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Abstract

PBX 9502 is an insensitive plastic-bonded explosive based on triamino-
trinitrobenzene (TATB). A complete equation of state (EOS) is con-
structed for unreacted PBX 9502 suitable for reactive burn models,
i.e., high pressure regime in which material strength is unimportant.
The PBX EOS is composed of two parts: a complete EOS for TATB
and a porosity model which allows for variations in the initial PBX
density. The TATB EOS is based on a cold curve and a thermal model
for lattice vibrations. The heat capacity, and hence thermal model, is
determined by the vibrational spectrum from Raman scattering. The
cold curve is calibrated to diamond anvil cell data for isothermal com-
pression using a two-piece Keane fitting form. Hugoniot data for PBX
9502 is used as a consistency check.

1 Introduction

PBX 9502 is an insensitive high explosive. It consists of 95wt % TATB grains
held together by 5wt % Kel-F binder. In addition, there is a small amount
of porosity due to the pressing process used to manufacture a PBX. At its
nominal density, 1.895g/cm?®, PBX 9502 has a porosity of 2.4 %.

Reactive burn models require equations of state (EOS) for both the re-
actants and the products of an explosive. Typically, reaction models for
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heterogeneous explosives, such as Ignition & Growth [l], use a pressure de-
pendent reaction rate. For models of this class, the reaction is insensitive
to the thermal properties of the reactants. Consequently, a reactant EOS
with a constant specific heat can be used, even though, explosives are large
molecules for which the specific heat varies with temperature.

A notable recent reaction model, CREST [2], takes the reaction rate to
be a function of the reactant entropy. It aims to describe shock initiation of
a PBX over a range of initial densities. For such a model, a complete EOS
is needed for the reactants which accounts for the initial PBX porosity.

Here a thermodynamically consistent EOS is constructed for the reactants
of PBX 9502. It is composed of a complete EOS for the PBX at theoretical
maximum density (TMD) and a porosity model. (We note that Lambourn
et al. [3] used a similar approach.) Since PBX 9502 is predominantly TATB,
pure TATB is used to approximate the PBX at TMD. We expect this ap-
proximation to result in a slightly stiffer EOS since the TATB grains are
crystalline whereas the Kel-F binder is an amorphous polymer.

A generalized Hayes EOS is used for the TATB EOS. The formulation
of this EOS is reviewed in sec. 2. Fitting forms for the cold curve and heat
capacity suitable for TATB are described in sec. 3. The porosity model used
for the PBX is reviewed in sec. 1. Model parameters for the cold curve are fit
to isothermal compression data from diamond anvil cell experiments, and the
specific heat is fit to lattice vibrational frequencies from Raman scattering
data. The calibration for TATB is described in sec. 5. As a check on the
model, in sec. (6 we compare with shock Hugoniot data for PBX 9502.

Section T is a summary of the EOS model for PBX 9502 in which some
of its limitations are discussed. The two largest inaccuracies stem from ne-
glecting the temperature dependence of the Griineisen coefficient, and from
the simplifying approximation for the expansion region below the initial den-
sity. Nevertheless, the EOS presented here is an improvement over what is
currently used for modeling reactive flow in PBX 9502.

2 Generalized Hayes EOS

The generalized Hayes EOS (see [ 1, sec. 4.3.4] and [3]) is of the Mie-Griineisen
type. It is thermodynamically consistent and allows for a non-constant spe-
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cific heat. Previously, it has been applied to the explosive HMX [6]. We will
use this EOS form for TATB.

The generalize Hayes EOS is defined by the Helmholtz free energy

F(V,T) = ey — K P(V')dV' — /:(T - T)C(T'/6(V)) d?T . (la)

where (Vj,€g) is a reference point on the cold curve, P.(V) is the pressure
on the cold curve, z.e., at T = 0, C(T) is a specific heat and (V) is a
temperature scale. The specific heat at constant volume is required to have
the property

Cv(V,T) = Cv (Yo, 8(W)IT/6(V)]) = C(T) (1b)

i.e., Cy is a function of only the scaled temperature T = T/6(V). Hence,
the temperature dependence of the specific heat at V4, i.e.,

Cv(Va, T) = C(T/8(Vo)) (2)

and 6(V) completely determine the specific heat.

Moreover, we require Nernst law to hold, z.e., C(T) — 0 as T — 0,
in order for the second integral on the right hand side of Eq. (1a) to be
well defined. This implies that the cold curve is both an isotherm and an
isentrope.

Using the standard thermodynamic identities, it can be shown that the
pressure can be expressed in the Mie-Griineisen form

PVe) = B(V)+ P e = )] (30)

where the energy on the cold curve is

v
e(V) = ep — /V P.(V)dV | (3b)
and the Griineisen coefficient is
dlng(V)
Vie———_ 2

W) dlnV (de)



Thus, the temperature scale (V') plays a role similar to a “Debye tempera-
ture.”

By using the specific heat, the energy can be expressed in terms of the
temperature

o
e(V.T) = e(V) +fu C(T'/6(v))dT" (4a)
which can be inverted to obtain T'(V,e). The corresponding entropy is
T(Vie) _ d7"
£ (T 6(V)) —
S(V,e) /0 (T'/8(v)) - (4b)

Since the thermodynamic variables are derived from a free energy, the ther-
modynamic identity, de = — P dV + T'dS, is satisfied.

We note that Lambourn et al. [3] have constructed an EOS for TATB.
Though formulated differently, their form of EOS is equivalent to the free
energy and specific heat given by Eq. (1). As applied to TATB, we will
use different fitting forms for the reference curve (cold curve vs. principal
isentrope) and the specific heat. We also use a different calibration procedure.

3 Fitting forms

The generalized Hayes EOS is determined by three functions; P.(V), 6(V)

and C‘(T/Q(V)), Here we describe the fitting forms for these functions that
we will use to construct an EOS for TATB.

3.1 Cold curve

The Keane ‘EOS’ is a convenient fitting form for the cold curve. It is de-
fined by a relation between the bulk modulus K = —V(dP/dV )r—¢ and its
derivative K’ = dK/dP, see [7] and references therein,
() s Kf
K' =K. + (Ko = Koo Ko ; (5)
K

where subscripts ‘0’ and ‘oo’ denote values at P = Fy and oo, respectively.
Equation (5) can be integrated to yield

1 I F
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and then again to obtain

B )™ - (-8
= == =1+ |==1]In{=] . 7

K KL\ K., w0
We note that the Keane pressure is defined by a reference state (V;, P) and
three parameters; Ko, K; and K7 ,. Due to Eq. (5), P.(V) is independent of
the reference point, provided that Ky and Fy are evaluated at Vj.

To fit TATB we will use a piecewise Keane EOS, i.e., P.(V') is given by
Eq. (7) with parameters (V, Po), Ko, Ky and K, for Vi <V < Vj and
parameters (V1, Py), K, K| and Ki  for V < V,. By choosing P, = P.(V;)
and K, = K(V)) with the first set of parameters, both the pressure and the
bulk modulus are continuous. This adds three more parameters (V;, K| and
K| ), and gives added flexibility to fit kinks in isothermal and Hugoniot
data.

Physically, the discontinuity in K’ can be motivated as follows. A TATB
crystal has a layered structure similar to that in graphite, but with carbon
atoms replaced by TATB molecules. In the plane of each layer, the crystal is
very stiff. Consequently, at low pressures, compression is predominantly be-
tween layers. When the layers get close enough to feel the atomic repulsion,
the response to further compression changes. We note that a phase transi-
tion has been observed in graphite at room temperature in which the layer
spacing changes discontinuously [8, fig. 2]. (Very likely, hexagonal to rhom-
boidal structure rather than the graphite-diamond transition.) The graphite
transition pressure, about 11 GPa, is close to the kink in diamond anvil cell
data for TATB at about 8 GPa [9, fig. 7] and also in the Hugoniot data for
PBX 9502 [10, fig. 4]. In addition, Raman scattering data of TATB shows a
kink in the high frequency vibrational modes [11, fig. 4a] associated with the
coupling between crystal layers. Also, a change in the color of TATB crystal
with pressure has been observe in diamond anvil cell experiments [12, 9].
This is indicative of a change in electron structure or bonding of molecules
in the crystal, see discussion in [9, sec. 4.3].

A discontinuity in K’ corresponds to a discontinuity in the third derivative
of the free energy. Technically, it would corresponds to a third-order phase
transition. Since the pressure and sound speed are continuous, there would be
no qualitative change in the wave structure like the wave splitting associated
with a first-order phase transition. Thus, the discontinuity is very weak and
not likely to affect hydro simulations.



3.2 Thermal model

Explosives are large molecules and have many vibrational modes. For ex-
ample, a TATB molecule (CgHgNgOg) has 24 atoms and 72 modes. In the
detonation regime, roughly P < 50 GPa and T < 5000 K, solid explosives are
electrically non-conducting. Consequently, their specific heat is dominated
by lattice vibrations or optical phonons. The vibrational frequencies, v;, can
be determined from Raman scattering and infrared spectrometry, or from the
Fourier spectrum of the velocity auto-correlation computed with molecular
dynamics. In general, the frequencies are a function of V.

Treating each phonon as a quantum oscillator (quasi-harmonic approxi-
mation), the specific heat is given by

Cv(V,T) =3 C(T/6(V)) , (82)

where kp 6;(V) = hv(V), kg is the Boltzmann constant, and h is the Planck
constant. The mode specific heat is

; R x 2

-1y _ _ i

Cle™) = mol wt [exp{:r) — 1} explz) » 18b)
where z = T/ = kg T/(hv) and R is the gas constant (8.314 J/mol-K). The
molecular weight of TATB is 258.18 g/mol. A plot of the mode specific heat
is shown in fig.1. We note that a mode is half saturated at T = é&; and 90 %
saturated at T = 0.96,. We also note that §/[K] = 1.44v/[cm~']. Thus, at
room temperature (300 K), modes with frequencies v < 625cm™" would have
f < 900K, be half saturated and contribute significantly to the specific heat.

For each phonon, one can define a mode Griineisen coefficient
(V) =—-dné;(V)/dnV . (9a)

In general the Griineisen coefficient is the specific heat weighted sum of the
mode coefficients, i.e.,

5, {(V)C(T/6;(V

vy DA (T/6.))
= C(T/8,(V))

Consequently, I' is a function of both V and T'. As the temperature increases,

the high frequency modes are weighted more heavily. Typically, the high fre-
quencies have a lower mode I';, and as a result I" decreases with increasing 7.

(9b)
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normalized mode Cv
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Figure 1: Normalized specific heat for each mode Eq. (3h).

The free energy for the generalized Hayes EOS, Eq. (1), assumes only
one temperature scale, i.e., 8;(V) = (V) for all . As a consequence, the
Griineisen coefficient reduces to a function of only V. For a large class of
applications, it is most important for the EOS to be accurate in the vicinity
of the principal Hugoniot locus. Since the temperature increases with shock
strength, we expect the Griineisen coefficient to decrease with shock com-
pression, 1.e., I'(V) decreases with decreasing V on the Hugoniot locus. Due
to the lack of data, we use the simple fitting form

C(V)=To+T1(V/V) . (10a)
Then for the temperature scale, we need
6(V') = 0o(Vo/V)™® exp [Ty (1 = V/Vh)] . (10b)

"The coefficient fp is not important provided that it is used consistently be-
tween Egs. (10b) and (2) when calibrating the specific heat function C(7").
We will use it merely to set the unit for temperature and take 6y = 1 K.

It can be shown from the general properties of the mode specific heat,
Eq. (8b), and the acoustic phonon spectrum (Debye model) that the specific
heat has the limiting properties

C(T) x - (11)

- = TE', asT'— 0 :
constant , as7T — oo .



A fitting form that has this asymptotic behavior is

—_ e,
é(f) = N A (12)
co+ 1T + T2 + ¢T3

The coefficient C,, has units of specific heat while the ¢; are dimensionless.
We will use this simple form, though one could do better with a cubic spline.

3.3 Extension to expansion regime

Though solid EOS, like the one described in this section, are designed for
the compression regime, V' < V;, some applications require evaluating the
pressure in the expansion regime, V > V4. For example, if a detonation
wave impinges on a free surface or at the boundary of an unconfined rate
stick, then the rapid pressure drop can cause hot reactants within the reac-
tion zone to expand to low density. This can cause problems with reaction
models, such as those that use a pressure-temperature equilibrium mixing
rule for a partly burned explosive. Pressure-temperature equilibrium of the
reactants and products only has a unique solution if each component EOS is
thermodynamically stable, 7.e., both the isothermal compressibility and the
specific heat at constant volume are positive. Typically, for a relatively small
expansion (V/V; slightly greater than 1), the isothermal compressibility of a
solid EOS model becomes negative.

In the context of an equilibrium single phase solid EOS, a workaround
to ensure thermodynamic stability requires two modifications for V > Vg
(i) a cutoff on P.(V), and (ii) limiting the value of I'(V'). Physically, the
single phase assumption may break down due to spall or sublimation that
results in a phase separated mixed solid-gas region. Nevertheless, extending
the domain of a solid EOS is useful for robustness of hydro simulations in
which only a small localized region of the flow undergoes expansion.

For a Mie-Griineisen EOS, Eq. (3a), it can be shown that the isothermal
compressibility can be written as

a2 L ) -TOuT, V)} _y div(‘z,) [e—e.(V)] . (13)

..
ke dv 'V

To ensure K7 is positive, it is sufficient to make each term on the right hand
side (RHS) of Eq. (13) positive. First, we find the minimum pressure on the
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cold curve fitting form, z.e., V, such that dP./dV (V) = 0. Then for V > V,,
we replace the fitting form, Eq. (7) and Eq. (3h), with a cutoff form

F(V) = P.(V4) , (14a)
ec(v) = ec(V:t) = PC(V.,)(V = V‘) . (14b)

This guarantees that the first term on the RHS of Eq. (13) is non-negative.
The minimum pressure P.(V,) will be negative. The model is not meant
for tension but rather for temperatures sufficiently high that the thermal
pressure results in the total pressure, Eq. (34), being positive.

For the second term on the RHS of Eq. (13), the factor in brackets can
be expressed using Eq. (1a) as

e — (V) =T Cu(T, V) = [:é(r'/e(vndr _TE(T/BV)) . (15)

Except for very low T, figs. 1 and 2 show that C(T') is concave down. Hence,
the RHS of Eq. (15) is positive in the regime of interest; room temperature
and above.

Next, we modify I" to be

EE + El y for V < W,

T(V) vV W

—-V—" = ]_"‘0 Fl (16&)
— + = for V > V;

Ve (v - versa]

where €, is a parameter that controls how fast I' approaches a constant
with increasing V. It is easily verified that both I'/V and its derivative are
continuous at Vg, and that (d/dV)(I'/V) < 0 for all V and any [y, '}, > 0.
Consequently, the third term on the RHS of Eq. (13) is positive.

Finally, we modify the temperature scale to be consistent with Eq. (3¢):

o) (V/Vo)o exp[-Ty 7] for V < Vi;

— 2 . 2\1/2
b | (v/ve) o exp [—rl e In (M)
1

(16b)

, for V> Vy;
where 7 = V/V5 — 1. The result of these modifications is that the EOS

model is well behaved in expansion: K7 > 0 and I' — constant for large V.
Moreover, I' and K7 are continuous at V4.
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4 Porosity model

We base the thermodynamic properties of a porous material on a free energy
of the form
F(V: T, ¢) = Fs(qf)V: T) o B(d)) 3 (17)

where ¢ is the solid volume fraction (1 — porosity), F; is the free energy of
the pure solid, and B is a potential energy for compaction. It follows that
the material pressure,

P(V,T,¢) = -0y F = ¢P(¢V,T) , (18)
has the same form as that used in the P-a model; see [13], [4, sec. 4.5] and
references therein.

The equilibrium condition, 0y F = 0, is
dB
do -
Alternatively, the equilibrium volume fraction is a function of V P. This
function is called a compaction law. For simplicity, we use the simple fitting

form
B VP—-VWF
¢eq(VP)—l~(1—qb0)exp “W] )

where the subscript ‘0’ denotes the initial state and P, is a parameter.

VP=¢ (19)

(20)

The parameter P, is called the crush-up pressure. For P > P, the pores
are nearly all squeezed out, ¢ =~ 1, and the material pressure reduces to that
of the pure solid. This limit correspond to the ‘snow-plow’ model. We expect
P, to be comparable to the yield strength at which grains deform plastically.

Several points are noteworthy:
(i) A small amount of porosity can significantly lower the initial sound speed.
This in turn gives the Hugoniot locus in the (u,,us)-plane a characteristic
concave downward shape in the neighborhood of the initial state.
(ii) Typically, P, is much less than the bulk modulus. Consequently, when
the pores are being compressed, V, =~ Vj, and the compaction law can be
approximated as
Ps - P301|
P 1

(iii) Compaction of a PBX is irreversible when unloading from P > P,. This
can be accounted for by only allowing ¢ to increase.

bea(P) = 1= (1 — dy) exp [— (21)
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5 Calibration to TATB

To construct a TATB EOS we need to determine three functions; C(T'), (V)
and P.(V). The best available data comes from the Raman spectrum and
diamond anvil cell experiments.

5.1 Specific heat & Griineisen coefficient

For TATB the entire Raman spectrum has been measured over a range of
temperatures by McGrane and Shreve [11]. Though many lattice frequencies
have been identified, there are two issue with determining all modes. First,
a TATB crystal is triclinic and has two molecules per unit cell. This doubles
the number of vibrational modes, which equals 3 X (number of atoms per unit
cell). Most modes are associated with intra-molecular vibrations and would
be doubly degenerate or have a small splitting. But some modes, mainly low
frequencies, associated with both intra- and inter-molecular vibrations, would
be distinct. Second, selection rules due to molecular and crystal symmetry
exclude some modes from the Raman spectrum. Only 85 out of 144 distinct
frequencies have been found in the spectrum and listed in [11, table 1].

To help identify the modes, density functional theory calculations have
been performed by Liu et al. [15]. Their table 2 has identified 59 modes.
Since low frequency modes are hard to calculate, we have supplemented these
with 10 low frequency modes from [l 1, table 1]. The contribution of the low
frequency modes to Cy is fully saturated above room temperature, so their
precise values are not critical. In addition, we assume that the 3 acoustic
modes are fully saturated by room temperature. This adds up to 72 modes
or 3 x (24 atoms per molecule), which is sufficient for a good estimate of the
specific heat.

Using the frequencies listed in table 1, the specific heat is computed from
Eq. (8). Computed points along with a fit using Eq. (12) are shown in fig. 2.
We note that the six highest frequencies (3300 to 3400 cm™) are due to
N-H stretch. All other frequencies are below 1600 em™'. Consequently, the
specific heat is within 10 per cent of its asymptotic value (classical limit
of 2.32J/(g-K)) by 1500K. This is about the temperature behind the von
Neumann spike of a CJ detonation wave in PBX 9502. For the lower pressures
at which shock initiation occurs, the temperature variation of the specific
heat is significant.
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Table 1: Lattice frequencies for TATB based on density functional theory
[15, table 2] calculations and Raman spectrum |14, table 1] measurements;
see [15] for mode identification. Three acoustic modes not included.

mode frequency | mode frequency | mode frequency
(em™1) (em™1) (em™")

- 51 Q21 611 Q44 1173
= 62 Q22 656 Q45 1177
- 80 Q23 660 Q46 1231
- 97 Q24 804 Q47 1215
- 109 Q25 691 Q48 1219
- 119 Q26 730 Q49 1320
= 133 Q27 768 Q50 1327
. 139 Q28 704 Q51 1340
- 148 Q29 708 Q52 1397
- 231 Q30 683 Q53 1416
Q8 292 Q31 740 Q54 1446
Q9 295 Q32 744 Q55 1453
- Q10 312 Q33 779 Q56 1507
Q11 318 Q34 821 Q57 1517
Q12 370 Q35 827 Q58 1575
Q13 371 Q36 837 Q59 1586
Q14 391 Q37 860 Q60 1596
Q15 388 Q38 870 Q61 3313
Q16 436 Q39 874 Q62 3326
Q17 438 Q40 1026 Q63 3334
Q18 498 Q41 1032 Q64 3426
Q19 520 Q42 1148 Q65 3436
Q20 521 Q43 1119 Q66 3439
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Figure 2: Specific heat for TATB. Symbols are computed points based on
lattice vibrational frequencies and line is fit using Eq. (12).

The Griineisen coefficient is related to the variation of the vibrational fre-
quencies with V. Several groups of researchers have studied this dependence
at room temperature. Noteworthy are the Raman scattering measurements
of low frequency modes at low pressure (P < 0.2 GPa) by Holy [16], and the
infrared absorption measurements of selected modes up to 12 GPa by Pravica
et al. [I1]. Over the range of the measurements, the vibrational frequencies
display an approximate linear dependence on pressure.

The mode I'; can be expressed as

(22)

ri(v) = KPS

dP

The fits to diamond anvil cell data [9] described in the next subsection de-
termine K(P) and P(V). These functions are shown in fig. 3. This in con-
junction with measurements of v;(P) enable us to determine the mode I';(V).
Data is only available for a limited number of modes. For those modes, the
frequency and the value of I'; are listed in table 2. Not listed are the high-
est frequencies, v > 3200cm™!, for which the data [11, fig. 4a] displays the
anomalous behavior of a negative I';. Pravica et al. [11] attribute this to the
intermolecular hydrogen bonding between lattice planes.

For the three acoustic modes, neglecting the crystal anisotropy, we can
estimate the mode T'; using the Vashchenko-Zubarev relation (see [17, sec. 3.5]
and references therein)

.= (K- %) (23)
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Table 2: Mode Griineisen coefficient for selected frequencies of TATB. Low
pressure data from [16, table 2], and high pressure data from [11, figs. 4b & 6.

low pressure data

high pressure data

| ne,
frequency d;—Pl I;
em™) (GPa!) @P=0

30.69 0.3773 5.13
32.88 0.4620 6.28
47.74 0.3137 4.27
55.86 0.2169 2.95
99.32 0.2072 2.82
367.83 0.0184 0.25
386.26 0.0211 0.29

frequency d"%i T,
(em™') (GPa™!) @ P =5GPa
305 0.0079 0.42
455 0.0033 0.18
710 0.0021 0.14
1460 0.0016 0.10

05 |

0.4

V(cm*® /qg)

100

80

60

K (GPa)

40

20

G A ALl AR LAY LA LS Rl REL ARRL) LaRRl A

o

8
P (GPa)

12

Figure 3: Bulk modulus and specific volume as a function of pressure along
cold curve of TATB. Solid curve is based on low pressure Keane fitting pa-
rameters and dashed curve based on high pressure parameters.
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Substituting the value Kj = 12.4, from diamond anvil cell experiments dis-
cussed in the next subsection, gives I’y = 5.4. This is comparable to the
mode I'; for the low frequency modes listed in table 2.

Two trends are evident the data. First, the mode I'; decreases with
increasing frequency. Second, to the extent that %}%‘-”g, is constant, the mode T,
increases with pressure. As a consistency check we note that at the ambient

state (1 bar and 300 K) I" can be determined from the thermodynamic relation

BK
Cy
where 3 is the volumetric thermal expansion coefficient, K, is the isothermal
bulk modulus, and C, is the specific heat at constant pressure. From [18,
pp. 156-157] B8 = 2.36 x 107*K~! and C, = 1.039 x 1073 MJ/(kg-K) at
T = 25C. Together with K, = 13.6 GPa from fit in next subsection, gives'
[y = 1.6. Since this value lies between that of the low frequency and high
frequency T';, it is compatible with the limited available data.

Fo=W (24)

Given the crude approximation of a single temperature scale model and
limited data for the Griineisen coefficient, we simply take I'(V) = 0.5V/V,.
This has the expected trend that I' decreases with compression. It does
not agree with I'y at ambient state. However, near the ambient state the
Griineisen coefficient has a negligible effect, whereas a release to V;, from a
strong shock would be at a high temperature for which a lower I' is more
reasonable.

If and when sufficient data becomes available to determine the mode T;,
then the thermal model can be extended to have multiple temperature scales;
see [4, sec. 4.3.4].- This would result in T' being a function of both V and
T. Evaluations of the pressure would be computationally more expensive. If
this became burdensome then one could use the model to generate a tabular
EOS, such as the SESAME EOS. The advantage of a tabular EOS is that
the cost to evaluate the pressure or temperature at a point is independent
of the complexity of the model used to generate the table. The trade-off is
with the memory requirement for having a fine enough table for an accurate
interpolation.

! Using Eq. (21), Lambourn et al. [3] obtained I'y = 0.58. The discrepancy is due to
differing values of ( from x-ray diffraction measurments of TATB crystal [19] and from
pressed powder dilatometry measurements. In addition, there is an uncertainty in the
value of K, at V.
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Figure 4: TATB isotherm at room temperature. Black curve is from EOS
derived here. Blue curves are fit to diamond anvil cell data using Birch-
Murnaghan parameters in [9, table 2]; solid curve is fit below 8 GPa and
dashed curve is for all data, up to 13.2 GPa, and extrapolation beyond; u, >
1.26 km/s Dotted black and dashed black lines indicate the extent of the fits.

5.2 Cold curve

We calibrate the cold curve parameters to isothermal compression data from
diamond anvil cell experiments by Stevens et al. [9]. Two Birch-Murnaghan
fits are given in [9]: (i) up to pressure of 8 GPa, and (ii) for all data, pressure
up to 13.2 GPa. The reason for the two fits is that the data [9, fig. 7] displays
a kink at a pressure of about 8 GPa. This in part motivates our choice of a
two-piece Keane fitting form.

A comparison of the model EOS with the data, in the pseudo-velocity
plane, is shown in fig. 1. The computed curve utilized the specific heat
and the Grineisen coefficient discussed in the previous subsection to obtain
the room temperature isotherm, T' = 300 K. The data only extends up to
u, = 1.26 km/s. Beyond that the experimental curve represents an extrapo-
lation. The plot extends up to u, = 5km/s. This corresponds to the limit
of overdriven detonation wave data, roughly a pressure of 100 GPa. The pa-
rameters of the second Keane fit were selected in part such that the Hugoniot
locus and detonation locus do not intersect. This is discussed further in the
next subsection. For now we note that there is a slight difference with the
extrapolated fit to the isothermal data and the EOS model at pressures well
beyond that of the highest data point.
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6 PBX 9502 model EOS

"For the porosity model, the solid volume fraction ¢, is determined by the
ratio of the initial PBX 9502 density to the theoretical maximum density.
For the crush-up pressure we chose P, = 0.4GPa. This only affects the
Hugoniot locus at low pressures; mainly the initial sound speed which is the
intercept of the locus in the (u,,u,)-plane.

By way of summary, the EOS parameters for the complete PBX 9502
model are listed in table 1.

6.1 Comparison with Hugoniot locus

As a check on the PBX 9502 EOS model we compare with Hugoniot data
of Dick et al. [10] and Gustavsen et al. [20]. Though our focus is on the
reactant EOS it is also helpful to plot the overdriven detonation locus. We
use the data from Tang et al. [21] and Green et al. [22], and a SESAME EOS
table for the products generated by Sam Shaw and briefly described in [23,
App. DI

To set the scale, key quantities of a CJ detonation wave in PBX 9502
are listed in table 3. The Hugoniot locus and detonation locus are shown in
the (V, P)-plane and (u,, u;)-plane in figs. 5 and 0, respectively. Considering
the scatter in the data, the agreement with the model is as good as can be
expected.

Table 3: CJ detonation wave in PBX 9502,

V e P T Up |

| em®/g MJ/kg GPa K km/s

Init state | 0529 0223 00001 300 0.0 )|
detonation speed 7.73km/s

VN spike | 0.328 4.516  42.8 1567 2.93

Clstate | 0.396 2100 283 3126 1.94
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Table 4: EOS parameters for PBX 9502.

TATB reference state

Vo 1/1.942 cem?/g
P -0.216328 GPa
€o 0.0 MJ/kg
€4 0.222892  MJ/kg
P(Vy,e.) 0.0001 GPa
T(Vy,e.) | 300. K
TATB cold curve

Ky 13.6 GPa
K} 12.4 =

KQ{ oo 5.0 -
/Vo 0.79

K 6.0

Ko 1.001

TATB Griineisen coefficient & 6
Ty 0.0 —

L] 0.5

Bo 1.0 K

€1 0.3 ——
TATB specific heat

a, 1.0 x107* MJ/(kgK)
Co 4480x1074 —

1 2.229x107'  —

¢ 1.256x102

c3 4.034x107!

porosity parameters

o 0.9732 —

P 0.4 GPa
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Figure 5: Hugoniot loci for PBX 9502 in (V, P)-plane. Black symbols are
unreacted shock wave data. Red symbols are overdriven detonation wave
data. Blue curve is shock locus calculated with the reactant EOS model.
Red curve is the detonation locus calculated with a SESAME EOS for the

products.
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Figure 6: Hugoniot loci for PBX 9502 in (u,, us)-plane. Black symbols are
unreacted shock wave data. Red symbols are overdriven detonation wave
data. Blue curve is shock locus calculated with the reactant EOS model.
Red curve is the detonation locus calculated with a SESAME EOS for the

products.
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We note that at high pressures the shock locus is very close to the det-
onation locus. We do not expect the loci to cross below the von Neumann
spike pressure. For sufficiently strong shocks, the large shock compression
can change the electron distribution around the atoms and lower the poten-
tial barrier. If the barrier drops below the thermal energy from the shock
temperature, then the reactants would be thermodynamically unstable and
spontaneously decompose. If this were to occur then the loci may very well
cross. It is not known whether this occurs or if so, what a sufficiently large
pressure for the transition would be. We chose to set the Keane cold curve
parameters such that the loci do not cross. The parameters K| and K7
give sufficient fexibility to adjust the asymptotic behavior if additional very
high pressure data should become available. We also note that the weak dis-
continuity in K where the the two Keane fits join together is not noticeable
in the Hugoniot locus in either plane, nor in the plot of K(P) in fig. 3.

Comparing with another model gives some perspective on the sensitivity
of the EOS to fitting forms. One of the better models for PBX 9502 is
by Wescott et al. [24]. In addition, they used the same Hugoniot data to
calibrate model parameters. Figures 7 and 5 show the computed Hugoniot
loci for both models. The locus in the (u,,u,)-plane reflect the pressure
component of the EOS. It can be seen that this part of the EOS is pretty
much the same within the range of the data; up to about 25 GPa. The models
begin to differ when used to extrapolate to higher shock pressures. But even
at 100 GPa they are within 4 per cent. With neither data nor theory at high
pressures, there is no basis to prefer one or the other.

The models do differ in their thermal properties; Cy which affects the
shock temperature as seen in the loci in the (P, T)-plane shown in fig. S.
Though there is no temperature data, there is a theory for the specific heat,
which is described in sec. 5, and spectral data to calibrate it. Closely related
to the specific heat is the Griineisen coefficient which affects the pressure off
the principal Hugoniot locus. Both models make the simplifying assumption
that I' depends on only V. The spectral data indicates that this assumption
is not correct. For the most part, the compressional pressure is much larger
than the thermal pressure and hydro simulations are not too sensitive to the
Griineisen coefficient.

Figure 8 shows the temperature on both the shock locus and detonation
locus. We note that there is over a factor of 2 difference between the unre-
acted temperature at the von Neuman spike and the CJ temperature of the
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Figure 7: Comparison of PBX 9502 Hugoniot loci in (u,, u,)-plane. Black
and red points and curves are as in fig. (. In addition, green curves are
computed from EOS model of Wescott et al. [21]; solid line is shock locus
and dashed line is detonation locus.
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Figure 8: Comparison of PBX 9502 Hugoniot loci in (P, T)-plane. Black and
red solid curves are shock locus and detonation locus, respectively, computed
from reactant EOS model and SESAME EOS for products. Corresponding
dash curves are computed from EOS model of Wescott et al. [24].
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products. The ratio is much larger than for the more potent explosive HMX.
This ratio may affect the homogenized reaction rate from hot-spot grow, and
consequently detonation properties of a plastic-bonded explosive; in partic-
ular, sensitivity of shock initiation to the grain-size distribution.

6.2 Hugoniot loci for different initial densities

By changing only 1 parameter, ¢, the porosity model allows the initial
density of the PBX to be varied. Figures 9 and 10 shows the effect of varying
the density on the principal Hugoniot locus. In the (u,,u,)-plane, the loci
shift down with increasing porosity, which implies an increased compression
for the same shock pressure. In the (P, S)-plane, the loci shift up with
increasing porosity, which implies increased shock heating.

Porosity also increases the sensitivity to shock initiation. The CREST
model [2, 25] captures this effect, and also shock desensitization, by taking
the reaction rate to be a function of the reactant entropy. Possibly this can
be interpreted as the reaction rate is proportional to the number or size of
hot spots which scales with the shock dissipation. The entropy increase is
a measure of shock dissipation. For such a model, thermal properties are
important since S and T are conjugate thermodynamic variables.

7 Summary

A complete EOS model for the reactants of PBX 9502 has been constructed
based on the available data. This includes isothermal compression data of
TATB, the Raman and infrared spectrum of TATB and shock data for un-
reacted PBX 9502. The model is thermodynamically consistent and enables
the initial PBX density to be varied by adjusting its initial porosity.

Both the pressure and temperature should be reasonably accurate on the
principal shock locus. Off the shock locus, simplifying assumptions and the
choice of fitting forms affect the accuracy of the EOS. There are three main
limitations to the model:

(i) The model assumes that the Griineisen coefficient is a function of only V/,
while spectral data show multiple temperature scales for the mode I'; of the
lattice vibrations. This implies that I" is a function of both V and T'. We
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Figure 9: Variation of PBX 9502 Hugoniot loci in (u,, us)-plane with poros-
ity. Black curve is standard porosity, 2.4%. Blue curve is lower porosity,
1%, and red curve is higher, 5 %.
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Figure 10: Variation of PBX 9502 Hugoniot loci in (P, S)-plane with poros-
ity. Black curve is standard porosity, 2.4 %. Blue curve is lower porosity,
1%, and red curve is higher, 5%.
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expect that I will decrease as T' increases above the shock locus, i.e., for
large T' the thermal pressure would be too large.

(ii) The fitting form for the cold curve P.(V') allows extrapolation to higher
pressures than the shock data, 7.e., P > 25GPa. The further one extrapo-
lates the larger the uncertainty.

(iii) The expansion region, p < pg, is well behaved but arbitrary. The ex-
pansion region is not accurate. It is included for robustness when the EOS
is used in hydro simulation.
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