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1. Introduction

The Integrated Knowledge Engine (IKE) is a tool of Bayesian analysis, based on Bayesian Belief
Networks or Bayesian networks for short. A Bayesian network is a graphical model (directed
acyclic graph) that allows representing the probabilistic structure? of many variables assuming
a localized type of dependency called the Markov property. The Markov property in this
instance makes any node or random variable to be independent of any non-descendant node
given information about its parent. A direct consequence of this property is that it is relatively
easy to incorporate new evidence and derive the appropriate consequences, which in general is
not an easy or feasible task.

Typically we use Bayesian networks as predictive models for a small subset of the variables,
either the leave nodes or the root nodes. In IKE, since most applications deal with diagnostics,
we are interested in predicting the likelihood of the root nodes given new observations on any
of the children nodes. The root nodes represent the various possible outcomes of the analysis,
and an important problem is to determine when we have gathered enough evidence to lean
toward one of these particular outcomes.

This document presents criteria to decide when the evidence gathered is sufficient to draw a
particular conclusion or decide in favor of a particular outcome by quantifying the uncertainty
in the conclusions that are drawn from the data. The material in this document is organized as
follows: Section 2 presents briefly a forensics Bayesian network, and we explore evaluating the
information provided by new evidence by looking first at the posterior distribution of the nodes
of interest, and then at the corresponding posterior odds ratios. Section 3 presents a third
alternative: Bayes Factors. In section 4 we finalize by showing the relation between the
posterior odds ratios and Bayes factors and showing examples these cases, and in section 5 we
conclude by providing clear guidelines of how to use these for the type of Bayesian networks
used in IKE.

! LA-UR 12-xxxxx
? The joint probability distributions of all the variables represented in the network.
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2. A Forensics Bayesian Network and Posterior Probabilities

We use IKE in many different situations that involve large data streams where important
decisions need to be made based upon these data. Particular instances include monitoring,
surveillance and forensics. To illustrate, the typical Bayesian network that IKE employs for
forensics analysis, uses evidence variables to try to determine the type of device. The N devices
under consideration are represented as the parent nodes and are binary variables taking a
value of 1 if the device was detonated, and 0 otherwise (equivalently they could take the
values true or false). These variables are named Hypothesis 1 through Hypothesis N. Figure 1
depicts a simplified version of such network where the hypotheses are labeled hg1, hgp, and hos.

Figure 1. A simplified Bayesian network for Forensics Analysis
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Note that node hqg is an artifact node to ensure that the Bayesian network captures the fact
that hypotheses 1 through N are mutually exclusive to account for the fact that only one device
was detonated. A direct consequence of this assumption is that the individual probabilities of
each device having been the one detonated have to add up to one.

2.1 Comparing Hypotheses given New Evidence using Posterior Probabilities

This construction allows comparing individual hypotheses directly. For example, a priori, i.e.
before getting any specific information about any particular detonation or event, we typically
assume that all devices are equally likely, but once evidence starts coming in, and the Bayesian
network’s probabilities are suitably updated, one can compare the individual hypothesis
posterior probabilities. For example, assume that evidence e,3; is determined to be true, then
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the posterior probability that hypotheses 1, 2 and 3 are true become 0.25, 0.25, and 0.50
respectively (see Figure 2) making hypothesis 3 twice as likely to be true than either hypothesis
1 or 2. Formally, we are considering the posterior probability ratio of hypothesis 3 versus
hypothesis 1 (or 2) given the evidence,

P(H3 == 1| 6231 == 1) _ 05 _
P(H=1| ey =1) 025

forj=1,2. (1)

Similarly, the posterior probability ratios of hypothesis 1 versus hypothesis 3 or versus
hypothesis 2 given the evidence are %2 and 1 respectively: (P(H; = 1| ey3; = 1)/P(H; = 1| €331 =
1) = 1/2 and P(H1 = 1| €731 = 1)/P(H2 = 1| €731 = 1) =1.

Figure 2. Updated probabilities for Bayesian network given Evidence for node e231.
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In this example, hypothesis 3 is the most likely. Note that since the posterior probabilities
depend on the data, they are random variables. The question then becomes: how sure are we
that hypothesis 3 is true?

2.2 Comparing Hypotheses given New Evidence using Posterior Odds Ratios

An alternative to the posterior probability ratio in expression (1) that compares H; tosay H,
is to consider the posterior odds ratio of hypothesis H; given the evidence e,3;, namely
P(H3 - 1| 3231 = 1) _ 05

=1
P(H3 = Ol €731 = 1) 0.5

Similarly, we could compute odds ratios for the other two hypotheses, for j=1, 2



P(H]:1| 3231:1) _ 0.25 _ 1

P(Hj=0| e33:=1) 075 3

These simple comparisons can easily be obtained as more evidence becomes available by
looking at the posterior probabilities of H; given all the evidence. To look up these numbers in
the Bayesian network requires the appropriate belief updating of the marginal probabilities of
the network given the evidence, i.e. the individual distributions of the nodes: P(Hj = x| ) and
consequently P(e; = x | ey).

A third method to decide which hypothesis is the most likely to be true (in this instance,
deciding which device was actually detonated), is to calculate Bayes Factors which are
presented next.

3. Bayes Factors

3.1 Definition and Selection Criteria
Definition

Bayes factors provide ways of incorporating external information into the evaluation of
evidence about a hypothesis.

Given a model selection problem in which we have to choose between two models, on
the basis of observed data D, the plausibility of the two different models Hy and Hy,
parametrized by model parameter vectors 6, and 8, is assessed by the Bayes factor

By, given by

p(D|Hy) [ P(6,|HyP(D] 6y, H )8,

B . = - (2)
01 P(D|H,) fP(91|H1)P(D| 91:H1)d91

where P(D|H;) is called the marginal likelihood for model i (see [2] and [ 4 ]).

Selection Criteria

How to decide in favor of hypothesis H, versus H;? There are various empirical guidelines for
choosing one hypothesis over another depending on the actual values of the Bayes factors.
Table 1 shows guidelines provided by Jeffrey [ 2 ] and Kass & Rafftery [ 4 ]. The intention of the
latter one is to provide the same scale as the familiar deviance and likelihood ratio test
statistics.



Table 1 Criteria for selecting hypothesis H; over hypothesis H,.

Jeffrey’s Criterion Kass & Raftery Interpretation
logi0B1o Biy 2log. By Bqy Evidence against H
[0, %] [1,3.2] [0, 2] [1, 3] Not worth than a bare mention
(%, 1] (3.2, 10] (2, 6] (3, 20] Substantial
(1, 2] (10, 100] (6, 10] (20, 150] | Strong
>2 >100 >10 >150 Decisive

The accuracy of these guidelines can be tested using existing forensics data, and can be
adjusted appropriately if needed.

3.2 Bayes Factors for Forensics Bayesian Networks

In our context, the model H; corresponds to the hypothesis that device i was detonated, and
the data D corresponds to the evidence gathered. Since Bayes factors compare two possible
models or hypotheses at a time, we can either compare

i) H; versus Hy for all j # k or
ii) H; versus H,, where H, stands for the hypothesis H; being false.

The first option would require N choose 2 comparisons (i.e. N(N-1)/2), while the second option
would require just N comparisons. Since, the aim is to identify the only hypothesis that is true, a
reasonable criteria would be to calculate the N Bayes factors B; that compare H; with H, , and
chose the one with the largest Bayes factor, namely max{B;}.

3.2.1 Calculating the Bayesian Factor given New Evidence

To test hypothesis H; being true versus it being false, given the first piece of evidence E1 we
compute the corresponding Bayes factor as,
P(E|H)

= —L (3)
P(E,|T))

The Bayes factor B; represents the odds of observing E; under hypothesis H; versus under
hypothesis H, , i.e. the ratio of the likelihood that evidence E; is observed given that Hj is true
and the likelihood that evidence E; is observed given that H; is false.

The quantity in the nominator in equation (1) can easily be computed using Netica by setting
hypothesis H; to true, and all other hypotheses H,, H; and Hy to false, and by subsequently
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propagating the appropriate probabilities. The probability in the denominator can be re-written
as:

P(E; N Fj) _ Zk#:j P(E, |Hy)P(Hy)
P(H) 1-P(H)

P(E||H) =
Since H; is false if and only if at least one of the other N-1 hypotheses is true (ﬁ] = Ugkxj Hy),

and these are mutually exclusive, we can rewrite,

P(E; N UpyjHi)  Xgwj P(E1 0 Hy)
1-P(H) —  1-P(H)

P(E,|H)) =

Consequently,

Yk P(Ey [H)P(Hy)

P(5,|1) = =

Further assuming that a priori all hypotheses are equally likely (i.e. P(H;) = 1/N), we can
rewrite the Bayes Factor B; from expression (3) to choose between hypothesis H; versus ﬁ]

as,

_ P(EJH))
= — .
J N1 2k P(E1|Hp)

(4)

Forensics Example

Consider the forensics network provided in Figure 1, and assume that the first piece of evidence
is that e,3; is true. The Bayes factor for testing H; against all other hypotheses, namely H; , is
(see Figure 3 and Figure 4),

_ P(ez31 = 1| H3 = 1) _ 396

By = =1.96

P(e,s; =1H;=1) 1

231 3 5 (202 +2.02)
The Bayesian network given H; also produces P(e,3; = 1| H; = 1) = 0.0202. Similarly, for
j=1,2

P(ez31 = 1| H] = 1) 202
j = =

—= = = 0.67
P(ezz = 1lH, = 1) 7 (396 +2.02)

According to Table 1 none of these provides enough evidence against (or in favor) of any
hypothesis.



Figure 3. Bayesian network assuming H3 is true.
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Figure 4 Bayesian network assuming H, is true.
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3.2.2 Bayes Factor given M pieces of Evidence E4, E,, ..., Ey

As more evidence (more data) becomes available, we can compute the new Bayes factor that
considers all the data available so far. Assuming M new pieces of evidence, say Ej,
E,, ..., Ey, the corresponding Bayes factor B{‘f’z for testing hypothesis H; versus H, is given by,

pu _ Py By EylHh)
L2 P(Ell EZr IEMlHZ) .




Fortunately, this quantity can be decomposed as the product of the odds ratios of the evidence

given all prior data, namely

BM _ P(E,|H,) P(E;|E{,Hy) P(Em|EM-1--E2,E1, Hi)
L2 P(E;|H,) P(Ez|EqHp) 77 P(Em|EpM—1.-wE2,E1, H3)
M-1 M
= B1,2 X R1,2 . ( 5 )

This is convenient, since as a new piece of evidence emerges, we only need to compute the
ratio Rf’z and then multiply it by the Bayes factor computed given all prior evidence (Ej,
E,, ...,Ey_1). Note that after computing the factor By, we need to update the probabilities
throughout the Bayesian network by entering the new evidence (Ey) and propagating the
appropriate probabilities, allowing us, in some sense, to perform sequential testing. It also is
important to notice that because of the Bayesian network probabilistic structure, the
probabilities P(Ey|Ey—1 --- E2, E1, H;p) can be simplified in many cases, since E;; depends on
Ey_q...E5, E;, and H; only through their most common ancestor (common ancestors of Ej,
and Ey_, ...E,, E;, Hy).

Forensics Example

Continuing with our example, Figure 5 displays the updated Bayesian network given E; =
{e231=1}. Now, suppose that the second piece of evidence E, is that e;;; has a medium slope.

Figure 5 Belief propagation given E;
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To compute the Bayes factors for say Hj against H; given E; and Ej, find first P(E,|E;, Hs) =
0.446,3 P(E,|E;, H;) = 0.398, and P(E;|E;, H;) = 0.106 (e.g. see Figure 6), and then compute,

R2= P(E,|E1,H3) _ P(E;|Eq,H3)
37 P(E,|ELHs)
(Ez|E1,H3) P(E, |E1 He ) P(Eq|Hq) 4 P By ) P(E|H3)
P(E{|H1)+P(E{|H3) P(Eq|H1)+P(Eq|H3)
44.6
- 202 3.96 =177
10.6 39.8 ————
0.02.02 + 3.96 * 2.02 + 3.96
Finally, multiply by B3, so that
BZ = R3% x B} =177 X 1.96 = 3.47. (6)
Similarly, one can find
B2 =12 x0.68=082 and B? =025 x0.68=0.17. (7)

According to Table 1, equations ( 6 ) and ( 7 ) provide substantial evidence in favor of

hypothesis H;.

* Note that P(E,|Ey, Hy) = P(E;|Hs), P(E;|Ey, H;) = P(E;|Hy), and P(E,|Ey, Hy) = P(E,|Hy).
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Figure 6 Belief propagation given E; and H;
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4. Relating Bayes Factors and Posterior Probabilities for IKE

As seen in the previous sections, posterior odds ratios and Bayes factors provide mechanisms to
compare various hypotheses. A couple of comments: First, although we did not provide any
particular criteria for what values posterior odds ratios need to achieve in order to decide in
favor of a particular hypothesis, they are easier to calculate than Bayes factors (at least in IKE),
but we can relate Bayes factors to posterior odds ratios as follows.

Bayes Factors. Bayes factors can be expressed as the ratio of the posterior odds of H to its prior
odds, namely

P(H|D)

P(D|H) __  PHID)

P(D|H) PG

P(H)

This follows from,
P(H ,D) P(H |D)P(D) _
_ P(D|H)_ P(H) _ P(H) _ P(H|D) P(H)
- P(DIH)  rapm rameey  P(HID)  P(H)
P(H) P(H)

Assuming N hypotheses with uniform priors, the Bayes factor for testing hypothesis H against H
can be calculated simply as

P(D|H) _ P(H|D)

B = P(D|H) (N = )P(mD)'

(8)

Under an uniform prior, the Bayes factor for hypothesis H becomes the posterior odds ratio
weighted by the number of hypothesis that H is being compared to.

Thus, equation ( 8 ) provides a fairly easy way to calculate Bayes factors for IKE. This can be
done by hand for now, but it would be nice to have IKE automatically calculate these values
each time new evidence is entered in the network.

Posterior Probabilities. Similarly, the posterior probabilities of an hypothesis given new
evidence, can be expressed in terms of the Bayes factors for all the hypotheses. We include this
just for completeness, but we think that for now, this is not of particular use in IKE.
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Assuming N+1 mutually exclusive hypotheses (Hy, H; ..., Hy), the posterior of hypothesis Hj

can be related to the Bayes factors {Bj,o}?’=o comparing all hypotheses to H, as follows,

P(Hy|D) =

kBk,o
N .5,
Yj=0@jBjo

where «a; =

P(Hj)
J P(Hop)

This easily follows from Baye’s rule and by multiplying and dividing by P(D|Hy)P(H,),

P(Hy|D) =

P(D|H;)P(Hy)
Lo P(D|H))P(H;)

Thus the posterior of Hj, can be seen as the proportion that its Bayes factor (that compares it to

H, ) contributes to the overall weighted sum of all Bayes factors that compare all hypotheses to

H,.

Examples. For the examples presented throughout the document, the following table contains

all the calculations for the posterior odds ratios, the Bayes Factors calculated directly and

calculated using the posterior odds ratios.

Hypothesls H, Hypothesls H Hypothesks Hy
Posterlor Odds Ratlos
Ghen evidence
o P(ii=1lE) 0252 _ PGfy=1|E) _ 0252 _ . PU;=1lE) _ 04% _ o
i P(H;=0|E;) (1-0.252) P(H; = 0| Ey) (1-0.252) P(H;=0|Ey) 1-0.49%
Ey={ez=1} P(Hi=1|ByEy) 00771 P(H=1|EyE;) 0288 P(H3=1|EyEy) 0635
Ep={ex=medlum} P(H,=0|E,E; 0.923 PiH,=0|Ey,E; 0,712 P(H; = 0| E,E; 0.365
Bayes Factors
Ghen evidence
: } gl Pl =1 2.02 e 1 PlE|H,=T) 2.02 Coes| pro FEIA=D 3.96 s
Es={esq=1 1= ——— T =0 7= — T =0 = —— =7 =1
= P(EalH: = 1) 3 (3.6 + 2.02) P(EalHe = 1) 7 (3.56 + 2.02) F(EalHs = 1) 5 (202+2.02)
Seies S 2_ Bialsia) 20.8 12 | RE-PlELlEA 446 B
R% p(E:IE:IwD Erel 503 ={.25 z Frag|a1./7) 106 202 ; 196 Fl&7 |81 A3 106 202 g 20
Ey={ezs1=1}, B e M imann 002074284 2074395 107,07 +3.0¢ 202+30%

Ez={ez=medlum}

BI=R} xB}=0.25 x0.68=10.17

BI=R} xBl =12 x0.68=10.82

BE=R xBl=177x1.96=3.47

Bayes Factors vla Posterior Odds Ratlos

Ghenevidence

E;={es=1}

FiH; = 1|E
By 2w PG =1IED

=2x—t 1 =7 x034=068
P(H; = 0| E1)

FlH;=1|E
B} = 2 x T2 = 1IED

=2x—2t L =7 x034=0.68
P(H; = 0| E1)

= 2%
P(Hz = 0] Eq)

PlH; = 1 E
M:zxo,QE;:Lgﬁ

Ei={ez =1}
Eq={ex;=medlum}

PlH, = 1] By, E
B3 (#y = 1| B4, E2)

=2 W em— P 0084 =0.17
Pl = 0| Ey, Ez)

P{Hz = 1| E1 Ez)
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2 R, = 0By B
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= M T2
PiH; = 0] Ey, E7)

P(#; = 1 By, E
(Hs =11 By 2 py1.74=3.48
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5. Conclusion

We presented three criteria to compare hypotheses given new hard evidence in a Bayesian
network: comparing posterior probabilities, looking at posterior odds ratios, and Bayes factors.
Comparing posterior probabilities and posterior odds ratios given the new evidence is fairly
simple, but a priori we have no specific guidelines as when we have enough evidence to decide
that one of the hypothesis is true or not. In contrast, Bayes factors are not hard to calculate but
require extra calculations then the normal belief updating that is done when entering new
evidence. But we have empirical guidelines (see Table 1) for deciding when enough evidence
has been gathered to support a particular hypothesis (see [ 2 ] and [ 4 ]). Fortunately, we have
an easy alternative way to compute Bayes factors based only on the posterior odds ratios. The
advantage of this procedure, is twofold, easy calculations and available empirical guidelines
that are commonly used in many arenas.

Future work would include testing/validating these guidelines for the various IKE applications,
and in principle, if enough data is available, we may even decide to adjust thresholds
appropriately. Finally, it would be great to implement calculating Bayes factors in IKE and
reporting how much the new evidence supports the different hypotheses.
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