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David S. Moore
Shock and Detonation Physics Group
Los Alamos National Lab, Los Alamos, NM 87545 USA

Unraveling Shock-induced Chemistry Using Ultrafast Lasers

The exquisite time synchronicity between shock and diagnostics needed to unravel chemical
events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both
drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped
laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps
risetimes, sufficient for investigation of fast reactions or phase transformations in a thin layer
with picosecond time resolution. The shock state is characterized using ultrafast dynamic
ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing
measurements of the equation of state of materials at a range of stresses in a single laser pulse.
Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared
absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy.
Using these tools we showed that chemistry in an energetic thin film starts only after an
induction time of a few tens of ps, an observation that allows differentiation between proposed
shock-induced reaction mechanisms. These tools are presently being applied to a variety of
energetic and reactive sample systems, from nitromethane and carbon disulfide, to micro-
engineered interfaces in tunable energetic mixtures. Recent results will be presented, and
future trends outlined.
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What questions are we trying to answer?

= s the initiating shock impulsive?

=  What mechanism transfers shock energy into the reactive molecules?
* Are anharmonic interactions needed?
» How quickly does transferred energy move within the excited molecules?

= Are observed kinetics consistent with Arrhenius or transition state
theory?
» Or does the shock wave provide something unique?

= Is non-equilibrium “temperature” necessary?

Our experiments are designed to obtain data at the time and length scales
necessary to answer these questions
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What resolution is needed?

= Need time synchronicity better than the required time resolution
» 8 mm/us = 8 nm/ps = shock transits a chemical bond every 10 fs
* Shock and diagnostics need to derive from same laser pulse

= Balance time resolution requirements with laser and target design
» Need to support a shock for many 100’s of ps = laser design requirement
» Diagnostics need commensurate time resolution

= Time resolution requirements imply spatial resolution requirements
= 8 nm/ps implies nm-scale (axial) sample uniformity in interrogated region
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Approach and Outline

= Shaped laser drive for supported shocks

= Ultrafast dynamic ellipsometry to measure shock state
« Time-dependent processes also measurable

« Single pulse variation measures shock state simultaneously at a range of applied
stresses

= Ultrafast spectroscopic methods to measure chemistry
» Ultrafast infrared absorption - time evolution of reactants and products
« Ultrafast single-pulse UV/visible absorption - to observe energy transfer
+ Femtosecond coherent Raman methods - time evolution of reactants and products
— FSRS - large gain possible for single-shot measurements; also gives T
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Ultrafast Laser Characteristics

s Short laser pulses have bandwidth = Broad pulses can be shaped

+ Transform limit - Heisenberg - time- .
bandwidth product: 5
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Using spectrometer-like apparatus
First grating disperses; second collimates
Shape in Fourier plane

Reverse pass to bring colors together
again spatially
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Laser Pulse Shaping for Shock Wave Generation

Post-amplification pulse shaping
(clipping the red side of the
chirped pulse) creates a sharp
intensity rise on the temporally
leading edge followed by a region
of relatively constant intensity.

This creates a supported shock
wave with a sharp shock front.

S.D. McGrane et al., Appl. Phys. Lett. 80:3919-3921 (2002)
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Ultrafast dynamic ellipsometry uses the time-dependent
reflection from the layers as an ellipsometric probe

The probe light is reflected at each interface in the sample. The
thicknesses of the layers and their optical properties alter the
magnitude C?nd phase of the reflected light.

d,=dy-ut — . —Unshocked layer
d,=(u,—u)t— ~— Shocked layer
S
8 ~—Shocked metal
72 - "
Pa As the thicknesses of the layers change, so do the
AN

. Los Alamos magnitude and phase of the reflected light.
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Ultrafast Dynamic Ellipsometry

UDE Apparatus UDE Data
= 1

——

7l Cyclohexane
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Ultrafast dynamic ellipsometry suggests that reaction
begin§ within 100 ps of shock front in nitromethane

At 7.9 GPa, the Al interface behind the nitromethane appears to
decrease in velocity ~100 ps after shock arrival

7.9 GPa, interface velocity
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7.0 GPa, no reaction apparent decrease after ~ 100 ps
) o — @ 0 *

e i ;

g
j A P —
— 6347 ppuedacicatam,

p—_——

— &1 8 pradarisateen
J—i=

Jroom bt st
Al vebuns

T

Pl ol [eaboene]

Perse dhat) sy}

a L] o $ “
T ] Fime (o]

Fa f)

The shocked refractive index of nitromethane showed Gladstone-
Dale behavior for both the “normal” and “abnormal” shots
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Ultrafast Infrared Absorption Spectroscopy
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« Los Alamos D.S. Moore et al. Appl. Spectrosc. 58:491-498 (2004)
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»  Substantial PVN absorption loss occurs after
shock has entered PMMA

«  PVN absorption loss, and product absorption
gain occurs before rarefaction reaches PVN

S.D. McGrane et al. J. Phys. Chem. A 108:9342-9347 (2004)
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Ultrafast Infrared Ab_sprptiﬁorLSpectroscopky - Other

= Other energetic polymer films have been
briefly examined under similar conditions
i.e., ~20 GPa

= Glycidyl azide polymer has not apparently
reacted within 200 ps even during
rarefaction

= Nitrocellulose sometimes reacts during
rarefaction

» May need longer induction time at
this pressure to see reproducible

reactions
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Spatially and temporally resolved shock chemistry
measurements - single shot UVlvisible absorption

= Record broadband UV/visible absorption spectra at many delays on every shot
= Use stacked mirrors or glass plates to delay different spatial segments of the probe laser pulse

= Use imaging spectrometer to image the spatial segments on different CCD rows
» Time delay is then spatial position, or CCD row
=« CCD columns have the spectrally resolved information

Vestical position to Shock Deive puise

Expansion
telsscope
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Single shot UVl/visible absorption results
preshot during shock
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We have been exploring several coherent Raman
techniques for reactivity and temperature diagnostics

Difficult measurement- but tells us much of what we
want to know directly

= Femtosecond stimulated Raman Scattering (FSRS)
+ Raman efficiency ~10% , FSRS efficiency ~102
» Temperature is from ratio of Anti-Stokes loss to Stokes gain

= Femtosecond Raman-induced Kerr Effect Spectroscopy (FRIKES)

» No background and same line shapes as spontaneous Raman scattering, but
spectrum intensity is limited by intensity of probe

» Shock-induced birefringence may distort Raman spectrum

= Femtosecond Coherent Anti-Stokes and Stokes Raman scattering
(CARS/CSRS)

= No background, no birefringence issues, probe requires less bandwidth than
FRIKES or FSRS, but pump must have large bandwidth

=
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Single shot spatially resolved (~ 5 ym) fs stimulated
Stokes and anti-Stokes Raman spectroscopy (FSRS)

= Vibrational temperature (experimental validation for modeling)

= Vibrational spectra provides chemical reactivity (validate chemical reaction
timescales)

Simulated HMX stimulated Raman spectra
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Fs stimulated Raman scattering

= Initial apparatus

* Broadband
supercontinuum
generation defines
spectral range

= Cylindrical lenses
(+500, +75 mm fl)

—20 x >125 pm spot
size (theor.)

—spatial and
temporal overlap
with shock

* Raman pump
defines spectral
resolution

» Details in progress
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Summary and Outlook

= Ultrafast Dynamic Ellipsometry
» Reactions or phase changes show time-dependent data - NM, CS,, Si
» Data analysis and models allow extraction of rate information
— C.A Bolme et al. J. Appl. Phys. 102:033513 (2007) and C.A. Bolme et al. Appl. Phys. Lett. 93:191903 (2008)
= Ultrafast IR absorption
» Provided evidence for induction time before onset of reaction in PVN
—Differentiates proposed mechanisms: supports vibrational energy transfer
¢ S.D. McGrane et al. J. Phys. Chem. A 108:9342-9347 (2004)

= Single-shot fs UV/visible absorption
« Data used to differentiate initiation mechanisms and obtain reaction rates

= fs coherent Raman
» To measure species evolution with time; temperature (Stokes/anti-Stokes)
» Capability is in progress
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