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Abstract 

Recent research has shown that initial conditions have a significant influence on the 
evolution of a flow towards turbulence. This important finding offers a unique 
opportunity for turbulence control, but also raises the question of how to properly specify 
initial conditions in turbulence models. We study this problem in the context of the 
Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid 
instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is 
accelerated in to a heavy fluid because of misalignment between density and pressure 
gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural 
and man-made flows ranging from supernovae to the implosion phase of Inertial 
Confinement Fusion (ICF). Our approach consists of providing the turbulence models 
with a predicted profile of its key variables at the appropriate time in accordance to the 
initial conditions of the problem. 

Nomenclature 

RT Rayleigh-Taylor 
A Atwood number 
ICF Inertial Confinement Fusion 
ODE Ordinary Differential Equation 
k wavenumber 
g gravity 
TMZ Turbulence Mixing Zone (zone between the bubbles and spikes fronts) 

Introduction 

The RT instability [I, 2] occurs when a perturbation is introduced at the interface 
between two media in a configuration such that the pressure gradient opposes the density 
gradient. One common situation is when a heavy fluid sits on top a light fluid in the 
gravitational field. At early time, the perturbation's amplitude grows exponentially. Then, 
significant non-linearities appear as vorticity is generated by a baroc1inic mechanism. 
Finally, the two fluids mix in a turbulent fashion. This instability is characterized by the 
Atwood number, A = (Ph - PI )/(ph + PI)' which describes the density contrast between 

the two fluids. Recent research [3, 4] has shown that initial conditions have a significant 
influence on the evolution of the turbulent RT instability. This characteristic offers an 



opportunity for "turbulence control", which may result in significant optimization for 
engineering applications such as ICF [5] or heat exchangers and sprays in internal 
combustors [6]. Because traditional turbulence models used for simulating these complex 
problems do not capture initial conditions effects, our objective is to define a rational 
basis for "feeding" them with initial variables values that reflect initial conditions' 
influence. In the next section, we describe our model for RT TMZ growth. Then, we 
discuss the case of a complex multi-band initial perturbation spectrum. Finally, we briefly 
describe our method for defining profiles of turbulence model variables. 

Mixing Zone Evolution 

Our current model for RT mixing zone evolution is based on Goncharov's model [7] 
for single mode perturbations. The Goncharov model is an extension of Layzer's 
potential flow theory [8] for arbitrary Atwood numbers. In a three-dimensional 
axisymmetric geometry, the interface between the two-fluids at the tip of the perturbation 
is approximated by: 

(1) 
where Tlo is the perturbation's amplitude, and Tl2 IS related to the perturbation's 

curvature. In potential flow theory, the assumption is made that the fluids are irrotational 
in the vicinity of the perturbation's tip. One can then define velocity potentials [7] that 
are used in the equations describing the conditions at the fluids' interface. The expansion 
of these equations to the second order provides a set of ODE governing the dynamics of 

a) b) 
OJ I.· 
... 

J'~ 

c) d) 

0., 

: ~ 

Figure I: Model's prediction for an idealized initial amplitude spectrum. a) initial amplitude 
spectrum; b) height, c) velocity, and d) growth rate as a function of time. Bold red line: bubbles' 
front. Light black lines: single mode bubbles 
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the tip of the RT perturbation until relatively late In the nonlinear regime. For the 
bubble's dynamics, the set of ODE is: 

"2 = -"0 k (k + 8712) (2) 
2 

a/io + a2,,; + Ag712 = 0 (3) 

k 2 -4Ak712 -32A71; 2 (5A-4)k 2 + 16(2A-3)k712 + 64A71; 
where a, = ( ) and a 2 = k ()2 

4 k - 8712 8 k - 8712 
The set of equations governing the dynamics of the tip of the RT spike is obtained from 
equations (2)- (3) by substituting 71 ~ -71, A ~ -A, and g ~ -g. This nonlinear 

model captures with some success the penetration of the bubble for 0 ~ A ~ 1 , but fails 
to predict accurately the penetration of the spike for A ~ 0.4 [7]. 

For our multimode model, we compute the evolution of every existing modes of the 
initial perturbation spectrum. The evolution of the bubbles (spikes) front then is given by 
the envelope of the single modes heights at all times: 

h(t) = m;,x(hk (t» (4) 

where h(t) is the height of the bubbles (spikes) front at time t and 

hk (t) = l71o,k (t)-710,k (O~ is the height of the bubble (spike) generated by a single mode 

initial perturbation at time t. The bubbles (spikes) front's velocity is v = dhl dt, and the 

bubbles (spikes) front growth rate is a =;'2 /4Agh [9]. 

Figure 1 illustrates how our multimode model behaves on an idealized case. Figure la 
displays an initial amplitude spectrum that could result from azimuthally averaging the 
two-dimensional spectrum of an initial perturbation interface. Figure I b shows the height 
of the bubble front, bold red line, as a function of time as well as the height of a number 
of single modes, light black lines. Using the same color code as in figure I b, figure 1 c 
shows the velocity, and figure Id shows the growth rate. Since we consider an ideal case, 
without viscosity or surface tension, the fastest growing mode is the largest mode. As 
figures Ie and Id clearly show, the largest mode is the dominant mode until t ~ 0.8s. 
Until then, the front grows as a single mode bubble. Then, between t ~ 0.8s and 
t ~ 1.75s , smaller and smaller modes lead the bubbles front subsequently. The natural 
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Figure 2: Application of our model to a case found in literature. a) initial amplitude spectra used by 
Banerjee and Andrews. b) Growth rate predicted by our model, to be compared with figure 10 of 
Banerjee and Andrews 141 



pace at which the modes relay each other in leading the front produces a quadratic 
evolution in time. As a result, the growth rate, figure Id reaches an asymptotic value of 
about 0.03 . Finally, the growth rate decays slowly between t ~ 1.75s and the end of the 
run. This decay is due to "missing" modes in our run. Since our model does not handle 
mode coupling, there is also no mode generation. As the dominant mode in our 
simulation is smaller and smaller, our model eventually "runs out" of modes and the 
bubble front is lead by the smallest mode available in our initial spectrum. Since the 
terminal velocity of a single mode is constant, its height then grows linearly, and its 
growth rate decays as an inverse function of time. Figure 1 shows that our model can 
reproduce the evolution of a multimode bubbles (spikes) front, but is limited by its 
inability to generate modes. Figure 2 reproduces the spectral index study made by 
Banerjee and Andrews [4], with our multimode model. Their MILES simulations predict 
a late time growth rate of a ~ 0.02 - 0.03, as does our multimode without mode 
coupling. This figure illustrates how, for simply structured spectra, our model provides a 
reasonable prediction of the late time growth rate, as long as the initial amplitude 
spectrum is sufficiently wide. 

Complex Initial Perturbation Spectrum 

One argument used to explain larger growth rates obtained in experiments, in 
comparison to values obtained in simulations, is the presence in the initial conditions of 
parasitic long wavelengths in addition to the short wavelength intended by the 
experimentalists. Simulations of this type of banded initial perturbation spectrum have 
been performed by Banerjee and Andrews [4]. Their results showed that the long 
wavelength will produce an "anomaly" during the growth of the mixing layer. Figure 3 
shows an example of banded initial perturbation spectrum and the resulting mixing layer 
growth rate. The evolution of the growth rate suggests that, at first, short wavelengths 
lead the mixing layer expansion and the front achieve the quadratic evolution in time. 
Then, the long wavelengths that have a smaller initial growth rate, but a larger saturation 
velocity, eventually catch up with the front of the mixing layer and accelerate the growth 
for a short period of time. This is characterized by a relatively significant secondary peak 
at t = TA on figure 3b. Eventually, the mixing layer returns to a self-similar growth. 
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Figure 3: Behavior of a banded spectrum. a) Initial perturbation spectrum. b) growth rate obtained 
by MILES simulation. T A: time of anomalie; T SSI: first time of self-similarity growth; T SS2: time of 
return to self-similarity growth 



This type of anomaly needs to be predicted in order to "inform" the turbulence model 
that for a given period of time, the growth rate will not be constant. Four quantities need 
to be known: the time at which the growth of the front first become self-similar, Tss1 , the 

time at which an anomaly occur if it is to occur, TA , and the resulting growth rate, a A' 

and the time at which the growth becomes self-similar again, TSS2 ' A direct estimate 

from the initial spectrum is possible, following the same approach as in our multimode 
model. A short period of time after the fastest growing mode has saturated, the leading 
mode in the front of the mixing layer is a saturated mode. One can then approximate the 
height of each mode at a given time by computing: 

hk (I) = Vt{1 - I;L)+ h;L (5) 

where vt = ~r-2A-g-/77""(I-+-A""")-k , I;L = (1/ ~ Agk )sinh -I (Vk'" / hk (O)~ Agk ), and 

h;L = hk (0) cosh (/;L .J Agk ). The height of the front is then the largest computed height, 

and the front velocity is the saturation velocity of the mode having the largest height. 
Figure 4 shows an idealized banded spectrum (figure 4a) and a comparison of prediction 
of growth rate (figure 4b) using our ODE multimode model and the direct approach 
described above. One can see on figure 4b that the direct approach (red dots) gives a 
reasonable prediction of Tss1 , TA , a A , and TSS2 in comparison with the ODE 

multimode model (solid line). 
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Figure 4: Direct prediction of TMZ growth without solving ODEs. a) Idealized initial banded 
perturbation spectrum. b) Growth rate obtained by direct prediction (red dots), and ODE multimode 
model (solid black line) 

Turbulence Variable Modeling 

Using the ODE multimode model, or the direct prediction model describe in previous 
sections, the turbulence model user can make an informed decision on an appropriate 
time to start his model, and knows the basic characteristics of the TMZ (fronts positions 
and velocities) at that time. He then needs information on the turbulence model variables. 

We extract turbulence variables' profiles using a two-fluid model [IO].The model is 
based on an idealization of the mixing interface between two interpenetrating fluids. 
Assuming a linear distribution of the mixture fraction within the TMZ [11, 12], the 
averaged density and velocity at a given altitude z are given by: 

p{z) = fh{Z)Ph + f,{z)p, (6) 



· .. 

(7) 
where Phil is the heavy/light density and fhll is the heavy/light volume fraction. 

Fluctuating quantities at a given altitude are then computed using averages given by 
equations (6), or (7), and bulk values for the heavy fluid or the light fluid [10]. Upon 

substitution of the appropriate terms in the definition of a turbulence variable, one gets a 
two-fluid expression for its profile. For example, a two-fluid formulation for the mass 

flux, az = p'u: /p , is: 
( ) fh (z)fl (z) (p )(J 1 1 I) 

az z = I"() I"() h-PI Vs +Vb 
J h Z Ph + J I Z PI 

(8) 

Conclusions 

We presented our current approach for introducing initial conditions effects in turbulence 
models for RT instability. In a first time, we use a modal model to predict the evolution 
of the TMZ. In spite of the lack of mode coupling, our model captures reasonably well 
the growth of the TMZ as long as the initial perturbation spectrum is wide enough. In 
case of a complex initial perturbation spectrum, our model, or a direct prediction model, 
can be used to estimate times of occurrence for key features of the TMZ growth. Then, 
profiles of turbulence variables are computed by using the characteristics of the TMZ, 
and a two-fluid model. In the future, our predictions will be refined by using a multi mode 
model that includes mode coupling, and complimentary studies will be made on the 
turbulence in the TMZ to characterize the initial time of validity for the turbulence model 
hypotheses. 
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