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An Adaptive o for the Implicit Monte Carlo Equations (U)

Allan B. Wollaber
CCS-2
Los Alamos National Laboratory, Los Alamos, NM

During the derivation of Fleck and Cumming’s Implicit Monte Carlo (IMC) equations, a global user pa-
rameter « is introduced that may be adjusted in the range 0.5 < « < 1.0 in order to control the degree of
“implicitness” of the IMC approximation of the thermal radiative transfer equations. For linear (and certain
nonlinear) problems, it can be shown that the IMC equations are second-order accurate in the time step size
Ay if o = 0.5, and they are first-order accurate otherwise. However, users almost universally choose o = 1
in an attempt to avoid unphysical temperature oscillations that can occur for problem regions in which the
optical time step is large. In this paper, we provide a mathematically motivated, adaptive value of « that
dynamically changes according to the space- and time-dependent problem data. We show that our « — 0.5
in the limit of small A;, which automatically produces second-order accuracy. In the limit of large time
steps, & — 1; this retains the “fully implicit” time behavior that is usually employed throughout the entire
problem. An adaptive « also has the advantages of being trivial to implement in current IMC implemen-
tations and allowing the elimination of a user input parameter that is a potential source of confusion. Test
problems are presented to demonstrate the accuracy of the new approach.
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Introduction

In the derivation of the Implicit Monte Carlo
(IMC) equations, one of the most dubious
approximations is to write the “equilibrium”
radiative energy density U, (t) as a combination of
its beginning- and end-of-time-step values through
the introduction of the user parameter o [1]. The
resulting expression for U, (¢) is only correct in a
time-average sense, and even then, only if the
“right” value of « is chosen. If @ = 0.5 is chosen,
then, for linear and certain nonlinear problems, it
can be shown that the IMC equations are
second-order accurate in the limit of small time
steps Ay [2, 3]. However, choosing o = 0.5 can
lead to unphysical temperature oscillations, and
this value of « is the lowest possible setting for
which the IMC equations are unconditionally
stable [4, 5]. Therefore, in practice, most users
choose a = 1, although temporal oscillations can
occur even for this value [5].

Recently, we presented an alternative approach that
uses a different, more accurate approximation that
preserves the character of the IMC equations at the
expense of adding a new, time-dependent Fleck
factor [6, 7]. We referred to this as the IMC-TDF
approach (Implicit Monte Carlo with a
Time-Dependent Fleck factor). This approach also
avoids the introduction of the user-defined
parameter «.. As a first step towards implementing
the IMC-TDF approach, we suggested that the
average of the time-dependent Fleck factor be used
in lieu of the original Fleck factor, and that this can
be accomplished by equating the two Fleck factors
and solving for o. This produces a value of « that
varies with A; and other problem data such that
0.5<a<1.0.

In this paper we demonstrate how this choice of
a(Ay) leads to O(A?) accuracy for certain classes
of linear and nonlinear problems, and how in the
limit of large time steps, a — 1, thereby
reproducing the behavior of the usual form of the
IMC equations. It is also trivial to implement this
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approach in most existing IMC codes, and it allows
for the elimination of a rarely used and potentially
confusing user input parameter. We present
numerical test problems that demonstrate accuracy
from the adaptive « approach and comparable
solution efficiencies to IMC.

An Adaptive o

During the derivation of the IMC equations, the
“equilibrium” radiative energy density is
approximated as [1]:

1 trnt1

K Ur(t) dt =~ (1 = a)Ur,n + aUr,n-H y
i

~ UT(t)J

where A; is the time step size, Uy, = Ur(tn), and
« is a a user parameter such that 0.5 < a < 1.
Because users typically choose a = 1 due to
stability concerns, the first relationship is not exact.
The second approximation (replacing the U, (t) by
its mean) is made in order to get the thermal
radiative transfer equations into a lower triangular
form. In this paper, we focus on sharpening the
first approximation.

We begin from the nonlinear, frequency-dependent
thermal radiative transfer (TRT) equations with no
scattering and succinctly rederive the pertinent part
of the IMC-TDF equations [6, 7]. The radiation
transport equation is

101

Z—a—t-i—ﬂ VI+OI—4—ach,~, (1a)
with the energy balance equation

10U,

5ot + opclU;, = // ol dVdV, (1b)

(or, equivalently):

% + opcUr = // ol ddV .  (lc)

In these equations, the unknowns are the specific
intensity I = I(x, §2, v, t), the material energy
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density U,, = Up,(x, 1), and the “equilibrium”
radiative energy density U, = U,(x,t) = aT*.
The material temperature 7' is related to the
material energy density U, by the specific heat c,:

_ dUn(T)
Cv=—"m ) (2)
3 is given by
ou, dU, dT

‘ the normalized Planck spectrum b is

150° ¢, p -1
=40y = B2 (1) @
and the Plank opacity oy, is the result of
frequency-weighting the absorption opacity o(v)
against the Planck spectrum b(v, T').

The first approximation is to “freeze” the opacities
and S at the initial time ¢,,, which destroys the
equivalency of Egs. (1b) and (1c). Next, we
“solve” Eq. (1b) for U, (t):

Ur(t)eProenelt=tv) _ 1,

t
= [ epronetvtig, [[ ourey aev ar'ay.
128

)

This expression contains no additional
approximations.! Here we approximate the time
integral by treating I (¢) “implicitly”:

//an (t) dY dv' .

Ur(t) ﬁnap ﬂc(t tn) ~ U

4 ( Bnopnc(t' —tn) _

Op,nC

Solving for U,(t), we obtain:

Ur(t) e rnfn( )

// o I(t)dY dv' . (6)
Up,

'This is actually the final form employed in the Carter-
Forest method [8].
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where we have defined a time-dependent Fleck
factor f(t) as:

falt)=e

Eq. (6) has exactly the same character as its
counterpart in the original IMC equations, and we
have previously discussed the necessary
modifications to convert an IMC implementation
into an IMC-TDF implementation [6, 7]. However,
we note that the time-average value of f,(t)
(denoted by f,,(t)) will generally differ from f,
(the “original” Fleck factor) unless « is chosen to
satisfy the relationship:

—Bnopnc(t—t,) ) (7)

1 Lot I 1 g
— t)dt = =
At fn( ) fn 1 +a,8n0'p'nCAt’ ( )
which produces
1 1
a(Ay) = )

1 — e Buooncdi B0y, e,
Using this a(A¢) on a cell-wise basis should be
more accurate, and it eliminates user-dependence.
This is the central result of our paper.

Analysis

We next demonstrate that the adaptive a(A;)
contains desirable limits for both short and long
time steps. Defining a “scaled” time step:

A(T — Tn) = Bnopnc(t —ta), (10)
where 7 = 1 can be interpreted as the mean free
time between absorption and reeemission [5], the
scaled version of the “traditional” Fleck factor is

1
=15 ten; L
and the Fleck factor with an adaptive « is
fa(T) = ! (1—e™2) (12)
" 4N, '
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In the limit of optically small time steps, or as
A; — 0,

1
Falr) = A [1-(1—-4A, +8A% +0(AY))],
1
b [4A. - 8A2 +0(A2)]

fa(T) =1-2A: + O(A2). (13a)

For the traditionally-defined, constant Fleck factor,
this limit is:
1

__ - _1_ 2
= T oA = 1~ 4eA +0(A)), (13b)

fn
so, to leading order, the adaptive a(A;) limits to
the traditional Fleck factor with @ = 0.5 when
short time steps are used, “automatically”
obtaining O(A?) accuracy for linear and certain
nonlinear problems.

In the limit of optically large time steps, or as
Ar — o0:

1
A,

falr) = +0 (e7487) (14a)

and

1 1 1
= = — 4b
In 1+ 4aA, 4aAT+O<AZ>’ (14b)

so, to leading order, the adaptive « limits to the
traditional Fleck factor with o = 1.0.

Fig. 1 illustrates the asymptotic behaviors of
a(A;) over a range of A, from 0 to 100, and
confirms the above analysis — for A; = 0, & = 0.5,
but it quickly rises to a value near 1 as A; is
increased and then asymptotically approaches 1.0
thereafter.

Results

To numerically assess the temporal order of
accuracy, we consider a dimensionless, linear, gray,
0-D sample problem withc =a = ¢ = 1and
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Figure 1: Example behavior of o(A;)

¢y, = 7.14T%. The temperature is set to an initial
condition of 0.1, and the initial intensity ¢ is

& 2.79 (it is chosen to ensure that the equilibrium
temperature is 1). The problem is solved using a
variable number of time steps with an ending time
fixed at ¢ = 10, at which point the fine-mesh
temperature solution is 1.0. We calculated exact
numerical solutions of the IMC equations applied
to this linear, 0-D problem; no Monte Carlo
calculation was performed. We define the root
mean square error of the time-dependent
temperature solutions by

N

1
5 2 (Tn = Texactn)”, (15)

n=1

RMS error =

where 77, is provided by an IMC method, and
Texact,n 18 the exact solution. The results are
provided in Fig. 2, which indicate that the adaptive
a method correctly produces O(A?) accuracy for
this linear problem, as we asserted earlier. For this
problem, it also happens to be the most accurate of
the four IMC-based approaches.

As a more realistic test, the 1-D Su-Olson
benchmark [9] was simulated using the IMC
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Figure 2: The numerically-calculated order of
temporal error for a linear problem for
traditional IMC with o = 1 and « = 0.5, for
IMC with the time-dependent Fleck factor
fn(t), and for the adaptive & method.

method with & = 1 and the adaptive o/(A;)
approach. Because this benchmark test is linear,
there are no temporal truncation errors, which
implies that differences in solution accuracies
should solely be due to the differences with which
« is employed. In addition to the tabular reference
solutions provided in [9] and shown in Fig. 3 in
symbolic form, we have also simulated a more
spatially-refined version of the Ahrens-Larsen
“Semi-analog Monte Carlo” equations [5, 10],
which are exact for any A in this linear problem
(up to statistical errors). Fig. 4 depicts the relative
differences in the 74 solutions resulting from using
o = 1 and the adaptive «(A;) for times 7 = 1.0,
3.16228, 10.0 and 31.6228. The time discretization
for this problem was to use (roughly) A; = 0.1 up
tor=1.0, 4, =0.21623 up to 7 = (.31623,

A; =0.341885up to 7 = 1.0, A, = 0.72076 up
to T = 3.16628, A, = 1.70943 up to 7 = 10.0,
and A, = 4.32456 up to 7 = 31.6228 (these
seemingly strange values were chosen to match the
benchmark times). Because the time steps increase
as the simulation progresses, the overall trend is for
the adaptive a(A;) to be more accurate than the
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Figure 3: T“ Reference Solution (Su-Olson +
Semi-Analog Monte Carlo) for times 7 = 1.0,
3.16228, 10.0 and 31.6228.

« = 1 solutions, but for the magnitude of the
accuracy gain to reduce as time progresses.
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Figure 4: Error comparison of 7* for IMC with
« = 1 and adaptive «

Conclusions and Future Work

We have presented a new, adaptive «(4;) for use
in the IMC equations that (1) automatically retains
O(A?) accuracy in the limit of small time steps for
linear and certain nonlinear problems, that (2)
retains the more stable a = 1 behavior for
optically large time steps, and (3) completely
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eliminates the need for the IMC code user to set a
numerical parameter in an IMC simulation at
minimal effort to the IMC code developer.

However, this technique, although more accurate
than the IMC equations with o = 1, does not
address what we consider to be the largest source
of error in the approximate IMC equations: the
linearization error arising from freezing o, 3, and
b(v) at the beginning of the time step. As future
work, we intend to test this approach against
nonlinear, frequency-dependent problems in order
to discern the overall magnitude of the accuracy
enhancement.
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