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Abstract

We will investigate the use of derivative information in
complex computer model emulation when the correlation
function is of the compactly supported Bohman class. To
this end, a Gaussian process model similar to that used
by Kaufman et al. (2011) is extended to a situation where
first partial derivatives in each dimension are calculated
at each input site (i.e. using gradients). A simulation
study in the ten-dimensional case is conducted to assess
the utility of the Bohman correlation function against
strictly positive correlation functions when a high degree
of sparsity is induced.
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Outline

* Emulation of computational models

* |Incorporation of derivative information

* Compactly supported covariance functions
e Simulation Study

* Results

e (Conclusions
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Emulator

e Use training runs to develop a statistical surrogate model for
the complex code (i.e., the emulator)
— Deterministic code is interpolated with zero uncertainty

e Kriging Predictor #(x;0) = f'(x)B8 + r'(x;0)R~(0)(n — F3)

1.5

—— point predictions 7

N e o~ correlations between outputs evaluated
4 prediction site X and at training
training runs X,..., X, runs X,..., X,
Regression functions pairwise correlations
evaluated at prediction between training
site X and parameters runs X;,..., X,
©%0 x *

o = Cov[n(z1,0),n(x2,0)|n] =0* (R(z1,22;0) — 7' (x1,0) R~ (0)r (2, 0)+
* Kriging Variance , o »
h'(x,0)(FFR " (0)F) h(acg;H))
— Full Bayes inference for o2, 6 ™S
paX h(z;6) = f(z) — F'R™()r(a;6)
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Incorporating Derivatives

* Morris, Mitchell and Ylvisaker (Technometrics, 1993)

on(t) op(t oC(t,s)  O2C(t,s)

n(t) pu(t) C(t,s) =)
~ GP, mean :covariance ’

ot; ot; ot; 0t;0s;

e Computational efficiency eventually required

Size of Covariance Matrix

Sample Input Dimension (D)
Size 1 5 10 20 50
1.5D 3 45 165 630 3825
5D 10 150 550 2100 12750
10D 20 300 1100 4200 25500
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Small Sample Sizes Enhanced With Derivatives

Gaussian Correlation Gaussian Correlation
No Derivatives First Derivatives
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Benefits of Derivatives in Higher Dimensions
D=8 N=2D=16

* True function generated from GP with Gaussian correlation

y.pred
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Compactly Supported Covariance
e Kaufman, et al. (2011)

— 20,000 simulator evaluations
— Use low order regression models and compactly supported covariance
function to achieve a good fit with sparse covariance matrix

— Increased sparsity resulted in less prediction efficiency, especially for
more difficult functions, but improvement with sample size

— Sparsity resulted in improved coverage properties but gains declined with
sample size

e Bohman correlation function

(

(1 —t/T)cos(mt/T) +sin(nt/7)/m, t<T

R(t; 1) = 4
\ 0, t > T
D
— Prior restriction: 7 € R” : 7; >0 for all D,ZTj <C,C>0
a =1
“Los Alamos
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Advantage of Derivatives Persists with Sparsity

Bohman Correlation Bohman Correlation
. No Derivatives . First Derivatives
< Fur = 0.74 < v = 0.53
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Benefits of Derivatives Even With High Sparsity
e D=8, N=2D=16

* True function generated from GP with Gaussian correlation

ypmd
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Inclusion of Regression Model

* Regression often necessary to allow for covariance sparsity

=04

=02
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* Advantages are seen in higher dimensional input spaces

RMS Errors
D=8
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Degree of

Unconstrained

Constrained

Regression Model Bohman Bohman (~90%
sparsity)
0 0.3591 0.7464
1 0.3668 0.9553
2 0.4548 0.5474
3 0.4766 0.5611




Regression Helps Induce Sparsity

e Borehole: Morris (1993) with inputs scaled to unit cube, [0,1]®

e Sparsity constraint results in larger correlation length t in
dimensions not modeled well by regression
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Sparsity and Predictive Capability
Sparsity is pushed towards 99% but still produces an R? of 0.999

— Dense correlation matrices (e.g. from Gaussian or Matern) may be ill-conditioned

in this situation

Bohman
o
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y.new
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Sparsity and Computing

e Sparsity depends on tapering parameters and design (which
depends on dimension, sample size)
— We used maximin Latin hypercube designs

* Computation time depends on sparse matrix algorithms used
— In R ‘spam’ uses Yale sparse format

 Times using ‘spam’ in R are below
— Predicting 1000 new values
— Algorithms are even faster above ~95% sparsity

N=2D Sparse Dense N=3.5D Sparse Dense
D=10 0.05/1.34 0.06/217 0.06/1.52 0.11/2.24
D=20 0.24/3.31 0.58/5.31 0.55/4.51 1.85/8.65
D=30 1.69/9.09 / 6.17/185 16.1/36.2
AN Likelihood Prediction
> Los Alamos evaluation
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Simulation Study

* Generate a GP with specified covariance structure (Gaussian
assumed here) and get response values and partial derivative
information

* Two input dimensions (D = 10 and D = 20)
* Two complexity levels (“Full” and “KL group 3")

e Seven modeling choices:
— True correlation model (Gaussian)
— Bohman at two levels of sparsity (~90% and ~95%) and four levels of

regression modeling (none, linear, quadratic, quadratic + some cubic
terms)

* Five replications of each factor-level combination

A
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KL Expansion
* Decomposition of process into eigenvalues and eigenfunctions

n(x,w) = p(x) + Z \/E%(m) /D C(u,v) ¢(v) dv = X p(u)

Fredholm integral equation
N(0,1
O.D of the second kind

e Solutions via Galerkin approximation (low-D)
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GP Simulation

e Simulate from zero-mean Gaussian process with product
Gaussian correlation function
— Complexity and sparsity specified (LoeppKky, et al. (2010))
— Output and derivatives desired

 Use 1-d KL expansion
i . . eigenvalues eigenfunctions
— Decomposition by dimension e A s b1 1 (1) s 1o (1)

>\D,17°"'7)\D,mp ng’l(xD),...',ng,mD(acD)

— Eigenfunctions are tensor products of 1-d eigenfunctions

Group Eigenfunction Terms
first HjDzl ij’l(xj) 1

second replace ¢; 1(x;) with ¢; 2(x;) D
third | replace ¢;, 1(xi,) and ¢4, 1(zs,) with ¢4, o(zi,) and ¢y, 2(z4,) ( 12) >

— Partial derivatives are easily calculated

"Lo% Alamos replace ¢; j(x;) with 29; . :
1
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Response Surfaces for Simulation Study
* D =10 dimensional input space

More complex functions obtained with use of more second
order eigenfunctions
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Results: Effects of Sparsity

Surfaces drawn from GP with Gaussian correlation function
(D =10; N =20)
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 Results using just model outputs (ignoring first partials)
<> untapered Bohman, constant mean

<> Relative RMSE: 0.165 (> RMSE with derivatives at all sparsity levels)
< ARMPSE: 0.75 (comparable to avg. ARMPSE with derivatives at ~95% sparsity)
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Results: Accuracy and Precision of Emulators

Surfaces drawn from GP with Gaussian correlation function
Full and KL3 complexity
(D =10; N =20 and D=20; N=40)
Bohman correlation tapered to 90+% sparsity
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Results: Frequentist Coverage

Surfaces drawn from GP with Gaussian correlation function
Full and KL.3 complexity
(D =10; N =20 and D=20; N=40)

Bohman correlation tapered to 90+% sparsity
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 Actual coverages low for inadequate regression models with tapering

» Higher kriging SE required with tapering versus true correlation model
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Compromise

Trade-off between computation time and predictive capability

— Sparsity restriction complicates the ability to model deviations from
smooth global trend and can lead to increased prediction variances and,
to a lesser extent (depending on regression model), increased prediction
biases relative to “ideal” emulator

In the extreme case of ~100% sparsity, the surrogate is
essentially regression with derivatives, but the prediction
iIntervals become useless

In the case of <100% sparsity, the full Bayesian approach
(with informative prior) can be used to get improved prediction
intervals relative to use of plug-in parameter estimates

Alaomcoas
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MCMC: Metropolis Within Gibbs

Gibbs updates of regression parameters

Metropolis sampling of T vector

— Optimal © vector may lie on a boundary of the simplex defined by the sparsity
constraint D

Start at the center of the simplex: C'/2 = Z 7/ 2

— Multivariate normal proposal distribution
— weak proposal covariance matrix

g=1

Every 100 iterations tune covariance to the sample covariance of the

parameters
— Do this 50-100 times

— Multiply covariance matrix obtained at end of burn-in by (2.382)/D (this is for
optimal acceptance when target is multivariate normal)

— Proceed with Metropolis updates of entire t vector

Generate predictions using a thinned sample of the parameters

A

)
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MCMC Worst Case Scenario

* Adaptive MCMC performs well across a variety of scenarios,
including when starting values are poor (in the wrong corner of

the prior simplex, as below).
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Conclusions

Using compactly-supported covariance can speed up

computation time

— Allows use of derivative information in situations when computations
would be prohibitively expensive with dense covariance matrices

Using compactly-supported covariance may compromise

predictive capability relative to “ideal” covariance

— Higher prediction variances required to achieve nominal coverage when
>90% sparsity is required for computational efficiency

— Depending on complexity of underlying response, larger than nominal
prediction bias may be introduced with forced sparsity

Using only outputs requires 3-4 times more runs to achieve
similar prediction quality with regression and 90% sparsity
— 5-8 times more runs with dense correlation function
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Future work

* Test the method against surfaces generated by real
simulator codes that produce first partial derivatives,
especially as the input dimension grows

* Better understand the equivalent sample size of using
gradients vs. not using gradients
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