zµzµ)

2|�z|

f(z) =
u(−zµzµ)

π
√
−zµzµ

x0
− y0

|�x− �y|

2|�x− �y|
�

dy0 f(x− y) = 1

O(x, y) = R(x)S(y)

ψ†(x)ψ(x)
�

d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

=

�
dt

�
d3x d3y ψ†(t, �x)ψ†(t, �y)R(t, �x)S(t, �y)ψ(t, �x)ψ(t, �y)

�
dy0 f(x− y)

=

�
dt

��
d3x ψ†(t, �x)R(t, �x)ψ(t, �x)

� ��
d3y ψ†(t, �y)S(t, �y)ψ(t, �y)

�

1

We extend this idea to four points for the A2 term 

δ(A1 + �A2) = 0

(/π −m)ψ = 0

A1 ≡

�
R d4x ψ† (/π†

−m) (/π −m)ψ

m2
�
R d4x ψ† ψ

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y)

�
d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

f(z) = u(−zµzµ) = u
�
|�z|2 − (z0)2

�

f(z) =
u(−zµzµ)

2|�z|

f(z) =
u(−zµzµ)

π
√
−zµzµ

x0
− y0

|�x− �y|

2|�x− �y|
�

dy0 f(x− y) = 1

O(x, y) = R(x)S(y)

ψ†(x)ψ(x)
�

d4x d4y ψ†(x)ψ†(y)O(x, y)ψ(x)ψ(y) f(x− y)

∼=

�
dx0

�
d3x d3y ψ†(x0, �x)ψ†(x0, �y)R(x0, �x)S(x0, �y)ψ(x0, �x)ψ(x0, �y)

�
dy0 f(x− y)

=

�
dt

��
d3x ψ†(t, �x)R(t, �x)ψ(t, �x)

� ��
d3y ψ†(t, �y)S(t, �y)ψ(t, �y)

�

∆t � �/∆E

A1(t) ∝

�
dt

�

j

|C �
j(t)|

2

ψ(t, �x) =
�

j

Cj(t)ψj(t, �x)

A2 =
�
{(xµ

1 − xµ
2) [p3µ(x3)− p4µ(x4)]}

2
�

1



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

A1 term limits collapse rate 

If we expand 

 

 

then it turns out that 

 

 

 

which penalizes rapid changes in the wavefunction. 

This prevents collapse from being instantaneous. 

The experimental record (interpreted according to standard QM) cannot resolve 
below                    , so there is no contradiction. 
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Let                      at time  , if measurement began at time 

 

         = 0 

so (1) outcome depends on start time    , 

(2) zitterbewegung is the mechanism, and 

(3) Born rule is satisfied; averaging over   , 

 

 

But at initial time,             is       
initial weight of mode j 

A1 term enforces Born rule 
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At final time,             is 
probability that system 
ended up in mode j 
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is the Born rule! 
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The two-slit interference experiment is a classic 
demonstration of wave-particle duality 
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particle detectors           position measurement 
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The two-slit interference experiment is a classic 
demonstration of wave-particle duality 
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particle detectors           position measurement 

extended detector           wavelength measurement 
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The two-slit interference experiment is a classic 
demonstration of wave-particle duality 
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particle detectors           position measurement 

extended detector           wavelength measurement 

one particle at a time 
build up wavelength measurement 

IMAGE: Thomas Juffmann, Adriana Milic, Michael Müllneritsch, Peter 
Asenbaum, Alexander Tsukernik, Jens Tüxen, Marcel Mayor, Ori 
Cheshnovsky & Markus Arndt, “Real-time single-molecule imaging of 
quantum interference,” Nature Nanotechnology (2012) doi:10.1038/
nnano.2012.34, published online 25 March 2012. Image posted March 
29, 2012 at http://physicsworld.com/cws/article/news/2012/mar/29/
quantum-interference-the-movie. 
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The two-slit interference experiment is a classic 
demonstration of wave-particle duality 
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particle detectors           position measurement 

extended detector           wavelength measurement 

one particle at a time 
build up wavelength measurement 

“delayed choice” 
same as original experiment! 

choose detection system 
when electron is here 
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We apply the VP to the electron two-slit experiment 
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e– 
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Entanglement 
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The VP predicts the results of the electron two-slit 
experiment 
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constant minimized if superposition 
contains only one term 

A2 = x-p uncertainty (e-) 
+ zero-point uncertainty (e- ) 
+ t-E uncertainty (atoms) 
+ zero-point uncertainty (atoms) 

A2 forces collapse          localized measurement gives position 
A1 forces collapse to be smooth 
A1 enforces Born rule          detected positions sum to interference pattern 

so we predict position measurements, wavelength measurements, 
and the transition from one to the other! 
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How do we understand this solution intuitively? 
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It’s not ballistic motion 

 

nor a solution to the conventional 
wave equation 
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How do we understand this solution intuitively? 
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It’s not ballistic motion 

 

nor a solution to the conventional 
wave equation 

 

 

but a wave that satisfies the VP, 
and ends up at a well-defined 
location 
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What about the delayed-choice variant? 
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Therefore the VP correctly predicts that the “delayed-choice” variant has 
the same outcome as the original experiment. 

The integrals in the VP have significant 
contributions from electron wavefunction 

here, only at early times 

here, only at intermediate times 

here, only at late times  

…so the solution doesn’t care when the detection system was set up, as long as it 
is there when the electron arrives! 
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What happened to the paradox? 
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“delayed choice” 
same as original experiment! 

choose detection system 
when electron is here 

But we assert that Nature chooses solutions 
based on considering a block of spacetime 
(not just space) 

The “paradox” is the question 
“When did the electron decide 
whether to go through one slit 
or both?” 

So the decision was not made at a moment in time, but outside of time! 

x 
y 

t 
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Old mysteries addressed by this theory 

§  Unified theory for linear (unitary) and nonlinear (collapse) behavior 

§  No need for “observer” or special definition of “measurement” 

§  Not a theory about someone’s knowledge 

§  Time-symmetric 
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New mysteries to ponder 

§  Possible retrocausation (causes after effects) 
§  How does Nature avoid paradoxes? 

§  How does Nature solve the optimization problem? 
§  Local or global solution? 

§  Is the theory deterministic? 

§  How can we solve the optimization problem? 
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Where do we go from here? 

§  Apply theory to various gedanken and real experiments 

§  Experimental tests of the theory 
§  Can the (nonzero) duration of the “collapse” process be measured? 
§  Since competition with A2 prevents A1 from always being precisely zero, Born rule 

isn’t exact; can we predict and measure deviations from it? 
§  Is it possible to make repeated measurements quickly enough to detect temporal 

correlations arising from the phase of the wavefunction? 

§  Extend to quantum field theory 
§  Apply to photon experiments, e.g., “quantum eraser” variant of two-slit experiment 
§  Apply at higher energies 

§  etc. 
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