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An Adaptive a for the Implicit Monte Carlo Equations (U) 

Allan B. Wollaber 
CCS-2 

Los Alamos National Laboratory, Los Alamos, NM 

During the derivation of Fleck and Cumming's Implicit Monte Carlo (IMC) equations, a global user pa­
rameter a is introduced that may be adjusted in the range 0.5 :s: a :s: 1.0 in order to control the degree of 
"implicitness" of the IMC approximation of the thermal radiative transfer equations. For linear (and certain 
nonlinear) problems, it can be shown that the IMC equations are second-order accurate in the time step size 
tlt if a = 0.5, and they are first-order accurate otherwise. However, users almost universally choose a = 1 
in an attempt to avoid unphysical temperature oscillations that can occur for problem regions in which the 
optical time step is large. In this paper, we provide a mathematically motivated, adaptive value of a that 
dynamically changes according to the space- and time-dependent problem data. We show that our a -+ 0.5 
in the limit of small tlt , which automatically produces second-order accuracy. In the limit of large time 
steps, a -+ 1; this retains the "fully implicit" time behavior that is usually employed throughout the entire 
problem. An adaptive a also has the advantages of being trivial to implement in current IMC implemen­
tations and allowing the elimination of a user input parameter that is a potential source of confusion . Test 
problems are presented to demonstrate the accuracy of the new approach. 
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Introduction 
In the derivation of the Implicit Monte Carlo 
(IMC) equations, one of the most dubious 
approximations is to write the "equilibrium" 
radiative energy density Ur(t) as a combination of 
its beginning- and end-of-time-step values through 
the introduction of the user parameter a [1]. The 
resulting expression for Ur(t) is only correct in a 
time-average sense, and even then, only if the 
"right" value of a is chosen. If a = 0.5 is chosen, 
then, for linear and certain nonlinear problems, it 
can be shown that the !MC equations are 
second-order accurate in the limit of small time 
steps 6.t [2,3]. However, choosing a = 0.5 can 
lead to unphysical temperature oscillations, and 
this value of a is the lowest possible setting for 
which the IMC equations are unconditionally 
stable [4, 5]. Therefore, in practice, most users 
choose a = 1, although temporal oscillations can 
occur even for this value [5]. 

Recently, we presented an alternative approach that 
uses a different, more accurate approximation that 
preserves the character of the !MC equations at the 
expense of adding a new, time-dependent Fleck 
factor [6, 7]. We referred to this as the IMC-TDF 
approach (Implicit Monte Carlo with a 
Time-Dependent Fleck factor). This approach also 
avoids the introduction of the user-defined 
parameter a . As a first step towards implementing 
the IMC-TDF approach, we suggested that the 
average of the time-dependent Fleck factor be used 
in lieu of the original Fleck factor, and that this can 
be accomplished by equating the two Fleck factors 
and solving for a . This produces a value of a that 
varies with 6.t and other problem data such that 
0 .5 ::; a ::; 1.0. 

In this paper we demonstrate how this choice of 
a(6.t ) leads to O(6.t) accuracy for certain classes 
of linear and nonlinear problems, and how in the 
limit of large time steps, a --+ 1, thereby 
reproducing the behavior of the usual form of the 
IMC equations. It is also trivial to implement this 

approach in most existing IMC codes, and it allows 
for the elimination of a rarely used and potentially 
confusing user input parameter. We present 
numerical test problems that demonstrate accuracy 
from the adaptive a approach and comparable 
solution efficiencies to IMC. 

An Adaptive ex 
During the derivation of the IMC equations, the 
"equilibrium" radiative energy density is 
approximated as [1]: 

1 l tn
+

t 

~ Ur(t) dt ~ (1 - a)Ur,n + aUr,n+l , 
t tn 

~ Ur(t), 

where 6. t is the time step size, Ur,n = Ur(tn), and 
a is a a user parameter such that 0.5 ::; a ::; 1. 
Because users typically choose a = 1 due to 
stability concerns, the first relationship is not exact. 
The second approximation (replacing the Ur(t) by 
its mean) is made in order to get the thermal 
radiative transfer equations into a lower triangular 
form . In this paper, we focus on sharpening the 
first approximation. 

We begin from the nonlinear, frequency-dependent 
thermal radiative transfer (TRT) equations with no 
scattering and succinctly rederive the pertinent part 
of the IMC-TDF equations [6, 7] . The radiation 
transport equation is 

1 aJ 1 
-!:I + fl· 'V 1 + r71 = -4 r7bcUr , (I a) 
c ut 7r 

with the energy balance equation 

1 aUr /f,--,,1 1 --- + r7pCUr = r71 dH dv , 
(3 at (Ib) 

(or, equivalently): 

8Um /] (')1 1 at + r7pcUr = r71 dH dv . (Ic) 

In these equations, the unknowns are the specific 
intensity J = 1(x, fl, v, t), the material energy 
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density Urn = Um(x, t), and the "equilibrium" 
radiative energy density Ur = Ur(x, t) = aT4. 
The material temperature T is related to the 
material energy density Urn by the specific heat Cv : 

dUrn(T) 
cv = dT' (2) 

(3 is given by 

~( ) = aUr = dUr dT 
jJ x,t aUm dT dUm' (3) 

the normalized Planck spectrum b is 

15v
3 

( )-1 
b = b(v, T) = 7f4T4 ev

/
T 

- 1 , (4) 

and the Plank opacity ap is the result of 
frequency-weighting the absorption opacity a(v) 
against the Planck spectrum b( v, T). 

The first approximation is to "freeze" the opacities 
and (3 at the initial time tn, which destroys the 
equivalency of Eqs. (lb) and (Ic). Next, we 
"solve" Eq. (lb) for Ur(t): 

U (t)e!3n up ,n C(t-t n ) - u 
r ~n 

= 1~ e!3n up ,nC(t'-t n
) (3n 11 anI(t') dO' dv' dt' . 

(5) 

This expression contains no additional 
approximations. I Here we approximate the time 
integral by treating I(t) "implicitly": 

Solving for Ur(t), we obtain: 

Ur(t) = Ur,nfn(t) 

+ 1 :p:n~t) 11 anI(t) dO'dv'. (6) 

IThis is actually the final form employed in the Carter­
Forest method [8]. 

where we have defined a time-dependent Fleck 
factor fn(t) as: 

fn(t) == e-!3n(Jp,n C(t-t,,) . (7) 

Eq. (6) has exactly the same character as its 
counterpart in the original IMC equations, and we 
have previously discussed the necessary 
modifications to convert an IMC implementation 
into an IMC-TDF implementation [6, 7]. However, 
we note that the time-average value of fn(t) 
(denoted by fn(t) will generally differ from fn 
(the "original" Fleck factor) unless a is chosen to 
satisfy the relationship: 

which produces 

1 
(9) 

Using this a(.6. t ) on a cell-wise basis should be 
more accurate, and it eliminates user-dependence. 
This is the central result of our paper. 

Analysis 
We next demonstrate that the adaptive a(.6. t ) 

contains desirable limits for both short and long 
time steps. Defining a "scaled" time step: 

where T = 1 can be interpreted as the mean free 
time between absorption and reeemission [5], the 
scaled version of the "traditional" Fleck factor is 

1 
f = 1 + 4a.6.

T 
' 

(11) 

and the Fleck factor with an adaptive a is 

(12) 
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In the limit of optically small time steps, or as 
b.T ---+ 0, 

fn(T) = 1 - 2b.T + O(b.;). (l3a) 

For the traditionally-defined, constant Fleck factor, 
this limit is: 

1 2 
fn= 4 b. =1-4ab.T +O(b.T ), (13b) 

1 + a T 

so, to leading order, the adaptive a( b.t ) limits to 
the traditional Fleck factor with a = 0.5 when 
short time steps are used, "automatically" 
obtaining O(b.;) accuracy for linear and certain 
nonlinear problems. 

In the limit of optically large time steps, or as 
b.T ---+ 00: 

and 

so, to leading order, the adaptive a limits to the 
traditional Fleck factor with a = 1.0. 

Fig. 1 illustrates the asymptotic behaviors of 
a(b.T ) over a range of b.T from ° to 100, and 
confirms the above analysis - for b.T = 0, a = 0.5, 
but it quickly rises to a value near 1 as b.T is 
increased and then asymptotically approaches 1.0 
thereafter. 

Results 
To numerically assess the temporal order of 
accuracy, we consider a dimensionless, linear, gray, 
O-D sample problem with (j = a = c = 1 and 
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Figure 1: Example behavior of a(b.T ) 

Cv = 7.14T3. The temperature is set to an initial 
condition of 0.1 , and the initial intensity ¢ is 
~ 2.79 (it is chosen to ensure that the equilibrium 
temperature is 1). The problem is solved using a 
variable number of time steps with an ending time 
fixed at t = 10, at which point the fine-mesh 
temperature solution is 1.0. We calculated exact 
numerical solutions of the IMC equations applied 
to this linear, O-D problem; no Monte Carlo 
calculation was performed. We define the root 
mean square error of the time-dependent 
temperature solutions by 

RMS error = 
1 N 2 
N L (Tn - Texact,n) , (15) 

n=l 

where Tn is provided by an IMC method, and 
Texact,n is the exact solution. The results are 
provided in Fig. 2, which indicate that the adaptive 
a method correctly produces 0 (b.l) accuracy for 
this linear problem, as we asserted earlier. For this 
problem, it also happens to be the most accurate of 
the four IMC-based approaches. 

As a more realistic test, the 1-D Su-Olson 
benchmark [9] was simulated using the IMC 
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Figure 2: The numerically-calculated order of 
temporal error for a linear problem for 
traditional IMC with a = 1 and a = 0.5, for 
IMC with the time-dependent Fleck factor 
fn(t), and for the adaptive a method. 

method with a = 1 and the adaptive a( 6. t ) 

approach. Because this benchmark test is linear, 
there are no temporal truncation errors, which 
implies that differences in solution accuracies 
should solely be due to the differences with which 
a is employed. In addition to the tabular reference 
solutions provided in [9} and shown in Fig. 3 in 
symbolic form, we have also simulated a more 
spatially-refined version of the Ahrens-Larsen 
"Semi-analog Monte Carlo" equations [5, 10], 
which are exact for any 6.T in this linear problem 
(up to statistical errors). Fig. 4 depicts the relative 
differences in the T4 solutions resulting from using 
a = 1 and the adaptive a(L\t) for times T = 1.0, 
3.16228,10.0 and 31.6228. The time discretization 
for this problem was to use (roughly) L\T = 0.1 up 
to T = 1.0, L\T = 0.21623 up to T = 0.31623, 
L\T = 0.341885 up to T = 1.0, L\T = 0.72076 up 
,to T = 3.16628, L\T = 1.70943 up to T = 10.0, 
and L\T = 4.32456 up to T = 31.6228 (these 
seemingly strange values were chosen to match the 
benchmark times). Because the time steps increase 
as the simulation progresses, the overall trend is for 
the adaptive a(L\T) to be more accurate than the 
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Figure 3: T4 Reference Solution (Su-Olson + 
Semi-Analog Monte Carlo) for times T = 1.0, 
3.16228,10.0 and 31.6228. 

a = 1 solutions, but for the magnitude of the 
accuracy gain to reduce as time progresses. 
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Figure 4: Error comparison of y4 for !MC with 
a = 1 and adaptive a 

Conclusions and Future Work 
We have presented a new, adaptive a( 6.t ) for use 
in the IMC equations that (1) automatically retains 
O(L\;) accuracy in the limit of small time steps for 
linear and certain nonlinear problems, that (2) 
retains the more stable a = 1 behavior for 
optically large time steps, and (3) completely 
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eliminates the need for the IMC code user to set a 
numerical parameter in an IMC simulation at 
minimal effort to the IMC code developer. 

However, this technique, although more accurate 
than the IMC equations with 0: = 1, does not 
address what we consider to be the largest source 
of error in the approximate IMC equations: the 
linearization error arising from freezing a, (3, and 
b(v) at the beginning of the time step. As future 
work, we intend to test this approach against 
nonlinear, frequency-dependent problems in order 
to discern the overall magnitude of the accuracy 
enhancement. 
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