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EXECUTIVE SUMMARY 

The penetration of wind power has increased greatly over the last decade in the United States and 
across the world.  The U.S. wind power industry installed 1,118 MW of new capacity in the first 
quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction 
[1].  By 2030, wind energy is expected to provide 20% of the U.S. electricity needs [2].  As the 
number of wind turbines continues to grow, the need for effective condition monitoring and fault 
detection (CMFD) systems becomes increasingly important [3].  Online CMFD is an effective 
means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the 
downtime, energy loss, and operation and maintenance (O&M) of wind turbines. 
 
The goal of this project is to develop novel online nonintrusive CMFD technologies for wind 
turbines.  The proposed technologies use only the current measurements that have been used by 
the control and protection system of a wind turbine generator (WTG); no additional sensors or 
data acquisition devices are needed.  Current signals are reliable and easily accessible from the 
ground without intruding on the wind turbine generators (WTGs) that are situated on high towers 
and installed in remote areas.  Therefore, current-based CMFD techniques have great economic 
benefits and the potential to be adopted by the wind energy industry. Specifically, the following 
objectives and results have been achieved in this project. 
 

• Analyzed the effects of faults in a WTG on the generator currents of the WTG 
operating at variable rotating speed conditions from the perspective of amplitude and 
frequency modulations of the current measurements 

• Developed effective amplitude and frequency demodulation methods for appropriate 
signal conditioning of the current measurements to improve the accuracy and 
reliability of wind turbine CMFD. 

• Developed a 1P-invariant power spectrum density (PSD) method for effective 
signature extraction of wind turbine faults with characteristic frequencies in the 
current or current demodulated signals, where 1P stands for the shaft rotating 
frequency of a WTG. 

• Developed a wavelet filter for effective signature extraction of wind turbine faults 
without characteristic frequencies in the current or current demodulated signals. 

• Developed an effective adaptive noise cancellation method as an alternative to the 
wavelet filter method for signature extraction of wind turbine faults without 
characteristic frequencies in the current or current demodulated signals. 

• Developed a statistical analysis-based impulse detection method for effective fault 
signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the 
current or current demodulated signals. 

• Validated the proposed current-based wind turbine CMFD technologies through 
extensive computer simulations and experiments for small direct-drive WTGs without 
gearboxes. 
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• Showed, through extensive experiments for small direct-drive WTGs, that the 
performance of the proposed current-based wind turbine CMFD technologies is 
comparable to traditional vibration-based methods. 

 
The proposed technologies have been successfully applied for detection of major failures in 
blades, shafts, bearings, and generators of small direct-drive WTGs.  The proposed technologies 
can be easily integrated into existing wind turbine control, protection, and monitoring systems 
and can be implemented remotely from the wind turbines being monitored.  The proposed 
technologies provide an alternative to vibration-sensor-based CMFD.  This will reduce the cost 
and hardware complexity of wind turbine CMFD systems.  The proposed technologies can also 
be combined with vibration-sensor-based methods to improve the accuracy and reliability of 
wind turbine CMFD systems.  When there are problems with sensors, the proposed technologies 
will ensure proper CMFD for the wind turbines, including their sensing systems.   
 
In conclusion, the proposed technologies offer an effective means to achieve condition-based 
smart maintenance for wind turbines and have a great potential to be adopted by the wind energy 
industry due to their almost no-cost, nonintrusive features. 
 
Although only validated for small direct-drive wind turbines without gearboxes, the proposed 
technologies are also applicable for CMFD of large-size wind turbines with and without 
gearboxes.  However, additional investigations are recommended in order to apply the proposed 
technologies to those large-size wind turbines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 

1. INTRODUCTION 

Wind turbines are usually situated on high towers, installed in remote rural areas, distributed 
over large geographic regions, subject to harsh environments, and experience relatively high 
failure rates.  It was reported [4], [5] that the maintenance costs for onshore and offshore wind 
turbines are in the order of 10-15% and 20-35%, respectively, of the total cost of the electricity 
generated.  To make wind energy competitive with traditional forms of energy sources for 
electricity generation, it is necessary to reduce the maintenance costs and improve the reliability 
of wind turbines.  The most efficient way to achieve this objective would be to perform 
maintenance based on online CMFD. 
 
Most existing methods for wind turbine CMFD require additional mechanical sensors and data 
acquisition devices to implement [5].  The most commonly used sensors are vibration sensors, 
such as accelerometers.  These sensors are usually mounted on the surface or buried in the body 
of WTG components, which are situated on high towers and are difficult to access during WTG 
operation.  Moreover, the sensors and data acquisition devices are inevitably subject to failure, 
which could cause additional problems with system reliability and additional O&M costs. 
 
Compared to traditional methods using vibration or other types of sensors, current-based wind 
turbine CMFD techniques are advantageous in terms of cost, implementation, and system 
reliability.  However, there are challenges in using current signals for wind turbine CMFD.  First, 
the dominant components of a current signal acquired from a WTG in the frequency domain are 
the fundamental-frequency component and its harmonics.  Therefore, the useful information (i.e., 
the fault signature) in current signals for wind turbine fault detection usually has a low signal-to-
noise ratio (SNR), which makes fault detection difficult. Appropriate signal processing methods 
are needed to properly extract fault signatures for effective fault detection of wind turbines. 
 
Another issue associated with using current signals for wind turbine CMFD is how a fault in a 
WTG will affect the current signal acquired from the WTG, and what is the best way to use the 
current signal for wind turbine CMFD.  The findings of this project have revealed that a WTG 
fault would induce a vibration and, therefore, a shaft torque variation of the WTG at certain 
frequencies.  Such a shaft torque variation will modulate the amplitude and frequency of the 
current signals of the WTG [7], [8].  In some wind turbine faults, the induced shaft torque 
variation may have overlaps with the dominant components in the frequency spectra of the 
current signals.  Therefore, the useful information related to faults is masked by the dominant 
components and cannot be extracted directly from the current spectra.  Appropriate 
demodulation methods are, therefore, needed to separate the useful information related to the 
faults from the dominant components in the current signals to facilitate the extraction of fault 
signatures from the current signals.  The current frequency and amplitude demodulation methods 
developed in this project are based on a phase lock loop (PLL) technique and a square law, 
respectively. 
 
According to the fault signatures in the signals used for CMFD, wind turbine faults can be 
classified into two categories:  the faults with one or more characteristic frequencies (called Type 
1 faults), such as single-point bearing fault, rotor/blade imbalance, and aerodynamic asymmetries 
[9], [10], and the faults without characteristic frequencies (called Type 2 faults), such as incipient 
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bearing faults [11].  For Type 1 faults, the characteristic frequencies depend on the shaft rotating 
frequency of the WTG, which is known as the 1P frequency [12].  As mentioned in [13], since 
the 1P frequency of a WTG usually varies with wind speed, it is a problem to extract the fault 
signatures from the nonstationary current signals of the WTG using traditional frequency 
spectrum analysis methods.  To overcome the limitations of the traditional frequency spectrum 
analysis methods, a 1P-invaraint PSD method [9] has been developed in this project for effective 
extraction of fault signatures from nonstationary current signals of WTGs operating in variable-
speed conditions.  In the proposed 1P-invaraint PSD method, the current signal, current 
frequency demodulated signal, or current amplitude demodulated signal is processed by using 
appropriate up-sampling and variable-rate down-sampling algorithms.  Consequently, the 
variable characteristic frequencies of wind turbine faults in the spectra of these signals are 
converted to constant values.  Therefore, the signatures of wind turbine faults can be clearly 
identified from the PSD analysis of the processed signals. 
 
On the other hand, since the Type 2 faults in WTGs do not have a characteristic frequency, they 
cannot be detected by using frequency-domain spectrum analysis methods.  Moreover, the major 
challenge of low SNR in current-based fault detection will become more serious when detecting 
Type 2 faults; because these faults do not have a characteristic frequency.  To effectively detect 
this type of fault in WTGs, an appropriate time-domain or time-frequency-domain method is 
required.  In this project, a wavelet-filter-based method [11] has been developed for detection of 
wind turbine Type 2 faults.  The proposed wavelet filter is based on discrete wavelet transform 
(DWT) [14] and wavelet shrinkage [15].  The wavelet filter decomposes the WTG current signal 
by using the DWT.  The fault-related components in the current signal are located in the low 
energy part of the decomposed sequence due to the subtle and broadband features of these 
components.  A wavelet shrinkage technique is then applied to remove the dominant fault-
irrelevant components from the current signal.  The low energy points of the decomposed 
sequence are then identified and added together as the signature of the fault. 
 
In addition, an adaptive noise cancellation method has also been developed as an alternative to 
the wavelet-filter method for detection of wind turbine Type 2 faults.  However, it was found that 
the wavelet-filter method is superior to the noise cancellation method for detection of Type 2 
faults in terms of complexity, implementation, and reliability.  Therefore, the adaptive noise 
cancellation method will not be discussed in this report. 
 
Provided that the fault signature is obtained, a crucial issue is how to quantitatively evaluate the 
wind turbine condition to determine when maintenance is required.  In practical applications, it is 
desired to evaluate the wind turbine condition solely based on the fault signature in real time.  In 
this project, an impulse detection method [16] has been developed to detect and quantize the 
excitations (i.e., impulses) in the 1P-invariant PSD of the current or current demodulated signals 
generated by faults in a wind turbine.  In the proposed method, a 1P-invariant PSD spectrum is 
normalized locally using a suitable moving window in the frequency domain.  A median filter is 
then designed to generate a threshold, from which the impulses are detected from the locally 
normalized 1P-invariant PSD spectrum.  The impulses detected are then used to evaluate the 
health condition of the wind turbine. 
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The proposed current-based CMFD technologies provide an effective means to achieve 
condition-based smart maintenance for wind turbines and have great potential to be adopted by 
the wind energy industry due to their almost no-cost, nonintrusive features.  The outcomes of this 
project will significantly reduce inspection and maintenance costs, reduce downtime, and 
improve reliability and the capacity factor of wind turbines.  These improvements will make 
wind energy a reliable, cost-competitive source for clean electricity generation. 
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2. BACKGROUND 

2.1  Motivation 
 
To produce reliable and cost-effective electric energy from wind, effective maintenance is 
required to maintain wind turbines in good condition during operation.  Effective maintenance 
can reduce the failure rate and downtime of wind turbines and, consequently, significant losses in 
electric energy production, reduce the costs associated with repair or replacement of failed 
components, improve wind turbine capacity factors, and lengthen the life of wind turbines.   
 
Currently, there are hundreds of thousands of wind turbines operating worldwide.  This number 
is expected to continuously increase over the next decade [17], [18].  Most wind turbines are 
situated on high towers, installed in remote rural areas, distributed over large geographic regions, 
and subjected to harsh environments and high failure rates.  Consequently, O&M of wind 
turbines requires significant effort and cost.  It was reported by [4], [5] that the O&M costs for 
onshore and offshore wind turbines are in the order of 10-15% and 20-35%, respectively, of the 
total costs of the generated electricity.  Among the total maintenance costs, approximately 25-
35% is related to preventive maintenance and 65-75% to corrective maintenance [5].  Currently, 
in the wind power industry, preventive maintenance is mainly determined by regular inspection 
and predetermined schedules instead of the actual condition of wind turbines.  To make wind 
energy competitive with traditional forms of energy resources for electricity generation, it is 
critical to reduce the O&M costs and improve the reliability of wind turbines.  Condition-based 
intelligent maintenance is an effective means to achieve this objective.  The benefits of 
condition-based maintenance include the following: 
 

• Minimize the frequency of inspection and maintenance for wind turbines. 
• Prevent unnecessary replacement of components based on time of use. 
• Uncover design weakness before failure. 
• Detect extreme external conditions to prevent damage of wind turbine components. 
• Allow repair rather than replacement of components by detecting fault early. 
• Prevent cascading failure and major component failures. 
• Minimize wind turbine inspection and maintenance costs, thereby reducing the cost of 

the electricity generated. 
• Increase wind turbine availability and improve the capacity factor; thereby increasing 

electric energy production. 
 
Most existing technologies for wind turbine CMFD require additional sensors, e.g., vibration 
sensors, acoustic emission sensors, etc., and data acquisition devices to implement.  Most of 
these sensors are mounted on the surface or buried in the body of wind turbine components, 
which are difficult to access during wind turbine operation.  Measurements that contain the 
information on wind turbine physical conditions are continuously taken from sensors.  These 
measurements are then evaluated to determine the condition of wind turbines by using 
appropriate system analysis and signal processing techniques, such as spectrum analysis [19]-
[22], wavelet analysis [23]-[25], statistical analysis [26], [27], pattern recognition, envelope 
curve analysis [28], [29], or neural networks [30].  The use of additional sensors and data 
acquisition devices increases the cost and hardware complexity of wind turbine systems.  
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Moreover, the sensors and devices are inevitably subject to failure.  According to statistical data 
reported in [31], sensor failures constitute more than 14% of failures in wind turbines.  Sensor 
failure may further cause the failure of wind turbine control, mechanical, and electrical systems 
and, consequently, result in significant downtime of the wind turbine.  Therefore, the use of 
additional sensors could cause additional problems with system reliability and additional O&M 
costs. 
 
On the other hand, some measurements, such as generator currents, are always required for wind 
turbine control, protection, and grid connection.  These measurements are taken by 
electromagnetic sensing devices, such as current transformers/transducers, which are reliable, 
robust, and easily accessible from the ground.  Therefore, benefit could be achieved by 
developing new technologies based on current signals, thereby removing the need for additional 
sensors and data acquisition devices for wind turbine CMFD.  The use of current signals can 
reduce the cost and hardware complexity and improve the reliability of wind turbine systems.  
Another advantage is that current-based CMFD is nonintrusive and may even be implemented 
remotely from the wind turbines being monitored.  However, little work has been reported on 
wind turbine CMFD based on current other electrical measurements. 
 
 
2.2  Project Goal and Objectives 
 
The goal of this project is to develop novel online nonintrusive CMFD technologies for wind 
turbines.  The proposed technologies are based on advanced signal processing and statistical 
analysis techniques and only use WTG current measurements, which are the same as those used 
by the wind turbine control and protection system, taken from current transformers/transducers 
and easily accessible from the ground.  Therefore, no additional sensors or data acquisition 
devices or access to wind turbines is required.  Specifically, the following objectives have been 
achieved in this project:  
 

• Analyze the effects of faults in a WTG on the generator currents of the WTG 
operating at variable rotating speed conditions from the perspective of amplitude and 
frequency modulations of the current measurements 

• Develop effective amplitude and frequency demodulation methods for appropriate 
signal conditioning of the current measurements to improve the accuracy and 
reliability of wind turbine CMFD. 

• Develop an effective spectrum analyzer for extracting frequency-domain signatures 
of faults in wind turbines from generator current measurements. 

• Develop an effective wavelet filter for extracting time-frequency-domain signatures 
of faults in wind turbines from generator current measurements.  

• Develop an effective adaptive noise cancellation algorithm for extracting time-
domain signatures of faults in wind turbines from generator current measurements. 

• Develop an effective statistical fault signature evaluator, which can quantitatively 
evaluate wind turbine physical conditions and determine when maintenance is 
required. 
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• Perform experimental studies on practical small WTGs in the Principal Investigator 
(PI)’s laboratory to validate the proposed technologies for CMFD in three wind 
turbine components:  bearings, blades, and rotors/shafts. 

 
 
2.3  Qualifications and Experience of the Project Team 
 
All of the research and development (R&D) activities of this project were performed in the PI’s 
Power & Energy Systems Laboratory at the University of Nebraska-Lincoln (UNL).  The 
laboratory has various state-of-the-art facilities, equipment, and resources, including a wind 
tunnel, wind turbine simulation platform, various small wind turbines, sensors, and data 
acquisition systems, etc., to conduct the R&D activities of this project.  The PI, Dr. Wei Qiao, 
has more than seven years of research experience in wind energy systems and more than 15 years 
of academic and industrial experience in broad areas of power and energy systems.  He has 
published numerous papers in refereed journals and conference proceedings concerning wind 
energy systems.  The project team has extensive R&D experience in various issues, such as 
control, power electronics, generator design, grid integration, CMFD, etc., of wind energy 
systems.  The project team’s R&D projects on wind energy have been supported by a variety of 
federal, industrial, and other funding sources, including the Department of Energy, National 
Science Foundation, Department of Transportation, American Public Power Association, 
Nebraska Center for Energy Sciences Research, Nebraska Public Power District, etc. 
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3. CURRENT-BASED WIND TURBINE CMFD TECHNOLOGIES 

3.1  Modulation of Current Signals by a Wind Turbine Fault 
 
Suppose that a wind turbine fault leads to a vibration and, therefore, a shaft torque variation of 
the WTG at a frequency of ffault.  The WTG current signals are frequency and amplitude 
modulated by the shaft torque variation at the corresponding characteristic frequency ffault [7], 
[8], which is analyzed below. 
 
The shaft torque of a WTG with a fault can be modeled as follows: 

T(t) = T0(t) + Tv·cos(2π·ffault·t)                                                  (3-1) 

where t is the time index, T is the torque on the wind turbine shaft, T0 is the torque due to wind 
power, and Tv is the amplitude of the shaft torque variation created by the wind turbine fault. The 
shaft torque variation has a characteristic frequency of ffault, which is assumed to be constant in 
steady-state operation of the WTG, where the steady state stands for the slow shaft speed 
variation due to variable wind power. 
 
If the shaft system of a WTG is simply represented by a one-mass model, the motion equation is 
given by: 

J·[dωr(t)/dt] = T(t) – Te(t) – D·ωr(t)                                          (3-2) 

ωr(t) = 2π·fr(t)                                                              (3-3) 

where J is the total inertia constant of the WTG, ωr is the angular shaft rotating speed of the 
WTG, dωr(t)/dt is the angular acceleration, Te is the electric torque of the WTG, D is the 
damping coefficient, which is approximately zero, and fr is the shaft rotating frequency or 1P 
frequency of the WTG. 
 
If the WTG with the fault is operated at steady state, the electric torque Te can be expressed by: 

Te(t) = Te.0(t) + Te.v·cos(2π·ffault·t + φe)                                       (3-4) 

where Te.0 and Te.v are the electric torques induced by T0 and Tv, respectively, and φe is the phase 
shift between the torque variations in the shaft and in the generator created by the wind turbine 
fault. Therefore, the angular shaft rotating speed is derived from (3-1), (3-2), and (3-4) as 
follows: 

dωr(t)/dt = [T0(t) – Te.0(t)]/J + Tf·cos(2π·ffault·t + φf)/J                          (3-5) 

where 

                  Tf·cos(2π·ffault·t + φf) = Tv·cos(2π·ffault·t) – Te.v·cos(2π·ffault·t + φe)                    (3-6) 

Tf = {[Tv – Te.v·cos(φe)]
2 +[Te.v·sin(φe)]

2}1/2                                (3-7) 

φf = arctan{[–Te.v·sin(φe)]/[Tv – Te.v·cos(φe)]}                               (3-8) 

The angular shaft rotating speed can then be calculated by integrating the right-hand side of (3-
5): 
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.0 0 .0( ) (1/ ) [ ( ) ( )] (1/ ) cos(2π )r r e f fault ft J T t T t dt J T f t dtω ω ϕ= + ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅            (3-9) 

Equation (3-9) can be rewritten as: 

ωr(t) = ωr.0 + ωr.w(t) + ωr.v·sin(2π·ffault·t + φf)                               (3-10) 

where ωr.0 is the constant component of the angular shaft rotating speed, ωr.w is the angular 
shaft rotating speed generated by the variable wind power, ωr.v is the amplitude of the excitation 
in the angular shaft rotating speed due to the wind turbine fault.  The angular shaft rotating 
speed, ωr.w, and amplitude of excitation in the angular shaft, ωr.v, are expressed as follows: 

     . 0 .0( ) (1/ ) [ ( ) ( )]r w et J T t T t dtω = ⋅ − ⋅                                         (3-11) 

ωr.v = 1/(J·2π·ffault)·Tf                                                  (3-12) 

Using (3-3), the shaft rotating frequency of a WTG with a fault can be modeled as: 

fr(t) = fr.w(t) + fr.v·sin(2π·ffault·t + φf)                                         (3-13) 

where 

fr.w(t) = [ωr.0 + ωr.w(t)]/ 2π                                                (3-14) 

fr.v = ωr.v/2 π                                                            (3-15) 

If the WTG system is equipped with a permanent magnet synchronous generator (PMSG), the 
relationship between the shaft rotating frequency and the fundamental frequency f1 of the PMSG 
stator current signal is: 

f1(t) = p × fr(t)                                                          (3-16) 

where p is the number of pole pairs of the PMSG.  Using (3-13) and (3-16), the fundamental 
frequency of the stator current signal is: 

f1(t) = p·fr.w(t) + p·fr.v·sin(2π·ffault·t + φf)                                     (3-17) 

Therefore, the stator current signal, Cs, of the PMSG can be modeled as follows: 

. .( ) ( ) sin{2π [ ( ) sin(2π )] }s s r w r v fault fC t I t p f t p f f t dtϕ= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅                  (3-18) 

where the harmonics of the stator current, Cs, are not considered due to their low magnitudes 
compared to the fundamental-frequency component; and Is is the amplitude of the stator current 
signal.  It shows that the stator current signal of a direct-drive PMSG wind turbine is frequency 
modulated by the shaft torque variation generated by the wind turbine fault. 
 
The amplitude of the voltage, Es, induced in a given stator phase is: 

Es(t) = K·ϕ·f1(t)                                                             (3-19) 

where K is a constant representing the structure of the PMSG; ϕ is the total flux in the PMSG. 
The amplitude of the phase current Is is: 

Is(t) = Es(t)/|Zs(t)|                                                           (3-20) 

where Zs is the equivalent complex impedance of the PMSG stator circuit and the external circuit 
or load to which the PMSG is connected.  According to (3-17), (3-19), and (3-20), the amplitude 
of the stator current signal, Is, can be presented as: 
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Is(t) = Is.w(t) + Is.v(t)·sin(2π·ffault·t + φf)                                      (3-21) 

Is.w(t) = K·ϕ·p·fr.w(t)/|Zs(t)|                                               (3-22) 

Is.v(t) = K·ϕ·p·fr.v·/|Zs(t)|                                                (3-23) 

It shows that the stator current signal of the PMSG is also amplitude modulated by the shaft 
torque variation created by the wind turbine fault. 
 
If the WTG system is equipped with a doubly fed induction generator (DFIG), the relationship 
between the shaft rotating frequency and the electrical frequency frotor of the DFIG rotor current 
signal is given below: 

frotor(t) = p × fr(t) – fsyn                                                   (3-24) 

where p is the number of pole pairs of the DFIG, and fsyn is the frequency of the DFIG stator 
current, which is normally constant at 50 or 60 Hz.  Using (3-13) and (3-24), the electrical 
frequency of the rotor current signal is: 

frotor(t) = p·fr.w(t) + p·fr.v·sin(2π·ffault·t + φf) – fsyn                             (3-25) 

Therefore, the rotor current signal, Cr, of the DFIG can be modeled as follows: 

. .( ) ( ) sin{2π [ ( ) sin(2π ) ] }r r r w r v fault f synC t I t p f t p f f t f dtϕ= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + − ⋅              (3-26) 

where Ir is the amplitude of the rotor current signal.  It shows that the rotor current signal of a 
DFIG wind turbine is frequency modulated by the shaft torque variation generated by the wind 
turbine fault. 
 
The amplitude of the induced rotor voltage, Er, in a DFIG is: 

Er(t) = – s·Er0                                                          (3-27) 

s = – frotor(t)/ fsyn                                                        (3-28) 

where s is the slip of the DFIG, and Er0 is the magnitude of the induced rotor voltage at locked-
rotor conditions, which is a constant at a given grid voltage level.  The amplitude of the DFIG 
rotor current, Ir, is: 

Ir(t) = Er(t)/|Zr(t)|                                                       (3-29) 

where Zr is the equivalent complex impedance of the DFIG rotor circuit and the external circuit 
to which the DFIG rotor windings are connected.  According to (3-24), (3-27), (3-28), and (3-
29), the amplitude of the rotor current signal, Ir, can be presented as: 

Ir(t) = Ir.w(t) + Ir.v(t)·sin(2π·ffault·t + φf)                                      (3-30) 

Ir.w(t) = Er0·[p·fr.w(t) – fsyn]/[|Zr(t)|·fsyn]                                              (3-31) 

Ir.v(t) = Er0·p·fr.v·/[|Zr(t)|·fsyn]                                               (3-32) 

It shows that the rotor current signal of the DFIG is also amplitude modulated by the shaft torque 
variation created by the wind turbine fault.   
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3.2  Current Demodulation 
 
The WTG current signals are frequency and amplitude modulated by the vibration generated by a 
wind turbine fault [7], [8].  According to (3-18), (3-21), (3-26), and (3-30), the stator current, Cs, 
of a PMSG and the rotor current, Cr, of a DFIG are: 

( ) ( ) sin[2π ( ) ]s s rC t I t p f t dt= ⋅ ⋅ ⋅                                                   (3-33) 

( ) ( ) sin{2π [ ( ) ] }r r r synC t I t p f t f dt= ⋅ ⋅ − ⋅                                          (3-34) 

Therefore, not only frequency demodulation methods can be used to discover the excitations in 
fr(t) related to a wind turbine fault, but also amplitude demodulation methods can be applied to 
extract the vibrations in Is(t) or Ir(t) created by the wind turbine fault.  To improve the accuracy 
of fault detection and increase the redundancy and reliability of the fault detection system, both 
the frequency and amplitude demodulation methods can be applied. 
 
 
3.2.1  Frequency Demodulation  
 
In a WTG, the shaft rotating frequency information is normally required for maximum power 
point tracking control.  The shaft rotating frequency is usually measured by using a 
position/speed sensor, e.g., an encoder or resolver, or can be estimated from the WTG current 
measurements using an observer.  The shaft rotating frequency is the frequency demodulated 
signal of current and can be used for WTG fault detection.  A simple method (i.e., observer) to 
demodulate the frequency from a stator current signal of a PMSG is the PLL method [32], as 
shown in Fig. 3.1, where the frequency of the input signal is calculated by using a voltage 
controlled oscillator.  The input signal is the measured stator current, Cs, of a PMSG or the rotor 
current, Cr, of a DFIG.  By using the PLL method, Cs or Cr is frequency demodulated to obtain 
the PMSG stator current fundamental frequency, f1.e, or DFIG rotor current frequency, frotor,e, 
respectively, given as: 

f1.e(t) = p·fr.w(t) + p·fr.v·sin(2π·ffault·t + φf) + e1(t)             (3-35) 

    frotor,e(t) = p·fr.w(t) + p·fr.v·sin(2π·ffault·t + φf) – fsyn+ er(t)      (3-36) 

where e1(t) and er(t) are the errors between the real and estimated stator current fundamental 
frequencies.  The values of e1(t) and er(t) are almost zero and can be neglected. 
 
 

 
 

Fig. 3.1:  Schematic diagram of a PLL for signal frequency demodulation. 
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3.2.2  Amplitude Demodulation 
 
Moreover, an amplitude demodulation method can be applied to calculate the variable 
amplitudes Is(t) or Ir(t) of current measurements in (3-33) and (3-34), respectively.  For instance, 
the square law, which is a classical method for amplitude demodulation or envelope detection, 
can be used to extract the variable amplitudes of a current signal. 
 
According to (3-21), the current signal of a PMSG wind turbine in (3-33) can be rewritten as: 

Cs(t) = [Is.w(t) + Is.v(t)·sin(2π·ffault·t + φf)]·sin[θ(t)]                                 (3-37) 

θ(t) = 2π·∫p·fr(t)·dt                                                             (3-38) 

Apply the square law to the signal, Cs: 

Cs(t)
2 = {[Is.w(t) + Is.v(t)·sin(2π·ffault·t + φf)]·sin[θ(t)]}2                              (3-39) 

Rewrite (3-39) by using trigonometric functions and sort the components from low frequency to 
high frequency: 

Cs(t)
2 = [Is.w

2(t)/2 + Is.v
2(t)/4] + Is.w(t)·Is.v(t)·sin(2π·ffault(t)·t + φf) – Is.v

2(t)·cos[4π·ffault(t)·t + 2φf]/4 + 
Is.v

2(t)·cos[2θ(t) – 4π·ffault·t – 2φf]/8 + Is.w(t)·Is.v(t)·cos[2θ(t) – 2π·ffault·t – φf]/2 – 

 [Is.w
2(t)/2 + Is.v

2(t)/4]·cos[2θ(t)] – Is.w(t)·Is.v(t)·cos[2θ(t) + 2π·ffault·t + φf]/2 +  

Is.v
2(t)·cos[2θ(t) + 4π·ffault·t + 2φf]/8                              (3-40) 

where the current squared signal, Cs
2, is the amplitude demodulated signal of the current, Cs; 

“Is.w(t)·Is.v(t)·sin(2π·ffault(t)·t+φf)” is an excitation due to the WTG fault; and 
“Is.v

2(t)·cos[4π·ffault(t)·t + 2φf]/4” is the second harmonic of the excitation in Cs
2 generated by the 

WTG fault.  Both terms can be used for fault detection.  Since the fundamental frequency is the 
dominant component in the stator current signal, the magnitude of Is.w(t) is much larger than that 
of Is.v(t).  Therefore, the second harmonic of the excitation generated by the WTG fault has a low 
magnitude and can be neglected.  
 
3.2.3  Benefits of Using Current Demodulation 
 
Using the demodulated signals for WTG fault detection has obvious advantages over directly 
using the stator current measurements.  The major noise in WTG current signals and current 
demodulated signals are the fundamental-frequency component and the DC component, 
respectively.  The DC component can be easily removed compared to the fundamental-frequency 
component.  Furthermore, if stator current measurements are directly used for WTG fault 
detection, the energy of excitations related to WTG faults will disperse to multiple characteristic 
frequencies.  The magnitudes of excitations at these multiple characteristic frequencies are then 
less outstanding than those at the only fault characteristic frequency, ffault, of the current 
demodulated signals in the frequency domain. 
 
 
3.3  1P-Invariant PSD Method 
 
Since the fault characteristic frequencies of a WTG vary with the shaft rotating frequency during 
variable-speed operating condition of the WTG, it is difficult to extract the fault signatures from 
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the nonstationary current signals of the WTG using classical frequency spectrum analysis 
methods.  However, if a WTG rotates at a constant frequency, the classical frequency spectrum 
analysis could be used to identify a WTG fault effectively based on its characteristic frequencies. 
Therefore, if the WTG current signals or current demodulated signals are preprocessed in such a 
way that the variable fault characteristic frequencies of the WTG are converted to constant 
values, the classical frequency spectrum analysis methods, e.g., PSD, can then be used to detect 
the faults for a variable-speed WTG. 
 
Define Ωr, as the normalized frequency of a current demodulated signal; and definefs, as the 
sampling frequency of the current measurements.  The relationship among fr (shaft rotating 
frequency), fs, and Ωr can be written as: 

Ωr(t) / 2π = fr (t) / fs                                                     (3-41) 

where Ωr(t) is expected to be constant to facilitate the fault detection by using classical frequency 
spectrum analysis.  Therefore, if the sampling frequency, fs, is changed continuously with fr(t) to 
make the right-hand side of (3-41) constant, Ωr(t) will become constant.  The proposed method 
preprocesses the current demodulated signal of a WTG to obtain a constant Ωr(t), which is shown 
in Fig. 3.2 and implemented in the following steps [8], [9]. 
 

(1) Choose an up-sampling ratio, M, and a base value of the down-sampling step size L. 

(2) Sample the measured nonstationary current i(t) of the WTG with a fixed sampling 
rate; the result is c(n), where n = 1, 2, 3, …, N and N is the length of the current 
measurement. 

(3) Demodulate the frequency and amplitude of the nonstationary current signal c(n); the 
results are a current frequency demodulated signal sf(n) and a current amplitude 
demodulated signal sa(n). 

(4) Estimate the shaft rotating frequency, fr(n), by using the current frequency 
demodulated signal, sf(n); and choose a base frequency, fb, based on fr(n). For a 
PMSG, fr(n) = sf(n)/p; for a DFIG, fr(n) = [sf(n) + fsyn]/p. 

(5) Up-sample (interpolate) fr(n), sf(n), and sa(n) by a constant up-sampling ratio of M; 
the results are fr,up(k), sf,up(k), and sa,up(k), respectively, where k = 1, 2, 3, …, M×N. 

(6) Down-sample sf,up(k) and sa,up(k) by a variable down-sampling step size; the results 
are sf,down(j) and sa,down(j), respectively, where j = 1, 2, 3, …, J and J is determined by 
M, N, and L. Suppose that s(n) stands for sf(n) or sa(n); sdown(j) stands for sf,down(j) or 
sa,down(j); and sup(k) stands for sf,up(k) or sa,up(k).  In the down-sampling process: 

sdown(1) = sup(1)                                                            (3-42) 

If sdown(j) = sup(k), then, 

sdown(j+1) = sup(k+round[L· fb/ fr,up(k)])                                        (3-43) 

where round[L·fb/fr,up(k)] is the variable down-sampling step size, which depends on 
the up-sampled shaft rotating frequency, fr,up(k); and round(·) stands for rounding a 
number to the nearest integer. The down-sampling process to obtain sdown(j) is 
equivalent to resampling the original or up-sampled current demodulated signal [s(n) 
or sup(k), respectively] with a variable sampling frequency, fs(k), whose value is 
proportional to the value of fr,up(k).  According to (3-41), the normalized frequency of 
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sdown(j), which is Ωdown(j), is given by: 

Ωdown(j) / 2π = sdown(j) / fs(j)                                            (3-44) 

where Ωdown(j) is now a constant value. 

(7) Calculate the classical frequency spectrum, e.g., PSD, of the down-sampled current 
demodulated signal sdown(j) for the fault signature extraction, which now has a 
constant characteristic frequency. 

 
 

 
 

Fig. 3.2:  Schematic diagram of the 1P-invariant PSD method. 
 
 
By using the proposed method, the variable characteristic frequency, ffault, of a WTG fault 
becomes a constant value in the frequency spectrum of sdown(j).  Therefore, the resulting PSD 
spectrum is called the 1P-invariant PSD spectrum; and the magnitude of the excitation at ffault in 
the PSD spectrum of sdown(j) can be used as a signature to clearly identify and quantify the WTG 
fault.  In the proposed method, the constant base value of the down-sampling step size, L, should 
be chosen based on two criteria.  First, L should be large enough to eliminate the quantization 
error due to the requirement of an integral down-sampling step size.  Second, L should be small 
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enough to ensure that the sampling frequency after down sampling is greater than twice the ffault 
frequency.  Normally, L should be larger than 10.  The base frequency, fb, is chosen to be the 
mean value of the estimated shaft rotating frequency, fr(n).  Furthermore, if the measured current 
is sampled with a sufficiently high sampling rate in Step (2) such that the sampling frequency of 
the down-sampled signal, sdown(j), without using up-sampling, is greater than twice the 
characteristic frequency of the WTG fault, then M is 1 and Step (5) is not necessary. 
 
 
3.4  Wavelet Filter 
 
Since the Type 2 faults do not have characteristic frequencies, traditional frequency-domain 
analysis-based methods are not effective in detecting these faults.  In this project, a wavelet-
filter-based method [11] has been developed for detection of Type 2 faults in a WTG, as shown 
in Fig. 3.3.  The proposed wavelet filter is based on the wavelet transform and wavelet shrinkage 
techniques.  The wavelet transform decomposes the original raw current signal into two parts:  
trend subsignals and fluctuations.  High energy components of the raw current signal, which are 
the dominant noise components irrelevant to the fault, are compacted to its trend subsignals, 
while the fluctuations only contain the weak-energy components which are mainly the fault-
related components.  This process is called compaction of energy, which is one of the main 
characteristics of wavelet transform.  Here energy is defined as the square of the signal.  The 
wavelet shrinkage technique is then applied to work in a way similar to an adaptive notch filter 
to remove the fault-irrelevant dominant components from the raw current signal.  The remaining 
components are weak-energy components mainly related to the fault.  The ratio between the total 
energy of the weak-energy components and the total energy of the raw signal is then used as a 
fault signature.  As the physical condition of a wind turbine component becomes worse and 
worse, the magnitude of the energy of the fault-related components becomes more and more 
significant, which results in the increase of the fault signature. 
 

 
 

Fig. 3.3:  Schematic diagram of the wavelet filter method. 
 
 
Note that in the wavelet filter method, the current signal, instead of the current demodulated 
signal, is used.  The notch filters are used to remove the fundamental-frequency component of 



18 

the current signal.  The lowpass filters are used for antialiasing.  The baseline current data are the 
first several samples obtained from the healthy WTG, as it is assumed that the WTG is healthy 
initially.  These baseline current data are used to determine the support length of the wavelet 
function. 
 
 
3.5  Impulse Detection 
 
An impulse detection method [16] has been developed for automatic extraction of fault 
signatures from the 1P-invariant PSD spectra.  The 1P-invariant PSD spectra of the current 
demodulated signals usually have nonstationary amplitudes.  Therefore, a localized method is 
required for impulse detection from the PSD spectra.  In a 1P-invariant PSD spectrum, the 
magnitude at one frequency represents the energy of the time-domain signal at that frequency.  If 
the energy around a certain frequency is high, it will generate an impulse in the PSD spectrum.  
The impulse detection method is proposed based on the amplitude of a 1P-invariant PSD 
spectrum. 
 
Assume that x(f) is the sampled 1P-invariant PSD spectrum of a current demodulated signal, 
where f = 1, 2, 3, … F and F is the length of x(f).  Define the energy of the current demodulated 
signal at the frequency, f, as: 

Px(f) = x(f)                                                                (3-45) 

If a moving window of length 2W+1 is applied to x(f), the energy of the signal in the window is 
defined as: 

PW(f) = x(f-W) + x(f-W+1) + … + x(f+W)                                        (3-46) 

The ratio R(f) is defined to present the percentage of the energy of the current demodulated 
signal at the frequency, f, with respect to the total energy of the signal at all of the frequencies 
contained in the moving window: 

R(f) = Px(f) / PW(f)                                                        (3-47) 

The resulting R(f) represents the locally normalized 1P-invariant PSD of the current demodulated 
signal.  If R(f) at a certain frequency point is greater than a threshold, T, it indicates that there is 
an impulse at that frequency.  In practice, it is important to automatically generate the threshold, 
T, from the PSD spectrum.  The median filter, which is a nonlinear filter, is well known for 
impulse removal [33].  Define Rf(f) the result of R(f) processed by a median filter.  The threshold, 
T, is then set to be the maximum value of Rf(f).  Since the impulses that are not generated by the 
WTG faults have been removed from the 1P-invariant PSD spectrum of the current demodulated 
signal during a pretreatment process, the impulses generated by the WTG faults have the highest 
amplitudes in the 1P-invariant PSD spectrum of the current demodulated signal.  In this work, a 
three-order median filter is chosen to calculate Rf(f) and the threshold, T. The Rf(f) is calculated 
by: 

Rf(f) =  Median[R(f – 1), R(f), R(f + 1)]                (3-48) 

where Median[X] stands for selecting the median of the data set X.  The threshold, T, is then 
obtained as: 
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T = Maximum[Rf(f)]                             (3-49) 

where Maximum[ ] stands for the maximum value of Rf(f). 
 
In the 1P-invariant PSD, the amplitudes of the impulses at the characteristic frequencies of WTG 
faults are the signature for wind turbine fault detection.  Since there are no impulses at the 
characteristic frequencies of faults when the WTG is healthy, an alarm will be generated if an 
impulse is detected at a characteristic frequency of WTG faults. 
 
 

 
 

Fig. 3.4:  Schematic diagram of the impulse detection method. 
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4. SIMULATION AND EXPERIMENTAL VALIDATION PLATFORMS 

Extensive simulation and experimental studies have been performed in the PI’s laboratory to 
validate the proposed technologies for CMFD of small direct-drive PMSG wind turbines in three 
wind turbine components:  bearings, blades, and rotors/shafts.  This section describes the 
simulation and experimental platforms used to validate the proposed current-based online wind 
turbine CMFD technologies. 
 
 
4.1  Simulation Validation Platform 
 
The simulation validation platform includes the dynamical model of a 10-kW direct-drive WTG 
developed in a combined environment of FAST (Fatigue, Aerodynamics, Structures, and 
Turbulence) [34], TurbSim [35], and Simulink, as illustrated in Fig. 4.1, where TurbSim 
generates the wind data; FAST simulates the dynamics of the wind turbine; and Simulink 
simulates the dynamics of the generator and other electrical components of the WTG system. 
 
 

 
 

Fig. 4.1:  Structure of the simulation valiation platform. 
 
 
4.1.1  WTG Model 
 
FAST version 7.0 was used to simulate the dynamics of the wind turbine.  FAST is an aeroelastic 
code developed initially by Oregon State University.   It is one of the most advanced design 
codes for horizontal-axis wind turbines.   In the simulation study, FAST works as a subroutine in 
Simulink.  The signals of the electric power, electric torque, and shaft rotating speed are used to 
connect the FAST and Simulink models of the WTG system.  The model wind turbine in FAST 
mainly includes tower, blades, shaft, furl, and support platform.  The hub height of the wind 
turbine is 34 meters.  The wind turbine has 3 blades with a rotor diameter of 2.9 meters and an 
upwind configuration.  A 48-pole PMSG was simulated in Simulink to convert mechanical 
energy from the turbine into electric energy.  One phase stator current signal of the PMSG was 
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recorded for wind turbine fault detection. 
 
 
4.1.2  Wind Speed Data 
 
TurbSim, which is a stochastic, full-field, turbulent wind simulator developed by the National 
Renewable Energy Laboratory (NREL) [35], was used in the simulation study to produce wind 
velocity vectors in a time series across the entire rotating plane of the wind turbine’s rotor.  An 
average wind speed of 12 m/s was chosen in the simulation study.  The IEC Kaimal turbulence 
model was used to generate wind turbulence in all simulations.  The cross-section area (8m×8m) 
of the wind flow was divided into a 6×6 grid where the wind velocity and direction were 
calculated by TurbSim for each grid cell.  The output of TurbSim contains a time series of wind 
speed, which was used for the aeroelastic simulation in FAST.  
 
 

 
 

Fig. 4.2:  The wind tunnel with a testing WTG in the UNL’s Power & Energy Systems 
laboratory. 
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stiffness in the horizontal direction of the tower of the WTG [36], the amplitude of vibration in 
the horizontal direction is much greater than that in the vertical direction. Therefore, the 
accelerometer was mounted on the surface of the nacelle to detect the vibration in the horizontal 
direction of the wind turbine.  The measured vibration and current signals were digitalized by a 
National Instrument data acquisition system, where the SCXI-1141 card was used as an 
antialiasing filter; the PCIe-6251 card is an A/D converter; the SCXI-1305 and SCXI-1000 are 
the interface and enclosure of the data acquisition system, respectively.  The sampling rate was 
10 kHz.  The current and vibration samples were acquired by the LabView software operating on 
a lab computer.  These samples were then used for CMFD of the testing WTGs using the 
proposed technologies. 
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5. WIND TURBINE IMBALANCE FAULT DETECTION 

Imbalance faults constitute a significant portion of all faults in WTGs [37].  A common 
imbalance fault in WTGs is shaft/blade imbalance.  A blade imbalance can be caused by errors in 
manufacturing and construction, icing, deformation due to aging, or wear and fatigue during the 
operation of the WTG.  Components tend to shift and wear in varying degrees over time, causing 
imbalance on the rotating shaft/blades. Another common imbalance fault is aerodynamic 
asymmetry, which can be caused by several factors, including high wind shear and errors in the 
control mechanism.  If the pitch of one blade is slightly different from the other two blades due 
to errors in the control mechanism, the torque on the rotating shaft will not be balanced, leading 
to aerodynamic asymmetry.  A small imbalance fault can cause significant consequences on the 
towers and the WTGs.  For instance, a blade imbalance caused by icing can create additional 
loads on the supporting tower of the wind turbine, which may lead to fractures and possible 
collapses [38] of the tower.  Due to WTGs’ delicate structure and high repairing cost [3], [37], 
[39], effective imbalance fault detection is of significant interest to the wind power industry. 
 
 
5.1  The Characteristic Frequencies of Imbalance Faults 
 
It has been reported that the spectra of the shaft torque and the output electric power of a WTG 
with three blades are determined by certain events.  The vibration at 3P frequency, which is three 
times the shaft rotating frequency of a WTG, is generated by the effect of yaw error, wind shear, 
or tower shadow [12], [40].  The vibration at 1P frequency is created by imbalance faults, 
including blade imbalance and aerodynamic asymmetry [9], [13], [19], [41].  Moreover, these 
events also affect the shaft rotating frequency of the WTG and produce excitations at the 
corresponding frequencies in the shaft rotating frequency signals. 
 
When an imbalance fault occurs on the shaft of a WTG, an additional force will be induced in 
the shaft.  In the case of blade imbalance where the mass distribution of one blade is different 
from others, a rotor mass imbalance will occur and induce vibrations in the shaft rotating speed 
of the WTG.  This is illustrated in Fig. 5.1, where mR is the equivalent imbalance mass; rR is the 
distance between the equivalent imbalance mass and the center of the shaft; and ωr is the angular 
shaft rotating speed.  When the equivalent imbalance mass rotates from the top to the bottom of 
the rotating plane, the power of gravity accelerates the shaft. On the other hand, when the 
equivalent imbalance mass rotates from the bottom to the top of the rotating plane, the power of 
gravity decelerates the shaft.  Consequently, the shaft rotating speed vibrates at the frequency of 
1P. 
 
Aerodynamic asymmetry stands for that the force affected on one blade is different from those 
on other blades. Aerodynamic asymmetry along with yaw error, wind shear, or tower shadow 
together influences the shaft rotating speed of a WTG. For example, Fig. 5.2 shows the effect of 
an aerodynamic asymmetry caused by wind shear, where Fwind is the force of the wind flow 
affected on the blades; Ft is the force of the wind flow affected on the blade that is on the top of 
the rotating plane; Fb is the force of the wind flow affected on the blade that is on the bottom of 
the rotating plane. The amplitude of Ft is always greater than that of Fb due to the effect of wind 
shear, which follows the following power law.  
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U(z)/U(zr) = (z/zr)
α                                    (5-1) 

where U(z) and U(zr) are wind velocities at height z and the reference height zr, respectively; and 
α is the power law exponent [42]. 
 
Normally, a blade has the largest acceleration caused by Ft and the smallest acceleration caused 
by Fb. Therefore, a vibration at the 3P frequency is produced in the shaft speed by wind shear in 
a balanced wind turbine with three blades. In the case of an aerodynamic asymmetry, a blade of 
the turbine has different Ft and Fb from the other two blades. As a result, the acceleration and 
deceleration of the imbalanced blade produce a vibration at the 1P frequency in the shaft speed. 
On the other hand, the other two blades have different Ft and Fb from the imbalanced one. As a 
result, a vibration also appears at the 2P frequency in the shaft speed signal. 
 
The characteristic frequencies of shaft/blade imbalance and aerodynamic asymmetry both appear 
at the 1P frequency in the shaft speed signal of a wind turbine. Therefore, the excitations of the 
shaft speed signal at the 1P frequency can be used as a signature for imbalance fault detection. 
 
 

 
 
 

Fig. 5.1:  Effect of blade imbalance of a wind turbine. 
 
 

 
 
 

Fig. 5.2:  Effect of an aerodynamic asymmetry of a wind turbine caused by wind shear. 
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5.2  Simulation Study of Imbalance Fault Detection 
 
Simulations were performed for the 10-kW model WTG described in Section 4.1 in the healthy 
condition (i.e., the baseline case) as well as in two imbalance fault conditions: blade imbalance 
and aerodynamic asymmetry [9]. The blade imbalance was simulated by changing the mass 
density of one blade, which created an uneven distribution of mass with respect to the rotor. The 
aerodynamic asymmetry was simulated by adjusting the pitch of one blade, which created an 
uneven torque across the rotor. One phase stator current of the WTG was recorded in the 
simulations to estimate the shaft rotating frequency. The proposed method was then applied to 
extract the signatures of the faults from the recorded data in the frequency domain. 
 
The mass density of one blade was scaled up and down in the simulations of blade imbalance. 
Four scenarios were simulated with the mass density of one blade adjusted by -1%, +2%, -3%, 
and +4%; while the mass densities of the other two blades were unchanged. Here the negative 
sign indicates a decrease of the mass density and the positive sign indicates an increase of the 
mass density. The proposed current frequency demodulation method and 1P-invariant PSD 
method were applied for the baseline case and the four blade imbalance scenarios. The base 
frequency was chosen to be 3 Hz (i.e., 180 rpm) and the base value of the down-sampling step 
size L was 20. Therefore, the variable characteristic frequency of 1P (2 to 4 Hz) of the blade 
imbalance faults in the estimated shaft frequency signal was converted to a constant value of 3 
Hz. The results are compared in Figs. 5.3 and 5.4. It is clearly shown that in the blade imbalance 
scenarios excitations are evident at 1P, which is fixed at 3 Hz by using the proposed method. The 
imbalance is caused by an eccentric mass rotating with a frequency of 1P. The shaft rotating 
frequency is affected by the imbalance in blades and also vibrates with a frequency of 1P. 
Furthermore, Fig. 5.4 shows that the magnitude of the excitation at 1P increases with the increase 
of the degree of blade imbalance. On the other hand, no excitation is observed at 1P frequency in 
the PSD curve for the wind turbine with healthy blades. 
 
In order to simulate aerodynamic asymmetry faults of the wind turbine, the pitch angle of one 
blade was adjusted by -2 degree, +4 degree, -6 degree, and +8 degree; while the pitch angles of 
the other two blades were unchanged at 11.44 degree.  Figs. 5.5, 5.6 and 5.7 compare the 1P-
invariant PSD of the estimated shaft rotating frequency generated by the proposed method for the 
wind turbine in the four aerodynamic asymmetry scenarios against the baseline case. Again, the 
variable 1P frequency was converted to a constant value of 3 Hz by using the proposed method. 
Excitations appear at both 1P and 2P frequencies in the four aerodynamic asymmetry scenarios, 
which agree with the theoretical analysis in section II. Moreover, the magnitudes of the 
excitations at the characteristic frequencies in the PSD plot become more significant when the 
degree of aerodynamic asymmetry becomes greater. 
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Fig. 5.3:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
blade imbalance scenarios against the baseline case in a wide frequency range. 

 
 

 
 
 

Fig. 5.4:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
blade imbalance scenarios against the baseline case in a frequency range around 1P. 
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Fig. 5.5:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
aerodynamic asymmetry scenarios against the baseline case in a wide frequency range. 

 
 

 
 
 

Fig. 5.6:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
aerodynamic asymmetry scenarios against the baseline case in a frequency range around 1P. 
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Fig. 5.7:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
aerodynamic asymmetry scenarios against the baseline case in a frequency range around 2P. 

 
 
5.3  Experimental Study of Imbalance Fault Detection 
 
A 160-W Southwest Windpower Air Breeze direct-drive WTG was used for experimental 
studies. The generator has six pole pairs. The experimental system setup has been described in 
Section 4.2.  The length of each current and vibration record is 60 s. 
 
 
5.3.1  Detection of Blade Imbalance 
 
To create a blade imbalance, additional masses were added close to the tip of a blade of the 
WTG, as shown in Fig. 5.8. The mass of a healthy blade was measured to be 181 g. Two sets of 
experiments were performed. In the first set of experiments, four blade imbalance scenarios were 
tested by adding a mass of 2.3 g, 4.5 g, 6.8 g, and 9 g, respectively, to a blade. Therefore, the 
weight of the blade was increased by 1.25%, 2.5%, 3.75%, and 5%, respectively. During the 
experiments, the WTG was operated at variable speed in the range of 6-13 Hz, which is the 
variable 1P frequency. 
 
The proposed method was applied to obtain the 1P-invariant PSD of the measured WTG current 
for the four blade imbalance scenarios and the baseline case. In the proposed method, the base 
frequency fb was chosen to be 10 Hz. Due to current frequency modulation with the 1P 
frequency, the fault characteristic frequencies should be 60Hz ±1P, which are 50 Hz and 70 Hz 
since the variable 1P frequency has been converted to a constant value of 10 Hz. The results are 
compared in Figs. 5.9 and 5.10, where excitations are observed at 50 Hz and 70 Hz only in the 
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Fig. 5.10:  Comparison of the 1P-invariant PSD of the current signal for the blade imbalance 
scenarios against the baseline case around 50 Hz and 70 Hz. 
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Fig. 5.10:  Comparison of the PSD of the estimated shaft rotating frequency obtained directly 
from the standard PSD analysis for the blade imbalance scenarios against the baseline case. 
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Fig. 5.11:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
blade imbalance scenarios against the baseline case in a wide frequency range. 

 
 

 
 
 

Fig. 5.12:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
blade imbalance scenarios against the baseline case in a frequency range around 1P. 
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Fig. 5.13:  Comparison of the 1P-invariant PSD of the vibration signal for the blade imbalance 
scenarios against the baseline case in a wide frequency range. 

 
 

 
 

Fig. 5.14:  Comparison of the 1P-invariant PSD of the vibration signal for the blade imbalance 
scenarios against the baseline case in a frequency range around 1P. 
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5.3.2  Detection of Bent Blades 
 
A bent blade is a blade of a WTG that twists flapwise or edgewise, as illustrated in Fig. 5.15. A 
bent blade also generates an imbalance fault in the WTG. During the experiments, one blade of 
the Air Breeze wind turbine was bent edgewise at 2, 4, and 6 degree, respectively. Figs. 5.16 and 
5.17 compare the 1P-invariant PSD of the estimated shaft frequency of the WTG for the 
edgewise bent blade scenarios against the baseline case by using the proposed current frequency 
demodulation method and 1P-invariant PSD method with the same base frequency fb as in the 
blade imbalance study. As shown in Figs. 5.16 and 5.17, an excitation appears at a fixed 
frequency of 1P (10 Hz) in the PSD plots of the bent blade cases. The magnitude of the 1P 
excitation provides an effective signature for detecting and quantifying the bent blade faults. 
 
Since the wind turbine was operated in the wind tunnel during the experiments and there was no 
wind shear or yaw error in the wind tunnel, as shown in Figs. 5.11 and 5.16, there is no 
excitation at 2P frequency in the experimental results, which is another characteristic frequency 
of aerodynamic asymmetries. 
 
In another set of experiments, one blade of an Air Breeze wind turbine was bended edgewise in 
two different directions: forward and backward, as shown in Fig. 5.18; while the other two 
blades were unchanged. Figs. 5.19 and 5.20 show the 1P-invariant PSD results for two bent 
blade cases against the baseline case using the current frequency demodulated signal (i.e., the 
estimated shaft rotating frequency) and the vibration signal, respectively, where again the 
variable 1P frequency was converted to a constant value of 10 Hz. Both the proposed current-
based methods and the traditional vibration-based method are effective for detecting the 
edgewise bent blade faults. Moreover, the proposed current-based methods achieved comparable 
performance as the traditional vibration-based method for wind turbine bent blade fault 
detection. 
 
 

 
 

Fig. 5.15:  A blade bended flapwise or edgewise. 
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Fig. 5.16:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
edgewise bent blade scenarios against the baseline case in a wide frequency range. 

 
 

 
 

Fig. 5.17:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
edgewise bent blade scenarios against the baseline case in a frequency range around 1P. 
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Fig. 5.18:  A blade of the Air Breeze wind turbine bended forward (left) and backward (right). 
 
 

 
 

Fig. 5.19:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
flapwise bent blade scenarios against the baseline case in a frequency range around 1P. 

 

10
1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Current

Frequency (Hz)

P
S

D
 o

f 
th

e 
es

tim
at

ed
 s

ha
ft

 r
ot

at
in

g 
fr

eq
ue

nc
y

 

 

Baseline

Blade Bend Forward
Blade Bend Backward



38 

 
 

Fig. 5.20:  Comparison of the 1P-invariant PSD of the vibration signal for the flapwise bent 
blade scenarios against the baseline case in a frequency range around 1P. 

 
 
5.3.3  Detection of Aged Blade 
 
In this test an Air Breeze wind turbine was equipped with an aged blade and two new blades. 
Fig. 5.21 compares the aged blade with a new blade. The aged blade has cracks and its surface 
becomes rough. The developed 1P-invariant PSD method was applied to both the current 
frequency demodulated signal and the vibration signal for aged blade detection; the results are 
shown in Figs. 5.22 and 5.23, respectively. 
 

       
 

Fig. 5.21:  Comparison of the aged blade with a new blade. 
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Fig. 5.22:  Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
aged blade case against the baseline case in a frequency range around 1P. 

 
 

 
 

Fig. 5.23:  Comparison of the 1P-invariant PSD of the vibration signal for the aged blade case 
against the baseline case in a frequency range around 1P. 
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5.3.4  Detection of Blade Defects 
 
In this set of experiments, a blade with two-point defects and a blade with four-point defects 
were created, as shown in Fig. 5.24.  Each defected blade was used individually in the 
experiments; while other two blades of the Air Breeze wind turbine were unchanged in each 
experiment. Figs. 5.25 and 5.26 compare the 1P-invariant PSD results for an Air Breeze wind 
turbine in two blade defect cases against the baseline case using the current frequency 
demodulated signal and the vibration signal, respectively.  Blade Defect 2 and Blade Defect 4 in 
the figures refer to a blade with two-point defects and a blade with four-point defects, 
respectively. 
 
 

 
 

Fig. 5.24:  Two defected blades used for experiments. 
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Fig. 5.25: Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
blade defect cases against the baseline case in a frequency range around 1P. 

 
 

 

Fig. 5.26: Comparison of the 1P-invariant PSD of the vibration signal for the blade defect cases 
against the baseline case in a frequency range around 1P. 
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5.3.5  Detection of Generator Magnet Damage 
 
In this test, one of the rotor magnets of the generator of an Air Breeze wind turbine was broken, 
as shown in Fig. 5.27.  Figs. 5.28 and 5.29 compare the 1P-invariant PSD results for an Air 
Breeze wind turbine in the magnet damage case against the baseline case using the current 
frequency demodulated signal and the vibration signal, respectively.   
 
 

 
 

Fig. 5.27:  A rotor with a damaged magnet of the generator of an Air Breeze wind turbine. 
 
 

  

Fig. 5.28: Comparison of the 1P-invariant PSD of the estimated shaft rotating frequency for the 
magnet damage case against the baseline case in a frequency range around 1P. 
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Fig. 5.29: Comparison of the 1P-invariant PSD of the vibration signal for the magnet damage 
case against the baseline case in a frequency range around 1P. 

 
 
The results in Sections 5.3.3-5.3.5 clearly show that the proposed 1P-invariant method is 
effective to detect these wind turbine faults by using both current and vibration measurements.  
The proposed current-based fault detection method achieved comparable performance as the 
traditional vibration-based method for detection of various imbalance faults for wind turbines.   
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6. WIND TURBINE BEARING FAULT DETECTION 

Bearing faults constitute a significant portion of all faults in wind turbine generators (WTGs). 
The experience feedback from the wind energy industry corroborates that bearing failure is one 
of the typical failures in WTGs [3], [39]. Repairing or replacing a faulted bearing requires 
additional cost and can cause significant downtime. For instance, failure of a $1,500 bearing, if 
not repaired or replaced timely, could result in a $100,000 gearbox replacement, a $50,000 
generator rewind, and $70,000 in expenses to replace other failed components [39]. According to 
General Electric (GE) Energy [3], a $5,000 bearing replacement can easily turn into a $250,000 
project involving cranes, service crew, gearbox replacement, and generator rewind, not to 
mention the downtime loss of power generation. Therefore, it is highly desired to detect bearing 
faults and repair or replace the faulted bearing(s) to prevent catastrophic damages and reduce the 
downtime of WTG systems. 
 
 
6.1  The Characteristic Frequencies of Single-Point Bearing Faults 
 
6.1.1  Types of Single-Point Bearing Faults 
 
According to different stages of the fault development process, bearing faults can be categorized 
into two types [43]: 1) single-point defect, which is defined as a single and localized defect on an 
otherwise relatively undamaged bearing surface, and 2) generalized roughness, which is a type of 
fault where the condition of a bearing surface has degraded considerably over a large area and 
become rough, irregular, or deformed. 
 
According to [16], [44], the fault characteristic frequencies of a ball bearing in vibration 
measurements can be computed as functions of the geometry and rotating frequency of the 
bearing. 

fi = 0.5·NB·fr·(1 + Db·cosθ/Dc)                           (6-1) 

fo = 0.5·NB·fr·(1 – Db·cosθ/Dc)                           (6-2) 

fb = 0.5·fr· (Dc/Db)·[1 – (Db·cosθ/Dc)
2]                                               (6-3) 

fc = 0.5·fr·(1 – Db·cosθ/Dc)                            (6-4) 

where fi is the characteristic frequency of bearing inner-race faults; fo is the characteristic 
frequency of bearing outer-race faults; fb is the characteristic frequency of bearing ball faults; fc 
is the characteristic frequency of bearing cage faults; fr is the rotating frequency of the bearing; 
NB is the number of balls in the bearing; Db is the ball diameter; Dc is the pitch diameter; and β is 
the ball contact angle, which is normally zero. The schematic diagram of a ball bearing with 8 
balls is given in Fig. 6.1. 
 
The excitations of a bearing fault appear not only in the frequency spectrum of WTG vibration 
measurements, but also in the frequency spectrum of WTG shaft rotating frequency signals. 
Therefore, the excitations at fi, fo, fb, and fc, in the frequency spectrum of shaft rotating frequency 
signals are signatures for bearing fault detection. 
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Fig. 6.1:  Schematic diagram of a ball bearing. 
 
 
6.1.2  Bearing Fault Signatures in Stator Current Signals 
 
To apply current signals for WTG bearing fault detection, the influence of bearing faults on the 
WTG current signals needs to be modeled. The most frequently used model is given in [45] for 
induction machine bearing fault detection. Reference [46] extended the result of [45] by taking 
into account both the radial rotor movement and the shaft torque variation of electric machines. 
The stator current signals are modulated by the characteristic frequency ffault of a bearing fault in 
vibration measurements, where ffault is one of the bearing fault characteristic frequencies given in 
(6.1)-(6.4) [45], [46]. The characteristic frequencies of bearing single-point defects in the 
modulated stator current signals are summarized in Table 6.1, where l = 1, 2, ···; fc.i, fc.o, fc.b, and 
fc.c are the characteristic frequencies of an inner-race defect, outer-race defect; ball defect; and 
cage defect, respectively; and f1 is the fundamental frequency of the current signal. The 
harmonics of current signals are also modulated by the bearing fault characteristic frequencies in 
vibration measurements. Since the harmonics of current signals have much lower magnitude than 
the fundamental-frequency component, the excitations at the harmonics due to bearing faults are 
minor and are not listed here. 
 
 

Table 6.1:  Characteristic frequencies of single-point bearing faults in WTG current signals 
 

 Radial rotor 
movement [45] 

Radial rotor 
movement [46] 

Shaft torque 
variation [46] 

Inner-race defect fc.i = f1 ± l·fi fc.i = f1 ± fr ± l·fi fc.i = f1 ± l·fi 

Outer-race defect fc.o = f1 ± l·fo fc.o = f1 ± l·fo fc.o = f1 ± l·fo

Ball defect fc.b = f1 ± l·fb fc.b = f1 ± fc ± l·fb fc.b = f1 ± l·fb

Cage defect fc.c = f1 ± l·fc N/A N/A 
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6.2  Single-Point Bearing Fault Detection 
 
6.2.1  WTG with Healthy Bearings 
 
A baseline scenario was initially studied for the testing Air Breeze wind turbine with healthy 
bearings. The testing bearing is located between the rotors of the turbine and the generator, as 
shown in Fig 6.2. The Air Breeze PMSG wind turbine was operated with the rotating frequency 
in the range of 11 to 12 Hz, which leads to 66 to 72 Hz fundamental frequency in the stator 
current signals. The length of the stator current measurement is 10 second. The measured stator 
current was demodulated and analyzed by using the proposed method. The 1P-invariant PSDs of 
the frequency and amplitude demodulated signals of the stator current are plotted in Figs. 6.3 and 
6.4, respectively, where the variable shaft rotating frequency from 11 to 12 Hz was converted to 
a constant value of 10 Hz by using the 1P-invariant PSD method. In Fig. 6.3, there are 
excitations at the frequencies of 10 Hz and 30 Hz besides the DC component in the 1P-invariant 
PSD of the frequency demodulated signal f1.e of the stator current. The first excitation frequency 
is the 1P frequency, which was created by imbalance of the WTG, including shaft imbalance and 
rotor eccentricity [9]. WTGs are inevitably subjected to a certain degree of imbalance due to 
manufacturing and construction errors, icing, deformation, etc.  The second excitation at 3P 
frequency was generated by the effect of yaw error, wind shear, or tower shadow of wind 
turbines with three blades [12]. In Fig. 6.3, besides the excitations appear at 1P and 3P 
frequencies, the amplitude demodulated signal of the stator current also contains 20 Hz or 2P 
frequency component. This is because the imbalance of the WTG modulates the amplitude of the 
stator current signal. The squared current signal contains the second harmonic of the 1P 
frequency as explained in (3-40), when ffault equals to 1P frequency. The terms containing 2θ(t) 
of Cs

2 in (3-40) were filtered out by using the 1P-invariant PSD method and do not appear in Fig. 
6.4. 
 
 

 
 

Fig. 6.2:  The testing bearing and WTG. 

Testing bearing 
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Fig. 6.3:  The 1P-invariant PSD of the frequency demodulated signal of the stator current in the 
healthy bearing case. 

 
 

 
 

Fig. 6.4:  The 1P-invariant PSD of the amplitude demodulated signal of the stator current in the 
healthy bearing case. 
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Fig. 6.6:  Comparison of the 1P-invariant PSDs of the processed shaft rotating frequency signals 
estimated from the first and the last stator current records. 

 
 

 
 

Fig. 6.7:  Locally normalized PSD and threshold generated by the impulse detection method for 
the bearing with cage fault. 
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Fig. 6.8:  Amplitudes of the locally normalized PSD at the bearing cage fault characteristic 
frequency of 4 Hz during the 25-hour experiment. 

 
 

The proposed impulse detection method was also applied to determine whether there is a 
signature of the bearing cage fault in the PSD of the estimated shaft rotating frequency signal 
during the entire 25-hour experiment. The result is given in Fig. 6.8. It shows that the signature 
of the bearing cage fault appeared from the 6th hour of the experiment. The fault signature 
indicates a degradation of the bearing cage and maintenance should be taken immediately. Since 
there was no maintenance taken after the 6th hour of the experiment, the bearing was damaged 
and the wind turbine was stopped at the 25th hour of the experiment by the protection system. 
 

To illustrate the advantage of using the demodulation methods for wind turbine bearing fault 
detection. The standard PSD and 1P-invariant PSD of the raw stator current measurements are 
plotted in Figs. 6.8 and 6.9, respectively. Based on Table 6.1 and the shaft rotating frequency, the 
excitations of bearing cage defect should appear at about 63±4·n Hz in Fig. 6.9, where n = 1, 2, 
···. However, because of the high magnitude of the stator current fundamental-frequency 
component and the variable shaft rotating frequency, the excitations generated by the bearing 
fault are totally masked by the stator current fundamental-frequency component in the standard 
PSD spectrum and, therefore, cannot be detected by using the standard PSD method. In Fig. 
6.10, the variable shaft rotating frequency was converted to a constant value of 10 Hz in the 1P-
invariant PSD method. The excitations due to the bearing cage defect should appear at 60±4·n 
Hz, where n = 1, 2, ···. However, these excitations are masked by the subbands of the 
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fundamental-frequency component due to it’s the high magnitude. It failed to detect the bearing 
fault for the direct-drive PMSG wind turbine by using the stator current measurements directly. 
 

 

 
 

Fig. 6.9:  The standard PSD of the stator current measurements in the bearing fault case. 
 
 

 
 

Fig. 6.10:  The 1P-invariant PSD of the stator current measurements in the bearing fault case. 
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6.2.3  WTG with an Out-Race Fault 
 
An outer-race fault was generated artificially for a testing bearing, as illustrated in Fig. 6.11. The 
healthy bearing and the bearing with an outer-race fault were installed in the WTG and tested, 
respectively. The length of the stator current record in each case was 50 seconds.  
 
 

 
 

Fig. 6.11:  The testing bearing with an outer-race fault. 
 
 
Fig. 6.12 compares the 1P-invariant PSDs of the estimated shaft frequency signals for the WTG 
with a faulted bearing and against that with a healthy bearing, where in the 1P-invariant PSD the 
variable 1P frequency of 6~13 Hz was converted to a constant value of 10 Hz. As shown in Fig. 
6.12, an excitation appears at a fixed frequency of 30.8 Hz in the PSD plot of the bearing outer-
race fault case. This fault characteristic frequency is the same as the one calculated from (6.2) for 
the WTG operating with a fixed shaft rotating speed of 10 Hz. Therefore, the excitation at 30.8 
Hz in the 1P-invariant PSD of the estimated shaft frequency is an effective signature for the 
bearing outer-race fault diagnosis. 
 
As shown in Fig. 6.13, the proposed impulse detection method was successfully applied to 
extract the excitations in the 1P-invariant PSD for bearing outer-race fault diagnosis. The length 
of the window, W, was also chosen to be 101. The same third-order median filter as for Fig. 6.7 
was used to calculate the threshold. The locally normalized PSD [i.e., R(f)] of the bearing outer-
race fault case is plotted in Fig. 6.13, where the threshold was calculated to be 0.054. Fig. 6.13 
clearly shows that the proposed impulse detection method successfully detected the excitation at 
30.8 Hz corresponding to the bearing out-race fault. 
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Fig. 6.12:  Comparison of the 1P-invariant PSDs of the estimated shaft rotating frequency signals 
for the WTG with a bearing outer-race fault against that with a healthy bearing. 

 
 

 
 

Fig. 6.13:  Locally normalized PSD and threshold generated by the impulse detection method for 
the bearing with an outer-race fault. 
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6.3  Incipient Bearing Fault Detection 
 
An Air Breeze wind turbine with a pretreated bearing (no lubricant) was operated in the wind 
tunnel of the PI’s laboratory.  During the experiment, the wind turbine was operated at variable 
speed conditions with the shaft speed in the range of 500-700 rpm, which is around the 
maximum shaft speed of this wind turbine.  Operating the wind turbine at high speeds also helps 
accelerating the failure process of the bearing.  The experiment took approximately 25 hours. 
 
The proposed wavelet filter-based method was applied to the recorded stator current signals for 
bearing fault detection.  The resulting wavelet-filtered signals represent the energy of the 
components in the current measurements related to the bearing fault and were used as the 
signature for incipient bearing fault detection.  In each 200-second sampling period, the first 219 
samples (approximately 50 second of samples) were used as replication 1; the second 219 
samples were used as replication 2; and the third 219 samples were used as replication 3.  The use 
of multiple replications is to demonstrate that the wavelet filter-based fault detection does not 
depend on when the data was recorded.  The results are shown in Fig. 6.14.  The energy of the 
wavelet-filtered stator currents increases during the first 7 hours of the experiment for all three 
replications.  Due to the lack of lubricant, the bearing condition was degrading quickly during 
this period.  From the 8th to 23rd hours, the energy almost stays at the same level.  This indicates 
that the incipient bearing fault has already built up and the bearing was working in a subhealthy 
condition.  During the last one to two hours of the experiment, the energy climbed up and the 
cage of the bearing was broken at the end of the experiment, as shown in Fig. 6.5; the wind 
turbine stopped running when the bearing has been broken. 
 
The results of Figs. 6.14 and 6.5 clearly show that the proposed wavelet filter-based method can 
work effectively to extract the fault signature from the stator current measurements; the resulting 
fault signature can be used to discover the physical condition of the wind turbine bearing 
effectively. 
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Fig. 6.14:  The results of the wavelet-filtered stator current.  
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8. CONCLUSIONS 

This project has successfully developed several novel online nonintrusive CMFD technologies 
for wind turbine.  The proposed technologies use only the current measurements that have been 
used by the control and protection system of a WTG; no additional sensors or data acquisition 
devices are needed.  Current signals are reliable and easily accessible from the ground without 
intruding on the WTGs that are situated on high towers and installed in remote areas.  Therefore, 
the proposed technologies have great economic benefits and the potential to be adopted by the 
wind energy industry. 
 
Specifically, this project has analyzed and modeled the effects of faults on the currents of WTGs 
running in variable rotating speed conditions. A fault induces shaft torque variations in a WTG, 
which modulate the amplitude and frequency of the current signals. Based on the model and 
analysis, appropriate frequency and amplitude demodulation methods have been proposed for 
fault detection for WTGs using only generator current signals. A frequency spectrum analysis 
method has been applied to discover the excitations at the characteristic frequencies of faults in 
the demodulated signals. Experimental results have validated the model and the proposed 
methods for fault detection of direct-drive PMSG wind turbines. The advantages of using 
frequency and amplitude demodulations of current signals over directly using stator current 
signals have also been demonstrated by the experimental results. 
 
A novel 1P-invariant PSD method has been developed for imbalance fault detection and 
quantification of direct-drive wind turbines using only one phase generator stator current signal. 
The proposed method processes the current or demodulated current signals in a way such that the 
variable characteristic frequencies of the imbalance faults become constant values in the PSD of 
the processed signals. Simulation studies have been carried out in a FAST and Simulink 
combined environment for blade imbalance and aerodynamic asymmetry detection of a 10-kW 
direct-drive WTG. Experimental studies have been performed in a wind tunnel facility for 
detection of blade imbalance, bent blades, aged blade, blade defects, and generator magnet 
damage of a 160-W direct-drive PMSG wind turbine. Both simulation and experimental results 
have confirmed that the proposed method is effective to detect and quantify various imbalance 
faults in a variable-speed direct-drive WTG by only using one phase current measured from the 
generator terminal. 
 
The proposed 1P-invariant PSD method has also been successfully used for detection of various 
single-point bearing faults in direct-drive PMSG wind turbines, including cage break fault, out-
race defect, etc. An impulse detection method has then been designed to extract bearing fault 
signatures. If an impulse is detected at the characteristic frequency of a bearing fault, an alert will 
be generated and maintenance of the bearing will be required. Experimental studies for a WTG 
operating in a wind tunnel have shown that the proposed method can effectively detect various 
bearing faults for the WTG operating in variable-speed conditions. 
 
The proposed 1P-invariant PSD method is able to clearly identify excitations at the characteristic 
frequencies of imbalance faults and single-point bearing faults. Therefore, it is sensitive to faults 
and is immune from interferences near fault characteristic frequencies. Compared to other signal 
analysis methods, such as wavelet analysis, amplitude demodulation, etc., the proposed method 
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is less complex and has a lower computational cost and, therefore, is good for online fault 
detection. Furthermore, the traditional PSD analysis is a well-developed method for fault 
detection of rotating machines. Therefore, the proposed 1P-invariant PSD method can be easily 
integrated into existing condition monitoring and fault detection systems used in the wind 
industry.  
 
A novel wavelet filter-based method has been developed for detecting bearing generalized 
roughness faults (i.e., incipient bearing faults) for WTGs using stator current measurements. The 
method decomposes the stator current by using the DWT. The fault-related components in the 
stator current are located in the low energy part of the decomposed sequence due to the subtle 
and broad-band features of these components. The low energy points of the decomposed 
sequence are then identified and added together as the signature of the bearing faults by using the 
proposed wavelet filter. Experimental data have been obtained from a direct-drive PMSG wind 
turbine with a developed bearing generalized roughness fault at variable-speed conditions. These 
data have been used by the proposed method for bearing fault detection successfully.  
 
The PI plans to start up a company in the UNL’s Innovation Campus to commercialize the 
proposed technologies. The final product will be a low-cost, current-based, online, CMFD 
system that can be easily integrated into commercial WTG systems. 
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9. RECOMMENDATIONS 

Although only validated for small direct-drive wind turbines without gearboxes, the proposed 
technologies are also applicable for CMFD of large-size wind turbines with and without 
gearboxes.  However, additional investigations, such as validation using filed data from 
operating WTGs, are recommended in order to apply the proposed technologies to those large-
size wind turbines. Moreover, in order to facilitate the commercialization of the proposed 
technologies, further investigations are needed to make them more computational efficient and 
robust. It is also recommended to combine the proposed technologies with the existing 
mechanical sensor-based wind turbine CMFD technologies to improve the accuracy and 
reliability of the wind turbine CMFD systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



61 

REFERENCES 

[1] The American Wind Energy Association, “U.S. Wind Industry First Quarter 2011 Market 
Report,” Apr. 2011, [Online]. Available: http://www.awea.org/learnabout/ 
publications/reports. 

[2] United States Department of Energy, “20% wind energy by 2030: increasing wind energy’s 
contribution to U.S. electricity supply,” Rep. DOE/GO-102008-2567, Jul. 2008. 

[3] B. Lu, Y. Li, X. Wu, and Z. Yang, “A review of recent advances in wind turbine condition 
monitoring and fault diagnosis,” Proceedings of 2009 IEEE Symposium on Power 
Electronics and Machines in Wind Applications (PEMWA 2009), Lincoln, Nebraska, Jun. 
24–26, 2009. 

[4] W. Musial and B. Ram, “Large-scale offshore wind power in the United States: 
Assessment of opportunities and barriers,” Technical Report, National Renewable Energy 
Laboratory, Sept. 2010, [Online]. Available: http://www.nrel.gov/wind/pdfs/40745.pdf 

[5] T.W. Verbruggen, “Wind turbine operation & maintenance based on condition 
monitoring,” Final Report, Energy Research Center of the Netherlands (ECN), April 2003, 
[Online]. Available: www.ecn.nl/docs/library/report/2003/c03047.pdf 

[6] Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song, “Condition monitoring and 
fault detection of wind turbines and related algorithms: A review,” Renewable and 
Sustainable Energy Reviews, vol. 13, pp. 1-39, 2009. 

[7] X. Gong and W. Qiao, “Current demodulation-based bearing fault diagnosis for direct-
drive PMSG wind turbines,” IEEE Transactions on Industrial Electronics, in review. 

[8] W. Qiao and X. Gong, “System and Method for Wind Turbine Generator Fault Detection 
Using Generator Current Measurements,” U.S. provisional patent 61652396. 

[9] X. Gong and W. Qiao, “Imbalance fault detection of direct-drive wind turbines using 
generator current signals,” IEEE Transactions on Energy Conversion, vol. 27, no. 2, pp. 
468-476, June 2012. 

[10] X. Gong and W. Qiao, “Bearing fault detection for direct-drive wind turbine via stator 
current spectrum analysis,” Proceedings of the IEEE Energy Conversion Congress and 
Exposition 2011 (ECCE 2011), Phoenix, AZ, USA, Sept. 17-22, 2011, pp. 313-318. 

[11] X. Gong, W. Qiao, and W. Zhou, “Incipient bearing fault detection via wind generator 
stator current and wavelet filter,” Proceedings of the 36th Annual Conference of the IEEE 
Industrial Electronics Society (IECON 2010), Phoenix, AZ, USA, Nov. 7-10, 2010, pp. 
2615-2620. 

[12] R. Fadaeinedjad, G. Moschopoulos, and M. Moallem, “The impact of tower shadow, yaw 
error, and wind shears on power quality in a wind diesel system,” IEEE Transactions on 
Energy Conversion, vol. 24, no. 1, pp. 102-111, Mar. 2009. 

[13] R. Ramlau and J. Niebsch, “Imbalance estimation without test masses for wind turbines,” 
Journal of Solar Energy Engineering, vol. 131, no. 1, pp. 011010-1 – 011010-7, Feb. 2009. 

[14] J.S. Walker, A Primer on Wavelets and their Scientific Applications, Chapman & Hall, 
1999. 

[15] D. L. Donoho and I.M. Johnstone, “Adapting to unknown smoothness via wavelet 
shrinkage,” Journal of American Statistical Association, vol. 90, pp. 1200–1224, 1995. 

[16] X. Gong and W. Qiao, “Current-based online bearing fault diagnosis for direct-drive wind 
turbines via spectrum analysis and impulse detection,” Proceedings of the 2012 IEEE 
Symposium on Power Electronics and Machines in Wind Applications (PEMWA 2012), 
Denver, CO, USA, July 16-18, 2012. 



62 

[17] U.S. Department of Energy, “20% wind energy by 2030: increasing wind energy’s 
contribution to U.S. electricity supply,” May 2008, [Online]. Available: 
http://www1.eere.energy.gov/windandhydro/pdfs/42864.pdf 

[18] World Wind Energy Association, “World Wind Energy Report 2010,” Apr. 2011, [Online]. 
Available: 
http://www.wwindea.org/home/images/stories/pdfs/worldwindenergyreport2010_s.pdf 

[19] W.Q. Jeffries, J.A. Chambers, and D.G. Infield, “Experience with bicoherence of electrical 
power for condition monitoring of wind turbine blades,” IEEE Proc. on Vision, Image and 
Signal Processing, vol. 145, pp. 141-148, 1998. 

[20] T. Bouno, et al., “Failure Forecast Diagnosis of Small Wind Turbine using Acoustic 
Emission Sensor,” KIEE Int. Trans. Electrical Machinery and Energy Conversion Systems, 
vol. 5-B, pp. 78-83, 2005. 

[21] D. J. Lekou, et al., “Emerging Techniques for Health Monitoring of Wind Turbine Gearbox 
and Bearings,” Proceedings of EWEC 2009, Scientific Track-Operation and Maintenance, 
Marseille, France, 2009. 

[22] S. Djurovic, et al., “Condition Monitoring Artifacts for Detecting Winding Faults in Wind 
Turbine DFIGs,” Proceedings of EWEC 2009, Scientific Track-Wind Turbine Electrical 
System & Component, Marseille, France, 2009. 

[23] W. Yang, et al., “Condition monitoring and fault diagnosis of a wind turbine synchronous 
generator drive train,” IET Renewable Power Generation, vol. 3, pp. 1-11, Mar. 2009. 

[24] Q. Huang, et al., “Application of wavelet neural networks on vibration fault diagnosis for 
wind turbine gearbox,” Proceedings of 5th international symposium on Neural Networks: 
Advances in Neural Networks, Part II, Beijing, China, 2008. 

[25] C. Chen, et al., “Fault diagnosis for large-scale wind turbine rolling bearing using stress 
wave and wavelet analysis,” Proceedings of 8th Int. Conf. on Electrical Machines and 
Systems, 2005 (ICEMS 2005), 2005, pp. 2239-2244. 

[26] P. Caselitz and J. Giebhardt, “Rotor condition monitoring for improved operational safety 
of offshore wind energy converters,” Journal of Solar Energy Engineering, vol. 127, pp. 
253-261, 2005. 

[27] J.J. Christensen, et al., “Remote condition monitoring of vestas turbines,” Proceedings of 
EWEC 2009, Marseille, France, 2009. 

[28] N. Weller, “Acceleration enveloping - Higher sensitivity, earlier detection,” Orbit, pp. 10-
19, 2004. 

[29] R.M. Jones, “Enveloping for bearing analysis,” Sound and Vibration, pp. 10-15, Feb. 1996. 
[30] Z. Wang and Q. Guo, “The Diagnosis Method for Converter Fault of the Variable Speed 

Wind Turbine Based on the Neural Networks,” Proceedings of 2nd Int. Conf. on Innovative 
Computing, Information and Control, 2007 (ICICIC 2007), 2007, pp. 615-615. 

[31] J. Ribrant and L.M. Bertling, “Survey of failures in wind power systems with focus on 
Swedish wind power plants during 1997-2005,” IEEE Transactions on Energy Conversion, 
vol. 22, no. 1, pp. 167-173, Mar. 2007. 

[32] M. Kumm, H. Klingbeil, and P. Zipf, “An FPGA-based linear all digital phase-locked 
loop,” IEEE Transactions on Circuits and Systems, vol. 57, no. 9, pp. 2487–2497, Sept. 
2010. 

[33] I. Pitas and A.N. Venetsanopoulos, Nonlinear Digital Filters: Principles and Applications, 
Kluwer Academic Publishers, 1990. 



63 

[34] J.M. Jonkman and M. L. Buhl, FAST User’s Guide, National Renewable Energy 
Laboratory, Jul. 2005. 

[35] B.J. Jonkman, TurbSim User's Guide. National Renewable Energy Laboratory, 2009. 
[36] D. Jiang, Q. Huang, and L. Hong, “Theoretical and experimental study on wind wheel 

unbalance for a wind turbine,” Proceedings of the 2009 World Non-Grid-Connected Wind 
Power and Energy Conference, Sept. 24–26, 2009. 

[37] Y. Amirat, M.E.H. Benbouzid, B. Bensaker, and R. Wamkeue, “Condition monitoring and 
fault diagnosis in wind energy conversion systems: a review,” Proceedings of the 2007 
IEEE International Electric Machines and Drives Conference, vol. 2, May 2007, pp. 1434–
1439. 

[38] S.A. Saleh and C.R. Moloney, “Development and testing of wavelet packet transform-
based detector for ice accretion on wind turbines,” Proceedings of the IEEE Digital Signal 
Processing Workshop and IEEE Signal Processing Education Workshop, pp. 72–77, Jan. 
2011. 

[39] R. W. Hyers, J. G. McGowan, K. L. Sullivan, J. F. Manwell, and B. C. Syrett, “Condition 
monitoring and prognosis of utility scale wind turbines,” Energy Materials, vol. 1, no. 3. 
pp. 187–203, Sep. 2006. 

[40] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Handbook. New York: 
Wiley, 2001. 

[41] D.J. Gardels, W. Qiao, and X. Gong, “Simulation studies on imbalance faults of wind 
turbines,” Proceedings of the IEEE Power & Energy Society General Meeting 2010, pp. 1–
5, July 2010. 

[42] J.F. Manwell, J.G. McGowan, and A.L. Rogers, Wind Energy Explained, West Sussex, 
England: John Wiley & Sons Ltd, 2002. 

[43] J.R. Stack, T.G. Habetler, and R.G. Harley, “Fault classification and fault signature 
production for rolling element bearings in electric machines,” IEEE Transactions on 
Industry Applications, vol. 40, no. 3, pp. 735-739, May/June 2004. 

[44] F. Immovilli, M. Cocconcelli, A. Bellini, and R. Rubini, “Detection of generalized-
roughness bearing fault by spectral-kurtosis energy of vibration or current signals,” IEEE 
Transactions on Industrial Electron., vol. 56, no. 11, pp. 4710–4717, Nov. 2009. 

[45] R.R. Schoen, T.G. Habetler, F. Kamran, and R. Bartheld, “Motor bearing damage detection 
using stator current monitoring,” IEEE Transactions on Industry Applications, vol. 31, no. 
6, pp. 1274–1279, Nov./Dec. 1995. 

[46] M. Blodt, P. Granjon, B. Raison, and G. Rostaing, “Models for bearing damage detection 
in induction motors using stator current monitoring,” IEEE Transactions on Industrial 
Electronics, vol. 55, no. 4, pp. 1813–1822, Apr. 2008. 

 
 
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


