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The Dynamics of Unsteady Detonation with Diffusion
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The dynamics of one-dimensional detonations predicted by a one-step irreversible Ar-
rhenius kinetic model with the inclusion of mass, momentum, and energy diffusion were
investigated. A series of calculations in which activation energy is varied, holding the
length scales of diffusion and reaction constant, was performed. As in the inviscid case,
as the activation energy increases, the system goes through a period-doubling process and
eventually undergoes a transition to chaos. Within the chaotic regime there exist regions of
low frequency limit cycles. An approximation to Feigenbaum’s constant, the rate at which
bifurcation points converge, is obtained. The addition of diffusion significantly delays onset
of instability and strongly influences the dynamics in the unstable regime.

I. Introduction

It is a common notion in detonation theory that the effects of diffusion can be segregated from the
dynamics of both reaction and advection. There exists extensive literature (cf. Fedkiw et al.,' Oran et al.,
Hu et al.,” Wang et al.,’ Walter and da Silva,” He and Karagozian,” Aslam and Powers,” or Tsuboi et al.®)
which adopts the inviscid assumption. Using grid sizes around 1078 m for their three-dimensional simulations
of unsteady hydrogen-air detonations, Tsuboi et al. report wave dynamics that show strong sensitivity to the
fineness of the grid. This suggests numerical diffusion is playing a significant role in determining the dynamics
and that one should introduce grid-independent physical diffusion to properly capture the dynamics.

Powers and Paolucci” performed a spatial eigenvalue analysis on hydrogen-air and have shown for inviscid
detonations that the length scales for a steady Chapman-Jouguet (CJ) detonation can span five orders of
magnitude near equilibrium, with the smallest length scale for an ambient mixture at atmospheric pressure
being 10~7 m and the largest being 1072 m; away from equilibrium the breadth of scales can be even larger.
These fine reaction scales are a manifestation of an averaged representation of the molecular collision model
in which the fundamental length scale is the mean free path.'” In order to have a mathematically verified
prediction, this wide range of scales must be resolved, which poses a daunting task.

The choice of a one-step kinetic model induces a single reaction scale, in contrast to the multiple reaction
scales of detailed kinetic models. This allows for the effects of the interplay between chemistry and transport
phenomena on detonations be more easily studied. Such a model has been studied extensively; the stability
and non-linear dynamics are well understood (cf. Lee and Stewart,'' Bourlioux et al.,'* Sharpe,'® Kasimov
and Stewart,'! Ng et al.,'® or Henrick et al. '°) in the inviscid limit. Lee and Stewart developed a normal-
mode approach to the linear stability of the idealized detonation to one-dimensional perturbations using a
shooting method to find the unstable modes. Bourlioux et al. study the nonlinear development of instability.
Kasimov and Stewart also applied a normal mode approach to the linear stability problem and performed
a numerical analysis using a shock-tracking technique. Ng et al. developed a coarse bifurcation diagram
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showing how the oscillatory behavior became progressively more complex as activation energy increased.
Henrick et al. developed a more detailed bifurcation diagram using a shock-fitting method in combination
with a mapped WENO scheme.

The goal of this paper is to predict the effects of diffusion on the long-time dynamics of a detonation
described by simple one-step kinetics. The plan of the paper is as follows. First the mathematical model
is presented. This is followed by a description of the computational method. The model is used to predict
the viscous analog of the period-doubling phenomena predicted in the inviscid limit by Sharpe, Ng et al.,
and Henrick et al. The convergence of the period-doubling bifurcation points is shown to be in agreement
with the general theory of Feigenbaum,'”'® and diffusion is seen to have a generally stabilizing effect on
detonation dynamics.

II. Mathematical Model

The model adopted here is the one-dimensional unsteady compressible reactive Navier-Stokes equations
with one-step kinetics:

% 2 () =0, )

d Bog, o 5 o
a(W)WL&(ijL -7) =0, (2)

o P . u? & B
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2 (0 + o (our + 53 = o (1)

where the independent variables are time, ¢, and the spatial coordinate, z. In Egs. (1-4), p is the mass
density, u the particle velocity, P the pressure, 7 the diffusive viscous stress, e the internal energy, 77 the
diffusive heat flux, A the reaction progress variable, 77* the diffusive mass flux, and r the reaction rate. The
equations were transformed to a frame of reference moving at a constant velocity, D. Applying this Galilean
transformation, one recovers
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The particle velocity, u, is still measured in the laboratory frame in Egs. (5-8). The constitutive relations
chosen for mass, momentum, and energy diffusion are

I )\
= p’Dax, 9)
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where Fick’s Law for binary diffusion has been adopted as the model for diffusive mass flux, D is the mass
diffusion coefficient, 1 the dynamic viscosity, k£ the thermal conductivity, T the temperature, and g the heat
release. A calorically perfect ideal gas model is adapted:

P = pRT, (12a)
e= F__ A (12b)
plr—1
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where R is the gas constant, and + is the ratio of specific heats. We choose the simple irreversible one-step

reaction model to be A — B, where A and B are the reactant and product, respectively; both have identical
molecular masses and specific heats. In the undisturbed state, only A is present. The mass fractions of A
and B are given by 1 — ), and ), respectively. We take the reaction rate = to be given by the law of mass
action with an Arrhenius rate sensitivity:

T:H(PAPS)(Z(I—/\)C—?%, (13a)

Here a is the collision frequency factor, E, is the activation energy, and H(P — Py) is a Heaviside function
which suppresses reaction when P < P;, where Ps is a selected pressure. Also note the ambient pressure
and density are taken to be P, and p,, respectively.

ITI. Computational Method

A point-wise method of lines approach is used. This method allows separate temporal and spatial
discretizations and also allows for the inclusion of source terms. The advective terms were calculated using a
combination of a fifth order WENO scheme and Lax-Friedrichs;'” the diffusive terms are treated with sixth
order central differences. As an aside, it is noted that a fifth order central differencing of the advection terms
would work as well as a WENO discretization because our solutions contain no discontinuities. Temporal
integration is accomplished using a third order Runge-Kutta scheme.

The exercise of demonstrating the harmony of the discrete solution with the foundational mathematics
is known as verification.”” The method of manufactured solutions”' was used to verify the code. In this
method, a solution form is assumed and source terms are added to the governing equations for the assumed
solution form to satisfy them. A periodic form for the solution was assumed

p(z,t) = a1 + by cos[n(z —t)], (14)
u(x,t) = ag + bz cos [w(x — t)], (15)
p(x,t) = as + by cos [r(z + t)], (16)
Az, t) = aq + ba cos [r(z + t)], 17

with arange € [—1, 1]. For the case presented here, a1 = a2 = a3 =a4 =1 and by = b3y = by = 1/10,b5 = 1.
The inital conditions being at ¢ = 0. Fig. 1 shows asymptotic convergence of the solution to that assumed
form. This indicates that the method is fifth order convergent in space. The y-axis is the sum of all variables
L, errors normalized by the max value of the variable.

IV. Results

All calculations were performed in a single processor environment on an AMD 2.4 GHz processor with
512 kB cache. The program is initialized with the inviscid Zel’dovich-von Neumann-Déring (ZND) solution
in a moving frame traveling at approximately the CJ speed. Each simulation is integrated in time for its long
time behavior. For a calculation of 2.5 us the computational time required was two days. Some calculations
took as long as nine days to complete due to the need for longer integration times.

By selecting the diffusion coefficient, D = 1074 m?/s, thermal conductivity, £ = 107> W/m/K, and
viscosity, 4 = 10™* Ns/m? the Lewis, Le, Prandtl, Pr, and Schmidt, Sc numbers evaluated at the ambient
density, p, = 1 kg/m?, are unity. All of these parameters are within an order of magnitude of gases at a
slightly elevated temperature. In the inviscid detonation, the activation energy controls the stability of the
system; the rate constant merely introduces a length/time scale into the system, the half reaction length,
Ly j5, (the distance between the inviscid shock and the location at which A = 1/2). If the half reaction length is
fixed, the effect of diffusion on the system can be studied. Using simple dimensional analysis of advection and
diffusion parameters (U = 1000 m/s was chosen as a typical velocity scale) gives rise to an approximate length
scale of mass diffusion, D/U = 10~7 m, and likewise for momentum and energy diffusion p/p,/U = 1077 m,
and k/po/Cy/U = 1077 m. Since all the diffusion length scales are the same, let that scale be denoted
as L, = 10~7 m. The parameters in the governing equations, chosen in SI units are P, = 101325 Pa,
P, = 200000 Pa, p, = 1 kg/m?, ¢ = 5066250 m?/s?, v = 6/5, and E, € (2533125, 3232400] m?2/s2. With
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this heat release the D¢y for the inviscid problem is,

2 _ 2 v
Bope= /7% " q(72 D ,/q“? L~ 2167.56 m/s. (18)
(o]

To compare directly with previous work in the inviscid limit, the activation energies will be presented in
dimensionless form, E, = Na/ (1.01325 x 10° m2/52), thus E, € [25,32]. Using these parameters allows for
the interaction diffusion and reaction effects to be studied and the comparison with the inviscid results with
the interaction of the two length scales of interest, reaction, L, /o and diffusion, L.

A. Linearly stable and a limit cycle

In the inviscid case, linear stability analysis by Lee and Stewart revealed that for F, < 25.26, the steady
ZND wave is linearly stable and is otherwise linearly unstable. Henrick et al. numerically found the stability
limit located at E, = 25.265 + 0.005, which is in excellent agreement with prediction of the linear stability
analysis. In examining a case well above that stability limit, £, = 26.647, which Henrick et al., found to
relax to a period-1 limit cycle, it can be seen from Fig. 2 that in the presence of diffusion, there is no limit
cycle behavior and the ZND viscous detonation predicted by steady theory is in fact stable. A steady limit
cycle is realized by the system by increasing the activation energy to E, = 27.6339, which is clearly shown
in Fig. 3. The linear stability boundary for the diffusive case being studied was located at E, ~ 27.1404.

B. Period-doubling and Feigenbaum’s universal constant

As predicted by Sharpe and Ng et al. and shown in Henrick et al., a period-doubling phenomena, similar
to that predicted by the simple logistic map,“**’ occurs at E, =~ 27.2. The period-doubling effect predicted
here is delayed, similarly to the initial linear instability. Fig. 4(a) shows the time history of the detonation
pressure for the case E = 29.6077, which clearly shows in the long time limit two distinct relative maxima,
P = 6.256 M Pa and P = 5.283 M Pa; whereas for E = 26.734 only one relative maxima is present,
P ~ 4.867 M Pa.

The activation energy at which the behavior switches from a period-1 to a period-2 solution is denoted
as E,,. The other period-doubling bifurcation values, E,,, occur where the solution undergoes a transition
from a period 277! to a period 27. The transition from a linearly stable solution to a periodic solution is
referred to as E,,. These bifurcation points are listed in Table 1; also listed are the bifurcation points of
the inviscid problem studied by Henrick et al. and the approximations for the diffusive case studied here to
Feigenbaum’s Constant, . :

600 = lim 6, = lim En = Eny
T 0O n—oo B4y — E,

(19)

Feigenbaum predicted do, &~ 4.669201. Table | shows three approximations to Feigenbaum’s constant with
the last approximation, 3 ~ 4.657 being in good agreement with 0.

Table 1. Numerically determined bifurcation points, comparison with inviscid, and approximations to Feigen-
baum’s Constant

Inviscid Diffusive
n Eq, Eo,, s
0 25.2650 27.1404 -
1 27.1875 29.3116 3.793
2 27.6850 29.8840 4.639
3 27.8017 30.0074 4.657
4 27.82675 30.0339 -

C. Bifurcation diagram, windows and chaos

A bifurcation diagram was constructed by sampling over 300 points with E, € [25,32], with the minimum
spacing AF, ~ 0.001 occurring after the third bifurcation and a maximum spacing of AE, = 0.1 in the
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linearly stable region. For E, > F,, the solutions were integrated to ¢ = 10 us, and relative maxima in P
were recorded for ¢ > 7 us. For those points below the third activation energy, solutions were only integrated
to 2.5 us, and relative maxima were recorded for ¢ > 1 ps. The late time behavior of relative maxima in
P versus activation energy is shown in Fig. 6(b). It shows the period-doubling bifurcations up to roughly
E, =~ 30.0600. Also of note are the regions in which a limit cycle exists with an odd number of periods. For
example F, ~ 30.4 a period-3 window exists; as E, increases further, the period-3 behavior bifurcates to a
period-6 behavior. It is likely that in the dense portions of the bifurcation diagram that the system is in the
chaotic regime.

Fig. 4 gives several plots as activation energy is increased of P versus t. As E, increases the system
undergoes a bifurcation process, and chaos is achieved, which is qualitatively striking similar to the logistic
map studied by Feigenbaum. Within the chaotic regime, there exist pockets of order. Periods of 5, 6, and 3
are found and are shown in (c), (e), and (f) respectively.

Table 2. Ranges of different periods

Period E,
Stable < 27.1404
1 27.1404, 29.3116]
2 [29.3116, 29.8840]
4 [29.8840, 30.0074]
8 [30.0074, 30.0339]
Chaotic [30.0600, 30.2591]
5 [30.2591, 30.2788]
Chaotic [30.2788,30.3578]
5 [30.3578,30.3775]
Chaotic [30.3775,30.4071]
3 [30.4071, 30.4565]
6 [30.4565, 30.4959]
Chaotic [30.4959, 30.8512]
3 [30.8512,30.8611]
6 [30.8611, 30.9203]
Chaotic > 30.9203

D. Effect of diminishing diffusion

By increasing the reaction length scale, Ly /3, the relative effect of diffusion decreases. Fig. 5 shows solutions
for E, = 27.634, for the ratio of (a) L,/L1/2 = 1/5, (b) L./Lyj2 = 1/10, and (c) L,/L1/3 = 1/50. The
system undergoes a transition from a stable detonation to a limit cycle, and again to a period-2 limit cycle.
It clearly shows an amplitude increase in the pulsations with (a) decaying to a Ppq. & 4.213 M Pa, (b)
having a relative maximum of P,a, & 4.799 M Pa and (c) having relative maxima of Ppq, =~ 5.578 M Pa
and Prez ~ 5.895. In addition to these behavioral changes, the frequency of the pulsations also decreases.

It can be clearly seen from Fig. 6 that the whole bifurcation diagram obtained by Henrick et al. using
a shock-fitting algorithm in which the artificial viscosity is nearly negligible, occurs below the first period-
doubling bifurcation of the diffusive case. Henrick et al. state that above E, ~ 30 the secondary captured
shocks may overtake the lead shock, which would negate precision of their shock fitting technique. In the
diffusive case, the system is still in the period-doubling phase at F, =~ 30. In the diffusive case there is no
true discontinuity, thus the shock can not be predicted as in the inviscid limit. The trend that exists for the
inviscid case also exists in the diffusive case. Ignoring diffusion can shift the system from a simple period-1
limit cycle to a fully chaotic regime.
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V. Conclusion

Investigation of the one-step kinetic model of one-dimensional unsteady detonation with mass, momen-
tum, and energy diffusion has shown that the dynamics of the system are significantly influenced in the
region of instability. As in the inviscid limit, bifurcation and transition to chaos is predicted and shows
similarities to the logistic map. The addition of the diffusion delays the onset of the instability. As physical
diffusion is reduced, the behavior of the system trends towards the inviscid limit. The physical diffusion
changes the behavior of the system dramatically and as it increases in comparison to the reaction length
scale, the system becomes more stable. It is clear that if the dynamics of the denotation are to be captured
correctly, that physical diffusion needs to be included in the model. It is likely that these results will extend
to detailed kinetic systems. It is also likely that detonation cell pattern formation will be influenced by the
magnitude of the physical diffusion.’
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Figure 1. The normalized L; error versus Az for a manufactured solution.
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Figure 2. Numerically generated detonation pressure, Prg; versus t, E, = 26.647, Lyj2/L. = 1/10, stable.
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Figure 3. Numerically generated detonation pressure, P, versus t, Eq = 27.6339, Lys2/Lu = 1/10, period-1
oscillations shown.
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Figure 4. Numerically generated detonation pressure, Pmqz versus ¢t :(a) Fo = 29.6077, period-2, (b) Ea. =
30.0025, period-4, (c) E, = 30.2689, period-5, (d) Es = 30.3578, chaotic, (e) E, = 30.4762, period-6, (f) E, = 30.8512,
period-3.

9of 11

American Institute of Aeronautics and Astronautics



|

6!

!

—~ 5.5]
©
o

= 5
o

3'56 0.5 1 1.5 2

55

5|

P (MPa)

4.5
4

L
39 1.5 2

6.5

P (MPa)
o

a0 0.5 1 15 2
t (us)

Figure 5. Numerically generated detonation pressure, Prq: versus t for E, = 27.6339 and (a)L,/Ly/; = 1/5,
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Fiéure 6. Comparison of numerically generated bifurcation diagrams, inviscid diagram by Henrick et al., and
L,/Ly/; = 1/10.
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