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The Dirac equation in electronic structure calculations:
Accurate evaluation of DFT predictions for actinides
John M Wills®@ and Ann E. Mattsson®
@Theoretical Division, Los Alamos National Laboratory
®) Computational Shock and Multiphysics, Sandia National Laboratories

ABSTRACT

Brooks, Johansson, and Skriver [1], using the LMTO-ASA method and considerable insight,
were able to explain many of the ground state properties of the actinides. In the many years
since this work was done, electronic structure calculations of increasing sophistication have
been applied to actinide elements and compounds, attempting to quantify the applicability of
DFT to actinides and actinide compounds and to try to incorporate other methodologies
(1.e.DMFT) into DFT calculations. Through these calculations, the limits of both available
density functionals and ad hoc methodologies are starting to become clear. However, it has also
become clear that approximations used to incorporate relativity are not adequate to provide
rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk,
we describe the result of full-potential LMTO calculations for the elemental actinides,
comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic
ases, with and without variational spin-orbit. This comparison shows that the scalar
elativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of
theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic

tructure calculations on actinide elements.
[[1] Brooks MSS, Johansson B, and Skriver HL, Handbook on the Physics and Chemistry of the Actinides,
d. Freeman AJ and Lander GH, Elsevier, 1984, p. 153.
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The Dirac equation in electronic structure calculations:

Accurate evaluation of DFT predictions for actinides
John M Wills® and Ann E. Mattsson®
@Theoretical Division, Los Alamos National Laboratory
®)Computational Shock and Multiphysics, Sandia National Laboratories

RSPt is a FP-LMTO based electronic structure method useful for many things, but
particularly for calculating the properties of complex materials with heavy element
constituents. We have developed an implementation of RSPt that uses solutions to the Dirac
equation as bases. Our motivation is to minimize uncertainty in the evaluation of the
underlying equations in DFT calculations, particularly as applied to the properties of heavy
materials, in order to develop and evaluate new density functionals that incorporate relativity
and confinement physics. In this talk we:

* Compare the results of using Dirac bases with those obtained in RSPt using scalar
relativistic bases, with and without the spin-orbit interaction,

* demonstrate the perils of evaluating the spin-orbit interaction perturbatively in actinides, and
* conclude that the use of a Dirac basis provides essential accuracy with little increase in
computational complexity or time.
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An 1mplementation of RSPt with Dirac bases

RSPt is an all-electron, full-potential, LMTO based electronic structure method.

* All-electron basis set based on a muffin-tin potential (atomic like in muffin-tin spheres
and constant in the interstitial between the spheres). This basis 1s used to variationally
solve for the electronic structure and total energy of a periodic solid with the full potential.
* The underlying equation for the basis and the variational calculation is the Dirac
equation; bases are four-component spinors.

* Basis functions are site-centered Dirac spherical waves in the interstitial attached
continuously to solutions of the Dirac equation (and its energy derivative) for the spherical
component of the potential in a muffin-tin sphere.

Adapting RSPt to Dirac:

* The scalar relativistic version of RSPt uses four-spinors (Koelling-Harmon functions)
anyway. The only change in size 1s the use of four-spinors (spin-orbit split) in the

interstitial as well as four-component Fourier transforms.

* Consequently, the Dirac version not much slower than the spin-polarized scaler
relativistic version.

* Many phenomenological adaptations -- e.g. DMFT as implemented in RSPt -- are easily
adapted to a Dirac basis.

To compare with what’s currently done ...
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Incorporating Relativity:
Scalar Relativistic (SR), SR+perturbative spin-orbit (SO), and Dirac

In all-electron methods (FPLMTO and FLAPW, for example, there is an equation (or
equations) used to produce a basis, and an equation solved variationally. In RSPt, bases are

based on the Koelling-Harmon equation, and the Dirac equation is solved variationally. In the
Dirac version, the Dirac equation 1s used for both.

Underlying equation:
In all electron codes, relativity is generally dealt with 1n one of three ways:
* bases () generated using the Dirac equation:

(Hp +V —mc*)Y = e, Hp = ca-p+ Bmc?
The Dirac equation can be written in terms of the Koelling-Harmon equation:
(Hp +V —mc® —e)p = (Hsr — e) — Vsoo - L (1) 8 (2
D. D. Koelling and B. N. Harmon, Journal of Physics C: Solid State Physics 10, 3107 (1977)

* The scalar relativistic approximation (SR) amounts to setting Vso = 0.
* SR + perturbative spin orbit (SO): using SR bases, solve the full Koelling Harmon
equation with Vso treated variationally.

(*) atomic-like 1n spheres surrounding atoms, constant in between

Why use SR or SO? ...
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Motivation for using the K-H equation with/without spin-orbit coupling:
* avoid dealing with lower component of Dirac spinors (save space/computation)

* maybe avoid negative energy states (not a problem with all-electron methods)

* preserve the (/mms) identification of basis-/eigen-states.

[ssues arising when incorporating relativity:

* Interaction between core and valence states
- Core states are states with zero amplitude outside the muffin-tin sphere. They are
integrated “exactly” over the spherical part of the potential in the sphere.
- Core states and valence states should be calculated with the same underlying equation to:
» avoid spurious core/valence interaction
» allow core states to transition rigorously to valence states under pressure
- Since core states should be Dirac states, SR and SO can only be used for the valence if
core states are well separated from valence states. This 1s a questionable approximation in
rare earth- and 5d transition-metals and is numerically unstable in actinides.

* Treating p states with the SR equation in heavy elements

- spin-orbit coupling (~VV) has a large effect on core p states, lowering the energy
substantially, and making a perturbative treatment inappropriate.

- no variational treatment of the spin-orbit interaction can produce the correct behavior of
a p1/2 state at the origin. Because of this,

- a perturbative spin-orbit approach sin actinides introduces large errors in, e.g., the
predicted volume.

To make the second point concrete ...
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The radial function for the upper components (red) and the lower components (blue) of the 6p;; state,
calculated with the Harmon and Koelling scalar relativistic equation (lighter), the Dirac equation (darker),
and the Schrédinger equation (dashed).

Note the discrepancy at the origin.

Radial function (1/ag">)

* Dirac p"?, like s'’2, states are non-zero at the origin,
while scalar relativistic and Schrodinger p states are
zero at the origin, hence no combination of K-H bases
can ever capture the behavior of Dirac p'/? states.

50

e,
.......

* The anomalously small volumes obtained with the SO method are due to a
poor treatment of p’? states. These states can’t be adequately captured in a

scalar relativistic basis.

As an example of this problem ...
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E-E, (mRy)

Compare volume-energy curves for Th ...
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The spin-orbit interaction should increase the predicted equilibrium volume.
* Splitting an /-band into two (narrower) sub-bands decreases the bonding energy and, all
else being equal, should increase the predicted equilibrium volume.

Lest you conclude that this results from poor basis convergence ...

Predicted equilibrium volume

* (This figure has two curves per
method from two ways of treating the
muffin-tin volume).

- in actinides, the “semi-core” 6p states
must be included in the variational
basis for numerical stability.

- however, doing so in SO causes a
relatively large decrease, compared to
SR, in the equilibrium volume. On the
other hand, Dirac bases increase the
equilibrium volume compared to SR.
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E_EO (mRY)

A demonstration of
basis convergence.

Dotted lines are same as in
previous figure.

Double basis not
:7 converged

«—iple basis converged.
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Sensitivity to calculational detail

* The energy curves above compare results of SR and SO with two methods for determining
muffin-tin volumes: fixed-fraction (Vum/V=constant)” and fixed radius (Vi=constant)”. With a
converged basis, SR is insensitive to this difference; converging the basis does not improve SO.

The small volume is not a convergence issue.

"FPLMTO generally uses Vu/V=constant, FLAPW uses Vm/=constant
To show the functional dependence of these calculations,

Basis sets have
multiplicity both in
muffin-tins and in the
interstitial; “double” and
“triple” have conventional
meaning.
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* Energy/volume curves for Th, calculated with PBE,
AMOS, and PW exchange/correlation functionals,
using scalar relativistic bases with (SO) and without
(SR) the spin-orbit interaction, and using Dirac >
bases. The three functionals give curves that are g
qualitatively similar, apart from overall volume o
shifts. SR and Dirac curves are qualitatively the
same, apart from a volume shift while the SO curve

1s qualitatively different and has the smallest volume.
* AMOS5 generally gives better volumes™; PBE
anomalously gives better volumes for actinides.
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(*) Haas 2009: P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009) | |

To compare with a lighter, still relativistic, element ...
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E-E, (mRy)
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fcc Ce and fcc Th with PBE excand SR, SO, and Dirac methods

E,(Dirac) = E (SR)- 04Ry
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Compare Ce and Th

* The behavior (SO with a smaller volume than SR, Dirac with a larger volume than SR) is

similar but much less striking than in Th.

* In Ce, semi-core states are optional, while they are essential for numerical stability in Th

calculations.

Comparing density of states is another way to look at the difference ...
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* Dirac and SO seem to give almost identical DOS, at least for occupied states.
* All DOS align except for the SR 5p states; treating these states as SR would be
clearly inaccurate.

As with E-V curves, differences are more pronounce in Th ...
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o i | Th: DoIS at theoretilcal equilibrilum relative |to E ) | | DoS for Th
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* In contrast to Ce, DOS don’t consistently align. The 6s are almost identical, but
valence Dirac and SO are shifted relative to SR and the Dirac and SO 6p ;> differ.

* SO is at a lower volume, with a more condensed density (and higher V), and so,
all else being equal, should be more split that Dirac; it isn’t. SR is just different.

Compared another way ...
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* All states align except for the 6p states, and SO and Dirac 6ps/2 are very
different.

* Valence states (occupied at least) all align.

* SR for 6p states clearly isn’t justified.

Attempts to patch up the 6p volume error ...
» Los Alamos




Patching up the 6p error

Incorporating a Dirac 6p state as a local orbital (Wien)

* FLAPW includes semi-core states as local orbitals. Using a Dirac 6p state as a local
orbital seems to fix the volume problem. This would have implications under

DOS (Ry )

pressure.
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- E,=38096.432099Ry O Semi-Core + Valence . Energy vs Volume for Au
<« calculated with Dirac bases, with valence
i | only and semi-core+valence configurations.
- . Energy vs Volume for Au
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) only and semi-core+valence
i | configurations.
| . | . | . | ? - l O AuSO semi-core + valence
09 1 1.1 12 \ 0 Au SO valence only

Vg=113.07 bohr’ VIV, w0l E,(semi-core) = -38096.01234 Ry
*The semi-core (5p) orbitals are deep \ Fo(valence) = -38096.41614 Ry

below the valence states, allowing o 0f |

calculation of properties with and without

semi-core states. enl
*Results for Dirac show only a small e

decrease in energy due to residual 0}

hybridization.
*SO results show a large volume shift, of-

despite the energy separation. o= T T

V, = 113.07 bohr’ VIV,
|
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Conclusions

* RSPt with Dirac bases provides an accurate (and relatively fast) platform with which to
calculate the properties of heavy (and not so heavy) materials with DFT as well as with
phenomenological inclusions such as DMFT. It’s almost as efficient as SR and SO RSPt
both in time and storage.

* A scalar relativistic basis with variational spin-orbit coupling cannot treat heavy
elements accurately due to the inadequate treatment of the 6p states. This is a large
energy and cannot be treated as a perturbation.

* Using a Dirac basis allows all states -- core and valence -- to be treated in the same way
and consistently incorporate the same underlying equation. The Dirac equation provides
the most accurate platform for development of DFT as well as DFT+whatever to
accurately predict the properties of heavy elements.
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