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David S. Moore
Shock and Detonation Physics Group
Los Alamos National Lab, Los Alamos, NM 87545 USA

Ultrafast laser based coherent control methods for explosives detection

The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their
(generally) low vapor pressure, environmental and matrix interferences, and packaging. We are
exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best
capabilities of recent advances in laser technology and recent discoveries in optimal shaping of
laser pulses for control of molecular processes to significantly enhance the standoff detection of
explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser
pulses to simultaneously enhance sensitivity to explosives signatures while dramatically
improving specificity, particularly against matrix materials and background interferences. These
goals are being addressed by operating in an optimal non-linear fashion, typically with a single
shaped laser pulse inherently containing within it coherently locked control and probe sub-
pulses. Recent results will be presented.
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» Stand-off detection methods in use
» Why another method?

* Optimal Dynamic Detection
— CDD basics
— Bandwidth broadening / vibronic control
—Multiplex CARS / mixtures
—Use of excited electronic state dynamics
—Summary
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Standoff Methods Demonstrated

* Raman
¢ Laser Induced Breakdown Spectroscopy - LIBS
* Laser Induced Fluorescence — LIF
¢ Laser Evaporation + LIF
* Infrared Spectroscopy

— Vapor phase

— Active and Passive
— Solid phase

Mid-IR Quantum Cascade Laser Imaging
Mid-IR QCL photothermal detection

Pulsed laser fragmentation with mid-IR QCL
Passive IR imaging

e THz Spectroscopy and Imaging
¢ Coherent anti-Stokes Raman
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Coherent Anti-Stokes Raman Spectroscopy - CARS
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NRC Review

Existing and Potential Standoff

Explosives Detection Techniques
(b) Trace Detection (2004)
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2Any of the "sniflers ° qualify as

electronic noses.
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one could choose to
selectively ionize or
dissociate particular
explosive molecules...”

Application to Explosives Detection

» We foresee a large
number of applicable
areas for ODD

—Circled in red
—One can imagine

a large number of
spectroscopies
with vastly
improved
characteristics
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Methods (as above)
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Linear spectroscopy - unshaped pulses

« Conventional steady-
state or linear
spectroscopy using
unshaped pulses CH,~NO,"

—Poor molecular
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Quantum Optimal Dynamic Discrimination (ODD)

+ Concept: Optimally
tailored laser pulses
(photonic reagents)

—Enables selective
addressing of different
species
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Control of quantum systems

» Customization of molecular Hamiltonian by optimally shaped field

\ H(t) = Ho — pe(t)

« Optimally drive quantum system towards desired final state

} Laser Control Field €(t) \

= :
) @W

= Constructive interference for |{'f)
* Destructive interference for 1) # |1 f)
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+ Control landscape has no traps J

— Given a controllable quantum system, there is always a

trap free pathway to the top of the control landscape
from any location.

» Optimization is efficient and fast
—Tens of generations using genetic algorithms |
—Tens of thousands of experiments per hour g ®

» Optimal control is a smart machine 0

—Uses science, engineering, and technology in the most ——
efficient way

L
Use optimal control for smarter °e

detection of explosives ) e
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Discovery of optimal photonic reagents

+ Fully automated high duty cycle closed-loop operation

Signals
< meseseeesesssseesssssss . Electronics

Controlsl
|

 Laser

detector

sample
+ High finesse control of system without a priori model of the physical sample
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Creating photonic reagents on demand

pixels individually
addressed /~

grating

=
Modulator

unshaped pulse ‘l AP shaped pulse

f f f f
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= Start with raw, featureless, ultrafast laser pulse (30-100 fs)
* Filter spectral amplitude and phase (SLM or AOM)
» Fully automated computer generation of photonic reagents
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What does this actually look like?
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Examples of shaped pulses
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Increasing the Control Bandwidth
Filamentation New Laser Technology

0.9 mJ, 800 nm in I

; broadband out
= 0.6 mJ 650-950 nm
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~2000 cm-! bandwidth is comparable to
vibrational fingerprint region
« Allows coherent Raman spectroscopies
= and vibronic control of emission

°
NATIONAL LANORATORY
iy caan




Broadband Coherent Raman
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Controlled detection of mixture components
| Selectivity through pulse shaping ]

CARS of mixture: toluene; acetone; nitromethane
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Can we use excited state dynamics?

+ Calculations of excited states and trajectories indicate other detection routes

* Trinitroaniline example: NH,
O,N NO,

Excite at 400 nm
Measure transient spectra
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Is single parameter control available?
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Building Blocks for ODD-Ex

e A compact, engineered ODD apparatus is in development

Ultrafast
broadband
EM source

Pulse
shaper
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Optimal Control Space

* Not only UV/visible/NIR spectroscopic regions can be controlled, but anywhere
in the entire EM spectrum where source bandwidth is available for manipulation

« Extent of application will depend only on technology

| Microwave! Infrared Visible Ultraviolet

Wavelength /m 103 102 105 5x10% 108 1010 1012

Frequency /Hz 10% 108 1012 1015 10'6 10'8 1020

)}I)_earning / Library Building | ‘ ODD-Ex Library |
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Summary

» Standoff Optical Methods have been shown capable of measuring small amounts
of explosives at many meters distance, but suffer from interferences or low
specificity

« Standoff Raman improves specificity, but fluorescence and weak signals are still
issues

« Optimal Dynamic Detection offers a viable path to significant improvements in
selectivity and sensitivity

* Photonic reagents are optimally tailored electromagnetic pulses that enable
selective addressing of different species

* Large bandwidth sources allow coherent Raman spectroscopies and vibronic
control of emission

» Calculations aid optimizations and fitness functions

* Multiobjective optimization allows
- Discrimination against unwanted nonlinear effects or other interferences
—Balancing e.g., selectivity versus sensitivity
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