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The Dynamics of Unsteady Detonation with Diffusion 

Christopher M. Romick * 
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 

Tariq D. Aslam t 

Dynamic and Energetic Materials Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

Joseph M. Powers :j: 

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 

The dynrunics of one-dimensional detonations predicted by a one-step irreversible Ar­
rhenius kinetic model with the inclusion of mass, momentum, and energy diffusion were 
investigated. A series of calculations in which activation energy is varied, holding the 
length scales of diffusion and reaction constant, was performed. As in the inviscid case, 
as the activation energy increases, the system goes through a period-doubling process and 
eventually undergoes a transition to chaos. Within the chaotic regime there exist regions of 
low frequency limit cycles. An approximation to Feigenbaum's constant, the rate at which 
bifurcation points converge, is obtained. The addition of diffusion significantly delays onset 
of instability and strongly influences the dynamics in the unstable regime. 

I. Introduction 

It is a common notion in detonation theory that the effects of diffusion can be segregated from the 
dynamics of both reaction and advection. There exists extensive literature (cf. Fedkiw et al} Oran et al.,2 
Hu et al.,'J Wang et al., ·l Walter and da Silva,:> He and Karagozian,ti Aslam and Powers/ or Tsuboi et al.B) 

which adopts the inviscid assumption. Using grid sizes around 10-6 m for their three-dimensional simulations 
of unsteady hydrogen-air detonations, Tsuboi et al. report wave dynamics that show strong sensitivity to the 
fineness of the grid. This suggests numerical diffusion is playing a significant role in determining the dynamics 
and that one should introduce gTid-independent physical diffusion to properly capture the dynamics. 

Powers and Paolucci9 performed a spatial eigenvalue analysis on hydrogen-air and have shown for inviscid 
detonations that the length scales for a steady Chapman-.]ouguet (CJ) detonation can span five orders of 
magnitude near equilibrium, with the smallest length scale for an ambient mixture at atmospheric pressure 
being 10-7 m and the largest being 10-2 m; away from equilibrium the breadth of scales can be even larger. 
These fine reaction scales are a manifestation of an averaged representation of the molecular collision model 
in which the fundamental length scale is the mean free path. 10 In order to have a mathematically verified 
prediction, this wide range of scales must be resolved, which poses a daunting task. 

The choice of a one-step kinetic model induces a single reaction scale, in contrast to the multiple reaction 
scales of detailed kinetic models. This allows for the effects of the interplay between chemistry and transport 
phenomena on detonations be more easily studied. Such a model has been studied extensively; the stability 
and non-linear dynamics are well understood (cf. Lee and Stewart, ll Bourlioux et al., 12 Sharper l Kasimov 
and Stewart,H Ng et al., 15 or Henrick et al. 16 ) in the inviscid limit. Lee and Stewart developed a normal­
mode approach to the linear stability of the idealized detonation to one-dimensional perturbations using a 
shooting method to find the unstable modes. Bourlioux et al. study the nonlinear development of instability. 
Kasimov and Stewart also applied a normal mode approach to the linear stability problem and performed 
a numerical analysis using a shock-tracking technique. Ng et al. developed a coarse bifurcation diagram 
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showing how the oscillatory behavior became progressively more complex as activation energy increased. 
Hemick et al. developed a more detailed bifurcation diagram using a shock-fitting method in combination 
with a mapped WENO scheme. 

The goal of this paper is to preclict the effects of diffusion on the long-time dynamics of a detonation 
described by simple one-step kinetics. The plan of the paper is as follows. First the mathematical model 
is presented. This is followed by a description of the computational method. The model is used to predict 
the viscous analog of the period-doubling phenomena preclicted in the inviscid limit by Sharpe, Ng et al., 
and Henrick et al. The convergence of the period-doubling bifurcation points is shown to be in agreement 
with the general theory of Feigenbawn 17, 18 and diffusion is seen to have a generally stabilizing effect on 
detonation dynamics. 

II. Mathematical Model 

The model adopted here is the one-dimensional unsteady compressible reactive Navier-Stokes equations 
with one-step kinetics : 

(1) 

(2) 

(3) 

(4) 

where the independent variables are time, t, and the spatial coordinate, x. In Eqs. (1-4), p is the mass 
density, U the particle velocity, P the pressme, T the diffusive viscous stress, e the internal energy, f the 
diffusive heat flux, A the reaction progress variable, j'!: the diffusive mass fltL'C, and r the reaction rate. The 
equations were transformed to a frame of reference moving at a constant velocity, D . Applying this Galilean 
transformation, one recovers 

ap a 
at + ax (p(u - D)) = 0, 

a a 
- (pu) + - (pu (u - D) + P - T) = 0 at ax ' 

! (p(e+ ~2)) + :x (P(U-D) (e+ ~2) +jq+(P-T)U) =0, 

a a at (pA) + ax (p(U - D ) A + PA) = pro 

(5) 

(6) 

(7) 

(8) 

The particle velocity, u, is st.ill measmed in the laboratory frame in Eqs. (5-8). The constitutive relations 
chosen for mass, momentum, and energy diffusion are 

'm '" aA 
J).. = -pL/ ax' 

4 au 
T = 3M ax' 
.q k&T '" aA J = - - + PL/q- , ax ax 

(9) 

(10) 

(11) 

where Fick's Law for binary diffusion has been adopted as the model for diffusive mass flux , 1) is the mass 
cliffusion coefficient , M the dynamic viscosity, k the thermal conductivity, T the temperatme, and q the heat 
release. A calorically perfect ideal gas model is adapted: 

P = pRT, 

P 
e = p (-y _ 1) - qA, 
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where R is the gas constant, and 'Y is the ratio of specific heats. We choose the simple irreversible one-step 
reaction model to be A -7 B, where A and B are the reactant and product, respectively; both have identical 
molecular masses and specific heats. In the undisturbed state, only A is present. The mass fractions of A 
and B are given by 1 -A, and A, respectively. We take the reaction rate r to be given by the law of mass 
action with an Arrhenius rate sensitivity: 

E 
r = H(P - Ps)a (1 - A) e-f5tp, (13a) 

Here a is the collision frequency factor, Ea is the activation energy, and H(P - Ps) is a Heaviside function 
which suppresses reaction when P < P.s, where Ps is a selected pressure. Also note the ambient pressure 
and density are taken to be Po and Po, respectively. 

III. Computational Method 

A point-wise method of lines approach is used. This method allows separate temporal and spatial 
discretizations and also allows for the inclusion of source terms. The advective terms were calculated using a 
combination of a fifth order WENO scheme and Lax-Friedrichs; J9 the diffusive terms are treated with sixth 
order central differences. As an aside, it is noted that a fifth order central differencing of the advection terms 
would work as well as a WENO discretization because our solutions contain no discontinuities. Temporal 
integration is accomplished using a third order Rlillge-Kutta scheme. 

The exercise of demonstrating the harmony of the discrete solution with the fOlilldational mathematics 
is known as verification.20 The method of manufactured solutions21 was used to verify the code. In this 
method, a solution form is assumed and source terms are added to the governing equations for the assumed 
solution form to satisfy them. A periodic form for the solution was assumed 

p(x, t) = al + b1 cos [7r(x - t)l, 

u (x, t) = a2 + b2 cos [7r(x - t)l , 

p (x, t) = a.3 + b3 cos [7r(x + t)l , 

A (x, t) = a4 + b4 cos [7r(x + t)] , 

(14) 

(15) 

(16) 

(17) 

with a range x E [-1,1]. For the case presented here, al = a2 = a3 = a4 = 1 and b2 = b3 = b4 = 1/10, b4 = 1. 
The inital conditions being at t = O. Fig. 1 shows asymptotic convergence of the solution to that assumed 
form. This indicates that the method is fifth order convergent in space. The y-axis is the sum of all variables 
Ll errors normalized by the max value of the variable. 

IV. Results 

All ca.lculations were performed in a single processor environment on an AMD 2.4 GHz processor with 
512 kB cache. The program is initialized with the inviscid Zel'dovich-von Neumann-Doring (ZND) solution 
in a moving frame traveling at approximately the CJ speed. Each simulation is integTated in time for its long 
time behavior. For a calculation of 2.5 /LS the computational time required was two days. Some calculations 
took as long as nine days to complete due to the need for longer integration times. 

By selecting the diffusion coefficient, 'D = 10-4 m 2 /s, thermal conductivity, k = 10-1 W/m/ K, and 
viscosity, /L = 10-4 N s/m2 the Lewis, Le, Prandtl, Fr, and Schmidt, Be numbers evaluated at the ambient 
density, po = 1 kg/m3 , are unity. All of these parameters are within an order of magnitude of gases at a 
slightly elevated temperature. In the inviscid detonation, the activation energy controls the stability of the 
system; the rate constant merely introduces a length/time scale into the system, the half reaction length, 
Ll/2' (the distance between the inviscid shock and the location at which A = 1/2). If the half reaction length is 
fixed, the effect of diffusion on the system can be studied. Using simple dimensional analysis of advection and 
diffusion parameters (U = 1000 m/8 was chosen as a typical velocity scale) gives rise to an approximate length 
scale of mass diffusion, 'D/U = 10-7 m, and likewise for momentum and energy diffusion p,/Po/U = 10-7 m, 
and k/po/Cp/U = 10-7 m. Since all the diffusion length scales are the same, let that scale be denoted 
as Lp. = 10-7 m. The parameters in the governing equations, chosen in SI units are Po = 101325 Pa, 
Ps = 200000 Pa, Po = 1 kg/m3, q = 5066250 m 2/s2, 'Y = 6/5, and Ea E [2533125,3232400] m 2/82. With 
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this heat release the DCJ for the inviscid problem is, 

DCJ = (18) 

To compare directly with previous work in the inviscid limit, the activation energies will be presented in 
dimensionless form, Ea = Ea/ (1.01325 X 105 m2/s2

) , thus Ea E [25,32]. Using these parameters allows for 
the interaction diffusion and reaction effects to be studied and the comparison with the inviscid results with 
the interaction of the two length scales of interest, reaction, L I / 2 and diffusion, Lw 

A. Linearly stable and a limit cycle 

In the inviscid case, linear stability analysis by Lee and Stewart revealed that for Ea < 25.26, the steady 
ZND wave is linearly stable and is otherwise linearly unstable. Henrick et at. numerically found the stability 
limit located at Ea = 25.265 ± 0.005, which is in excellent agreement with prediction of the linear stability 
analysis. In examining a case well above that stability limit, Ea = 26.647, which Henrick et at., found to 
relax to a period-1 limit cycle, it can be seen from Fig. 2 that in the presence of diffusion, there is no limit 
cycle behavior and the ZND viscous detonation predicted by steady theory is in fact stable. A steady limit 
cycle is realized by the system by increasing the activation energy to Ea := 27.6339, which is clearly shown 
in Fig. 3. The linear stability boundary for the diffusive case being studied was located at Ea ~ 27.1404. 

B. Period-doubling and Feigenbaum's universal constant 

As predicted by Sharpe and Ng et at. and shown in Henrick et at., a period-doubling phenomena, similar 
to that predicted by the simple logistic map, 22 . 23 occurs at Ea ~ 27.2. The period-doubling effect predicted 
here is delayed, similarly to the initial linear instability. Fig. 4(a) shows the time history of the detonation 
pressure for the case E = 29.6077, which clearly shows in the long time limit two distinct relative maxima, 
P ~ 6.256 !vI Pa and P ~ 5.283 M Pa; whereas for E = 26.734 only one relative maxima is present, 
P ~ 4.867 MPa. 

The activation energy at which the behavior switches from a period-1 to a period-2 solution is denoted 
as Ea, . The other period-doubling bifurcation values, En, occur where the solution undergoes a transition 
from a period 2n - 1 to a period 2n. The transition from a linearly stable solution to a periodic solution is 
refeITed to as Eao' These bifurcation points are listed in Table 1; also listed are the bifurcation points of 
the inviscid problem studied by Henrick et at. and the approximations for the diffusive case studied here to 
Feigenbaunl's Constant, 000 : 

s: . s: I' En - E n - 1 
U oo = hm Un = 1m . 

n-+oo n-+oo En+1 - En 
(19) 

Feigenbaum predicted 000 ~ 4.669201. Table 1 shows three approximations to Feigenbaum's constant with 
the last approximation, 03 ~ 4.657 being in good agreement with 000 , 

Table 1. Numerically determined bifurcation points, comparison with inviscid, and approximations to Feigen­
baum's Constant 

Inviscid Diffusive 

n Ean Ea" On 
0 25.2650 27.1404 

1 27.1875 29.3116 3.793 
2 27.6850 29.8840 4.639 
3 27.8017 30.0074 4.657 
4 27.82675 30.0339 

C. Bifurcation diagram, windows and chaos 

A bifurcation diagram was constructed by sampling over 300 points with Ea E [25,32]' \vith the minimum 
spacing t::,.Ea ~ 0.001 occurring after the third bifurcation and a maximum spacing of t::,.Ea ~ 0.1 in the 
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linearly stable region. For Ea > Ea3 the solutions were integrated to t = 10 /-ls, and relative maxima in P 
were recorded for t > 7 /-lS. For those points below the third activation energy, solutions were only integrated 
to 2.5 /-lS, and relative maxima were recorded for t > 1 /-ls. The late time behavior of relative maxima in 
P versus activation energy is shown in Fig. 6 (b). It shows the period-doubling bifurcations up to roughly 
Ea ~ 30.0600. Also of note are the regions in which a limit cycle exists with an odd number of periods. For 
example Ea ~ 30.4 a period-3 window exists; as Ea increases further, the period-3 behavior bifurcates to a 
period-6 behavior. It is likely that in the dense portions of the bifurcation diagram that the system is in the 
chaotic regime. 

Fig. 4 gives several plots as activation energy is increased of P versus t. As Eo increases the system 
undergoes a bifurcation process, and chaos is achieved, which is qualitatively striking similar to the logistic 
map studied by Feigenbaum. \Vithin the chaotic regime, there exist pockets of order. Periods of 5, 6, and 3 
are found and are shown in (c), (e), and (f) respectively. 

Period 

Stable 

1 

2 

4 

8 

Chaotic 

5 

Chaotic 

5 

Chaotic 

3 

6 

Chaotic 

3 

6 

Chaotic 

Table 2. Ranges of different periods 

< 27.1404 

[27.1404,29.3116] 

[29.3116,29.8840] 

[29.8840,30.0074] 

[30.0074,30.0339] 

[30.0600,30.2591] 

[30.2591,30.2788] 

[30.2788,30.3578] 

[30.3578,30.3775] 

[30.3775,30.4071] 

[30.4071,30.4565] 

[30.4565,30.4959] 

[30.4959,30.8512] 

[30.8512,30.86111 

[30.8611,30.9203] 

> 30.9203 

D. Effect of diminishing diffusion 

By increasing the reaction length scale, L1/2' the relative effect of diffusion decreases. Fig. 5 shows solutions 
for Ea = 27.634, for the ratio of (a) LI-'/L1/2 = 1/5, (b) L/1/L1 / 2 = 1/10, and (c) LI-'/L1/2 = 1/50. The 
system undergoes a transition from a stable detonation to a limit cycle, and again to a period-2 limit cycle. 
It clearly shows an amplitude increase in the pulsations with (a) decaying to a Pmax ~ 4.213 IV! Pa, (b) 
having a relative maximum of Pmax ~ 4.799 MPa and (c) having relative maxima of Pmax ~ 5.578 MPa 
and Pmax ~ 5.895. In addition to these behavioral changes, the frequency of the pulsations also decreases. 

It can be clearly seen from Fig. 6 that the whole bifurcation diagram obtained by Henrick et al. using 
a shock-fitting algorithm in which the artificial viscosity is nearly negligible, occurs below the first period­
doubling bifurcation of the diffusive case. Henrick et al. state that above Ea ~ 30 the secondary captured 
shocks may overtake the lead shock, which would negate precision of their shock fitting technique. In the 
diffusive case, the system is still in the period-doubling phase at Ea ~ 30. In the diffusive case there is no 
true discontinuity, thus the shock can not be predicted as in the inviscid limit. The trend that exists for the 
inviscid case also exists in the diffusive case. Ignoring diffusion can shift the system from a simple period-1 
limit cycle to a fully chaotic regime. 
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V. Conclusion 

Investigation of the one-step kinetic model of one-dimensional unsteady detonation with mass, momen­
tum, and energy diffusion has shown that the dynamics of the system are significantly influenced in the 
region of instability. As in the inviscid limit, bifUl'cation and transition to chaos is predicted and shows 
similarities to the logistic map. The addition of the diffusion delays the onset of the instability. As physical 
diffusion is reduced, the behavior of the system trends towards the inviscid limit. The physical diffusion 
changes the behavior of the system dramatically and as it increases in comparison to the reaction length 
scale, the system becomes more stable. It is clear that if the dynamics of the denotation are to be captw'ed 
correctly, that physical diffusion needs to be included in the model. It is likely that these results will extend 
to detailed kinetic systems. It is also likely that detonation cell pattern formation will be influenced by the 
magnitude of the physical diffusion. 24 
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Figure 6. Comparison of numerically generated bifurcation diagrams, inviscid diagram by Henrick et at. , and 
L,, / L 1/ 2 = 1/ 10. 
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