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1. Introduction 
 

The Integrated Knowledge Engine (IKE) is a tool  of Bayesian analysis, based on Bayesian Belief 

Networks or Bayesian networks for short.     A Bayesian network  is a graphical model (directed 

acyclic graph) that allows representing the  probabilistic structure2 of many variables assuming 

a  localized  type  of  dependency  called  the  Markov  property.  The  Markov  property  in  this 

instance makes any node or random variable to be  independent of any non‐descendant node 

given information about its parent. A direct consequence of this property is that it is relatively 

easy to incorporate new evidence and derive the appropriate consequences, which in general is 

not an easy or feasible task. 

Typically we use Bayesian networks as predictive models  for a  small  subset of  the variables, 

either the leave nodes or the root nodes. In IKE, since most applications deal with diagnostics, 

we are interested in predicting the likelihood of the root nodes given new observations on any 

of the children nodes. The root nodes represent the various possible outcomes of the analysis, 

and an  important problem  is  to determine when we have gathered enough evidence  to  lean 

toward one of these particular outcomes.  

This document presents criteria to decide when the evidence gathered  is sufficient to draw a 

particular conclusion or decide  in favor of a particular outcome by quantifying the uncertainty 

in the conclusions that are drawn from the data.  The material in this document is organized as 

follows: Section 2 presents briefly a forensics Bayesian network, and we explore evaluating the 

information provided by new evidence by looking first at the posterior distribution of the nodes 

of  interest,  and  then  at  the  corresponding  posterior  odds  ratios.  Section  3  presents  a  third 

alternative:    Bayes  Factors.  In  section  4  we  finalize  by  showing  the  relation  between  the 

posterior odds ratios and Bayes factors and showing examples these cases, and in section 5 we 

conclude by providing clear guidelines of how to use these for the type of Bayesian networks 

used in IKE.  

 

                                                            
1  LA‐UR 12‐xxxxx 
2  The joint probability distributions of all the variables represented in the network.  
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2. A Forensics Bayesian Network and Posterior Probabilities 
 

We  use  IKE    in many  different  situations  that  involve  large  data  streams where  important 

decisions need to be made based upon these data.   Particular    instances  include   monitoring, 

surveillance  and  forensics.  To  illustrate,  the  typical  Bayesian  network  that  IKE  employs  for 

forensics analysis, uses evidence variables to try to determine the type of device.  The N devices 

under  consideration  are  represented  as  the parent nodes  and  are   binary  variables  taking  a 

value of 1  if  the device was detonated,  and   0 otherwise    (equivalently  they  could  take  the 

values true or  false). These variables are named Hypothesis 1 through Hypothesis N. Figure 1 

depicts a simplified version of such network where the hypotheses are labeled h01, h02, and h03. 

Figure 1.  A simplified Bayesian network for Forensics Analysis 

 

Note  that node h00  is an artifact node  to ensure  that  the Bayesian network captures  the  fact 

that hypotheses 1 through N are mutually exclusive to account for the fact that only one device 

was detonated. A direct consequence of this assumption  is that the  individual probabilities of 

each device having been the one detonated have to add up to one.  

 

2.1 Comparing Hypotheses given New Evidence using Posterior Probabilities 

This  construction  allows  comparing  individual  hypotheses  directly.  For  example,  a priori,  i.e. 

before getting any specific  information about any particular detonation or event, we typically 

assume that all devices are equally likely, but once evidence starts coming in, and the Bayesian 

network’s  probabilities  are  suitably  updated,  one  can  compare  the  individual  hypothesis 

posterior probabilities. For example, assume that evidence ݁ଶଷଵ is determined to be true, then 
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the  posterior  probability  that  hypotheses  1,  2  and  3  are  true  become  0.25,  0.25,  and  0.50 

respectively (see Figure 2) making hypothesis 3 twice as likely to be true than either hypothesis 

1  or  2.  Formally, we  are  considering  the  posterior  probability  ratio  of  hypothesis  3  versus 

hypothesis 1 (or 2) given the evidence,  

                            
ଷܪሺ۾ ൌ 1| ݁ଶଷଵ ൌ 1ሻ

௝ܪ൫۾ ൌ 1ห ݁ଶଷଵ ൌ 1ሻ
ൌ

0.5
0.25

ൌ 2 ݎ݋݂ ݆ ൌ 1, 2.  ( 1 ) 

 

Similarly,  the  posterior  probability  ratios  of  hypothesis  1  versus  hypothesis  3  or  versus 

hypothesis 2 given the evidence are ½ and 1 respectively: (۾ሺܪଵ ൌ 1| ݁ଶଷଵ ൌ 1ሻ/۾ሺܪଷ ൌ 1| ݁ଶଷଵ ൌ
1ሻ ൌ 1/2 and ۾ሺܪଵ ൌ 1| ݁ଶଷଵ ൌ 1ሻ/۾ሺܪଶ ൌ 1| ݁ଶଷଵ ൌ 1ሻ ൌ 1.  

Figure 2. Updated probabilities for  Bayesian network given Evidence for node e231. 

 

In  this  example,  hypothesis  3  is  the most  likely.   Note  that  since  the  posterior  probabilities 

depend on the data, they are random variables.  The question then becomes: how sure are we 

that hypothesis 3 is true? 

2.2 Comparing Hypotheses given New Evidence using Posterior Odds Ratios 

An alternative to the posterior probability ratio in expression ( 1 ) that compares  ܪଷ  to say  ܪଵ, 

is to consider the posterior odds ratio of hypothesis ܪଷ given the evidence ݁ଶଷଵ, namely 

ଷܪሺ۾ ൌ 1| ݁ଶଷଵ ൌ 1ሻ
ଷܪሺ۾ ൌ 0| ݁ଶଷଵ ൌ 1ሻ

ൌ
0.5
0.5

ൌ 1 

Similarly, we could compute odds ratios for the other two hypotheses, for j=1, 2  
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൫ுೕୀଵห ௘మయభୀଵሻ۾

൫ுೕୀ଴ห ௘మయభୀଵሻ۾
ൌ ଴.ଶହ

଴.଻ହ
ൌ ଵ

ଷ
. 

These  simple  comparisons  can  easily  be  obtained  as more  evidence  becomes  available  by 

looking at the posterior probabilities of ܪ௝ given all the evidence. To look up these numbers in 

the Bayesian network requires the appropriate belief updating of the marginal probabilities of 

the network given the evidence, i.e. the individual distributions of the nodes: ۾൫ܪ௝ ൌ  ௞൯ and݁ | ݔ

consequently ۾൫ ௝݁ ൌ  .௞൯݁ | ݔ

A  third method  to  decide which  hypothesis  is  the most  likely  to  be  true  (in  this  instance, 

deciding  which  device  was  actually  detonated),  is  to  calculate  Bayes  Factors  which  are 

presented next. 

3. Bayes Factors 
 

3.1 Definition and Selection Criteria 

Definition 

Bayes  factors  provide ways  of  incorporating  external  information  into  the  evaluation  of 

evidence about a hypothesis. 

Given a model selection problem in which we have to choose between two models, on 

the basis of observed data D,  the plausibility of  the  two different models H0 and H1, 

parametrized by model parameter vectors ߠ଴ and ߠଵ  is assessed by  the Bayes  factor 

 ଴,ଵ given byܤ

଴,ଵܤ ൌ  
0ሻܪ|ܦሺ۾

1ሻܪ|ܦሺ۾
ൌ

׬ |ܦሺ۾0ሻܪ|0ߠሺ۾ ,0ߠ ܪ
0

ሻ0ߠࢊ

׬ |ܦሺ۾1ሻܪ|1ߠሺ۾ ,1ߠ ܪ
1

ሻ1ߠࢊ

  ( 2 ) 

 

where ۾ሺܪ|ܦ௜ሻ is called the marginal likelihood for model i (see [ 2 ] and [ 4 ]). 

 

Selection Criteria 

How to decide  in favor of hypothesis ܪ଴ versus ܪଵ? There are various empirical guidelines for 

choosing  one hypothesis over  another depending on  the  actual  values of  the Bayes  factors. 

Table 1 shows guidelines provided by Jeffrey [ 2 ] and Kass & Rafftery [ 4 ]. The intention of the 

latter  one  is  to  provide  the  same  scale  as  the  familiar  deviance  and  likelihood  ratio  test 

statistics. 
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Table 1 Criteria for selecting hypothesis ࡴ૚ over hypothesis ࡴ૙. 

Jeffrey’s Criterion  Kass & Raftery  Interpretation 

૚૙܏ܗܔ  ૚,૙࡮  ૚,૙࡮ ૛ ࢋ܏ܗܔ  ૚,૙࡮  ૚,૙࡮ Evidence against ࡴ૙ 

[0, ½]  [1, 3.2]  [0, 2]  [1, 3]  Not worth than a bare mention 

(½ , 1]  (3.2, 10]  (2, 6]  (3, 20]  Substantial 

(1, 2]  (10, 100]  (6, 10]  (20, 150]  Strong 

> 2  >100  >10  >150  Decisive 

 

The  accuracy  of  these  guidelines  can  be  tested  using  existing  forensics  data,  and  can  be 

adjusted appropriately if needed. 

 3.2 Bayes Factors for Forensics Bayesian Networks 

In our context, the model ܪ௜ corresponds to the hypothesis that device  i was detonated, and 

the data D corresponds to the evidence gathered. Since Bayes  factors   compare two possible 

models or hypotheses at a time, we can either compare 

i) ܪ௝   versus ܪ௞ for all ݆ ് ݇ or 
ii)  ܪ௝   versus ܪఫതതത, where ܪఫതതത stands for the hypothesis ܪ௝ being false.  

The first option would require N choose 2 comparisons (i.e. N(N‐1)/2),  while the second option 

would require just N comparisons. Since, the aim is to identify the only hypothesis that is true, a 

reasonable criteria would be to calculate the N Bayes factors ܤ௝ that compare ܪ௝ with ܪఫതതത , and 

chose the one with the largest Bayes factor, namely maxሼܤ௝ሽ. 

3.2.1 Calculating the Bayesian Factor given New Evidence 

To test hypothesis ܪ௝ being true versus  it being false, given the first piece of evidence E1   we 

compute the corresponding Bayes factor as, 

௝ܤ ൌ
ሻ݆ܪ|1ܧሺ۾

ഥ݆ܪ|1ܧሺ۾ ሻ
  ( 3 ) 

 

The Bayes  factor ܤ௝   represents  the odds of observing ܧଵ under hypothesis ܪ௝ versus under 

hypothesis ܪఫതതത , i.e. the ratio of the likelihood that evidence  ܧଵ is observed given that ܪ௝ is true 

and the likelihood that evidence  ܧଵ is observed given that ܪ௝ is false. 

The quantity  in the nominator  in equation (1) can easily be computed using Netica by setting 

hypothesis ܪଵ  to  true, and all other hypotheses ܪଶ,  ே toܪ ଷ andܪ  false, and by subsequently 
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propagating the appropriate probabilities. The probability in the denominator can be re‐written 

as: 

ఫതതത൯ܪଵหܧ൫۾ ൌ
ଵܧሺ۾ ת ఫതതതሻܪ 

ఫതതതሻܪሺ۾
ൌ

∑ ଵ௞ஷ௝ܧሺ۾ ௞ሻܪሺ۾௞ሻܪ|

1 െ ௝ሻܪሺ۾
 . 

Since ܪ௝ is false if and only if at least one of the other N‐1 hypotheses is true (ܪఫതതത  ൌ ڂ  ௞ሻ௞ஷ௝ܪ , 

and these are mutually exclusive, we can rewrite, 

ఫതതത൯ܪଵหܧ൫۾ ൌ  
ଵܧሺ۾ ת ڂ ௞ሻ௞ஷ௝ܪ

1 െ ௝ሻܪሺ۾
ൌ

∑ ଵ௞ஷ௝ܧሺ۾ ת  ௞ሻܪ

1 െ ௝ሻܪሺ۾
 . 

Consequently, 

ఫതതത൯ܪଵหܧ൫۾ ൌ
∑ ଵ௞ஷ௝ܧሺ۾ ௞ሻܪሺ۾௞ሻܪ|

1 െ ௝ሻܪሺ۾
 . 

Further assuming that a priori all hypotheses are equally likely (i.e. ܲሺܪ௜ሻ ൌ 1/ܰሻ, we can 

rewrite the Bayes Factor ܤ௝  from expression ( 3 ) to choose between hypothesis ܪ௝ versus  ܪఫതതത   

as, 

௝ܤ ൌ
ሺாభ|ுೕሻ۾

భ
ಿషభ

∑ ሺாభ്݆݇۾ |ுೖሻ
 .  ( 4 ) 

 

Forensics Example 

Consider the forensics network provided in Figure 1, and assume that the first piece of evidence 

is that ݁ଶଷଵ is true. The Bayes factor for testing ܪଷ against all other hypotheses, namely ܪଷതതതത , is 
(see Figure 3 and Figure 4), 

ଷܤ ൌ  
ሺ݁ଶଷଵ۾ ൌ ଷܪ |1 ൌ 1ሻ
ሺ݁ଶଷଵ۾ ൌ ଷതതതതܪ|1 ൌ 1ሻ

ൌ  
3.96

1
2 ሺ2.02 ൅ 2.02ሻ

ൌ 1.96  

The Bayesian network given ܪଵ also produces ۾ሺ݁ଶଷଵ ൌ ଵܪ |1 ൌ 1ሻ ൌ  0.0202. Similarly, for 

j=1,2  

௝ܤ ൌ  
ሺ݁ଶଷଵ۾ ൌ ௝ܪ |1 ൌ 1ሻ

ሺ݁ଶଷଵ۾ ൌ ఫതതതܪ|1 ൌ 1ሻ
ൌ  

2.02
1
2 ሺ3.96 ൅ 2.02ሻ

ൌ 0.67 

According to Table 1 none of these provides enough evidence against (or in favor) of any 

hypothesis. 
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Figure 3. Bayesian network assuming ࡴ૜ is true. 

 

Figure 4 Bayesian network assuming ࡴ૛ is true. 

 

 

3.2.2 Bayes Factor given M pieces of Evidence ࡱ૚, ,૛ࡱ … ,  ࡹࡱ

As more evidence (more data) becomes available, we can compute the new Bayes factor that 

considers  all  the  data  available  so  far.  Assuming  M  new  pieces  of  evidence,  say  ,ଵܧ
,ଶܧ … , ଵ,ଶܤ ெ,   the corresponding Bayes factorܧ

ெ  for testing hypothesis  ܪଵ versus ܪଶ is given by, 

ଵ,ଶܤ
ெ  ൌ

,ଵܧሺ۾ ,ଶܧ … , ଵሻܪ|ெܧ
,ଵܧሺ۾ ,ଶܧ … , ଶሻܪ|ெܧ

 . 

 

 



8 
 

Fortunately, this quantity can be decomposed as the product of the odds ratios of the evidence 

given all prior data, namely 

ଵ,ଶܤ
ெ  = 

ሺாభ|ுభሻ۾

ሺாభ|ுమሻ۾

ሺாమ|ாభ,ுభሻ۾

ሺாమ|ாభ,ுమሻ۾
ൈ … ൈ

ሺாಾ|ாಾషభ…ாమ,ாభ,   ுభሻ۾

ሺாಾ|ாಾషభ…,ாమ,ாభ,   ுమሻ۾
    

=  ଵ,ଶܤ
ெିଵ ൈ ܴଵ,ଶ

ெ .    ( 5 ) 

 

This  is convenient,  since as a new piece of evidence emerges, we only need  to compute  the 

ratio  ܴଵ,ଶ
ெ   and  then multiply  it  by  the  Bayes  factor  computed  given  all  prior  evidence  ,ଵܧ)

,ଶܧ … ,  ெିଵሻ. Noteܧ that  after  computing  the  factor BM, we need  to update  the probabilities 

throughout  the  Bayesian  network  by  entering  the  new  evidence  (EM)  and  propagating  the 

appropriate probabilities, allowing us,  in some sense,  to perform sequential  testing.  It also  is 

important  to  notice  that  because  of  the  Bayesian  network  probabilistic  structure,  the 

probabilities ۾ሺܧெ|ܧெିଵ … ,ଶܧ  ଵሻ can be simplifiedܪ   ,ଵܧ in many cases, since ܧெ depends on 

ெିଵܧ … ,ଶܧ  ଵ onlyܪ ଵ, andܧ through  their most  common ancestor  (common ancestors of ܧெ 

and  ܧெିଵ … ,ଶܧ  .(ଵܪ   ,ଵܧ

 

Forensics Example 

Continuing  with  our  example,  Figure  5  displays  the  updated  Bayesian  network  given   ଵܧ = 

{e231=1}. Now, suppose that the second piece of evidence ܧଶ is that e221 has a medium slope.  

Figure 5 Belief propagation given E1 
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To compute the Bayes factors for say  ,ଵܧ|ଶܧሺ۾ ଷതതതത  given E1 and E2, find firstܪ ଷ againstܪ  ଷሻܪ ൌ

0.446, ,ଵܧ|ଶܧሺ۾ 3 ଶሻܪ ൌ 0.398, and ۾ሺܧଶ|ܧଵ, ଵሻܪ ൌ 0.106 (e.g. see Figure 6), and then compute, 

ܴଷ
ଶ= 

ሺாమ|ாభ,ுయሻ۾

ሺாమ|ாభ,ுయതതതതሻ۾
 = 

ሺாమ|ாభ,ுయሻ۾

 ሺாమ|ாభ,ுభ ሻ۾
1൯ܪ1หܧ൫۾

3൯ܪ1หܧ൫۾1൯൅ܪ1หܧ൫۾
ା ۾ሺாమ|ாభ,ுయ ሻ 

3൯ܪ1หܧ൫۾

3൯ܪ1หܧ൫۾1൯൅ܪ1หܧ൫۾

 

 

               ൌ
44.6

10.6 202
0.02.02 ൅ 3.96

 ൅  39.8 3.96
2.02 ൅ 3.96

 ൌ 1.77 . 

Finally, multiply by ܤଷ
ଵ, so that 

ଷܤ
ଶ ൌ  ܴଷ

ଶ ൈ ଷܤ
ଵ ൌ 1.77 ൈ 1.96 ൌ 3.47.  ( 6 ) 

Similarly, one can find 

ଶܤ
ଶ ൌ 1.2 ൈ 0.68 ൌ 0.82     and  ଵܤ

ଶ ൌ 0.25 ൈ 0.68 ൌ 0.17.  ( 7 ) 

 

According to Table 1, equations ( 6 ) and ( 7 ) provide substantial evidence in favor of 

hypothesis  ܪଷ. 
 

 

 

 

 

                                                            
3 Note that ۾ሺܧଶ|ܧଵ, ଷሻܪ ൌ ,ଵܧ|ଶܧሺ۾ ,ଷሻܪ|ଶܧሺ۾  ଶሻܪ ൌ ۾ሺܧଶ|ܪଶሻ, and ۾ሺܧଶ|ܧଵ, ଵሻܪ ൌ ۾ሺܧଶ|ܪଵሻ. 
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Figure 6 Belief propagation given E1 and Hj 

BN given E1 and H3

 

BN given E1 and H1 BN given E1 and H2
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4. Relating Bayes Factors and Posterior Probabilities for IKE 
 

As seen in the previous sections, posterior odds ratios and Bayes factors provide mechanisms to 

compare various hypotheses. A couple of comments: First,   although we did not provide any 

particular criteria  for what values posterior odds  ratios need  to achieve  in order  to decide  in 

favor of a particular hypothesis, they are easier to calculate than Bayes factors (at least in IKE), 

but we can relate Bayes factors to posterior odds ratios as follows. 

Bayes Factors.  Bayes factors can be expressed as the ratio of the posterior odds of H to its prior 

odds, namely 

ܤ ൌ  
ሺ஽|ுሻ۾

ሺ஽|ுഥሻ۾   
ൌ  

ሺಹ|ವሻ۾   

ሺಹഥ۾   |ವሻ
    

ሺಹሻ۾  

ሺಹഥ۾   ሻ
   
 . 

This follows from, 

ܤ ൌ  
ሻܪ|ܦሺ۾
ഥሻܪ|ܦሺ۾

ൌ  
ሺಹ ,ವሻ۾    

ሺಹሻ۾     
    

ሺಹഥ۾      ,ವሻ

ሺಹഥ۾      ሻ
   

ൌ  
ሺವሻ۾ሺಹ |ವሻ۾  

ሺಹሻ۾
  

ሺಹഥ۾    | ವሻ ۾ሺವሻ

ሺಹഥ۾ ሻ
  

ൌ
 ሻܦ|ܪሺ۾

ሻܦ|ഥܪሺ۾   
 

 ഥሻܪሺ۾

ሻܪሺ۾   
 . 

Assuming N hypotheses with uniform priors, the Bayes factor for testing hypothesis H against ܪഥ 
can be calculated simply as 

ܤ ൌ  
ሺ஽|ுሻ۾

ሺ஽|ுഥሻ۾
ൌ ሺܰ െ 1ሻ

ሺு|஽ሻ۾

ሺுഥ|஽ሻ۾
.  ( 8 ) 

 

Under an uniform prior,  the Bayes  factor  for hypothesis H becomes  the posterior odds  ratio 

weighted by the number of hypothesis that H is being compared to.  

Thus, equation  ( 8  ) provides a  fairly easy way to calculate Bayes  factors  for  IKE.   This can be 

done by hand  for now, but  it would be nice  to have  IKE automatically calculate  these values 

each time  new evidence is entered in the network.  

 

Posterior  Probabilities.  Similarly,  the  posterior  probabilities  of  an  hypothesis  given  new 

evidence, can be expressed in terms of the Bayes factors for all the hypotheses. We include this 

just for completeness, but we think that for now, this is  not of particular use in IKE. 
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Assuming N+1 mutually exclusive hypotheses  ,଴ܪ) ଵܪ … ,  ,ேሻܪ the posterior of hypothesis ܪ௞ 

can be related to the Bayes factors ሼܤ௝,଴ሽ௝ୀ଴
ே  comparing all hypotheses to ܪ଴ as follows, 

      ሻܦ|௞ܪሺ۾ ൌ  
ఈೖ஻ೖ,బ 

∑ ఈೕ஻ೕ,బ
ಿ
ೕసబ

          where      ߙ௝ ൌ  
 ሺுೕሻ۾

ሺுబሻ۾
 

This easily follows from Baye’s rule and by multiplying and dividing by ۾ሺܪ|ܦ૙ሻ۾ሺܪ૙ሻ, 

ሻܦ|௞ܪሺ۾ ൌ  
࢑ሻܪሺ۾࢑ሻܪ|ܦሺ۾

∑ ࢐ܪ|ܦሺ۾
ۼ
ୀ૙ܒ ሻ۾ሺ࢐ܪሻ

  

Thus the posterior of ܪ௞ can be seen as the proportion that its Bayes factor (that compares it to 

 ଴ ) contributes to the overall weighted sum of all Bayes factors that compare all hypotheses toܪ

  .଴ܪ

 

Examples. For the examples presented throughout the document, the following table contains 

all the calculations for the posterior odds ratios, the Bayes Factors calculated directly and 

calculated using the posterior odds ratios. 
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5. Conclusion 

We  presented  three  criteria  to  compare  hypotheses  given  new  hard  evidence  in  a Bayesian 

network: comparing posterior probabilities, looking at posterior odds ratios, and Bayes factors. 

Comparing  posterior  probabilities  and  posterior  odds  ratios  given  the  new  evidence  is  fairly 

simple, but a priori we have no specific guidelines as when we have enough evidence to decide 

that one of the hypothesis is true or not. In contrast, Bayes factors are not hard to calculate but 

require  extra  calculations  then  the  normal  belief  updating  that  is  done when  entering  new 

evidence.  But we have empirical guidelines (see Table 1) for deciding  when enough evidence 

has been gathered to  support a particular hypothesis (see [ 2 ] and [ 4 ]). Fortunately, we  have 

an easy alternative way to compute Bayes factors based only on the posterior odds ratios. The 

advantage  of  this  procedure,  is  twofold,  easy  calculations  and  available  empirical  guidelines 

that are commonly used in many arenas. 

Future work would  include testing/validating these guidelines for the various  IKE applications,  

and  in  principle,  if  enough  data  is  available,  we  may  even  decide  to  adjust  thresholds 

appropriately.  Finally,  it  would  be  great  to  implement  calculating  Bayes  factors  in  IKE  and 

reporting how much the new  evidence supports the different hypotheses. 

 

 

Bibliography 

[ 1 ] Gelman, A., J. Carlin, H. Stern, and D. Rubin (1995). Bayesian Data Analysis. Chapman and Hall/CRC. 

 [ 2 ] Jeffrey, H. (1961). Theory of Probability, 3rd edition, Oxford, U.K.: Oxford University Press. 

[ 3 ] Kass, R. E. (1993). Bayes Factors in Practice, Journal of the Royal Statistical Society. Series D The 
Statistician, Vol. 42, No. 5, pp 551‐560. 

[ 4 ] Kass, R. E. and A. Raftery (1995). Bayes Factors, Journal of the American Statistical Association, Vol. 
90, No. 430. 

 


