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Statistical Analysis of Cascading Failures in Power
Grids

René Pfitzner, Konstantin Turitsyn and Michael Chertkov, Member, IEEE

Abstrac—We intreduce a new microscopic model of cascading
failures in transmission power grids. This model accounts for
automatic response of the grid to load fluctuations that take
place on the scale of minutes, when optimum power flow
adjustments and load shedding controls are unavailable. We
describe extreme events, caused by load fluctuations, which cause
cascading failures of loads, generators and lines. Qur medel is
quasi-static in the causal, discrete time and sequential resolution
of individual failures. The model, in its simplest realization based
on the Directed Current description of the power flow problem,
is tested on three standard IEEE systems ceonsisting of 30, 39
and 118 buses. Our statistical analysis suggests a straightforward
classification of cascading and islanding phases in terms of the
ratios between average number of removed loads, generators and
links. The analysis also demonstrates sensitivity to variations
in line capacities. Future research challenges in modeling and
control of cascading outages over real-world power networks are
discussed.

Index Terms—Power grids, Power system dynamics, Power
system faults, Power system reliability

I. INTRODUCTION

The power transmission system is one of the greatest
engineering achieverents of the past century. The power grid
system provides electricity 24 hours a day, seven days a
week. However, due to its complexity and spatial extent, it is
also vulnerable to failures of various sizes and significance.
Extreme events, like the infamous Aug 2003 blackout [1]
which left a significant part of North Eastern US without
electricity, are rare but their costs to the economy and society
are enormous. The significance of this subject has stimulated
research in this important area, summarized in a recent review
paper by Dobson et al. [2]. Well known cascading models
include random network models [3], initial power flow based
models with gradual load increase, maintenance and random
failures [4], [5], [6], phenomenological stochastic models [7],
{8], hidden-failure embedded power flow models [9], [10],
and recently power flow based models accounting for adaptive
control [11].

In this manuscript, we consider a power flow model of
cascading failures, applicable to temporal scales shorter than
the time of operator-induced Optimal Power Flow (OPF)
control. (OPF, redistributing power generation, shedding load
and adjusting frequency, is typically executed on the scale
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of minutes.) The demand on the transmission grid grows at
a pace significantly exceeding maintenance and system rein-
forcement. Hence the stress on the grid gradually increases,
forcing the system to operate close to its capacity. In a system
far from saturation (call it the “grid of yesterday”) fluctuations
in demand rarely led to any significant outage, not to mention
a devastating cascade. On the contrary, in the system under
stress (the grid of today or tomorrow”) short-term fluctuations
in demand can and unfortunately will lead to significant and
possibly cascading outages. Such short-term fluctuations may
be caused by local penetration of the grid with renewables
or, for this case, the short-term lack of local generation due
to weather conditions etc. This consideration motivates us to
analyze outages and cascades generated solely by short-term
fluctuations in demand.

Our model and approach extends the line of research started
in [4], [5], [6], in which the first quasi-static and microscopic
(i.e. based on power flows and not on an abstract model of
stress redistribution) models of cascades were considered. As
in [4], [5], [6], tripping of overloaded lines is a significant
part of our power flow dynamics. However, our approach
is different in what causes the tripping and how it occurs.
Furthermore, in contrast to [4], [5] our analysis concentrates
solely on the short-time scale. To allow for a more physical
causal resolution of the actual dynamics of the grid, we do
not trip multiple overloaded lines at once. We also consider
a somewhat more basic model of cascade initiation, caused
only by fluctuations of loads. In our model of a grid close
to saturation lines are tripped solely in response to excessive
demand. This differs from previous approaches, where pure
random line outages [5], effects of sympathetic line trippings
{6] or so called hidden failures [10] were taken into account.
(In a more realistic scenario, initiations of multiple types may
cause cascades. See Section IV.)

This study is inspired by the actual operational paradigm
guiding the grid dynamics on the scale of minutes or even
seconds, when an intelligent manual or semi-automatic control
(typically including a human decision in the loop) is simply
unavailable. We only account for standard, automatic and
system inherent control, such as voltage control, automatic
line tripping and droop control executed at the generators. The
highlights of our method and techniques in this manuscript are:

« We study cascading behavior by solving the power

flow equations. Unlike the phenomenological (“disease
spread”-like) models, our model accounts for non-local,
non-uniform power-flow based dynamic responses of the
power system.

« We propose a realistic cascade algorithm executed over
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non-uniform IEEE test beds, and not over abstract (tree-
like or random) structures. This results in a realistic
spatio-temporal redistribution of overloads. We point out
the importance of this course of action since power
systems are not arbitrary but designed intelligently (e.g.
capable to withstand any NV — 1 contingency).

o Our cascade algorithm relies heavily on inhomogeneous
line overload and tripping, thus resulting in a dynamical
change of the network structure and (in the case of
significant damage) leading to the emergence of islands.
To study these cascades, we then solve the power flow
problem on every island independently. Islanding may
also result in an extreme form of load shedding, i.e.
blackout of the entire island if the cumulative load
exceeds the generation capacity.

o The only source of randomness in our model is associated
with fluctuations in demand. We show that these demand
fluctuations, without other random external influences,
are sufficient for causing cascades.

» The outage growth is quantified in terms of the average
number of tripped elements (loads, generators and lines)
and their dependence on the magnitude of demand fluc-
tuations.

This manuscript is organized in four Sections. Our cascad-
ing algorithm is described in Section II. The algorithm requires
solving the power flow equations many times, in a way that
mimics the actual dynamics of the grid in a quasi-static causal
fashion. We discuss the application of our cascading algorithm
to three IEEE systems, consisting of 30, 39 and 118 buses
respectively, in Section III. The last Section of the manuscript
is reserved for Conclusions and discussing the Path Forward.

II. CASCADING ALGORITHM

Our algorithm models cascades triggered by demand fluc-
tuations around the base OPF solution. We consider a quasi-
static (”sequence of steady states”) model. This algorithm
takes an instance of demand for the input and it outputs a
balanced solution, possibly over a sub-grid of the original grid.
A flow chart of the general structure of the algorithm is shown
in Fig. 1. The algorithm is rather involved. Thus we find it
useful to begin by discussing its high-level description first
in the main body, followed by more detailed expositions of
the algorithm sub-tasks in their respective Subsections. (The
order of Subsections in this Section is dictated by convenience
of the presentation as well as by the interdependence of the
material. It does not necessarily reflect the importance of the
sub-tasks or their order in execution of the algorithm.)

The algorithm begins by computing the OPF solution g° =
(gili € Gy), using d® = (d;]i € Ga) as the base/reference
point. Here, G = (Go,G1) is the graph of the power grid
consisting of a set of vertexes, Go, and edges, G1. G5 C Go,
Ga C Go is the subset of nodes with generators and demands
respectively. Then, the OPF solution is perturbed by a random
demand fluctuation, § = (4;|¢ € G4), drawn from a distribution
parameterized by its root-mean-square deviation from the
mean, d°. (A detailed discussion of the probability distribution
function of the load distribution considered in our simulations

can be found in the beginning of Section III-A.) We apply
demand perturbations in a step-wise fashion, with one step cor-
responding to one cycle of the outer loop in the chart diagram
of Fig. 1. The number of steps varies with the perturbation
and depends on the severity (number of consecutive violations
of line or generator constraints which need to be resolved)
in the fluctuation of demand. Each step (loop) consists of
the following mini-steps: (a) sequential evaluation of the time
rescaling parameter t*; (b) redistribution of new loads solely
according to droop control (remind that we do not include in
this study any control of demand); (c) calculation of Power
Flow (PF) solution for the resulting rescaled configuration of
demands d° + t*4, laying (in the multi-dimensional space of
demands) strictly in between the reference point d® and the
investigated configuration d° + §; (d) line check and possible
tripping of one violated line based on the DC power flow
solution (note that this sub-step involves some randomness in
selecting the tripped edge of possibly many violated ones); and
(e) checking if the tripping resulted in any islanding. These
five mini-steps of the loop are described in detail in Sections
II-E, 1I-D, 1I-A, II-F and II-C respectively.

It is important to stress at this point that the relatively
involved structure of the algorithm mimics the actual mi-
croscopic dynamics of the power grid control/adjustment to
the demand change. In particular, the gradual modification
in demand from the reference point to the final contingency,
modeled with t* increasing monotonically from zero to one
in a finite number of steps, reflects the physics of the causal
response of the grid. Here we assume that the generator-
based control of the power flow takes place on the scale
of milliseconds, while any change in demand and resulting
tripping events occur at much slower pace (measured in
seconds, or even longer intervals). Thus the grid has enough
time to respond to each individual contingency establishing
a quasi-static equilibrium, modeled in our algorithm by the
power flow solver and by the check for islanding steps, after
each of the elementary line-tripping or generator-saturation
events.

A. DC power flow

The power solver takes injection and consumption of powers
at all the nodes of the power grid as well as system parameters
as input and it outputs voltages and phases at the nodes, as well
as the power transmitted over all the links of the grid. Gen-
erally AC power flow is a nonlinear algebraic problem, that
becomes a linear problem under a set of additional, so-called
Directed Current (DC), assumptions. Our cascading algorithm
will work with the most general power solver. However, in this
paper we choose to work with DC solver which is simpler in
implementation and does not require special algorithms for
distributing the losses between the generators. The DC solver
evaluates

i, 1€ gg
Vie Gy Zpijz{ —~d;, i€ Gy n
Gt 0, i€Go\(GyUGa)

V{’&,]} [ gl i (2)

0i — 0 = Tijpy;
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Fig. 1. Flowchart of the proposed cascading algorithm

where z = (z4;|{i,j} € G1), 9 = (9ili € Gy), d = (difi €
Ga), 0 = (6ili € Go), p = (pi; = —pjil{i, 5} € G1) are
the vector of line inductances, the vector of powers injected
at generators, the vector of demands consumed at loads, the
vector of phases and vector of line flows, respectively. (Here
{%, 7} is our notation for directed edges and j ~ 7 indicates that
7 is the graph neighbor of :.) Note that to streamline notations
we used a somehow abbreviated version of the DC power flow
equations in (1,2). In particular, we ignore terms associated
with tap transformers. In our simulations, we utilize the DC
PF solver from the Matlab based MATPOWER package [12]
taking into account effects of transformers and other devices
included in description of the 30, 39 and 118 nodes IEEE
systems.

B. Optimal Power Flow

To set up the system, we solve the standard DC optimal
power flow problem finding optimum generator dispatch given
the initial load d°, cost functions f = (f;|¢ € G,) for
every generator as well as generation power and line capacity
constraints. To execute this task we use MATPOWER [12],
and cost functions provided in the description of the IEEE
systems studied. The DC optimal power flow, in the simplest
nomenclature, corresponds to solving

Egs. (1,2), where d — d° hold 3

V{i, 5} Ipijl < P
Vi: g™ <gi<g™

p.9,0

minz fi(g:)

for the branch flows, p, and generation powers, g. The resulting
p°, ¢° and #° form the base (reference) solution for our
cascading algorithm.

C. Identify islands

Our algorithm does not generate a surviving balanced sub-
grid at once, but instead it resolves it in steps, thus mimicking
dynamics of realistic cascades. The temporal evolution of
the surviving sub-grid is induced by cutting saturated lines,
which might also cause the formation of islands, and removing
freshly formed but overloaded islands. We check for islanding
(i.e. splitting of the grid into independent components) using
the function grComp of the MATLAB grTheory toolbox [13].

If an island is formed, we do all other computations within
the cascading algorithm (including DC Power Flow, droop
control and calculation of t*) independently for every island.

D. Droop control

In the process of evaluating the cascading algorithm, it
can happen, due to tripping of overloaded lines, that some
loads or generators will become disconnected from the grid
or that the grid splits up into islands. Both scenarios require
automatic redistribution of generation, done in the so-called
droop control fashion.

Droop control is executed at each generator locally in
response to an increase or decrease of the system frequency
(measured locally as well). If a generator experiences a drop
in frequency, which is a symptom of over-consumption and
under-generation, it increases its generation power in order to
undo the frequency drop. Similarly, if the frequency increases,
this is interpreted as a signature of over-generation. Since
these deviations are typically small, we stick in this study to
a linear response model, assuming a linear relation between
the frequency drop/gain and the generation increase/decrease.
(Nonlinear modifications can be easily included in a more
general scheme.) We do droop control if: (a) The grid changes
its structure, i.e. following appearance of new island(s) in the
result of line tripping. (b) The demand at any node on the
island has changed. Here we assume that the power generation,
gi(+), at node 7 after at least one of these events is

gi(-)
9=(-)
where the newly introduced quantities on the right hand
side of Eq. (4) are the current power generation, g;(—), at
node i; the total power generation (before droop control),
g=(—) = Zje):g g;j(—), at the freshly formed island, ¥ C
G, the generator belongs to; and the total power demand,
ds(+) = Yjes, dj(+), of the island observed after event
a) or b). Note that if neither case a) nor case b) occurred at
the island ¥, dy/(+) = ds(—) will hold. Since we always
make sure that a stable well-balanced solution demand and
generation match, dy(—) = gsv(—) should hold and we arrive
at g;(+) = g:(—) in the result.

Droop control is executed at all the generators of the grid
simultaneously. Note that the ratio on the rhs of Eq. (4)
changes in the process of our discrete event simulations in
accordance with the modification of islands. If at some point
in the process a generator becomes saturated, we do not
include it anymore in the droop control mechanism described
above, but instead keep its generation level constant (at the

gi(+) = ds(+), )
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maximum generation capacity). Our droop control mechanism
also includes accounting for overloads - as long as, using droop
control, demand and total power generation can be matched,
the island is functioning. However, if the total demand of the
island exceeds its total generation capacity, we shut down the
entire island. Thus, the transition point from phase two to
phase three shown in Fig. 4 is associated with the emergence
of a statistically significant number of islands which were shut
down.

E. Discrete Time Evolution of Loads

Once the configuration of loads, d = d° + 4, is generated
we do not increase the demand from the reference point,
d®, at once but instead break the change into a number of
incremental steps. Each of the steps is associated with only a
single element modification of the underlying grid (breaking
of a single line constraint or an individual generator reaching
its capacity). This incremental degradation allows us to model
more realistically causal advancement of the stress mounting
within the grid. For this discrete event procedure to work,
we need to generate a monotonically increasing sequence
of (fraction) times ¢t* € (0,1] of load disturbances, each
associated with the d° + t* configuration of loads within the
island. (We recall that if the grid is islanded, we calculate the
discrete time sequence separately for each island and choose
the minimum time over all islands as £*.) One accounts for
constraint breaking events of the following two types:

a) Exceeding the local maximum generation power con-

straint at time £* = £,.

b) Exceeding the line capacity constraint at time t* = #;.

The time of locally exceeding generation capacity is

97 — gi(-)
) &
gs(-) Oz

Indeed, 4 is the time when g;(+,%4) > gi"** holds for exactly

one special generator site ¢ € 3. Then, the expression for the
post-event generation at the special site is

&)

tgzmim

} _ gi(-)
altt) = 2 ds(+) ©
_ gi(—) _ c
= g;:(—)[dz( )+t()z;} (7)
= gi(—)+t§;((__))5zy ®)

where dx(+,t) = dg(—) + tdy is the post-event cumula-
tive demand over the island ¥, and Eq. (5) follows from
9i(+,tg) = g

Analogously, the time of exceeding a line constraint is

t; = min (pm”;ax —pij(~))
Y76 \PF(G,8,Ag) )’

which follows from the following consideration. Let p(+) =
PF(G(£),d(£),g(+)) denote the vector of power flows, p,
over the transmission lines of the grid G(+), obtained by
solving Egs. (1,2) with demand d(+) and generation g(+),
where + indicates (as before) relevance to the pre- and post-

(€))

droop control state. One derives that, p(+, t)PF(G(—), d(—) +
t9, g(—)+tAg), where (Ag), is defined according to the droop
control rule, Eq. (8). Furthermore, since PF(...) is linear in d
and g, one finds that

p(+,t) = p(—) +t-PF(G(-), 4, Ag), (10)
thus arriving, under condition that p;;(+,¢;) = pj3** holds for
exactly one line, at Eq. (9).

F. Line checking and tripping

After solving the DC PF equations we check for lines with
violated constraints. The constraints are stated in the two
last lines of the conditions for OPF in Eq. (3). It can easily
happen, that one encounters degeneracy, in the sense that the
constraints are violated at more than one line. If this is the
case, we do not trip all the lines with violated constraints
at once, but instead exclude only one of them and then do
droop control and DC power flow again. (See the small loop
in the flowchart Fig. 1.) The order of exclusion is chosen
randomly prior to executing the cascading algorithm and it
is maintained the same over all iterations and samplings. We
stress that this degeneracy can only happen if at a previous
step t; < t; held, which implies that we change local
power generations instantly. This course of actions is an
approximation and it would of course be more physical to
not increase the generation power instantly, but gradually, and
to account for singular line tripping events during this gradual
increase. However, since dynamic generator data is very often
not known, we choose to follow this simple and reasonable
scheme.

Here we want to mention, that our decision rule of whether
a line is going to be tripped or not is obviously “magnitude
only”. This differs from other power-modeling approaches,
where not only the magnitude of overload of a line (exceeding
its rating) is important, but only the duration of overload.
Indeed, from a power systems operator point of view the
acceptable magpitude of overload is generally dependent on
the duration of overload. However, since we study a quasi-
static model, we neglect the temporal aspect.

From the quantitative analysis point of view, we only count
a line as tripped when at some point the line flow exceeds its
capacity. This means that if an island is overloaded and thus re-
moved from the grid, we do not count lines within the removed
island (which now do not carry any current) as tripped. After
all, these lines show no need for maintenance. This is different
from the way we account for tripped generators and demands.
When an island shuts down (then cumulative load exceeds
generation capacity), we count these unserved demands and
the generators set off-line as tripped.

IT1. RESULTS

In this Section we report the results of testing our cascading
algorithm, described in details in Section I, on three IEEE
systems.
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Fig. 2. Average characteristics of outages in the 30 bus network induced

by fluctuations in demand explained in the text. Every data point presents
the average over 200 i.i.d. samples using the specified distribution. dg’ ) =

0.565g§3""“), We observe three transition points. Prior to reaching the first
transition point the grid is resilient to fluctuations in demand. In between tbe
first and second transition points the probability of having an outage increases
slowly. It turns out that the outage in this regime corresponds to tripping of two
lines (due to overload) followed by islanding of the adjusted demand node.
Here, one observes no cascades yet but only increased probability of line
and demand tripping (as also witnessed by the low slope of tripped demands
and the stress diagram of the systcm shown in Fig. 5). Passing the second
transition point indicates emergence of a macroscopically significant number
of tripped generators, which also results in a faster rise of demand tripping
and signifies the start of cascades. In this system we also note a third transition
point at which the number of tripped demands excecds the number of tripped
lines, thus indicating that significant number of the unserved demands belong
to islands left without power.

A. Effect of random demand distributions

In this Subsection we report tests on standard IEEE systems
with 30 and 39 buses respectively. For these two systems all
the important system parameters (maximum generation power,
g™, maximum line capacities, average demand distribution,
d(®) are available in the system specifications documented
in [12]. We select the average load according to, dg =
0.565¢5'**, while maintaining the same relative distribution
of demands between load buses, as specified in [12]. (The
re-scaling reflects a typical day scenario for the reference
point.) Then we set the distribution of generation according
to the optimal power flow solution of Eq. (3). Fluctuations in
the demands are generated using the half normal distribution
allowing only positive fluctuations, in demand Vi € Gg:

exp(—(8:)%/(2dA)) & +68; > d°
) T i

PE =4 YN wis=a (D
0, d?+6,-<d?

Figs. 2 and 3 show average characteristics of outages,
caused by the distribution of demand Eq. (11) under different
values of dispersion, for the systems of 30 and 39 buses
respectively. Although the qualitative forms of the curves ob-
served are quite similar, one also finds interesting differences
in the way how cascades evolve in the two systems. Whereas
in the 30-bus system the first phase is associated with line
tripping also resulting in isolation of a few demands, this
state is virtually absent in the 39-bus system. The cascading
behavior in this system begins with the second phase. The
increase in the number of unserved demands is here in fact
induced by generator tripping. Furthermore phase two and
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Fig. 3. Outages in the 39bus network induced by disorder in the demands.

Every data point presents the average over 200 samples of Eq. (11). dg’) =
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Fig. 4. [Illustration of possible cascade phases. In phase 0 the grid is resilient
against fluctuations in demand. Phase 1 shows tripping of demands duc to
tripping of overloaded lines. This has a overall ”de-stressing” cffect on the
grid. In phase 2 generator nodes start to become tripped, mainly due to
islanding of individual generators. With the early tripping of generators the
systern becomes stressed and cascade evolves much faster (with increase in
the level of demand fluctuations) when compared with a relatively modest
increase observed in pbase 1. Outages in phase 3 are associated with removal
from the grid of complex islands, containing both generators and demands.

phase three almost coincide in the 39-bus system. However,
as the stress-diagrams (see Fig. 6 and Fig. 5) of both systems
show, islanding is an important effect. The improved behavior
of phase one in the 39-bus system appears to be due to
the fact that created islands are (a) rather big, (b) include
generators, and (c) are stressed and becomes powerless almost
immediately after emergence. In phase one of the first system,
islands are small and immediately removed from the grid (as
not containing generators). Somehow surprisingly, this early
removal of many small islands has a positive, de-stressing
effect on the remaining part of the grid. Figure 4 provides a
qualitative illustration of the three phases. The stress diagrams,
shown in Fig. 6 and Fig. 5, provide additional evidence
supporting the aforementioned explanations.

A qualitative similar behavior to the one shown in Figs. 2
and 3 was also observed for some other choices of demand
distributions Eq. (11), e.g. for fluctuations allowing a decrease
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Fig. 5. Stress diagram of the 30-bus system, corresponding to Fig, 2, using
the specified distribution. From top left to bottom right stress in the system
is increased: A = 0.1, A = 0.2, A = 09, A = 1.2 and A = 2.0.
Buses labeled G# are generator buscs, all other are load-only buses. The
average probability of tripping a line or a bus (over 200 samples) is color-
coded for every component. Every instance is normalized by the maximum
tripping probability p™* of a component. Ycllow (light) means small and red
(dark) means maximum tripping probability. (See electronic version of the
manuscript for color figures.)

in demands (yet keeping the total demand positive). Hence
one can speculate that the qualitative picture of outage growth
induced by increase in load fluctuations is universal.

At this point we would like to comment on one interesting
similarity between our microscopic results and the results of
Dobson et al. reported for the phenomenological CASCADE
model [7]. The CASCADE model is an abstract representation
of the power grid, considering equivalent components failing
according to some pre-defined distribution. If a component
fails, a certain amount of load is distributed equally to all
other components. The model is structureless and as such it
carries no explicit relation to the power flow equations. It is
argued in [7] that an increase in the parameter mimicking
increase in the total load, results in an abrupt increase in
the size of the damage starting at some finite threshold value
of the parameter. This observation is akin to the transition
from phase one to phase two (see Fig. 4) observed in our
microscopic model. Moreover, a similar observation was made

Fig. 6. Stress diagram of the 39-bus system, corresponding to Fig. 3, using
the specified distribution. From top left to bottom right stress in the system

is increased: A = 0.3, A = 0.4 and A = 0.6. Buses labeled G# are
gencrator buses, all other are load-only buses. The average probability of
tripping a line or bus (over 200 samples) is color-coded for every component.
Every instance is normalized by the maximum tripping probability p™* of
a component. Yellow (light) means small and red (dark) means maximum
tripping probability. (See electronic version of the manuscript for color

figures.)

recently in the context of yet another phenomenological model
discussed in [14]. In contrast to the model of [7], the one
of [14] is based on a network with some spatial structure.
Trigged by one random overload (failure of a generator),
cascading behavior is observed as the overload is equally
distributed among generators, which are graph neighbors of
the failed one. Here as well, a phase transition was observed.
Overall, we conclude that transition form phase one (in which
almost all generators are functional) to phase two (where
a significant, O(1), fraction of generators is in outage) is
observed universally across the models.

B. Effects of line capacities

In this Section we describe results of our cascading algo-
rithm test on the larger IEEE 118-bus system. In the contrast
with the 30-bus and 39-bus system, specification of the 118-
bus system available in MATPOWER does not have line ca-
pacities. To resolve this problem, we generated line capacities
ourselves. Somehow surprisingly, these experiments lead us
to the conclusion that variability in the line capacities affects
the dynamics of cascades in a strong way. More precisely, we
observed that the distribution of line capacities influences the
structure of emerging islands.

This observation, made first on the 118-bus system, led us
to experiment with the variability of capacities in the smaller
systems. We show in Figs. 8 how the cascading behavior
is influenced by different distributions of line capacities in
the 30-bus system with 6 generation and 24 demand nodes.
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Fig. 7. Outages in the IEEE 118-bus network induced by disorder in the
demands. Evcry data point presents the average over 25 i.i.d. samples using the
specified distribution. dg?) = 0.5659(2'""’). Since for this systems the IEEE
standard docs not specify linc capacities, we assign line capacities randomly
according to the relative-capacity-distribution from the 30-bus case.

We consider three univalued cases, when all the capacities
are set to the same value, equal to the smallest, largest and
mean characteristics of the original distribution (available in
the MATPOWER specification for the system). When the
univalued line capacity is maximal (top left figure), no line
outage or islanding is observed. Outages in such systems
are solely due to generators exceeding their capacities, which
obviously becomes more likely with increase in A. Referring
to our classification scheme, phase 1 and 2 are absent in this
case. This observation is also consistent with results obtained
earlier in [7] or [14]. In contrast, when the univalued line
capacity is minimal (top right figure), the cascading behavior
is not seen. In this case, any (sensible) initial distribution leads
to islanding and blackout of some of these islands. (Note that
in this case the complete grid is never outaged completely,
instead we reach a stable point with 4 loads and 2 generators
remaining for a rather wide variability range in A. We attribute
this peculiar result to the specific topology of the grid and the
initial demand distribution, d°. The islands are formed in a way
that two remaining generators provide powers to the remaining
loads without exceeding line capacities.) In the univalued case
correspondening to the mean value of the original distribution,
illustrated in the bottom left of Fig. 8, phases 1 and 2
are missing again, suggesting that islanding did not lead to
any relief (de-stressing). Looking at all these three univalued
examples from a quantitative perspective, we observe that the
average size of the outage at the maximum fluctuations in
the demand considered, A = 5, is significantly larger than in
the original case of a realistic distribution of capacities. We
associate this negative effect of the univalued capacity with the
lack of heterogeneity in the islands formed under stress. To
conclude, we find that setting the line capacities to the same
value (large, small or averaged) leads to overestimation of the
strength of the outage in comparison with the case of a more
realistic distribution of capacities.

Therefore, to generate a realistic study of the 118-bus
system, we distributed line capacities according to the relative-
capacity-distribution of the 30-bus system, i.e. according to

pianx
27— (30 bus) ~ Dist;;(30 bus).
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Fig. 8. Outages in the IEEE-30bus network with univalued line capacities
induced by fluctuations in demands. Every data point is a result of averaging
over 200 iid. samples from Eq. (11). d? = 0.565¢{"™). Top left: Set
all linc capacities equal to the maximum line capacity from the original
distribution. Top right: Set all line capacities equal to thc minimum line
capacity of the original distribution. Bottom left: Set all line capacities equal
to the mean of the original distribution.

We obtain the maximum possible power flow (line capacity)
over line « in the system as

P5**(118 bus) ~ Dist;;(30 bus) - pJ;(118 bus). ~ (13)

Fig. 7 shows the resulting outage diagram observed in this syn-
thetic system. These results are consistent with the simulations
of the smaller systems and also with the qualitative scheme
described in Fig. 4. Note, that the same simulations conducted
with univalued capacities (not shown) give a significantly dif-
ferent picture, qualitatively consistent with the results reported
in Fig. 8 for univalued capacity tests in smaller systems.

Based on the results of this Subsection, we conclude that in
order to capture realistically cascading effects, like islanding,
it is crucial to take the non-uniformity of line capacities into
account.

IV. DISCUSSION AND CONCLUSION

In this manuscript we, proposed a new microscopic model
of cascades in power grid. The model was tested on three
IEEE systems. We solved the power flow dynamics (in DC
the approximation), analyzed structural evolution of the opera-
tional part of the grid associated with islanding, and observed
the emergence of cascades caused solely by fluctuations in
loads. Analyzing the statistics of the damage, we identified
four distinct phases, observed in response to variations in the
level of demand fluctuations. Phase #0, described by small
demand fluctuations, does not lead to any significant damage.
Phase #1, described by modest fluctuations, results in the
removal of some number of lines as well as the removal
of a few loads (the formation of islands which do not have
any generation and are thus blacked out immediately), while
generators remain largely unaffected. This phase can have a
de-stressing effect on the grid seen in a significant reduc-
tion of damage increase with increasing demand fluctuations.
Phase #2, described by sizable fluctuations, is characterized
by the appearance of some tripped generators (surrounded
by tripped lines), while the relations, (# of tripped lines) >
(#of tripped loads) > (# of tripped generators), remain
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valid. Finally, phase #3, described by large demand fluc-
tuations, is characterized by multiple islands, of which a
sizable O(1) portion is outaged: (# of tripped loads) >
(#of tripped lines) > (# of tripped generators. Typical in-
stances, contributing to phases #1-#3, develop in multiple
sequential steps, and as such can all be interpreted as cascades
of severity increasing with the numerical index of the phase.

Analyzing the dependence of the phase structure on line
capacities, we observed that selecting line capacities with
sufficient variability over the grid is important for capturing
realistic dynamics of outages. In particular, our simulations
suggest that introducing sufficient variability in line capacities
(expressing realm of existing power grids) reinforces the
grid, creating multiple islands, and thus making the resulting
grid more resistant to a correlated large scale blackout. One
observes that a cascade model, which does not account for
variations in line capacities, would overestimate the damage.

All in all our study suggests that to describe dynamics
and statistics of outages in the power grid faithfully, one
most account for (a) fluctuations (and eventuall increases)
in demand (leading locally and globally to exceeding the
generation capacities) and (b) islanding influenced by the
distribution of line capacities.

Obviously, this study constitutes only the beginning of a
strategy for analyzing power grid cascades. One natural exten-
sion would be to replace the DC power flow solver by a more
realistic AC solver. We also intend to study mixed models
combining the effects of demand fluctuations with effects of
incidental line tripping. Then, with an eye toward aiding efforts
in grid reinforcement, we plan to continue our analysis of the
effect of capacity inhomogeneities on islanding. Finally, our
long-term goal is to build a novel phenomenological model and
theory of cascades based on a detailed microscopic analysis
of the type discussed in this manuscript.

ACKNOWLEDGMENT

We are thankful to all the participants of the “Optimization
and Control for Smart Grids” LDRD DR project at Los
Alamos and the Smart Grid Seminar Series at CNLS/LANL
for multiple fruitful discussions and to Prof. Daniel Bienstock
for sharing results of his recent research [11] prior to publica-
tion. Research at LANL was carried out under the auspices of
the National Nuclear Security Administration of the U.S. De-
partment of Energy at Los Alamos National Laboratory under
Contract No. DE C52-06NA25396. RP and MC acknowledge
partial support of NMC via NSF collaborative grant CCF-
0829945. The work of MC on this project was also partially
supported by a DTRA basic research grant under Topic 08-D
BRCALLO8-Per3-D-1-0026.

REFERENCES

[11 N. A, E. R. Council. A review of system operations leading up to the
blackout of august 14, 2003. http://www.nerc.com/docs/docs/blackout/
Operations_Report_FINAL.pdf.

[2] 1. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “Complex
systems analysis of series of blackouts: Cascading failure, critical
points, and self-organization,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 17, no. 2, pp. 026 103—13, 06 2007. [Online].
Available: \url{http://link.aip.org/link/?CHA/17/026103/1}

[3] D. J. Watts, “A simple model of global cascades on random networks,”
Procecdings of the National Academy of Sciences of the United
States of America, vol. 99, no. 9, pp. 5766-5771, 04 2002. [Online].
Available: http://www.pnas.org/content/99/9/5766.abstract

[4] 1. Dobson, B. Carreras, V. Lynch, and D. Newman, “An initial
model for complex dynamics in electric power system blackouts,”
in Proccedings of the 34th Annual Hawaii International Conference
on System Sciences ( HICSS-34)-Volume 2. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 2017—. [Online]. Available:
http://portal.acm.org/citation.cfm?id=820521.820527

[5] B. A. Carreras, V. E. Lynch, 1. Dobson, and D. E. Newman, “Complex

dynamics of blackouts in power transmission systems,” Chaos: An

Interdisciplinary Journal of Nonlinear Scicnce, vol. 14, no. 3, pp.

643-652, 09 2004. [Online]. Available: http:/link.aip.org/link/2CHA/

14/643/1

D. Nedic, 1. Dobson, D. Kirschen, B. Carreras, and V. Lynch, “Criticality

in a cascading failure blackout model,” Intermnational Journal of Electrical

Power & Energy Systems, vol. 28, no. 9, pp. 627-633, 2006.

[7] 1. Dobson, B. A. Carreras, and D. E. Newman, “A loading-dependent
model of prohabilistic cascading failure,” Probability in the Engineering
and Informational Sciences, vol. 19, no. 01, pp. 15-32, 2005.

[8] ——, “A branching process approximation to cascading load-dependent
system failure,” Hawaii International Conference on System Sciences,
vol. 2, p. 20055¢, 2004.

[9] J. Thorp, A. Phadke, S. Horowitz, and S. Tamronglak, “Anpatomy of

powcr system disturbances: importance sampling,” International Journal

of Electrical Power & Energy Systems, vol. 20, no. 2, pp. 147 — 152,

1998. [Online]. Available: http://www.sciencedirect.com/science/article/

B6V2T-3SYS134-8/2/239d800c5¢cf1b8e4 95958b9d7 6ae9ec

J. Chen, J. S. Thorp, and 1. Dobson, “Cascading dynamics

and mitigation assessment in power system disturbances via

a hidden faillure model,” Intermational Jourmal of Electrical

Power & Energy Systems, vol. 27, no. 4, pp. 318-326, S

2005. [Online]. Available: http:/www.sciencedirect.com/science/article/

B6V2T-4FMBK9S-1/2/184816¢c8¢98176b895b74453d7245724

D. Bienstock, “Optimal adaptive control of cascading power grid fail-

ures,” 2010,

R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Mat-

power: Steady-state operations, planning, and analysis tools for power

systems research and education,” Power Systems, IEEE Transactions on,

vol. PP, no. 99, pp. 1 -8, 2010.

S. Iglin, “grtheory - graph theory toolbox for matlab,” available at Matlab

Central.

S. Kadloor and N. Santhi, “Understanding cascading failures in power

grids,” hitp://arxiv.org/abs/1011.4098v1, 2010.

[6

—

[10]

fi1]
[12]

[13]
[14]

Ren¢é Pfitzaer is pursuing a Diploma (Masters) degree in Theoretical Physics
(Dipl. Phys.) at Friedrich-Schiller-University Jena, Germany. He is a Diploma-
student with M. Chertkov, working on several issucs of non-equilibrium
statistical physics, at New Mexico Consortium and the Center for Nonlinear
Studies at Los Alamos National Laboratory, Los Alamos, NM, USA.

Konstantin Turitsyn is an Assistant Professor at MIT, Department of
Mcchanical Engineering. He received his PhD degree in Theoretical Physics
from Landau Institute, Moscow in 2007. Before joining MIT he worked as
a postdoctoral scholar at the James Franck Institute, University of Chicago
(2007-2009) and as a J.R. Oppenheimer Fellow at Los Alamos National
Laboratory (2009-2010). His scientific interests encompass a broad range
of non-equilibrium statistical phenomena that occur in patural and artificial
complex systems.

Michael Chertkov areas of interest include statistical and mathematical
physics applied to information theory, computer science, hydrodynamics,
optics, communication and infrastructure networks. Dr. Chertkov received
bis Ph.D. in physics from the Weizmann Institute of Science in 1996 and
then spent three years at Princeton University as a RH. Dicke Fellow at
the Department of Physics. He joined Los Alamos National Lab in 1999,
initially as a J.R. Oppenheimer Fellow in the Theoretical Division. He is now a
technical staff member in the same division. Dr. Chertkov has published more
than 100 papers in these research areas and is currently leading "Physics of
Algorithms” and "’'Optimization and Control Theory for Smart Grids” projects
at LANL.



