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Abstract 
 We will investigate the use of derivative information in 
complex computer model emulation when the correlation 
function is of the compactly supported Bohman class.  To 
this end, a Gaussian process model similar to that used 
by Kaufman et al. (2011) is extended to a situation where 
first partial derivatives in each dimension are calculated 
at each input site (i.e. using gradients).  A simulation 
study in the ten-dimensional case is conducted to assess 
the utility of the Bohman correlation function against 
strictly positive correlation functions when a high degree 
of sparsity is induced. 
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Outline 
•  Emulation of computational models 

•  Incorporation of derivative information 

•  Compactly supported covariance functions 

•  Simulation Study 

•  Results 

•  Conclusions 
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Emulator 
•  Use training runs to develop a statistical surrogate model for 

the complex code (i.e., the emulator) 
–  Deterministic code is interpolated with zero uncertainty 

•  Kriging Predictor 

•  Kriging Variance 
–  Full Bayes inference for σ2, θ
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Incorporating Derivatives 
•  Morris, Mitchell and Ylvisaker (Technometrics, 1993) 

•  Computational efficiency eventually required 
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Sample 
Size 

Input Dimension (D) 
1 5 10 20 50 

1.5D 3 45 165 630 3825 
5D 10 150 550 2100 12750 

10D 20 300 1100 4200 25500 

Size of Covariance Matrix




Small Sample Sizes Enhanced With Derivatives 
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Benefits of Derivatives in Higher Dimensions 
•  D = 8, N = 2D = 16 

•  True function generated from GP with Gaussian correlation 
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Compactly Supported Covariance 
•  Kaufman, et al. (2011) 

–  20,000 simulator evaluations 
–  Use low order regression models and compactly supported covariance 

function to achieve a good fit with sparse covariance matrix 
–  Increased sparsity resulted in less prediction efficiency, especially for 

more difficult functions, but improvement with sample size  
–  Sparsity resulted in improved coverage properties but gains declined with 

sample size 

•  Bohman correlation function 

–  Prior restriction:   
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Advantage of Derivatives Persists with Sparsity 
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Bohman Correlation

No Derivatives


Bohman Correlation

First Derivatives




Benefits of Derivatives Even With High Sparsity 
•  D = 8, N = 2D = 16 

•  True function generated from GP with Gaussian correlation 
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Inclusion of Regression Model 
•  Regression often necessary to allow for covariance sparsity 

•  Advantages are seen in higher dimensional input spaces 
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Degree of 
Regression Model 

Unconstrained 
Bohman 

Constrained 
Bohman (~90% 

sparsity) 
0 0.3591 0.7464 
1 0.3668 0.9553 
2 0.4548 0.5474 
3 0.4766 0.5611 

RMS Errors

D = 8




Regression Helps Induce Sparsity 
•  Borehole:  Morris (1993) with inputs scaled to unit cube, [0,1]8 

•  Sparsity constraint results in larger correlation length τ in 
dimensions not modeled well by regression 
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“Large” τi
 “Small” τi




Sparsity and Predictive Capability 
•  Sparsity is pushed towards 99% but still produces an R2 of 0.999 

–  Dense correlation matrices (e.g. from Gaussian or Matern) may be ill-conditioned 
in this situation   
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Sparsity and Computing 
•  Sparsity depends on tapering parameters and design (which 

depends on dimension, sample size) 
–  We used maximin Latin hypercube designs 

•  Computation time depends on sparse matrix algorithms used 
–  In R ‘spam’ uses Yale sparse format   

•  Times using ‘spam’ in R are below 
–  Predicting 1000 new values 
–  Algorithms are even faster above ~95% sparsity 
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N = 2D Sparse Dense N = 3.5D Sparse Dense 

D = 10 0.05 / 1.34 0.06 / 2.17 0.06 / 1.52  0.11 / 2.24 

D = 20 0.24 / 3.31 0.58 / 5.31 0.55 / 4.51  1.85 / 8.65 

D = 30 1.69 / 9.09 4.45 / 15.4 6.17 / 18.5 16.1 / 36.2 

Likelihood

evaluation


Prediction




Simulation Study 
•  Generate a GP with specified covariance structure (Gaussian 

assumed here) and get response values and partial derivative 
information 

•  Two input dimensions (D = 10 and D = 20) 

•  Two complexity levels (“Full” and “KL group 3”) 

•  Seven modeling choices: 
–  True correlation model (Gaussian) 
–  Bohman at two levels of sparsity (~90% and ~95%) and four levels of 

regression modeling (none, linear, quadratic, quadratic + some cubic 
terms) 

•  Five replications of each factor-level combination 
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KL Expansion 
•  Decomposition of process into eigenvalues and eigenfunctions 

•  Solutions via Galerkin approximation (low-D) 
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N(0,1)
 Fredholm integral equation
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GP Simulation 
•  Simulate from zero-mean Gaussian process with product 

Gaussian correlation function 
–  Complexity and sparsity specified (Loeppky, et al. (2010)) 
–  Output and derivatives desired 

•  Use 1-d KL expansion 
–  Decomposition by dimension 

–  Eigenfunctions are tensor products of 1-d eigenfunctions 

–  Partial derivatives are easily calculated 
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Response Surfaces for Simulation Study 

Slide 17 

Replace 3 φ.,1 with φ.,2
 Replace 2 φ.,1 with φ.,2
 Replace 1 φ.,1 with φ.,2


•  D = 10 dimensional input space 

•  More complex functions obtained with use of more second 
order eigenfunctions 

“Full”
 “Group 3”




Results:  Effects of Sparsity 
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Surfaces drawn from GP with Gaussian correlation function

(D = 10; N = 20)


Bias Variance 

•  Results using just model outputs (ignoring first partials) 
  untapered  Bohman, constant mean 
  Relative RMSE:  0.165 (> RMSE with derivatives at all sparsity levels) 
  ARMPSE:  0.75 (comparable to avg. ARMPSE with derivatives at ~95% sparsity) 



Results:  Accuracy and Precision of Emulators 
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Surfaces drawn from GP with Gaussian correlation function

Full and KL3 complexity


(D = 10; N = 20 and D=20; N=40)

Bohman correlation tapered to 90+% sparsity


•  RMSE values lower for higher order regression models with tapering 

•  ARMPSE values higher for higher order regression models with tapering  

Bias Variance 



Results:  Frequentist Coverage 
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Surfaces drawn from GP with Gaussian correlation function

Full and KL3 complexity


(D = 10; N = 20 and D=20; N=40)

Bohman correlation tapered to 90+% sparsity


•  Actual coverages low for inadequate regression models with tapering 

•  Higher kriging SE required with tapering versus true correlation model 
to achieve nominal coverage 



Compromise 
•  Trade-off between computation time and predictive capability 

–  Sparsity restriction complicates the ability to model deviations from 
smooth global trend and can lead to increased prediction variances and, 
to a lesser extent (depending on regression model), increased prediction 
biases relative to “ideal” emulator 

•  In the extreme case of ~100% sparsity, the surrogate is 
essentially regression with derivatives, but the prediction 
intervals become useless  

•  In the case of <100% sparsity, the full Bayesian approach 
(with informative prior) can be used to get improved prediction 
intervals relative to use of plug-in parameter estimates 
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MCMC:  Metropolis Within Gibbs 
•  Gibbs updates of regression parameters 

•  Metropolis sampling of τ vector 
–  Optimal τ vector may lie on a boundary of the simplex defined by the sparsity 

constraint 

•  Start at the center of the simplex: 
–  Multivariate normal proposal distribution 
–  weak proposal covariance matrix    

•  Every 100 iterations tune covariance to the sample covariance of the 
parameters 
–  Do this 50-100 times 
–  Multiply covariance matrix obtained at end of burn-in by (2.382)/D (this is for 

optimal acceptance when target is multivariate normal) 
–  Proceed with Metropolis updates of entire τ vector 

•  Generate predictions using a thinned sample of the parameters 
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MCMC Worst Case Scenario 
•  Adaptive MCMC performs well across a variety of scenarios, 

including when starting values are poor (in the wrong corner of 
the prior simplex, as below). 
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Conclusions 
•  Using compactly-supported covariance can speed up 

computation time 
–  Allows use of derivative information in situations when computations 

would be prohibitively expensive with dense covariance matrices 

•  Using compactly-supported covariance may compromise 
predictive capability relative to “ideal” covariance 
–  Higher prediction variances required to achieve nominal coverage when 

>90% sparsity is required for computational efficiency 
–  Depending on complexity of underlying response, larger than nominal 

prediction bias may be introduced with forced sparsity 

•  Using only outputs requires 3-4 times more runs to achieve 
similar prediction quality with regression and 90% sparsity 
–  5-8 times more runs with dense correlation function 
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Future work 
•  Test the method against surfaces generated by real 

simulator codes that produce first partial derivatives, 
especially as the input dimension grows 

•  Better understand the equivalent sample size of using 
gradients vs. not using gradients 
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Thanks! 
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