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Statistical Analysis of Cascading Failures in Power 
Grids 

Rene pfitzner, Konstantin Turitsyn and Michael Chertkov, Member, IEEE 

Abstraci-We introduce a new microscopic model of cascading 
failures in transmission power grids. This model accounts for 
automatic response of the grid to load Huctuations that take 
place on the scale of minutes, when optimum power How 
adjustments and load shedding controls are unavailable. We 
describe extreme events, caused by load Huctnations, which cause 
cascading failures of loads, generaton and lines. Our model is 
quasi-static in the causal. discrete time and sequential resolution 
of individual failures. The model, in its simplest realization based 
on the Directed Current description of the power flow problem, 
Is tested on tbree standard IEEE systems consisting of 30, 39 
and 118 buses. Our statistical analysis suggests a straightforward 
classification of cascading and islanding pbases in terms of tbe 
ratios between average number of removed loads, generaton and 
links. The analysis also demonstrates sensitivity to variations 
in line capacities. Future research chaUenges in modeling and 
control of cascading outages over real-world power networks are 
discussed. 

Intkx Terms-Power grids, Power system dynamics, Power 
system faults, Power system reliability 

I. INTRODUCTION 

The power transmission system is one of the greatest 
engineering achievements of the past century. The power grid 
system provides electricity 24 hours a day, seven days a 
week. However, due to its complexity and spatial extent, it is 
also vulnerable to failures of various sizes and significance. 
Extreme events, like the infamous Aug 2003 blackout [I] 
which left a significant part of North Eastern US without 
electricity, are rare but their costs to the economy and society 
are enormous. The significance of this subject has stimulated 
research in this important area, summarized in a recent review 
paper by Dobson et al. [2]. Well known cascading models 
include random network models [3], initial power flow based 
models with gradual load increase, maintenance and random 
failures [4], [5], [6), phenomenological stochastic models [7], 
[8], hidden-failure embedded power flow models [9], [10], 
and recently power flow based models accounting for adaptive 
control [11]. 

In this manuscript, we consider a power flow model of 
cascading failures, applicable to temporal scales shorter than 
the time of operator-induced Optimal Power Flow (OPF) 
control. (OPF, redistributing power generation, shedding load 
and adjusting frequency, is typically executed on the scale 
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of minutes.) The demand on the transmission grid grows at 
a pace significantly exceeding maintenance and system rein­
forcement. Hence the stress on the grid gradually increases, 
forcing the system to operate close to its capacity. In a system 
far from saturation (call it the "grid of yesterday") fluctuations 
in demand rarely led to any significant outage, not to mention 
a devastating cascade. On the contrary, in the system under 
stress (the "grid of today or tomorrow") short-term fluctuations 
in demand can and unfortunately will lead to significant and 
possibly cascading outages. Such short-term fluctuations may 
be caused by local penetration of the grid with renewables 
or, for this case, the short-term lack of local generation due 
to weather conditions etc. This consideration motivates us to 
analyze outages and cascades generated solely by short-term 
fluctuations in demand. 

Our model and approach extends the line of research started 
in [4], [5], [6], in which the first quasi-static and microscopic 
(i .e. based on power flows and not on an abstract model of 
stress redistribution) models of cascades were considered. As 
in [4], [5], [6], tripping of overloaded lines is a significant 
part of our power flow dynamics. However, our approach 
is different in what causes the tripping and how it occurs. 
Furthermore, in contrast to [4], [5] our analysis concentrates 
solely on the short-time scale. To allow for a more physical 
causal resolution of the actual dynamics of the grid, we do 
not trip multiple overloaded lines at once. We also consider 
a somewhat more basic model of cascade initiation, caused 
only by fluctuations of loads. In our model of a grid close 
to saturation lines are tripped solely in response to excessive 
demand. This differs from previous approaches, where pure 
random line outages [5], effects of sympathetic line trippings 
[6] or so called hidden failures [10] were taken into account. 
(In a more realistic scenario, initiations of multiple types may 
cause cascades. See Section TV.) 

This study is inspired by the actual operational paradigm 
guiding the grid dynamics on the scale of minutes or even 
seconds, when an intelligent manual or semi-automatic control 
(typically including a human decision in the loop) is simply 
unavailable. We only account for standard, automatic and 
system inherent control, such as voltage control, automatic 
line tripping and droop control executed at the generators. The 
highlights of our method and techniques in this manuscript are: 

• We study cascading behavior by solving the power 
flow equations. Unlike the phenomenological ("disease 
spread"-like) models, our model accounts for non-local, 
non-uniform power-flow based dynamic responses of the 
power system. 

• We propose a realistic cascade algorithm executed over 
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non-uniform ffiEE test beds, and not over abstract (tree­
like or random) structures. This results in a realistic 
spatio-temporal redistribution of overloads. We point out 
the importance of this course of action since power 
systems are not arbitrary but designed intelligently (e.g. 
capable to withstand any N - 1 contingency). 

• Our cascade algorithm relies heavily on inhomogeneous 
line overload and tripping, thus resulting in a dynamical 
change of the network structure and (in the case of 
significant damage) leading to the emergence of islands. 
To study these cascades, we then solve the power flow 
problem on every island independently. Islanding may 
also result in an extreme form of load shedding, i.e. 
blackout of the entire island if the cumulative load 
exceeds the generation capacity. 

• The only source of randomness in our model is associated 
with fluctuations in demand. We show that these demand 
fluctuations, without other random external influences, 
are sufficient for causing cascades. 

• The outage growth is quantified in terms of the average 
number of tripped elements (loads, generators and lines) 
and their dependence on the magnitude of demand fluc­
tuations. 

This manuscript is organized in four Sections. Our cascad­
ing algorithm is described in Section II. The algorithm requires 
solving the power flow equations many times, in a way that 
mimics the actual dynamics of the grid in a quasi-static causal 
fashion. We discuss the application of our cascading algorithm 
to three IEEE systems, consisting of 30, 39 and 118 buses 
respectively, in Section 1lI. The last Section of the manuscript 
is reserved for Conclusions and discussing the Path Forward. 

II. CASCADING ALGORITHM 

Our algorithm models cascades triggered by demand fluc­
tuations around the base OPF solution. We consider a quasi­
static ("sequence of steady states") model. This algorithm 
takes an instance of demand for the input and it outputs a 
balanced solution, possibly over a sub-grid of the original grid. 
A flow chart of the general structure of the algorithm is shown 
in Fig. I. The algorithm is rather involved. Thus we find it 
useful to begin by discussing its high-level description first 
in the main body, followed by more detailed expositions of 
the algorithm sub-tasks in their respective Subsections. (The 
order of Subsections in this Section is dictated by convenience 
of the presentation as well as by the interdependence of the 
material. It does not necessarily reflect the importance of the 
sub-tasks or their order in execution of the algorithm.) 

The algorithm begins by computing the OPF solution gO = 

(gili E 9g ), using cfl = (dili E 9d) as the base/reference 
point. Here, 9 = (90,91) is the graph of the power grid 
consisting of a set of vertexes, 90, and edges, 91. 9g C 90, 
9d C 90 is the subset of nodes with generators and demands 
respectively. Then, the OPF solution is perturbed by a random 
demand fluctuation, J = (Jdi E 9d), drawn from a distribution 
parameterized by its root-mean-square deviation from the 
mean, cfl. (A detailed discussion of the probability distribution 
function of the load distribution considered in our simulations 

can be found in the beginning of Section III-A.) We apply 
demand perturbations in a step-wise fashion, with one step cor­
responding to one cycle of the outer loop in the chart diagram 
of Fig. 1. The number of steps varies with the perturbation 
and depends on the severity (number of consecutive violations 
of line or generator constraints which need to be resolved) 
in the fluctuation of demand. Each step (loop) consists of 
the following mini-steps: (a) sequential evaluation of the time 
rescaling parameter t*; (b) redistribution of new loads solely 
according to droop control (remind that we do not include in 
this study any control of demand); (c) calculation of Power 
Flow (PF) solution for the resulting rescaled configuration of 
demands cfl + t* J, laying (in the multi-dimensional space of 
demands) strictly in between the reference point cfl and the 
investigated configuration cfl + J; (d) line check and possible 
tripping of one violated line based on the DC power flow 
solution (note that this sub-step involves some randomness in 
selecting the tripped edge of possibly many violated ones); and 
(e) checking if the tripping resuJted in any islanding. These 
five mini-steps of the loop are described in detail in Sections 
II-E, II-D, TI-A, TI-F and II-C respectively. 

It is important to stress at this point that the relatively 
involved structure of the algorithm mimics the actual mi­
croscopic dynamics of the power grid control/adjustment to 
the demand change. In particular, the gradual modification 
in demand from the reference point to the final contingency, 
modeled with t* increasing monotonically from zero to one 
in a finite number of steps, reflects the physics of the causal 
response of the grid. Here we assume that the generator­
based control of the power flow takes place on the scale 
of milliseconds, while any change in demand and resulting 
tripping events occur at much slower pace (measured in 
seconds, or even longer intervals). Thus the grid has enough 
time to respond to each individual contingency establishing 
a quasi-static equilibrium, modeled in our algorithm by the 
power flow solver and by the check for islanding steps, after 
each of the elementary line-tripping or generator-saturation 
events. 

A. DC power flow 

The power solver takes injection and consumption of powers 
at all the nodes of the power grid as well as system parameters 
as input and it outputs voltages and phases at the nodes, as well 
as the power transmitted over all the links of the grid. Gen­
erally AC power flow is a nonlinear algebraic problem, that 
becomes a linear problem under a set of additional, so-called 
Directed Current (DC), assumptions. Our cascading algorithm 
will work with the most general power solver. However, in this 
paper we choose to work with DC solver which is simpler in 
implementation and does not require special algorithms for 
distributing the losses between the generators. The DC solver 
evaluates 
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Fig. I. Flowchart of the proposed cascading algorithm 

where x = (xijl{i , j} E gt}, g = (gili Egg), d = (dili E 
gd), (J = ((Jili EgO), P = (Pij = -pj;!{i , j} E.9d are 
the vector of line inductances, the vector of powers injected 
at generators, the vector of demands consumed at loads, the 
vector of phases and vector of line flows, respectively. (Here 
{i, j} is our notation for directed edges and j ~ i indicates that 
j is the graph neighbor of i .) Note that to streamline notations 
we used a somehow abbreviated version of the DC power flow 
equations in (1,2). In particular, we ignore terms associated 
with tap transformers. In our simulations, we utilize the DC 
PF solver from the Matlab based MATPOWER package [12] 
taking into account effects of transformers and other devices 
included in description of the 30, 39 and 118 nodes IEEE 
systems. 

B. Optimal Power Flow 

To set up the system, we solve the standard DC optimal 
power flow problem finding optimum generator dispatch given 
the initial load cfJ, cost functions f = (h Ii Egg) for 
every generator as well as generation power and line capacity 
constraints. To execute this task we use MATPOWER [12], 
and cost functions provided in the description of the IEEE 
systems studied. The DC optimal power flow, in the simplest 
nomenclature, corresponds to solving 

Eqs. (1,2), where d --+ cfJ hold 
V{i,j} : IPijl $ pijax 
Vi: gfin $ gi $ gftlX 

(3) 

for the branch flows, P, and generation powers, g. The resulting 
pO, gO and (Jo form the base (reference) solution for our 
cascading algorithm. 

C. IdentifY islands 

Our algorithm does not generate a surviving balanced sub­
grid at once, but instead it resolves it in steps, thus mimicking 
dynamics of realistic cascades. The temporal evolution of 
the surviving sub-grid is induced by cutting saturated lines, 
which might also cause the formation of islands, and removing 
freshly formed but overloaded islands. We check for islanding 
(i.e. splitting of the grid into independent components) using 
the function grComp of the MATLAB grTheory toolbox [13]. 

If an island is formed, we do all other computations within 
the cascading algorithm (including DC Power Flow, droop 
control and calculation of t*) independently for every island. 

D. Droop control 

In the process of evaluating the cascading algorithm, it 
can happen, due to tripping of overloaded lines, that some 
loads or generators will become disconnected from the grid 
or that the grid splits up into islands. Both scenarios require 
automatic redistribution of generation, done in the so-called 
droop control fashion. 

Droop control is executed at each generator locally in 
response to an increase or decrease of the system frequency 
(measured locally as well). If a generator experiences a drop 
in frequency. which is a symptom of over-consumption and 
under-generation, it increases its generation power in order to 
undo the frequency drop. Similarly, if the frequency increases, 
this is interpreted as a signature of over-generation. Since 
these deviations are typically small, we stick in this study to 
a linear response model, assuming a linear relation between 
the frequency drop/gain and the generation increase/decrease. 
(Nonlinear modifications can be easily included in a more 
general scheme.) We do droop control if: (a) The grid changes 
its structure, i.e. following appearance of new island(s) in the 
result of line tripping. (b) The demand at any node on the 
island has changed. Here we assume that the power generation, 
gi( +), at node i after at least one of these events is 

gi( - ) 
gi(+) = -( -)dE (+), 

gE -
(4) 

where the newly introduced quantities on the right hand 
side of Eq. (4) are the current power generation, gi( -), at 
node i; the total power generation (before droop control), 
gd -) = I:jE E

9 
gj (-), at the freshly formed island, L: C 

g, the generator belongs to; and the total power demand, 
dd + ) = I:jEE

d 
d j ( +), of the island observed after event 

a) or b). Note that if neither case a) nor case b) occurred at 
the island ~/, dE' (+) = dE' ( -) will hold. Since we always 
make sure that a stable well-balanced solution demand and 
generation match, dE' ( - ) = gE' ( - ) should hold and we arrive 
at gi( +) = gi( -) in the result. 

Droop control is executed at all the generators of the grid 
simultaneously. Note that the ratio on the rhs of Eq. (4) 
changes in the process of our discrete event simulations in 
accordance with the modification of islands. If at some point 
in the process a generator becomes saturated, we do not 
include it anymore in the droop control mechanism described 
above, but instead keep its generation level constant (at the 
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maximum generation capacity). Our droop control mechanism 
also includes accounting for overloads - as long as, using droop 
control, demand and total power generation can be matched, 
the island is functioning. However, if the total demand of the 
island exceeds its total generation capacity, we shut down the 
entire island. Thus, the transition point from phase two to 
phase three shown in Fig. 4 is associated with the emergence 
of a statistically significant number of islands wllich were shut 
down. 

E. Discrete Time Evolution of Loads 

Once the configuration of loads, d = rfJ + b, is generated 
we do not increase the demand from the reference point, 
rfJ, at once but instead break the change into a number of 
incremental steps. Each of the steps is associated with only a 
single element modification of the underlying grid (breaking 
of a single line constraint or an individual generator reaclling 
its capacity). This incremental degradation aHows us to model 
more realistically causal advancement of the stress mounting 
within the grid. For this discrete event procedure to work, 
we need to generate a monotonically increasing sequence 
of (fraction) times t* E (0, 1] of load disturbances, each 
associated with the dO + t * b configuration of loads within the 
island. (We recall that if the grid is islanded, we calculate the 
discrete time sequence separately for each island and choose 
the minimum time over all islands as t * .) One accounts for 
constraint breaking events of the following two types: 

a) Exceeding the local maximum generation power con­
straint at time t * = tg • 

b) Exceeding the line capacity constraint at time t* = tl. 
The time of locally exceeding generation capacity is 

t = min (9iax 
- gi ( - )) . 

9 i hl=lb 
YE\-J E 

(5) 

Indeed, tg is the time when gi( +, tg) 2: gfax holds for exactly 
one special generator site i E L . Then, the expression for the 
post-event generation at the special site is 

(6) 

(7) 

(8) 

where dd +, t) = dE( -) + tbE is the post-event cumula­
tive demand over the island I:, and Eq. (5) follows from 
gi( +, tg ) = gfax. 

Analogously, the time of exceeding a line constraint is 

t . (PijaJ< - Pij ( - )) 
l =mJn , 

(ij ) PF(9 , b,t1g) 
(9) 

which follows from the following consideration. Let p(±) = 

PF(9(±), d(±),g(±)) denote the vector of power flows, p, 
over the transmission lines of the grid Q(±), obtained by 
solving Eqs. (1,2) with demand d(±) and generation g(±), 
where ± indicates (as before) relevance to the pre- and post-

4 

droop control state. One derives that, p( +, t)PF(9( -), d( -) + 
lb, g( - )+tt1g), where (t1g)i is defined according to the droop 
control rule, Eq. (8). Furthermore, since PF( ... ) is linear in d 
and g, one finds that 

p(+,t)=p(-)+t · PF(9(-),b, t1g) , (10) 

thus arriving, under condition that P i j (+, tl) = Pijax holds for 
exactly one line, at Eq. (9). 

F Line checking and tripping 

After solving the DC PF equations we check for lines with 
violated constraints. The constraints are stated in the two 
last lines of the conditions for OPF in Eq. (3). It can easily 
happen, that one encounters degeneracy, in the sense that the 
constraints are violated at more than one line. If this is the 
case, we do not trip all the lines with violated constraints 
at once, but instead exclude only one of them and then do 
droop control and DC power flow again. (See the small loop 
in the flowchart Fig. 1.) The order of exclusion is chosen 
randomly prior to executing the cascading algorithm and it 
is maintained the same over all iterations and samplings. We 
stress that this degeneracy can only happen if at a previous 
step tg < tj held. which implies that we change local 
power generations instantly. This course of actions is an 
approximation and it would of course be more physical to 
not increase the generation power instantly, but gradually, and 
to account for singular line tripping events during this gradual 
increase. However, since dynamic generator data is very often 
not known, we choose to follow this simple and reasonable 
scheme. 

Here we want to mention, that our decision rule of whether 
a line is going to be tripped or not is obviously "magnitude 
only". This differs from other power-modeling approaches, 
where not only the magnitude of overload of a line (exceeding 
its rating) is important, but only the duration of overload. 
Indeed, from a power systems operator point of view the 
acceptable magnitude of overload is generally dependent on 
the duration of overload. However, since we study a quasi­
static model, we neglect the temporal aspect. 

From the quantitative analysis point of view, we only count 
a line as tripped when at some point the line flow exceeds its 
capacity. This means that if an island is overloaded and thus re­
moved from the grid, we do not count lines within the removed 
island (which now do not carry any current) as tripped. After 
all, these lines show no need for maintenance. This is different 
from the way we account for tripped generators and demands. 
When an island shuts down (then cumulative load exceeds 
generation capacity), we count these unserved demands and 
the generators set off-line as tripped. 

III. RESULTS 

In this Section we report the results of testing our cascading 
algorithm, described in details in Section II, on three IEEE 
systems. 
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Fig. 2. Average characteristics of outages in the 30 bus network induced 
by fluctuations in demand explained in the text. Every data point presents 
the average over 200 i.i.d. samples using the specified distribution. 4°) = 

O.5659kmal") . We observe three transition points. Prior to reaching the first 
transition point the grid is resilient to fluctuations in demand. In between tbe 
first and second transition points the probability of having an outage increases 
slowly. It turns out that the outage in this regime corresponds to tripping of two 
lines (due to overload) followed by islanding of the adjusted demand node. 
Here, one observes no cascades yet but only increased probability of line 
and demand tripping (as also witnessed by the low slope of tripped demands 
and the stress diagram of the system shown in Fig. 5). Passing the second 
transition point indicates emergence of a macroscopically significant number 
of tripped generators, which also results in a taster rise of demand tripping 
and signifies the start of cascades. In this system we also note a third transition 
point at which the number of tripped demands exceeds the number of tripped 
'lines, thus indicating that significant number of the unserved demands belong 
to islands left without power. 

A. Effect of random demand distributions 

In this Subsection we report tests on standard IEEE systems 
with 30 and 39 buses respectively. For these two systems all 
the important system parameters (maximum generation power, 
r, maximum line capacities, average demand distribution, 
d(O» are available in the system specifications documented 
in [12]. We select the average load according to, dg = 

0.56593''''', while maintaining the same relative distribution 
of demands between load buses, as specified in [12]. (The 
re-scal,ing reflects a typical day scenario for the reference 
point.) Then we set the distribution of generation according 
to the optimal power flow solution of Eq. (3). Fluctuations in 
the demands are generated using the half normal distribution 
a/lowing only positive fluctuations, in demand Vi E yo: 

{ 

exp(-(6;)' / (24 ~» 
J1rd?~/2 ' 

P(c5i ) = 1/2, 
0, 

d? + c5i > d? 
d? + c5i = d? 
d? + c5i < d? 

(11) 

Figs. 2 and 3 show average characteristics of outages, 
caused by the distribution of demand Eq. (11) under different 
values of dispersion, for the systems of 30 and 39 buses 
respectively. Although the qualitative forms of the curves ob­
served are quite similar, one also finds interesting differences 
in the way how cascades evolve in the two systems. Whereas 
in the 30-bus system the first phase is associated with line 
tripping also resulting in isolation of a few demands, this 
state is virtually absent in the 39-bus system. The cascading 
behavior in this system begins with the second phase. The 
increase in the number of unserved demands is here in fact 
induced by generator tripping. Furthermore phase two and 

25 10 

20 

1.5 
<1 

2 2.5 

Fig. 3. Outages in the 39bus network induced by disorder in the demands. 
Every data point presents the average over 200 samples of Eq. (II). dc;}) = 
O.5659kmar

) . 

Phase 0 

# 

Phase 3 

. . .. : . : . .. : 

tJ.D/ D 

Demands . .... 

Lines 
., ... . . 

... . ... Generators .... 

Fig. 4. nlustration of possible cascade phases. In phase 0 the grid is resilient 
against fluctuations in demand. Phase I shows tripping of demands due to 
tripping of overloaded lines. This has a overall "de-stressing" effect on the 
grid. In phase 2 generator nodes Slart to become tripped, mainly due to 
islanding of individual generators. With the early tripping of generators the 
system becomes stressed and cascade evolves much taster (with increase in 
the level of demand fluctuations) when compared with a relatively modest 
increase observed in pbase I . Outages in phase 3 are associated with removal 
Iiom the grid of complex islands, containing both generators and demands. 

phase three almost coincide in the 39-bus system. However, 
as the stress-diagrams (see Fig. 6 and Fig. 5) of both systems 
show, islanding is an important effect. The improved behavior 
of phase one in the 39-bus system appears to be due to 
the fact that created islands are (a) rather big, (b) include 
generators, and (c) are stressed and becomes powerless almost 
immediately after emergence. In phase one of the first system, 
islands are small and immediately removed from the grid (as 
not containing generators). Somehow surprisingly, this early 
removal of many small islands has a positive, de-stressing 
effect on the remaining part of the grid. Figure 4 provides a 
qualitative illustration of the three phases. The stress diagrams, 
shown in Fig. 6 and Fig. 5, provide additional evidence 
supporting the aforementioned explanations. 

A qualitative similar behavior to the one shown in Figs. 2 
and 3 was also observed for some other choices of demand 
distributions Eq. (II), e.g. for fluctuations allowing a decrease 
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• 
Fig. 5. Stress diagram of the 30-bus system, corresponding to Fig. 2, using 
the specified distribution. From top left to bottom right stress in the system 
is increased: ~ = 0.1, ~ = 0.2, ~ = 0.9, ~ = 1.2 and ~ = 2.0. 
Buses labeled G# are generator buses, all other are load-<>nly buses. The 
average probltbility of tripping a linc or a bus (over 200 samples) is color­
coded for every componcnt Every instance is normalized by the maximum 
tripping probability paw. of a component Yellow (light) means small and red 
(dark) means maximum tripping probability. (See electronic version of the 
manuscript for color figures .) 

in demands (yet keeping the total demand positive). Hence 
one can speculate that the qualitative picture of outage growth 
induced by increase in load fluctuations is universal. 

At this point we would like to comment on one interesting 
similarity between our microscopic results and the results of 
Dobson et al. reported for the phenomenological CASCADE 
model [7]. The CASCADE model is an abstract representation 
of the power grid, considering equivalent components failing 
according to some pre-defined distribution. If a component 
fails, a certain amount of load is distributed equally to all 
other components. The model is structure less and as such it 
carries no explicit relation to the power flow equations. It is 
argued in [7] that an increase in the parameter mimicking 
increase in the total load, results in an abrupt increase in 
the size of the damage starting at some finite threshold value 
of the parameter. This observation is akin to the transition 
from phase one to phase two (see Fig. 4) observed in our 
microscopic model. Moreover, a similar observation was made 

6 

Fig. 6. Stress diagram of the 39-bus system, corresponding to Fig. 3, using 
the specified distribution. From top left to bottom right stress in the system 
is increased: t. = 0.3, ~ = 0.4 and ~ = 0.6. Buses labeled G# are 
generator buses, all other are load-only buses. The average probability of 
tripping a tine or bus (over 200 samples) is color-coded for every component 
Every instance is normalizcd by the maximum tripping probability -pnox of 
a component Yellow (light) means small and red (dark) means maximum 
tripping probability. (See electronic version of the manuscript for color 
figures .) 

recently in the context of yet another phenomenological model 
discussed in [14] . In contrast to the model of [7], the one 
of [14] is based on a network with some spatial structure. 
Trigged by one random overload (failure of a generator), 
cascading behavior is observed as the overload is equally 
distributed among generators, which are graph neighbors of 
the failed one. Here as well, a phase transition was observed. 
Overall, we conclude that transition form phase one (in which 
almost all generators are functional) to phase two (where 
a significant, 0(1), fraction of generators is in outage) is 
observed universally across the models. 

B. Effects of line capacities 

In this Section we describe results of our cascading algo­
rithm test on the larger IEEE 118-bus system. In the contrast 
with the 30-bus and 39-bus system, specification of the 118-
bus system available in MATPOWER does not have line ca­
pacities. To resolve this problem, we generated line capacities 
ourselves. Somehow surprisingly, these experiments lead us 
to the conclusion that variability in the line capacities affects 
the dynamics of cascades in a strong way. More precisely, we 
observed that the distribution of line capacities influences the 
structure of emerging islands. 

This observation, made first on the 118-bus system, led us 
to experiment with the variability of capacities in the smaller 
systems. We show in Figs. 8 how the cascading behavior 
is influenced by ctifferent distributions of line capacities in 
the 30-bus system with 6 generation and 24 demand nodes. 
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Fig. 7. Outages in th~ IEEE lIB-bus networl< induced by disorder in the 
demands. Every data pomt preseots the average over 25 i.i.d. samples using the 

·tied d· ·b· (0) (mar ) Specl tsln utIon. dE = 0.5659E . Since for this systems the lEEE 
s~ docs oot specify linc capacities, we assign line capacities randomly 
according to the relatlVc-apaeity-distribution from the 3D-bus case. 

We consider three univalued cases, when all the capaclnes 
are set to the same value, equal to the smallest, largest and 
mean characteristics of the original distribution (available in 
the MATPOWER specification for the system). When the 
univalued line capacity is maximal (top left figure), no line 
outage or islanding is observed. Outages in such systems 
are solely due to generators exceeding their capacities, which 
obviously becomes more likely with increase in ~. Referring 
to our classification scheme, phase 1 and 2 are absent in this 
case. This observation is also consistent with results obtained 
earlier in (7] or [14]. In contrast, when the univalued line 
capacity is minimal (top right figure), the cascading behavior 
is not seen. In this case, any (sensible) initial distribution leads 
to islanding and blackout of some of these islands. (Note that 
~n this case the complete grid is never outaged completely, 
lDstead we reach a stable point with 4 loads and 2 generators 
remaining for a rather wide variability range in ~. We attribute 
this peculiar result to the specific topology of the grid and the 
initial demand distribution, cfJ. The islands are formed in a way 
that two remaining generators provide powers to the remaining 
loads without exceeding line capacities.) In the univalued case 
correspondening to the mean value of the original distribution, 
illustrated in the bottom left of Fig. 8, phases I and 2 
are missing again. suggesting that islanding did not lead to 
any relief (de-stressing). Looking at all these three univalued 
examples from a quantitative perspective, we observe that the 
average size of the outage at the maximum fluctuations in 
the demand considered, ~ = 5, is significantly larger than in 
the original case of a realistic distribution of capacities. We 
associate this negative effect of the univalued capacity with the 
lack of heterogeneity in the islands formed under stress. To 
conclude, we find that setting the line capacities to the same 
value (large, small or averaged) leads to overestimation of the 
strength of the outage in comparison with the case of a more 
realistic distribution of capacities. 

Therefore, to generate a realistic study of the 118-bus 
system, we distributed line capacities according to the relative­
capacity-distribution of the 30-bus system, i.e. according to 

p~ax (30 bus) '" Dist.;j(30 bus). (12) 
Pij 
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Fig. 8. Outages in the. lEEE-30bus network with univalued Iioe capacities 
mduced by fluctuations 10 demands. Every data point is a result of averaging 

over.2oo i.i.d: samples from Eq. (II). 41) = 0.5659rar
) Top left: Sct 

all Imc .capacltles .equal to the maximum line capacity from the original 
dlSlnbutlOo. Top ngbt: Sct all line capacities equal to thc minimum line 
capacity of the original distribution. Bottom left Set all line capaeities equal 
to the mean of the original distribution. 

We obtain the maximum possible power flow (line capacity) 
over line 0: in the system as 

pijax(118 bus) '" Dist.;j(30 bus)· p?j(118 bus) . (13) 

Fig. 7 shows the resulting outage diagram observed in this syn­
thetic system. These results are consistent with the simulations 
of the smaller systems and also with the qualitative scheme 
described in Fig. 4. Note, that the same simulations conducted 
with univalued capacities (not shown) give a significantly dif­
ferent picture, qualitatively consistent with the results reported 
in Fig. 8 for univalued capacity tests in smaller systems. 

Based on the results of this Subsection, we conclude that in 
order to capture realistically cascading effects, like islanding, 
it is crucial to take the non-uniformity of line .capacities into 
account. 

IV. DISCUSSION AND CONCLUSION 

In this manuscript we, proposed a new microscopic model 
of cascades in power grid. The model was tested on three 
IEEE systems. We solved the power flow dynamics (in DC 
~e approximation), analyzed structural evolution of the opera­
nona 1 part of the grid associated with islanding, and observed 
the emergence of cascades caused solely by fluctuations in 
loads. Analyzing the statistics of the damage, we identified 
four distinct phases, observed in response to variations in the 
level of demand fluctuations. Phase #0, described by small 
demand fluctuations, does not lead to any significant damage. 
Phase # 1, described by modest fluctuations, results in the 
removal of some number of lines as well as the removal 
of a few loads (the formation of islands which do not have 
any generation and are thus blacked out immediately), while 
generators remain largely unaffected. This phase can have a 
de-stressing effect on the grid seen in a significant reduc­
tion of damage increase with increasing demand fluctuations. 
Phase #2, described by sizable fluctuations, is characterized 
by the appearance of some tripped generators (surrounded 
by tripped Jines), while the relations, (# of tripped lines) > 
(#of tripped loads) > (# of tripped generators), remain 
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valid. Finally, phase #3, described by large demand fluc­
tuations, is characterized by multiple islands, of which a 
sizable 0(1) portion is outaged: (# of tripped loads) > 
(#of tripped lines) > (# of tripped generators. Typical in­
stances, contributing to phases # 1-#3, develop in multiple 
sequential steps, and as such can aU be interpreted as cascades 
of severity increasing with the numerical index of the phase. 

Analyzing the dependence of the phase structure on line 
capacities, we observed that selecting line capacities with 
sufficient variability over the grid is important for capturing 
realistic dynamics of outages. In particular, our simulations 
suggest that introducing sufficient variability in line capacities 
(expressing realm of existing power grids) reinforces the 
grid. creating multiple islands, and thus making the resulting 
grid more resistant to a correlated large scale blackout. One 
observes that a cascade model, which does not account for 
variations in line capacities, would overestimate the damage. 

AU in all our study suggests that to describe dynamics 
and statistics of outages in the power grid faithfully, one 
most account for (a) fluctuations (and eventuall increases) 
in demand (leading locally and globally to exceeding the 
generation capacities) and (b) islanding influenced by the 
distribution of line capacities. 

Obviously, this study constitutes only the beginning of a 
strategy for analyzing power grid cascades. One natural exten­
sion would be to replace the DC power flow solver by a more 
realistic AC solver. We also intend to study mixed models 
combining the effects of demand fluctuations with effects of 
incidental line tripping. Then, with an eye toward aiding efforts 
in grid reinforcement, we plan to continue our analysis of the 
effect of capacity inhomogeneities on islanding. Finally, our 
long-term goal is to build a novel phenomenological model and 
theory of cascades based on a detailed microscopic analysis 
of the type discussed in this manuscript. 
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