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Abstract

Recent research has shown that initial conditions have a significant influence on the
evolution of a flow towards turbulence. This important finding offers a unique
opportunity for turbulence control, but also raises the question of how to properly specify
initial conditions in turbulence models. We study this problem in the context of the
Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid
instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is
accelerated in to a heavy fluid because of misalignment between density and pressure
gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural
and man-made flows ranging from supernovae to the implosion phase of Inertial
Confinement Fusion (ICF). Our approach consists of providing the turbulence models
with a predicted profile of its key variables at the appropriate time in accordance to the
initial conditions of the problem.

Nomenclature

RT  Rayleigh-Taylor

A Atwood number

ICF Inertial Confinement Fusion
ODE Ordinary Differential Equation
k wavenumber

g gravity
TMZ Turbulence Mixing Zone (zone between the bubbles and spikes fronts)

Introduction

The RT instability [1, 2] occurs when a perturbation is introduced at the interface
between two media in a configuration such that the pressure gradient opposes the density
gradient. One common situation is when a heavy fluid sits on top a light fluid in the
gravitational field. At early time, the perturbation’s amplitude grows exponentially. Then,
significant non-linearities appear as vorticity is generated by a baroclinic mechanism.
Finally, the two fluids mix in a turbulent fashion. This instability is characterized by the
Atwood number, 4=(p, —p,)/(p, + p,), which describes the density contrast between

the two fluids. Recent research [3, 4] has shown that initial conditions have a significant
influence on the evolution of the turbulent RT instability. This characteristic offers an



opportunity for “turbulence control”, which may result in significant optimization for
engineering applications such as ICF [5] or heat exchangers and sprays in internal
combustors [6]. Because traditional turbulence models used for simulating these complex
problems do not capture initial conditions effects, our objective is to define a rational
basis for “feeding” them with initial variables values that reflect initial conditions’
influence. In the next section, we describe our model for RT TMZ growth. Then, we
discuss the case of a complex multi-band initial perturbation spectrum. Finally, we briefly
describe our method for defining profiles of turbulence model variables.

Mixing Zone Evolution

Our current model for RT mixing zone evolution is based on Goncharov’s model [7]
for single mode perturbations. The Goncharov model is an extension of Layzer’s
potential flow theory [8] for arbitrary Atwood numbers. In a three-dimensional
axisymmetric geometry, the interface between the two-fluids at the tip of the perturbation
is approximated by:

ﬂ(x’t)=ﬂo(’)+7h(t)"2 (1)
where 7, is the perturbation’s amplitude, and 7, is related to the perturbation’s
curvature. In potential flow theory, the assumption is made that the fluids are irrotational
in the vicinity of the perturbation’s tip. One can then define velocity potentials [7] that

are used in the equations describing the conditions at the fluids’ interface. The expansion
of these equations to the second order provides a set of ODE governing the dynamics of
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Figure 1: Model's prediction for an idealized initial amplitude spectrum. a) initial amplitude
spectrum; b) height, c) velocity, and d) growth rate as a function of time. Bold red line: bubbles’
front. Light black lines: single mode bubbles



the tip of the RT perturbation until relatively late in the nonlinear regime. For the
bubble’s dynamics, the set of ODE is:
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The set of equations governing the dynamics of the tip of the RT spike is obtained from
equations (2)—(3) by substituting 7 — -7, A—>—A, and g —>—g. This nonlinear
model captures with some success the penetration of the bubble for 0 < 4 <1, but fails
to predict accurately the penetration of the spike for 42>0.4 [7].

For our multimode model, we compute the evolution of every existing modes of the
initial perturbation spectrum. The evolution of the bubbles (spikes) front then is given by
the envelope of the single modes heights at all times:

h(t) = max(h, (¢)) (@)
where h(¢)is the height of the bubbles (spikes) front at time ¢ and
h(¢) =1, (¢£)—1,,, (0) is the height of the bubble (spike) generated by a single mode
initial perturbation at time #. The bubbles (spikes) front’s velocity is v =dh/dt, and the
bubbles (spikes) front growth rate is @ = k*/4Agh [9].

Figure 1 illustrates how our multimode model behaves on an idealized case. Figure la
displays an initial amplitude spectrum that could result from azimuthally averaging the
two-dimensional spectrum of an initial perturbation interface. Figure 1b shows the height
of the bubble front, bold red line, as a function of time as well as the height of a number
of single modes, light black lines. Using the same color code as in figure lb, figure lc
shows the velocity, and figure 1d shows the growth rate. Since we consider an ideal case,
without viscosity or surface tension, the fastest growing mode is the largest mode. As
figures 1c and 1d clearly show, the largest mode is the dominant mode until ¢~ 0.8s.

Until then, the front grows as a single mode bubble. Then, between ¢~ 0.8s and
t #1.75s , smaller and smaller modes lead the bubbles front subsequently. The natural

a T m T Y T v ] o
== 1 B
2 o4
—_— P .
P=c) .l
] N = y /
(LN 3 1_ L 8]
< 3
= 1 S oo8
= 4
1 0.06
, l
0oy
w'E ‘ 3 a0z
N | ) ,‘. # PEEPEE PP SRS R
0 10 0 £l ] E * 18 15 »
k Agt /L

Figure 2: Application of our model to a case found in literature. a) initial amplitude spectra used by
Banerjee and Andrews. b) Growth rate predicted by our model, to be compared with figure 10 of
Banerjee and Andrews [4]



pace at which the modes relay each other in leading the front produces a quadratic
evolution in time. As a result, the growth rate, figure 1d reaches an asymptotic value of
about 0.03 . Finally, the growth rate decays slowly between ¢ = 1.75s and the end of the
run. This decay is due to “missing” modes in our run. Since our model does not handle
mode coupling, there is also no mode generation. As the dominant mode in our
simulation is smaller and smaller, our model eventually “runs out” of modes and the
bubble front is lead by the smallest mode available in our initial spectrum. Since the
terminal velocity of a single mode is constant, its height then grows linearly, and its
growth rate decays as an inverse function of time. Figure 1 shows that our model can
reproduce the evolution of a multimode bubbles (spikes) front, but is limited by its
inability to generate modes. Figure 2 reproduces the spectral index study made by
Banerjee and Andrews [4], with our multimode model. Their MILES simulations predict
a late time growth rate of a =0.02-0.03, as does our multimode without mode
coupling. This figure illustrates how, for simply structured spectra, our model provides a
reasonable prediction of the late time growth rate, as long as the initial amplitude
spectrum is sufficiently wide.

Complex Initial Perturbation Spectrum

One argument used to explain larger growth rates obtained in experiments, in
comparison to values obtained in simulations, is the presence in the initial conditions of
parasitic long wavelengths in addition to the short wavelength intended by the
experimentalists. Simulations of this type of banded initial perturbation spectrum have
been performed by Banerjee and Andrews [4]. Their results showed that the long
wavelength will produce an “anomaly” during the growth of the mixing layer. Figure 3
shows an example of banded initial perturbation spectrum and the resulting mixing layer
growth rate. The evolution of the growth rate suggests that, at first, short wavelengths
lead the mixing layer expansion and the front achieve the quadratic evolution in time.
Then, the long wavelengths that have a smaller initial growth rate, but a larger saturation
velocity, eventually catch up with the front of the mixing layer and accelerate the growth
for a short period of time. This is characterized by a relatively significant secondary peak
at ¢t =T, on figure 3b. Eventually, the mixing layer returns to a self-similar growth.
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Figure 3: Behavior of a banded spectrum. a) Initial perturbation spectrum. b) growth rate obtained
by MILES simulation. T,: time of anomalie; Tsg;: first time of self-similarity growth; Tgs,: time of
return to self-similarity growth



This type of anomaly needs to be predicted in order to “inform” the turbulence model
that for a given period of time, the growth rate will not be constant. Four quantities need
to be known: the time at which the growth of the front first become self-similar, T, , the

time at which an anomaly occur if it is to occur, T,, and the resulting growth rate, &,
and the time at which the growth becomes self-similar again, Tg,. A direct estimate

from the initial spectrum is possible, following the same approach as in our multimode
model. A short period of time after the fastest growing mode has saturated, the leading
mode in the front of the mixing layer is a saturated mode. One can then approximate the
height of each mode at a given time by computing:

mO=V (- )+ n)" ()
where ¥ = 2A4g/(l+ Ak, 1} =(1/Agk )sinn™ (v, /h, (0)Agk), and
r" = h,(0) cosh(t,fVL \/Agk), The height of the front is then the largest computed height,

and the front velocity is the saturation velocity of the mode having the largest height.
Figure 4 shows an idealized banded spectrum (figure 4a) and a comparison of prediction
of growth rate (figure 4b) using our ODE multimode model and the direct approach
described above. One can see on figure 4b that the direct approach (red dots) gives a
reasonable prediction of Tg,, T,, e@,, and T, in comparison with the ODE

multimode model (solid line).
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Figure 4: Direct prediction of TMZ growth without solving ODEs. a) Idealized initial banded
perturbation spectrum. b) Growth rate obtained by direct prediction (red dots), and ODE multimode
model (solid black line)

Turbulence Variable Modeling

Using the ODE multimode model, or the direct prediction model describe in previous
sections, the turbulence model user can make an informed decision on an appropriate
time to start his model, and knows the basic characteristics of the TMZ (fronts positions
and velocities) at that time. He then needs information on the turbulence model variables.

We extract turbulence variables’ profiles using a two-fluid model [10].The model is
based on an idealization of the mixing interface between two interpenetrating fluids.
Assuming a linear distribution of the mixture fraction within the TMZ [11, 12], the
averaged density and velocity at a given altitude z are given by:

l_’(z) =fu (z)ph +f (z)pl (6)



u,(2)= £, + £,(2)n, ()
where p,,, is the heavy/light density and f,,, is the heavy/light volume fraction.

Fluctuating quantities at a given altitude are then computed using averages given by
equations (6), or (7), and bulk values for the heavy fluid or the light fluid [10]. Upon

substitution of the appropriate terms in the definition of a turbulence variable, one gets a
two-fluid expression for its profile. For example, a two-fluid formulation for the mass

'y [= ..
flux, az=puz/p,ls.

_ fh(z)fl(z) _ v |+ly
aZ(Z)_ fh(z)ph+fl(z)pl (ph pl)(l S| | b') (8)

Conclusions

We presented our current approach for introducing initial conditions effects in turbulence
models for RT instability. In a first time, we use a modal model to predict the evolution
of the TMZ. In spite of the lack of mode coupling, our model captures reasonably well
the growth of the TMZ as long as the initial perturbation spectrum is wide enough. In
case of a complex initial perturbation spectrum, our model, or a direct prediction model,
can be used to estimate times of occurrence for key features of the TMZ growth. Then,
profiles of turbulence variables are computed by using the characteristics of the TMZ,
and a two-fluid model. In the future, our predictions will be refined by using a multimode
model that includes mode coupling, and complimentary studies will be made on the
turbulence in the TMZ to characterize the initial time of validity for the turbulence model
hypotheses.
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