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Towards understanding initiation reactions of explosives via ultrafast laser quantum control

Optimal control can be utilized to control the initiation reaction of explosives, where time dependent
phase shaped electric fields drive the chemical systems towards a desired state. For quantum controlled
initiation (QCI) of explosives a pulse is created which seeks to achieve initiation by employing shaped
ultraviolet light. QCI will enhance the understanding of energetic material reactions by yielding insight into
the characteristics, such as critical “hot spot” size and reaction dynamics, necessary for initiation.

Quantum control experiments require the ability to: 1) phase and amplitude shape an ultrafast laser
pulse, 2) measure the effect of pulse shape, and 3) optimize the desired outcome. Pulse shaping is
performed with a 4-focal length dispersed fused silica acousto-optic modulator (AOM) at 400 nm in the
ultraviolet (UV). Transient absorption spectroscopy is used to measure the pulse shape effects. Both global
and local optimization search routines such as genetic algorithm, differential evolution, and downhill
simplex are used to search for the optimal pulse shape.

Hexanitroazobenzene (HNAB), Trinitroanaline (TNA) and Diaminoazozyfurazan (DAAF) are excited to
the first electronic state with 400 nm light. Our initiation experiments are studying the effect of phase
shaped 400 nm pulses on HNAB, TNA and DAAF. Novel transient absorption spectra for each material
have been obtained and note worthy regions further investigated with single parameter control (second
order spectral phase and energy). Many systems have simple intensity control such as that shown by
DAAF. TNA and HNAB have spectral features that are not single parameter driven and are being further
investigated with complex control.
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Why coherent/optimal control?

= Actively control the chemical dynamics of condensed
phase systems

* Liquid and Solid
= Time dependent shaped electric fields:
= OPTIMAL SHAPE
= Ultimate Goal

= Optimal controlled initiation of explosives

= |nitiation of energetic material
= Control of photodynamics

* |ncreased understanding of the dynamics of
energetic materials of interest

= Experiment coupled with calculation
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Linear spectroscopy - unshaped pulses

Conventional steady-
state or linear
spectroscopy using
unshaped pulses

- Poor molecular
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Quantum Optimal Dynamic Discrimination

. Concept: Optimally
tailored laser pulses
(photonic reagents)

_ Enables selective
addressing of

different species /w

» Los Alamos
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Control by closed loop optimization

= | earning Loop
= Searches for optimal pulse using feedback control
= |nitiation experiment: Transient absorption spectrum
= Can use many optimization routines

/N | Signals
- -
r_-

Controlsl Fithess

“Probe”

L - L
\ shaped

800nm
400 & 266 nm Sample

Electronics

detector

-Shaped 400 nm pump
-Broadband 325-750 nm super continuum probe for transient absorption



Cutting edge pulse shaping

= 400 and 266nm ultraviolet (UV) shaping
= Allows for single photon processes
* |n the low field limit

= 800 nm shaping
= Vibrational ladder climbing \7
Masks v

» Los Alamos
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Examples of shaped pulses

0.4
0.2
8 0.0
0.2
-0.4

260 264 268 272 260 264 268 272
nm nm

Transform limited ~150fs Simple linear chirp

ps

260 264 268 272

nm
.ﬁ%pdamos Dual sine waves

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA I ¥ ‘D\?ﬂj



Towards optimal control of explosives

-Potential energy surface unknown
-HNAB absorbs well around 400 nm
-Good starting point for control

L)
‘1.'1 L)
W _=0) “
|! \ 3 — N l {
() N\ 0= \ / —— HNAB/acetone 4.6 x 10°* M
\\\ ‘,‘/ %‘ N / { ',.f, ) HNAB/acetone 1.55 x 10° M
N —( Ny / o —— HNAB/acetone 3.1 x 10° M
I \ \‘:\\ — > x
I/ \ Y ~ .
0 )——/ \\\ //i O £
H 3 p =
\ = ,. =N H 5
4 0 W o
(0 W e
0 5
e
hexanitroazobenzene
0.0 I | ' I ' |
400 600 800 1000
7 Wavelength (nm)
5 lam
NLA?L?JAAEORM?RSY UNCLASSIFIED Slide 8

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA %AVIA‘D%&




Intensity (A.U.)

Intensity (A.U.)

HNAB 1.38 mM solution in Acetone
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Single parameter control
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Single parameter control

Normalized fithess
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Trinitroaniline (TNA)
NH,

-Also known as picramide

-Absorbs well around 400 nm
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TNA 0.3 mM solution
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Single parameter control

Normalized fitness Normalized fitness

Normalized fitness
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Diaminoazoxyfurazan (DAAF)

O
Insensitive explosive

/
H2N N=N NH, -Produced in “green” synthesis
HN NH .Absorbs well around 400 nm
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DAAF 0.44 mM solution in Dimethylsulfoxide
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Single parameter control

Normalized fitness

Normalized fitness
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Optimal Control Landscape

. Control landscape has no traps

- Given a controllable quantum system, there is
always a trap free pathway to the top of the
control landscape from any location.

- Bandwidth dependent
- Unlimited bandwidth
- Unlimited control
- Experimental limitations
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Achromatic second harmonic generation (ASHG) will
allow vibrational control with electronic resonance

800 nm Spatially

broadband in dispersed beam 0.1 mm
BBO crystal

NIR L N UV Prism
' By PAT

Focus angle = phase
matching angle

—— BBO SHG phase matching
—— Incoming angle
2 —— Angle difference x 10

Angle (degrees)
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ASHG doubles the frequency and frequency range
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Not only the center frequency, but also
the frequency range is doubled.

This allows impulsive Raman excitation
and control over a larger range of
vibrational frequencies.

Efficiency of ASHG is high (~40%)

ASHG is insensitive to spectral phase
noise (pulse is not compressed)

UNCLASSIFIED Slide 20

IR § .Y o8
ANA S



Summary

= HNAB, TNA, DAAF
* Transient absorption data
= Single parameter control
= Future
= Complex control
= Achromatic phase matching

= Of non simple parameter response in HNAB
and TNA

» DAAF- further investigate degree of intensity
control

= Trinitrotoulene (TNT)

+ Los Alamos
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