
LA-UR- /V~d1 rio 
Approved for public release; 
distribution is unlimited. 

~Alamos 
NATIONAL LABORATORY 
--- EST.1943 ---

Title: Randomized Discrepancy Bounded Local Search for 
Transmission Expansion Planning 

Author(s): Russell Bent 
William Daniel 

Intended for: Submission to the Power Engineering Society Conference 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher'S right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Randomized Discrepancy Boul1ded Local Search for 
Transmission Expansion Planning 

Russell Bent and W. Brent Daniel 

Abstract-In recent years the transmission network expansion 
planning problem (TNEP) has become increa~in.gly .complex. As 
the TNEP is a non-linear and non-convex optImIzation problem, 
researchers have traditionally focused on approximate models of 
power Hows to solve the TNEP. Existing approaches are often 
tightly coupled to the approximation choice. Until r~cently these 
approximations have produced results that are straIght-forward 
to adapt to the more complex (real) problem. Howeve~, the power 
grid is evolving towards a state where the adaptatIOns are no 
longer easy (e.g. 'large amounts of limited control, renewable 
generation) and necessitates new approaches. Recent work on 
deterministic Discrepancy Bounded Local Search (DBLS) has 
shown it to be quite effective in addressing this question. DBLS 
encapsulates the complexity of power How modeling in a ~Iack 
box that may be queried for information about the quality of 
proposed expansions. In this paper, we prop~se a r~domization 
strategy that builds on DBLS and dramatIcally mcreases the 
computational efficiency of the algorithm. 

Index Tenns-Transmission Expansion Planning, TNEP, Local 
Search. 

I. INTRODUCTION 

R ECENT years have seen an increase in awareness that 
one of the major challenges of the 21 st century is the 

problem of how to provide clean, sustainable, and cheap 
energy to the world's rising population [I], [2). To address this 
challenge, the United States Department of Energy released a 
report in 2008 that stated the goal of having 20% of the U.S.'s 
energy come from wind by 2030 (3). An important aspect of 
this report is the question of how to best upgrade and expand 
the electric power transmission grid to incorporate sustainable, 
renewable energy sources that are located in transmission 
deficient areas. This optimization problem has been well­
studied as Transmission Network Expansion Planning (TNEP) 
[4), [5], [6], [7); however, the requirements for the future grid 
raise a number of challenges, including: 

I) The inability of expansion plans based on linearized DC 
models of power flows to guarantee an easy modification 
to account for nonlinearities and AC power flows under 
conditions imposed by uncontrollable generation [8]. 

2) With a few exceptions (for example, [9]), expansion 
algorithms are designed for specific models of power 
flow. 

In previous work (10), we presented a novel approach to ad­
dress these challenges. This approach, Discrepancy-Bounded 
Local Search (DBLS), embedded ideas from simulation opti­
mization [11], [12], [13], [14], [15] in a local search procedure 
that generalizes constructive heuristics [16], [17], constraint­
based local search [18] , [19], and is related to global search 
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techniques such as limited discrepancy search [20], [21], [22) . 
The key idea of the approach is the encapsulation of the 
power model within a simulation black box. The DBLS is 
allowed to query the black box for power flow information 
about proposed expansion plans. Unlike traditional simulation 
optimization that typically uses the "black box" only for 
evaluation (objective function) or feasibility checking, our 
approach uses information (i.e. flows) from the simulation 
to help influence the choices of the DBLS algorithm. While 
powerful, the approach can require large amounts of compu­
tation to solve large scale problems with complex power flow 
models. This paper considers this computational challenge and 
demonstrations how the introduction of randomization can 
significantly boost the computational performance of DBLS. 

In short, the key contributions of this paper include: 
• An approach for randomizing DBLS to improve compu­

tational performance. 
• A TNEP approach that is decoupled from the details of 

how power flows are modeled . 
• A TNEP approach that handles non-linear models of 

power flow. 
• An algorithm that generalizes existing TNEP heuristics. 
• An algorithm that scales to large scale realistic problems. 
• A framework for supporting multi-objective expansion 

planning. 
• A coupling of simulation and optimization that allows the 

simulation results to influence the optimization choices. 
Literature Review The literature on TNEP is extensive and 
references [4], [5], [6], [7] provide excellent surveys of 
the field. In general, existing approaches have focused on 
modeling power flows with transportation models [23] or 
the linearized DC model in order to reduce computational 
overhead. Until recently it has been been easy to adapt plans 
derived from these models to more realistic conditions (see 
[24], [25]). The approaches tend to fall into three categories, 
complete search based upon mixed-integer program (MIP) 
formulations [24] , [26], locally optimal search such as con­
structive heuristics [16), [17], and meta-heuristics [27J, [28] , 
[29J , [30], [31], [32] . 

One of the most relevant papers related to the work pre­
sented here is that of [33] which presents an expansion 
planning scenario where generation is fixed (also studied in 
[17]). In these papers, generation is fixed in order to model 
the challenges of economic dispatching, whereas the primary 
motivation for fixing generation in this paper is renewable 
energy sources. This is a pessimistic view of how power 
systems operate, but is useful in terms of understanding how 
worst case dispatching impacts expansion planning. 

Reference [9] also shares a number of interesting similarities 



with this paper. It presents a tree-based local search procedure 
which contains a truncation criteria not unlike the discrepancy 
parameter of DBLS. Their approach utilizes combinations of 
the transportation model and the linearized DC model for 
modeling power flows. The paper does state that the approach 
is generalizable to more complex models of power flow, but 
this was not tested. It is important to note that their search 
procedure is primarily guided by cost, whereas DBLS is 
guided by both feasibility and cost. 

Also of interest is the work of (34), (35) which is the 
basis for many of the results contained in (3). These papers 
provide the fundamental motivations for the work of this paper. 
They studied how to best integrate large amounts of wind 
power into power grids spread over large geographic areas 
using transportation models of power transmission . We seek to 
address the question of how to account for non linear models 
of power flow into such planning scenarios as considerable 
effort is required to adapt models derived from transportation 
models in this context (8). 

The remainder of this paper is organized as follows. Sec­
tion II formally defines the TNEP. Section ill describes the 
algorithm used to generate expansion plans and the heuristics 
used to guide the algorithm to reduce physical violations and 
cost. Section IV describes how randomization is incorporated 
into the DBLS. Section V discusses the experimental results 
and Section VI concludes this paper. 

II. PROBLEM DEFINITION 

Buses The TNEP problem is described in terms of a set of 
buses, 8, that represent geographically located nodes in a 
power network e.g. generators, loads, and substations. Each 
bus, i, is defined by parameters gi, Ii, ~i , ~t, which represent 
its generation, load (demand for power), minimum voltage (per 
unit) and maximum voltage (per unit). P(gi ) and Q(gi) are 
used to denote the real and reactive components of generation. 
Similarly, P(li) and Q(li) are used to denote real and reactive 
components of load. For simplicity, Pi = P(gi) - P(li) and 
Q'i = Q(gi) - Q(li) are used to denote the real and reactive 
power injected at bus i. The decision variable e; is used to 
define the number of control components at i (in this paper, 
shunt capacitors for regulating reactive power). Ci has discrete 
domain {ci, ci + 1, ... , ct - 1, cn· ci is defined as the 
number of control elements i starts with, ensuring that existing 
controls are included. 
Transmission Corridors The TNEP is also described by a 
set of edges, E, called transmission corridors, connecting pairs 
of nodes. A transmission corridor i, j between buses i and j 
has a decision variable Ci ,j that defines the number of circuits 
(power Lines) in the corridor. The variable has discrete domain 

{c-:- .,c-:-. + I, . . . ,c+]. -I,c;].} where c:]' is defined as the 
1"J 1. ,J t, " I " , 

number of circuits the corridor starts with. ctj = ci,j when no 
circuits may be added to a corridor. A circuit is also defined by 
parameter 1/Ji,j which denotes the capacity of a single circuit 
in the corridor. Similarly, ri ,j, Xi, j' bi ,j denote the resistance, 
reactance, and line charging of a single circuit in the corridor. 
TNEP Solution A transmission network solution, a, is defined 
as a set of variable assignments UiE13 e; <- di U Ui,jEE Ci,j <-

2 t 

di,j, where di is drawn from the domain of e; and di,j is drawn 
from the domain of Ci,j I. By convention, unassigned variables 
are assumed to be ci and C;j' respectively. aCe;) and a(ci,j) 
are used to denote the variable assignments for a. 
Simulation TNEP algorithms have at their disposal a simulator 
S for determining the behavior of power for a. Sea) returns 
true when it is able to compute the behaviors. This is important 
as some implementations of S use convergence approaches 
(e.g. Newton 's method) that do not have guarantees on whether 
or not they are able to obtain a solution. Sfi, j (a) denotes 
the flow in corridor i, j and SVi (a) the voHage at bus i. For 
simplicity, this notation is shortened to fi ,j and Vi when S (a) 
is understood from context. The following sets of equations 
provide an example of S for the linear DC model where Aj = 
-hi. 

'iiE13 Pi 
'ii ,jEE Aj 

In this model, Ai ,j = r2~:i;~ . is the susceptance of a 

circuit in corridor i , j and 8:'{s th~ phase angle at bus i . The 
first constraint ensures conservation of flow (Kirchoff's current 
law) and constraint 2 expresses the relationship between phase 
angle and DC power (Ohm's law). This model does not use 
control components and does not calculate voltages (assumed 
to be I). Implementing S as this set of equations allows the 
incorporatation of the traditional TNEP power flow model. 

A more advanced implementation of S uses the following 
decoupled model of power flow. 

'IiEI3 Pi = I:j E13 V i Vj(-Yi ,j Ci,j COS(lii -lij) + Ai,jCi,j sin(Ii, -lij)) (1) 

'IiE I3Qi = I:
j E 13 

V i Vj(-Yi, jCi, j sin(lii -lij) + Ai,jei,j COS(lii - OJ)) (2) 

where ,i,j = r2 r~~2 . is the conductance of a circuit in i, j . 
1. ,] t, l 

A TNEP solution a is feasible when the following con-
straints are satisfied, i.e. 

(i,j E E) (1) 
(i E 8) (2) 

(3) 

Physical constraints are relaxed and incorporated into the 
objective function in order to keep the search space connected 
(similar to Lagrangian Relaxation). The overload of a is cal­
culated as the sum of flow that exceeds the capacity of the cir­
cuits, i.e. TJ( a) = I:; ,jEE max(O, Aj - 1/Ji,jCi,j)' The voltage 
violation of a is calculated as the sum of voltages that fall be­
low ~i or above ~t, i.e. v(a) = I:iE13 max(O, ~i -Vi, Vi-~n · 
Finally, the cost of a is defined by K:(a) = I:i ,jEE Ci,jK:i ,j + 
I:iEB Ci/l',i, where K:i is the cost of putting a control at bus 
i and K:i ,j is the cost of putting a circuit in corridor i, j. 
The objective function, f(a), is then a lexicographic multi­
objective function of the form min f(a) = (TJ(a) , v(a), K: (a)) 

III. DBLS ALGORITHM 

In reference (10), a deterministic branch and bound algo­
rithm is presented for the TNEP. This algorithm builds on 

'Th.is formulation can be generalized for mulliple types of control compo­
nents and circuits. 



simulation optimization ideas by encapsulating the behavior 
of the network into a "black box" that may be queried by 
the algorithm for information about how a TNEP solution 
behaves (i.e. S(a)) and embedding it in a discrepancy bounded 
local search (DBLS) that limits the full exploration of the 
branch and bound search tree. The intuition behind DBLS 
is to generalize heuristics that make good decisions on how 
to build solutions, but make a few bad decisions from time­
to-time. DBLS embeds the heuristic in a search tree as the 
branching heuristic and explores those solutions that are within 
8 violations (discrepancies) of the heuristic, where 8 is a 
user-specified parameter. DBLS provides a natural way to 
incorporate constructive heuristics from the TNEP literature, 
e.g. [16], [17], into a more general framework and is related 
to the approach of [9]. The formal model of DBLS for TNEP 
is presented in Figure 1. 

DBLS takes as arguments a starting solution a, (often the 

current state of the network, i.e. UiEB Ci <- ci UUi,jEE Ci,j <­

ci:j)' a set of variables, X, drawn from UiEB Ci U Ui,jEE Ci.,j, 
a heuristic discrepancy parameter, 8, a worsening discrepancy 
parameter a, and a divergence discrepancy parameter (3. The 8 
parameter is used to control the number of times the branching 
heuristic may be violated in the search and is decremented 
in line 16. As the TNEP has the property that j(a) is non­
monotonic, i.e. adding components can make T/(a) and v(a) 
rise or fall (sometimes referred to as Braess's paradox). The 
parameter a is used to limit the number of times in a row that 
](17) may worsen (lines 8-to). A similar parameter is used 
in [9]. Finally, as it is possible for S(a) to fail (diverge) for 
a given a, a parameter (3 is introduced to limit the number 
of times in a row that S(a) may fail (lines 11-13). All three 
parameters are checked for violation in lines I and 2. 

Line 4 chooses a variable to explore based upon the results 
provided by S. It is here that the results of S drive the search 
and represent the largest departure from traditional simulation 
optimization. Line 5 provides the heuristic for ordering the 
domain of x. When T/(a) > 0 or v(a) > 0 the domain 
is ordered by component additions, no change (a(x)), and 
component removals, i.e. 

otherwise it is ordered in reverse, i.e. 

Line 5 unassigns the current variable assignment of x and 
lines 6-16 iterate over the ordered domain of the variable. It is 
worth noting that line 7 implicitly updates attributes associated 
with the new a and is where S is executed. 

One of the challenges of this approach is that the per­
formance of DBLS is highly dependent on the quality of 
early decisions. It can take a considerable amount of time to 
revisit those choices due the amount of backtracking that is 
required, especially on large scale problems. From a scalability 
perspective in reference [to] it was found to be productive 
to keep 8 small when executing DBLS and iteratively restart 
DBLS with improving starting solutions. Restarts were also 
found to be productive in the algorithm presented by [32]. The 

3 

restart procedure is described in the function OPTIMIZETNEP, 
where the algorithm is continuously restarted until the solution 
no longer improves. 

OPTIMIZETNEP(a, X, 8, a,,f3) 
I repeat 
2 17* <- a; 
3 17<- DBLS(a,X,8,a,(3); 

4 until ](17) 2: ](17'); 
5 return 17*; 

DBLS(a, X, 8, a, (3) 
I if 8 ::; 0 or a::; 0 or (3 ::; 0 
2 then return a; 
3 x <- CHOOSEVARIABLE(X, a); 
4 (d1 ,d2 , ... ,dk) <-ORDERDoMAIN(X); 
5 a <- a \ [x <- a(x)]; 
6 for i <- 1 ... k 
7 do ai <- a U [x <- di ]; 

8 if ](aJ < j(a) 
9 

10 
II 
12 
13 
14 

then ai <- 0; 
else ai = a-I; 

if S(ai) 
then (3i <- 0; 
else (3i = (3 - 1; 

if ](ai) ::; ](17*) and S(ai) 
15 then 17* <- ai; 
16 DBLS(ai, X \ x, 8 - i, ai, (3i); 
17 return 17*; 

Fig. I. Discrepancy Bounded Local Search 

In this paper two implementations of CHOOSEVARIABLE 
are used. For ease of presentation, £(X) is used to denote 
those corridors that have circuit variables in X, i.e. U i, j E 
£ I C;,j E X. B(X) is used to denote those buses that have 
capacitor variables in X, i.e. U i E 13 I Ci E X. 

The first implementation is described in Figure 2 and is 
based upon the constructive heuristic presented in [16]. It 
first chooses the variable corresponding to the corridor that 
is most overloaded (lines 1-3), if one exists. Otherwise the 
heuristic chooses the corridor within n = 1 hops of an 
overload that decreases an overloaded the most (lines 7-16). It 
then iteratively tries n = 2,3,4,... up to a user specified 
maximum until it finds a decreasing ] (a) circuit addition 
(lines 6-17). If there are no corridors that satisfy this criteria, 
the heuristic selects the bus with the lowest voltage for adding 
shunt compensation (lines 18-19). This heuristic is used when 

T/(a) > 0 or v(a) > O. 

The second heuristic is based upon the standard cost reduc­
tion stages of constructive heuristics [16], [17] and chooses 
to explore those variables whose removal of components will 
decrease the cost the most (lines 1-2 of Figure 3). It is used 

when T/(a) = v(a) = O. 



CHOOSEVARIABLE-FEASIBLE(X,O") 

I i ,j t-- argmaXi,jE£(X) IAjl- 'l/Ji ,jO"(Ci,j); 
2 if IAjl- 'l/Ji ,jO"(Ci, j) > 0 
3 then return Ci,j; 
4 E t-- £ ; 
5 while lEI > 0 
6 do for k t-- 1 ... n 
7 

8 
9 

10 
11 
12 

13 

14 
15 
16 

17 

do i,j t-- a rgmaxi,jEE lfi,jl- 'l/J;,jO"(Gi,j); 
B t-- NEIGHBoRs(i,n) U NEIGHBORS(j, n); 
Ei,j t-- (B x B) n £(X); 
for (j E Ei,j 
do fT t-- 0" \ [c. -. t-- O"(c ,-, )]; ' ,J ' ,) 

fT t-- fT U [ci-)· t-- min(C4::, O"(c - ) + 1)] ; , ',) ' ,) 
.1i;j t-- Sfij (fT) ; 

(j t-- arg max-)'E£- . .1,.-); 
1., 1- ,1 J 

if .1( j :::; S/;,j (0") 
then return c.-.; 

A A t ,] 

£t--£ \ i,j; 
18 it-- argminiEB(X) Vi ; 

19 return Gi; 

Fig. 2. Feasibility Branching Heuristic 

CHOOSEVARIABLE-COST(X, 0") 

I ~, j t-- arg ma xi,jE£(X) I C7(Ci,j) > c:;j Ki ,j; 
2 ~ t-- a rg maxiEB(X) I C7(C;) > ci Ki; 
3 If Ki ,j ?: Ki 

4 then return Gi ,j; 
5 return Ci; 

Fig. 3. Cost Reduction Branching HeurisLic 

IV. RANDOMIZED DBLS ALGORITHM 

We now present two approaches for introducing randomness 
into DBLS that dramatically improves its computationally effi­
ciency. The first approach considers the discrepancy parameter 
for worsening solutions. While a useful pruning mechanism, 
it does not use information about the degree of worsening. To 
address this limitation, we introduce a simulated annealing like 
acceptance criteria for exploring a worsening solution as seen 
in Line 10 of Figure 4, where l' is the temperature parameter. 
Like simulated annealing T is cooled by parameter t in line 
12. 

The second approach adds randomness in how the dis­
crepancy search tree is explored as seen in Figure 5. The 
search chooses P random paths in the tree (lines 4-8 of 
OPTIMIZETNEP). The random paths are guided by the branch­
ing heuristic using determinism parameters wand ( (lines 4 
and 8 of D PLS). When wand ( are near I, the choice of 
variable and variable assignment nearly follow the branching 
heuristic. The larger wand ( get, the more the branching 
follows a uniform distribution for selecting x (line 5) and d i 

(line 9). The parameters control the influence of the branching 
heuristic . This approach is referred to as Discrepancy Probe 

DBLS(O", X, 5, T) 
I if 5 :::; 0 
2 then return 0"; 

3 x t-- CHOOSEVARIABLE(X, 0"); 
4 (d 1, d2 , ... , dk ) t-- ORDERDoMAIN(X) ; 
5 0" t-- 0" \ [x t-- O"(x)]; 
6 for i t-- 1 ... k 
7 do O"i t-- 0" U [x t-- di ]; 

8 if 1(O"i) :::; 1(0"*) and S(O";) 
9 

10 
II 

then 0"* t-- O"i ; 
• / (" i) -/ (" ) 
If RANDOM([O, 1]) :::; e- 'J' 

then DBLS(O"i, X \ x , 5 - i , Txt); 
12 return 0"* ; 

Fig. 4. Randomized Discrepancy Bounded Local Search 

Local Search (DPLS) throughout the rest of the paper. 

OPTIMIZETNEP(O", X, T) 
I repeat 
2 0"* t-- 0"; 

3 fT t-- 0"; 

4 for i t-- 1 ... P 
5 do O"i t-- DPLS(O", X , T); 
6 if 1(0"); < 1(fT) 
7 then fT t-- O"i; 
8 
9 

0" t-- fT ; 
until 1(0") ?: 1(0"*); 

10 return 0"*; 

DPLS(O",X,T) 
I if 5 :::; 0 
2 then return 0"; 

3 (Xl ,X2, ... ,Xk) t-- ORDERVARIABLES(X,O") ; 
4 j t-- lRANDOM([O, 1J)w x IXIJ; 
5 xt--Xj; 
6 (d I , d2 , .. . , dk) t-- ORDERDoMAIN(X); 
7 0" t-- 0" \ [x t-- O"(x)]; 
8 i t-- lRANDOM([O,I])< X (x+ - x-)J ; 
9 O"i t-- 0" U [x t-- di ]; 

IO if 1(O"i) :::; 1(0"*) and S(O"i) 
11 then 0" * t-- O"i; 

• / ("i ) -/ (" ) 
12 If RANDOM([O, 1]) :::; e- ./ 

13 then DPLS(O"i, X \ x, Txt); return 0"*; 

Fig. 5. Discrepancy Probe Local Search 

V. EXPERIMENTAL RESULTS 

4 t 

In order to evaluate our approach we considered four 
expansion planning benchmarks from the TNEP literature [33] . 
The approach was also tested on an expansion scenario for the 
electric power grid of the state of New Mexico based upon 
load and wind generation growth projections found in [3]. The 
commercial electric power simulation package TIOOO [36] and 



Bus GI Q(g) G2 Q(g) 
I 94..13 76.24 
2 46.8 46.8 
7 193.5 155.23 
13 758.8 609.43 
14 41.1 41.1 
15 0.15 0.15 
16 75.66 

I 
75.66 

IS 412.2 412.2 
21 324.6 324.6 
22 -89.2S -89.28 
23 64.6 195.45 

Bus Q(g) Bus Q(g) 
I 66 5 42 
2 60 6 84 
3 III 7 75 
4 45 

G3 Q(g) G4 Q(g) 
94.43 85.25 
46.8 42.32 
193.5 174.58 

623.55 684.32 
41.1 41.1 
0.08 0.13 

45.88 68. 17 
207.13 246.63 
257 .24 291.32 
-89.28 -89.28 
406.08 287.94 

TABLE I 
AC GENERATION 

Bus Q(g) 
8 105 
9 108 
10 120 

TABLE II 
AC LOAD 

Bus 
13 
15 
16 

Q(g)max Q(g)~in 
240.0 -150.0 
240.0 -150.0 
540.0 0.0 
720.0 0.0 
200.0 -150.0 
330.0 0.0 
240.0 -150.0 
600.0 -150.0 
600.0 -150.0 
288.0 -180.0 
930.0 -375.0 

Q(g) Bus Q(g) 
162 18 204 
192 19 III 
60 20 78 

the linearized DC flow model are used as implementations of 
S. It is important to note that since T2000 uses convergence 
methods for solving the power flow equations, there is no 
guarantee of a unique solution. Thus, it is possible that a stable 
flows exists for a (J' that achieves a better value 77 than the 
one returned by S. However, as the approach is not tied to a 
particular choice of S, a user may supply a simulation model 
that either returns a unique solution or the best of a set of 
solutions, if desired. 

The four benchmarks proposed in reference [33] are based 
on the RTS-79 and RTS·96 problems of [37], [38]. [33] 
grew demand and generation of the RTS by 200-300%. The 
problems allow up to 3 additional circuits in the 34 existing 
corridors and up to 3 circuits in each of 7 new corridors 
(thus, the domain of each circuit variable has size 4). The 
benchmarks pessimisticaUy assume that generation cannot 
be dispatched. This provides worst case scenarios, e.g. all 
generation is wind-based. The approach described here does 
not depend on this property, as dispatching andlor optimal 
power flow are definable within S, when appropriate. 

The definition of the original RTS problems provide all the 
parameters for solving AC and DC power flows, however, as 
[33] used DC power flows, some information was not provided 
in the new problems, namely growth in AC generation and 
demand and line charging for circuits in new corridors. To 
overcome this limitation the AC load and generation were 
scaled by the same factors as [33]. We also modeled the 
generators as "voltage" controlled, thereby allowing S to 
adjust reactive generation to achieve certain voltage levels. 
This makes the problems easier, as the intent of the bench­
marks is to make generation fixed. However, allowing reactive 
generation to fluctuate does provide a fairer comparison with 
results based on DC flows (as the behavior of the AC flows can 
be improved with flexible AC generation). The AC generation 
parameters for problems G I, G2, G3, and G4 are in Tables I. 
II, and III. 
DC Power Flow Expansions We first test the approach on 

Bus Bus 
I 8 
2 8 
6 7 

b Bus Bus b Bus Bus 
0.043 13 14 0.088 19 23 
0.034 14 23 0.14 16 23 
0.052 

TABLE III 
NEW CORRIDOR LINE CHARGING 

Physical Violations 

1 Determinism 

5 Determinism 

10 Determinism 

••• 100 Detennlnlsm 

b 
0.122 
0.179 

j .. ~ \----t-\..:----------

l 
~ I~ ~--~~------~--------------------

10 U 

Iterations 

5 

Fig. 6. A comparison of the different parameler settings of DPLS on problem 
G2 for 'I). 

the benchmarks of [33] using the linearized DC power flow 
equations and compare the algorithm described in this paper 
with existing approaches in the literature. 

The first results are described in Figure 6 and consider some 
of the parameter settings of DPLS on probl\em G2 for 17. It 
shows the performance of varying w = ( = {I, 5,10, 100} 
(determinism) and keeping the other parameters fixed. The 
figure plots the best 77 found during the course of the search on 
average for P = 100 (the number of nodes visited in the search 
tree (iterations». It is clear that some randomness around 
the branching heuristic improves the efficiency of the search. 
However, with too much randomness (like w = ( = 100), 
the search quality begins to degrade, thereby providing an 
indication of the value of the branching heuristic as a guide 
for the search. These results are further confirmed in Figure 7 
which plots the best K found during the search. Once again, 
a determinism factor of between 5 and 10 brings the most 
benefit. 

In Figure 7 a comparison of DPLS and its randomized 
counterpart is presented on problem G2. The figure plots K 

as a function of the number of nodes visited in the search 
tree. The figure plots the best performance of DBLS from 
its set of possible parameter settings (between I and 5 for 
0, cr, and (3). The DPLS parameters are set statically to be 
w = ( = 10, P = 100, T = 1 and t = .25 and the results 
are an average of multiple runs. In this figure, DBLS initially 
performs better, however it is very quickly outpaced by DPLS. 
This provides evidence that while the branching heuristic is 
a good guide, the deterministic version of the search can 
spend time in unproductive regions of the search tree. The 
randomized version is able to more quickly probe other areas 
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Fig. 7. A comparison of the different parameter settings of DPLS on problem 
G2 for K. 

DBLS DPLS 
Probtem 1)(a) I«a) 1)( a) . I«a) 

GI 52 431 8 8 
G2 J2 7881 II 1028 
G3 7 1813 5 65 
G4 8 35 7 70 

TABLE IV 
NODE COU NTS FOR ACHIEVING THE BEST QUALITY SOL UTION FOR 

DIFFERENT PORTIONS OF THE OBJECTIVE FUNCTION . 

of the search tree, biased by the guidance of the branching 
heuristic. This observation is reinforced by the results in Table 
V. This table shows the best performance of DPLS and DBLS 
in terms of number of search tree nodes explored to find the 
best values for 7] and "-. Note that on problems 03 and 04, 
the best result of DBLS is worse than the best result for DPLS 
for "-. 

Finally, Table V provides the best solutions that we aware 
of in the literature for the benchmarks and the best solution 
found by the approaches presented in this paper. In the table 
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Problem Besl Known Ref Besl Found 
GI 438K RRMS 390K 
G2 451K FH 392K 
G3 2 18K RRMS 272K 
G4 376K FH 341K 

TABLE V 
BEST SOLUTIONS TO BE NC HMARKS OF [33] 

Algorithm Comparison 
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Fig. 9. A comparison of 1] on DBLS and DPLS when using nonlinear AC 
for S. 

RRMS refers to [17] and FH refers to [33]. In three cases, 
improved solutions are discovered. The solution to 01 adds 
the following circuits: '[7,8](2). [16,17](2), [16,19] , [6,10], 
[17,18](2), [14,16]' [1,5]. [15,24]' [3,24]1. The solution to 02 
adds the following circuits: [10,11], [3,24], [14,16], [7,8], 
[16, 17l(2), [6,10], [1,5], [15,24]. [17,18](2). The solution 
to 04 adds the following circuits: [15,24]' [14,16], [7 , 8](2), 
[6,1O}, [16,17], [3,9], [3,24]' [10,12]. 
AC Power Flow Expansions The second test of the DPLS 
algorithm uses nonlinear AC for S on the benchmarks of [33]. 
S is implemented using T2000 [36] . The behavior of DBLS 
and DPLS for nonlinear AC is illustrated in Figure 9. The 
figure plots the best case performance of DBLS for a = (3 = 

<5 = {I, 2, 3, 4, 5} and the average case performance of DPLS 
forw = ( = 10, P = 100, T = 1 and t = .1. For the most part, 
the algorithms behave roughly ~he same early in the search 
procedure. However, as the search proceeds. DBLS begins to 
explore poorer regions of the search space whereas DPLS is 
able to more quickly sample solutions from other areas of the 
search space. 

The solutions obtained under nonlinear AC power flow 
models are interesting to compare with the solutions obtained 
under linearized DC power flow models. For example, the 
solution to 01 require 1316K in expansion costs. The DC 
solution required 390K in expansion costs. In other words, 
the AC solution is more than 3 times as expensive. This 
provides evidence that in planning scenarios where gener­
ation is not dispatchable, plans obtained using DC power 
flow models do not necessarily approximate the expansions 
required for AC based expansion very well. For reference, 
the solution to 01 is [1,5](2). ~1 , 2], [1,3]. [1,8]. [2,4]' 



[2,6], [2,8]' [3 , 24], [5,10] (2), [6, 10], [7,8], [6,7] (3), [8,10], 
[8,9], [9,12](2), [9, 11], [12, 13J, [14,16](2), [15,21j, [15, 16], 
[15,24](2), [16,17], [16,19], [17,18]' [21,22]. 
New. Mexico Expansions. While the algorithm is very effec­
tive in solving the benchmark problems, it is also important 
test its effectiveness on real networks. To perform this test, 
we took the transmission system for the state of New Mexico 
and modified the peak power demands according to the 2020 
projections of [3]. We also added the generation that is 
scheduled to be built by 2020, which includes wind generation 
in the eastern part of the state. Under this planning scenario, 
if the grid is not upgraded, there is roughly 1700 MVA 
of overloads (spread over 31 transmission corridors) in the 
system as highlighted in Figure 10 (a). In order to resolve the 
physical violations, DPLS finds a solution within 100 search 
tree nodes that elimjnates all physical violations at a cost of 
about $300,000,000, using the transmission expansion cost 
estimates of [39]. This solution adds 30 circuits in 28 existing 
corridors. 

VI. CONCLUSION 

As discussed, the electric power system is currently un­
dergoing a revolutionary transformation that requires new ap­
proaches for solving the TNEP. The increased desire and need 
to incorporate sustainable power generation (wind and solar) 
that is less controllable has created a situation where nonlinear 
flows must be accounted for when evaluating expansion plans. 
Prior work has shown that DBLS is a powerful approach for 
solving problems with non-linear representations . This paper 
has shown that randomization strategies for the DBLS vastly 
improves its computational efficiency and thereby scaling 
the approach to larger problem instances. Furthermore, the 
approach relies on encapsulating portions of the problem's 
model as a black box similar to simulation optimization. The 
strength of this approach is that it uses the black box for 
more than just an evaluation criteria, but to direct the search 
procedure itself. A core contribution of the algorithms is a 
general search procedure that is decol/ples the model used for 
flows from the search and achieves solutions to the TNEP 
using non-linear flow equations. 

Given the success of the approach described in this paper, it 
will. be interesting to explore how to generalize this approach 
to more types of expansion options such as generation expan­
sion, voltage upgrades, and other types of control components. 
The randomization strategies should help improve computa­
tional efficiencies when the number of variables is increased 
to this extent. Second, it will also be important to account for 
uncertainty in the planning process as described in [40], [41], 
in particular as it relates to the intermittent output of renewable 
energy. Once again , this increases the scale of the problems 
and DPLS should help make this problem tractable. Final.ly, it 
will be important to the study the effects on expansion solution 
quality when dispatchable generation or load management is 
included in S. This will allow and understanding of when the 
DC power flow model is a good approximation of the more 
complex power flows in expansion planning. The approach 
suggested in [42] for comparing DC models with AC models 
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for different applications may be a good starting point for this 
sort of analysis. 
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