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Abstract

I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular
the compound NiCI2-4SC(NH2)2. Here a magnetic field-induced quantum phase tr
ansition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuni
ng parameter for BEC transition is the magnetic field rather than the temperature.
Some interesting phenomena arise, for example the fact that the mass of the bos
ons that condense can be strongly renormalized by quantum fluctuations. I will di
scuss the utility of this mapping for both understanding the nature of the quantu
m magnetism and testing the thermodynamic limit of Bose-Einstein Condensation.

Furthermore we can dope the system in a clean and controlled way to create the lon
g sought-after Bose Glass transition, which is the bosonic analogy of Anderson loc
alization. I will present experiments and simulations showing evidence for a new s
caling exponent, which finally makes contact between theory and experiments. Th
us we take a small step towards the difficult problem of understanding the effect
of disorder on bosonic wave functions.
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Overview of the magnet lab

An experimentalist’s introduction to BEC In
guantum magnets

Experimental evidence for BEC in a
Ni-based quantum magnet

Bose Glass — BEC transition



National High Magnetic Field Laboratory —
Pulsed Field Facility
Los Alamos National Lab

A user facility

*65 T pulses (milliseconds)

*60 T long pulse
(2 second shaped wave form)

«97.4 T (millisecond pulses)

*Thermodynamics, optics, electric, magnetic
properties, electric polarization

*Accepting proposals! magnet.fsu.edu




100 YEARS OF NON-DESTRUCTIVE MAGNETS

MAGNETIC FIELD (teslas)
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Why high magnetic fields?
 |nduce new states of matter

“Hidden order” state

Field-induced superconductivity
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Why high magnetic fields?
 |nduce new states of matter

—e Destroy states of matter
(Understanding superconductivity by killing it...)
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High magnetic-field scales and critical currents in SmFeAs(O, F) crystals
P. J. W. Moll, R. Puzniak, F. Balakirev, K. Rogacki, J. Karpinski, N. D. Zhigadlo, B. Batlogg,
Nature Materials 9, 628—-633 (2010)



Why high magnetic fields?
 |nduce new states of matter

 Destroy states of matter

— Probe materials
Fermi surfaces, NMR, MRI, spin levels
with ESR, Ion cyclotron resonance, etc.

900 -B00 -T8) -0 -500 -4 -300 200 200 300 4l 500 400 TOO BOD 900

Molecular mass

Fermi surface of
k-(ET),Cu(NCS),

Mass spectrometry yields “Fingerprint”
of South American crude oll



And most importantly....

MAGNETS CAN MANIPULATE
MORALITY

Magnetic fields targeting the moral center of the brain could
scramble our sense of right and wrong.

Wl

By Eric Bland L1 Print [="] Email
H':lrl Har Eg E|:|1|:| DED-‘I Fl” ET ....................................... S
Comments | Leave a Comment ﬁ Facebook | k| Twitter

ll-';i-J Digg -ﬁJ Stumblelpon

THE GIST:

* 5trong magnetic fields could affect moral judgment.

+ Targeted magnetic fields can make people more
inclined to judge outcomes, not intentions.

* The findings could have implications for
neuroscience, as well as the legal system.

Dr. Liane Young, MIT, PNAS 2010



Current state of the art:
Superconducting magnetsto 25 T

20 T Nb;Sn magnet
+ 5 T high-T, Bi2212 insert

"STRUMENT? B

: Complete 5 Tesl:
with layer-wound



Resistive “Florida-Bitter” Magnets
upto 35T
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Holes allow cooling water to flow
Staggered arrangement (“Florida” design)
improves strength, max magnetic field




The worlds largest DC magnetic field:
33 T resistive + 12 T superconducting

Standing on the hybrid platform Cu/NbzSn composite strands
. . around Cu cores inside
Liquid helium plume 10mm x 12mm steel conduit

8,000 liters of
cooling water
per second

Cryostat designed to

handle a fault load of
6 MN = 27 times the
thrust of a Boeing 747

Field center 1.3 m
32 mm bore




“Florida-Bitter” Magnets

Resistive

30 foot tall cooling tower

(runs two 33 T magnets at a time)
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Here at LANL: Pulsed Magnets

Duration: ms to tens of ms instead of
hours

Higher peak magnetic fields

Much less power

Cooling achieved by immersion in
liquid nitrogen

oB/ot o« V

B A

CuNDb, CuAg, etc.

Max. field o< V

0.6 MJ of energy

pulse lenght « L/R

time



60 T long pulse (world record)
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100 T multishot
(97.4 T so far)
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At 240 T, destroy the magnet every time,

but not the sample

1st megagauss shot
(February 8th 2005)

Capacitor bank pulses a short (us) mega-amp current puls
to achieve ultra high magnetic fields.

Low inductance
capacitor bank.

L =18 nH, C = 144 uF,
V =60 kV, E = 259kJ.

Single turn magnet coil,
L=7nH.

Peak current 4 MA.
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|| 3 orders of magnitude faster |2 o

| than standard short pulse 20F
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Los Alamos National Laboratory 1
National High Magnetic Field Laboratory -
Pulsed Field Facility ]




Bose-Einstein condensation

Ingredients:

1. Bosons

2. Number conservation of the bosons
3. Coherent wave function

€,y n,
€3 n,
€ n,
€, n,
> oA es N,

Lower temperature, bosons forced to condense into the ground state



Mapping BEC onto spins
Number conservation is synonymous with U(1) symmetry

U(1) symmetry = axial symmetry

Phase transition
(T,H,P, ...)

U(1) symmetry Spontaneous symmetry breaking
picks an angle ¢

BEC transition = spontaneous U(1) symmetry breaking
Order parameter has magnitude AND phase be'¢

(Universality class v = 2/3, z = 2)



Mapping BEC onto spins

U(1) symmetry = XY magnetism

Transition into BEC =
formation of long-range XY AFM, with
spontaneous choice of axial angle

Transition can be tuned by temperature or
magnetic field

Experimentally there is never a perfect U(1)
symmetry (even in the atomic BECSs). It’'s a
matter of being in the right limit that the theroy
applies.

N

il



Partial list of BEC quantum magnets

Compound Spins Max T.(K) H.y Heo(T) Spin gap Crystal symmetry
BaCuSi,Og 4 S=1/2 3.8K 247,49 T |[5meV tetragonal

v
TICuCl, A S =1/2 >8K 5T,7100T |6 meV monoclinic
*anisotropy found v
KCuCl, | A 5 =1/2 |>55K 237,55T |4 meV monoclinic
Ba;Cr,0q A S=1/2 2.7K 13T,24T 1.6,2.2 meV [rhombohedral
*anisotropy found v
Pb,V,;0, | Y s=1/2 |4K 4T,~40T  [1meV triclinic
(CH;)2(CHNH;CuCl,) A4 S =1/2 10K 10T,? 1 meV triclinic
[IPA-CuCl,]
Cs,CuCl, ﬁ S = 1/2 |032K N/A, 9T 0 orthorhombic
(CuCl)LaNb,O, E S =1/2 |>33K 9T,? 2 meV orthorhombic
NiCl,-4SC(NH,), [DTN] T S=1 |[12K 2T,137T 1 meV tetragonal
Ba;Mn,Oq ‘l' T S=1 0.87;0.65K |9T,26T; 2 meV rhombohedral

32T,48T

F,PNNNO ‘l' T S=1 |[15K- 10T,15T; |1 meV orthorhombic

26 T,29T




(thiourea molecules omitted)
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H = ( )2 guaH, ZSZ+ZJ

v<ij>
Uniaxial I I
anisotropy Zeeman jerm Antiferromagnetic
-7 exchange
Ni2* S =1: Trip
tetragonaIEattl

~ <k, =rt (AFM)

H,=21T
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A. Paduan-Filho et al

, Phys. Rev. B 69, 020405(R) (2004)
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Spin language Hamiltonian

H=DY(s?f —guHY S7 + 33,8, S,
Spinl-orbit Magnetic | o

coupling field/Zeeman term AFM exchange

S* -> b* (Creation operator for S, = 1 or a boson)
Subject to semi-hard-core constraint of 2 bosons/site

Boson language Hamiltonian (neglecting S, = -1 term)

H=>"3,(b'bb/b; +b'b; +b/b, )+h (D)X b'b
b=y Repulsion hopping number oplerator
(2nd order in N)

Constraint: One boson per site



2. Boson number conservation:
Axial symmetry -

Consider boson creation operator bt A
bT — b' e'® under axial rotation /

Now consider number operator N=b' b
b"b —(b'e'?) (be'®) = bTb =N

il

Number operator is conserved under | \
axial rotation

H=>3,(b/bb'b, +b'b, +b’b, )+h. (D)> b'b,

<i,]>v



# bosons Bosonic Mott-Hubbard model
Sz=1 —OO0— n=2
S7= 0 o n=1 # bosons ~ Mg,~M
Sz= -1 — n=0 # condensed bosons ~ staggered M,
S* ~ bt H ~ u (chemical potential)

C. D. Batista and G. Ortiz, Phys. Rev. Lett. 86,
1082 (2001); Adv. Phys. 53, 1 (2004).

1 ! H
H.. Sz2=0(n=1) Hco
T |w)-a T Y
‘//>$&> | 15 BEC state ||V =—1>
: be§ 1>+ |
> NS !
n=1 ' ce M %0,3=,2> c<<a,b ¢1:O
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O
3
@ ~ Cl)_ <Nc >e
Order parameter: Order parameter:
Staggered magnetization in XY plane Number of condensed
(Magnitude and phase) bosons
# bosons

Sz=1 —OO— n=2

S7=0 —O— n=1

S=-1 n=0

# of bosons = S,

# condensed bosons = S,



Limitations of the BEC description of magnets

Conservation of boson number is violated on short time scales
because the magnetization fluctuates

-> BEC description valid only in equilibrium

Effects that break uniaxial symmetry,

allow the magnetization to fluctuate

 Diagonal spin-orbit coupling (e.g. spins
IH H see the lattice structure)
/

/[ /[ E <+ Off-diagonal spin-orbit couplings (e.qg.
/ Dzyaloshinskii-Moriya)

[ 72

« Non-tetragonal structural distortions

 Dipole-dipole interactions

Our goal: Find compounds in which anisotropy (<puK) is much smaller
than Tgec (K)



Advantages of BEC description of certain magnets

*Magnets provide an experimental BEC in the thermodynamic limit

*Formalism and results of the theory of weakly interacting bosons can be
transplanted wholesale to help understand quantum magnetism

*Transforming the Hamiltonian to boson language can greatly
simplify the math

sUnderstanding quantum magnetism of localized spins is the first step
before adding itinerant electrons

*Quantum magnetism underlies high-T_ cuprates, multiferroics,
many other subjects



Transmittance

Frequency (GHz)

Experimental evidence of BEC and axial symmetry

Electron Spin Resonance

(arb. uints)

*
\| 2944 GHz g 083.3GHz |
m 216.9 GHz |

WN\E 5 & =
] o Q9 Q9
=] o O O

T . . ——

o
o

—
2
o o
T T 1

s 12 16 20 24
Field (T)
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S. Zvyagin, et al, Phys. Rev. Lett. 98, 047205 (2007).



Measuring Specific Heat

A = W
_—1 |\ K

Sapphire platform

C=Q/AT C=1/k

Quasi-Adiabatic Thermal Relaxation Time



C/T (mJ/mol K?)

Specific Heat
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V. S. Zapf et al, Phys. Rev. Lett., 96, 077204 (2006)



Thermal phase transition (XY AFM)

phase decoherence only (d=3)
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M, cT® SDBEC: 0 =3/2 Windowing technique
_ 3Dlsing:a.=2 Problem: exponent
Hc _Hcl oc T D BEC: o =1 expectedat T=0
2
H =2.110+.002T
HCl =2.110 £ 0.002 T 1.9+ «c1 -
2.11
21 a =155 |
L_‘: a=15
T i
2.09 =14
a =1.35 |
2.08 L L L L a =13 14 1 v v o 10 1L 1
0] 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1
t =T /12K tW
1. Fix a, fit to determine H, 2. Using H,, determine o

S. Sebastian et al, Phys. Rev. B 72, 100404(R) (2005) (BaCuSi,Og)
V. S. Zapf, et al, Phys. Rev. Lett., 96, 077204 (2006) (this compound)
O. Nohadani et al, Phys. Rev. B 69 220402(R) (2004) (QMC)



Direct measurement to 1 mK
Ac susceptibility

Hcl ~T?

0

10k 20k 30k 40k _-

TAmK?)

| — T3/2
Hcl

2k 3k 4k
T5(mK')

L. Yin, J.-S. Xia, V. S. Zapf, N. Sullivan, A.

Paduan-Filho, Phys. Rev. Lett. 101, 187205

(2008).

Data taken at high B/T Laboratory
Gainesville, Florida



dM/dH

dM/dH

Power-law behavior of the magnetization

dM/dH

=

‘g @ Experimental data i/ =
=]

O Monte Carlo simulation gp - i

‘i)/?
o
df),fpf il
’P linear fitting
H (0)=2.15 Il
1~ - dlil /(M (TY/M__) =9.52
2'0_ -] c sat - A
000 005  0.10 0.15 0.20
MC(T)IME.at

A. Paduan-Filho et al, Phys. Rev. Lett. 102, 77204 (2009).



We hope we have now measured all the significant terms
In this Hamiltonian

H = DZ( )2 guaH, ZSZ+ZJ

v<ij>

Inelastic Neutron diffraction: D, J

D - 89 K V. S. Zapf, et al, Phys. Rev. Lett., 96, 077204 (2006)

J.=2.2K Electron spin resonance: D, J

J — O 18 K S. Zvyagin et al, Phys. Rev. Lett. 98, 047205 (2007)
_=0.

Magnetization, ESR: g

A. Paduan-Filho et al, Phys. Rev. B 69, 020405(R) (2004)

g=2.26




1.4

1.2

Quantum Monte Carlo Simulations

(M. Tsukamoto, N. Kawashima, C. D. Batista)

@ O

Experiment
Quantum Monte Carlo
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Asymmetry in many properties of DTN
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Asymmetry due to quantum fluctuations near H,, but not H_,
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Y. Kohama et al, Phys. Rev. Lett. 106, 037203 (2011).
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Beyond Bose-Einstein

Condensation

e Bose Glasses

Conducting waves of bosons interacting
with random potentials create localization

(Similar to Anderson localization)
e Supersolids?

Simultaneous diagonal (Ising-like) order
and off-diagonal (BEC) order



Bose Glass to BEC transition

Small amount of disorder leads to local disconnected
pockets of BEC

Valid in the dilute limit of bosons

Analogous to Anderson localization (Bloch waves
localize due to self-interference when scattering off
random potentials)

Sought after in SHe adsorbed on random surfaces
Atomic BECs in random potentials

High-Tc superconductors

Photonic systems

Others



Creating a Bose Glass:
Introduce disorder via Br substitution

8% Br substitution

12+ o4
A NI H:DSZZ N|2 Hz=D'S.?2
3 Cl- I > Br-
I _ J->J =2.35]
Cr psp=bDR
v Ni2+ b N2+

A rare example of clean doping:

X-rays support no change in lattice parameter and no buckling of structure
Only one CI site (the larger one) supports Br substitution

R. Yu et al, Nature, submitted



Bose-Einstein Condensation

H=DY (s/f + > 3,58, - gusHD S/

<, >V

Spin-orbit Magnetic
coupling AFM exchange

field/Zeeman term

Magnetic field to overcome
non-magnetic ground state

H.,, ~D—4zJ Ni-CI-CI-Ni
He,' ~ D' —4zJ" Ni-Br-CI-Ni

HCZ




H<H,,

AllNiin S, = 0 state
No ordering
No magnetization

Hcl’ <H< Hcl

Clusters of Ni connected by Br
start to order
(In reality these are 3-D)

Bose Glass

Br and Cl-coupled
spins order

Inhomogenous
BEC



Magnetization,

Ni connected by Cl saturate
Ni connected by Br not saturated yet

Predlcted and measured |
_——
1= - pure DTN ,_j_ — At -
— Br-DTN " |
-0 QMC (doped case) , 1
0.8 &£
N i / -
an / i
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X ac (arb. units)

Ac Susceptibility to determine phase diagram

— 7T=1mK
— 70 mK
— 150 mK
200 mK
350 mK
— 500 mK
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Experimental phase diagrams

Br-Doped DTN Pure DTN
— 1 " T T T T, T T 1 T T A T T T T
2 sheactm 1 Y
1t © Cypeak 401
i « QMC ] 5
H0.8
_ x=0.08 |,
0.4F 0.4
| H0.2
| Bose glass |

2 | | 3 10 1 14 16 18 0 5 10 15
BG H(T) H (T)
MI — Mott Insulator
MG — Mott Glass
BG — Bose Glass

BEC — Bose-Einstein Condensate



Specific heat, predicted and measured
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Possibly a Mott Glass at zero magnetic field

- If so, first experimental realization

- Vanishing magnetization at zero field

- Yet the system is globally gapless to spin excitations
[Gap D-4zJ depends on size of Br-connected cluster
Statistically there is no upper limit to the size of Br clusters]

102|""|""|""|""|"
o Br-DIN,H=0T =
of -- LGM E

10 — Eq. (2)
<
> 10 7

Lrl""--

10 -
'bgl | ] | | | ] | | | | | | | | | | ] | | | ] |

10 53 1 15 2 25



Predicted and measured power-laws of the critical
fields between BEC and BG
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