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Randomized Discrepancy Bounded Local Search for
Transmission Expansion Planning

Russell Bent and W. Brent Daniel

Abstract—In recent years the transmission network expansion
planning problem (TNEP) has become increasingly complex. As
the TNEP is a non-linear and non-convex optimization problem,
researchers have traditionally focused on approximate models of
power flows to solve the TNEP. Existing approaches are often
tightly coupled to the approximation choice. Until recently these
approximations have produced results that are straight-forward
to adapt to the more complex (real) problem. However, the power
grid is evolving towards a state where the adaptations are no
longer easy (e.g. large amounts of limited control, renewable
generation) and necessitates new approaches. Recent work on
deterministic Discrepancy Bounded Local Search (DBLS) has
shown it to be quite effective in addressing this question. DBLS
encapsulates the complexity of power flow modeling in a black
box that may be queried for information about the quality of
proposed expansions. In this paper, we propose a randomization
strategy that builds on DBLS and dramatically increases the
computational efficiency of the algorithm.

Index Terms—Transmission Expansion Planning, TNEP, Local
Search.

1. INTRODUCTION

ECENT years have seen an increase in awareness that

one of the major challenges of the 21st century is the
problem of how to provide clean, sustainable, and cheap
energy to the world’s rising population [1], [2]. To address this
challenge, the United States Department of Energy released a
report in 2008 that stated the goal of having 20% of the U.S.’s
energy come from wind by 2030 [3]. An important aspect of
this report is the question of how to best upgrade and expand
the electric power transmission grid to incorporate sustainable,
renewable energy sources that are located in transmission
deficient areas. This optimization problem has been well-
studied as Transmission Network Expansion Planning (TNEP)
[4], [5], [6], [7]; however, the requirements for the future grid
raise a number of challenges, including:

1) The inability of expansion plans based on linearized DC
models of power flows to guarantee an easy modification
to account for nonlinearities and AC power flows under
conditions imposed by uncontrollable generation [8].

2) With a few exceptions (for example, [9]), expansion
algorithms are designed for specific models of power
flow.

In previous work [10], we presented a novel approach to ad-
dress these challenges. This approach, Discrepancy-Bounded
Local Search (DBLS), embedded ideas from simulation opti-
mization [11], [12], [13], [14], [15] in a local search procedure
that generalizes constructive heuristics [16], [17], constraint-
based local search [18], [19], and is related to global search
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techniques such as limited discrepancy search [20], [21], [22].
The key idea of the approach is the encapsulation of the
power model within a simulation black box. The DBLS is
allowed to query the black box for power flow information
about proposed expansion plans. Unlike traditional simulation
optimization that typically uses the “black box” only for
evaluation (objective function) or feasibility checking, our
approach uses information (i.e. flows) from the simulation
to help influence the choices of the DBLS algorithm. While
powerful, the approach can require large amounts of compu-
tation to solve large scale problems with complex power flow
models. This paper considers this computational challenge and
demonstrations how the introduction of randomization can
significantly boost the computational performance of DBLS.

In short, the key contributions of this paper include:

o An approach for randomizing DBLS to improve compu-

tational performance.

o A TNEP approach that is decoupled from the details of

how power flows are modeled.

o« A TNEP approach that handles non-linear models of

power flow.

o An algorithm that generalizes existing TNEP heuristics.

« An algorithm that scales to large scale realistic problems.

o A framework for supporting multi-objective expansion

planning.

« A coupling of simulation and optimization that allows the

simulation results to influence the optimization choices.
Literature Review The literature on TNEP is extensive and
references [4], [5], [6], [7] provide excellent surveys of
the field. In general, existing approaches have focused on
modeling power flows with transportation models [23] or
the linearized DC model in order to reduce computational
overhead. Until recently it has been been easy to adapt plans
derived from these models to more realistic conditions (see
[24], [25]). The approaches tend to fall into three categories,
complete search based upon mixed-integer program (MIP)
formulations [24], [26], locally optimal search such as con-
structive heuristics [16], [17], and meta-heuristics [27], [28],
[29], [30], [31], [32].

One of the most relevant papers related to the work pre-
sented here is that of [33] which presents an expansion
planning scenario where generation is fixed (also studied in
[17]). In these papers, generation is fixed in order to model
the challenges of economic dispatching, whereas the primary
motivation for fixing generation in this paper is renewable
energy sources. This is a pessimistic view of how power
systems operate, but is useful in terms of understanding how
worst case dispatching impacts expansion planning.

Reference [9] also shares a number of interesting similarities



with this paper. It presents a tree-based local search procedure
which contains a truncation criteria not unlike the discrepancy
parameter of DBLS. Their approach utilizes combinations of
the transportation model and the linearized DC model for
modeling power flows. The paper does state that the approach
is generalizable to more complex models of power flow, but
this was not tested. It is important to note that their search
procedure is primarily guided by cost, whereas DBLS is
guided by both feasibility and cost.

Also of interest is the work of [34], [35] which is the
basis for many of the results contained in [3]. These papers
provide the fundamental motivations for the work of this paper.
They studied how to best integrate large amounts of wind
power into power grids spread over large geographic areas
using transportation models of power transmission. We seek to
address the question of how to account for non linear models
of power flow into such planning scenarios as considerable
effort is required to adapt models derived from transportation
models in this context [8].

The remainder of this paper is organized as follows. Sec-
tion II formally defines the TNEP. Section III describes the
algorithm used to generate expansion plans and the heuristics
used to guide the algorithm to reduce physical violations and
cost. Section IV describes how randomization is incorporated
into the DBLS. Section V discusses the experimental results
and Section VI concludes this paper.

II. PROBLEM DEFINITION

Buses The TNEP problem is described in terms of a set of
buses, B3, that represent geographically located nodes in a
power network e.g. generators, loads, and substations. Each
bus, 4, is defined by parameters g;, l;, ¢; , L?', which represent
its generation, load (demand for power), minimum voltage (per
unit) and maximum voltage (per unit). P(g;) and Q(g;) are
used to denote the real and reactive components of generation.
Similarly, P(l;) and Q(l;) are used to denote real and reactive
components of load. For simplicity, P; = P(g;) — P(l;) and
; = Q(g:) — Q(I;) are used to denote the real and reactive
power injected at bus <. The decision variable ¢; is used to
define the number of control components at 4 (in this paper,
shunt capacitors for regulating reactive power). ¢; has discrete
domain {¢;,c; +1,..., -1, cj”} ¢; is defined as the
number of control elements ¢ starts with, ensuring that existing
controls are included.
Transmission Corridors The TNEP is also described by a
set of edges, &, called transmission corridors, connecting pairs
of nodes. A transmission corridor i, j between buses ¢ and j
has a decision variable ¢; ; that defines the number of circuits
(power lines) in the corridor The variable has discrete domain
(o + 105 cf; = 1,¢h;} where ¢ ; is defined as the
number of circuits the corridor starts with. c+]. —. when no
circuits may be added to a corridor. A circuit is also defined by
parameter ; ; which denotes the capacity of a single circuit
in the corridor. Similarly, r; ;, x; ;, b; ; denote the resistance,
reactance, and line charging of a single circuit in the corridor.
TNEP Solution A transmission network solution, o, is defined
as a set of variable assignments | J;cp ¢i « diUl; jeg Gij —

d; j, where d; is drawn from the domain of ¢; and d; ; is drawn
from the domain of ¢; ;'. By convention, unassigned variables
are assumed to be ¢; and ¢;;, respectively. o(c;) and o(c; ;)
are used to denote the variable assignments for o.

Simulation TNEP algorithms have at their disposal a simulator
S for determining the behavior of power for . S(o) returns
true when it is able to compute the behaviors. This is important
as some implementations of S use convergence approaches
(e.g. Newton’s method) that do not have guarantees on whether
or not they are able to obtain a solution. Sy, .(c) denotes
the flow in corridor 4,5 and S,, (o) the voltage at bus ¢. For
simplicity, this notation is shortened to f; ; and v; when S(o)
is understood from context. The following sets of equations
provide an example of S for the linear DC model where f; ; =

—fii-

Vies P = Ylepfij (1)
Vijee fij = Aijcii(0i—0;) (2)

In this model, A; ; —,—JJ;— is the susceptance of a
circuit in corridor %, ] and 6; is the phase angle at bus i. The
first constraint ensures conservation of flow (Kirchoff’s current
law) and constraint 2 expresses the relationship between phase
angle and DC power (Ohm’s law). This model does not use
control components and does not calculate voltages (assumed
to be 1). Implementing S as this set of equations allows the
incorporatation of the traditional TNEP power flow model.

A more advanced implementation of S uses the following
decoupled model of power flow.

ViegP; = Zjes viv (Vi jci,5 cos(B; — 6;) + i jeiysin(6: — 65)) (1)
VienQ: = Zleg viv; (7i,5€i,5 sin(8; — 65) + Xi j¢i 5 cos(6i — 03))  (2)
where v; j = —g—‘—r is the conductance of a circuit in ¢, j.

A TNEP solution o is feasible when the following con-
straints are satisfied, i.e.

z] <c 4] = C+] (7’7] € 8) (1)
G<e <o (i € B) (2)
(0) = true 3)

Physical constraints are relaxed and incorporated into the
objective function in order to keep the search space connected
(similar to Lagrangian Relaxation). The overload of o is cal-
culated as the sum of flow that exceeds the capacity of the cir-
cuits, i.e. 7(0) = 37, ;e max(0, f; ; — ¥ij¢i ;). The voltage
violation of o is calculated as the sum of voltages that fall be-
low ¢; or above ¢, i.e. v(0) = 32 max(0, ¢y — v, vi—1]).
Finally, the cost of o is defined by k(o) =}, jcg Cijkij +
Zies cik;, where k; is the cost of putting a control at bus
i and k;; is the cost of putting a circuit in corridor 1, 7.
The objective function, f(o), is then a lexicographic multi-
objective function of the form min f(c) = (n(o),v(0), k(o))

III. DBLS ALGORITHM _
In reference [10], a deterministic branch and bound algo-
rithm is presented for the TNEP. This algorithm builds on

This formulation can be generalized for multiple types of control compo-
nents and circuits.



simulation optimization ideas by encapsulating the behavior
of the network into a “black box” that may be queried by
the algorithm for information about how a TNEP solution
behaves (i.e. S(o)) and embedding it in a discrepancy bounded
local search (DBLS) that limits the full exploration of the
branch and bound search tree. The intuition behind DBLS
is to generalize heuristics that make good decisions on how
to build solutions, but make a few bad decisions from time-
to-time. DBLS embeds the heuristic in a search tree as the
branching heuristic and explores those solutions that are within
& violations (discrepancies) of the heuristic, where § is a
user-specified parameter. DBLS provides a natural way to
incorporate constructive heuristics from the TNEP literature,
e.g. [16], [17], into a more general framework and is related
to the approach of [9]. The formal model of DBLS for TNEP
is presented in Figure 1.

DBLS takes as arguments a starting solution o, (often the
current state of the network, i.e. ;e i — ¢; Ul jeg Cij —
¢ ) a set of variables, X, drawn from ;e ¢: U, jee €iso
a heuristic discrepancy parameter, §, a worsening discrepancy
parameter «, and a divergence discrepancy parameter 3. The &
parameter is used to control the number of times the branching
heuristic may be violated in the search and is decremented
in line 16. As the TNEP has the property that f(o) is non-
monotonic, i.e. adding components can make n(c) and v(o)
rise or fall (sometimes referred to as Braess’s paradox). The
parameter « is used to limit the number of times in a row that
f(o) may worsen (lines 8-10). A similar parameter is used
in [9]. Finally, as it is possible for S(o) to fail (diverge) for
a given o, a parameter § is introduced to limit the number
of times in a row that S(o) may fail (lines 11-13). All three
parameters are checked for violation in lines 1 and 2.

Line 4 chooses a variable to explore based upon the results
provided by S. It is here that the results of S drive the search
and represent the largest departure from traditional simulation
optimization. Line 5 provides the heuristic for ordering the
domain of z. When 7(o) > 0 or v(c) > 0 the domain
is ordered by component additions, no change (o(z)), and
component removals, i.e.

<o(x) +1,..,27,0(x),0(x) - 1,... B}
otherwise it is ordered in reverse, i.e.
(o(z)—1,...,27,0(2),0(z) +1,...,2")

Line 5 unassigns the current variable assignment of z and
lines 6-16 iterate over the ordered domain of the variable. It is
worth noting that line 7 implicitly updates attributes associated
with the new ¢ and is where S is executed.

One of the challenges of this approach is that the per-
formance of DBLS is highly dependent on the quality of
early decisions. It can take a considerable amount of time to
revisit those choices due the amount of backtracking that is
required, especially on large scale problems. From a scalability
perspective in reference [L0] it was found to be productive
to keep & small when executing DBLS and iteratively restart
DBLS with improving starting solutions. Restarts were also
found to be productive in the algorithm presented by [32]. The

restart procedure is described in the function OPTIMIZETNEP,
where the algorithm is continuously restarted until the solution
no longer improves.

OPTIMIZETNEP(o, X, 6, @, 8)

| repeat

2 o* — o,

3 o — DBLS(c, X,6, 2, 8);
4 until f(0)> f(o);
5

return o~

DBLS(0, X, 8, o, )
1 ifd<0ora<0or <0
2 then return o;
3 1z <« CHOOSEVARIABLE(X,0);
4 {dy,ds,...,d;) — ORDERDOMAIN(z);
5 0—o\[z o)
6 fori—1...k

7 doo; —oUlz — d;l;

8

if f(o:) < f(o)

9 then a; «— O;

10 else oy =a—1;

11 if S(o;)

12 then 3; — 0;

13 else 5;=03-1;

14 if f(o;) < f(e*) and S(oy)
15 then o* — oy;

16 DBLS(o;, X \ z,6 — ¢, a3, 5;);
17 return o*;

Fig. 1. Discrepancy Bounded Local Search

In this paper two implementations of CHOOSEVARIABLE
are used. For ease of presentation, £(X) is used to denote
those corridors that have circuit variables in X, i.e. |Ji,5 €
& | ¢y € X B(X) is used to denote those buses that have
capacitor variables in X, i.e. | Ji € B|¢ € &.

The first implementation is described in Figure 2 and is
based upon the constructive heuristic presented in [16]. Tt
first chooses the variable corresponding to the corridor that
is most overloaded (lines 1-3), if one exists. Otherwise the
heuristic chooses the corridor within n = 1 hops of an
overload that decreases an overloaded the most (lines 7-16). It
then iteratively tries n = 2,3,4,... up to a user specified
maximum until it finds a decreasing f(c) circuit addition
(lines 6-17). If there are no corridors that satisfy this criteria,
the heuristic selects the bus with the lowest voltage for adding
shunt compensation (lines 18-19). This heuristic is used when
7{(c) > 0 or v(o) > 0.

The second heuristic is based upon the standard cost reduc-
tion stages of constructive heuristics [16], [17] and chooses
to explore those variables whose removal of components will
decrease the cost the most (lines 1-2 of Figure 3). It is used
when n(o) = v(o) = 0.



CHOOSEVARIABLE-FEASIBLE(X, o)
I 4,5 « argmax; jeg(x) |fi;| — ¥iz0(ci;);

2 if |fij] = i jo(ci;) >0

3 then return ¢, ;;

4 £<E&;

5 while |£| > 0

6 dofork—1...n

7 do ¢,j — argmax, jcz |fij| — i 0(ci;);

8 B « NEIGHBORS(%, 7) U NEIGHBORS(j, n);
9 & — (BxB)NEWX);

10 for 4,5 € &

11 do & O‘\ [ci:j — o'(ci:j)];

12 6 —6Uley; min(c:cj,a(ci;].) + 1)];
13 'LT-J — Sfi.j ((3'), ,

14 i:j argmax;eg ‘Li:j;

15 if L~ <8y, ;(0)

16 then return ;5

17 £ —E\i,j:
18 i« argmin;epx) vi;
19 return ¢;;

Fig. 2. Feasibility Branching Heuristic

CHOOSEVARIABLE-COST(X, o)

%, —argmax; seer) | oes) > cf, Fird

2 z ATZMAXep(x) | g(ei) > of K
3 if Kij > Ki

4 then return ¢; ;;

S return c¢;;

Fig. 3. Cost Reduction Branching Heuristic

IV. RANDOMIZED DBLS ALGORITHM

We now present two approaches for introducing randomness
into DBLS that dramatically improves its computationally effi-
ciency. The first approach considers the discrepancy parameter
for worsening solutions. While a useful pruning mechanism,
it does not use information about the degree of worsening. To
address this limitation, we introduce a simulated annealing like
acceptance criteria for exploring a worsening solution as seen
in Line 10 of Figure 4, where 7' is the temperature parameter.
Like simulated annealing 7" is cooled by parameter ¢ in line
12.

The second approach adds randomness in how the dis-
crepancy search tree is explored as seen in Figure 5. The
search chooses P random paths in the tree (lines 4-8 of
OPTIMIZETNEP). The random paths are guided by the branch-
ing heuristic using determinism parameters w and ¢ (lines 4
and 8 of DPLS). When w and ( are near 1, the choice of
variable and variable assignment nearly follow the branching
heuristic. The larger w and ¢ get, the more the branching
follows a uniform distribution for selecting z (line 5) and d;
(line 9). The parameters control the influence of the branching
heuristic. This approach is referred to as Discrepancy Probe

DBLS(c, X,6,T)
1 if6<0
2 then return o;
3 1z « CHOOSEVARIABLE(X, 0);
4 (di,ds,...,dx) < ORDERDOMAIN(z);
5 0—o\[ze o)
6 fori—1...k

7 doo;—oUlz« di;

8 if f(o;) < f(o*) and S(o;)

9 then ¢* Fi3
10 if Ranpom([0, 1]) < JOE (vt )
11 then DBLS(0;, X\ z,6 — 4, T X t);

12 return o*;

Fig. 4. Randomized Discrepancy Bounded Local Search

Local Search (DPLS) throughout the rest of the paper.

OPTIMIZETNEP(o, X, T')
| repeat

2 o* — o

3 G «— o;

4 fori—1...P

5 do o; « DPLS(0, X, T);
6 if £(o)i < £(3)

7 then & «— oy;

8 g« b,

9 until f(o) > f(o*);
10 return o*;

DPLS(c, X,T)
1 if6d<0

2 then return o;

3 (z1,z2,...,Tk) «— ORDERVARIABLES(X,0);

4 j « |[RAaNDOM([0, 1])¥ x |X|[;

S @@y

6 (dy,d2,...,dx) — ORDERDOMAIN(z);

7 o—o\[z—o(2)];

8 i« [RanDOM([0,1])¢ x (zt —z7);

9 o0;—oUlz« d;

10 if f(o;) < f(o*) and S(o;)

11 then o* « oy;

12 if RanpoM([0,1]) <e

13 then DPLS(c;, X \ z,T x t); return o*;

_Ite)—i(o)
o

Fig. 5. Discrepancy Probe Local Search

V. EXPERIMENTAL RESULTS

In order to evaluate our approach we considered four
expansion planning benchmarks from the TNERP literature [33].
The approach was also tested on an expansion scenario for the
electric power grid of the state of New Mexico based upon
load and wind generation growth projections found in [3]. The
commercial electric power simulation package T2000 [36] and



Bus | G1Q(g) | G2Q(9) | G3Q(g) | G4 Q(g) | Q(@)maz | Q@ min Bus Bus b | Bus Bus b | Bus Bus b
1 94.43 76.24 94.43 85.25 240.0 -150.0 1 [ 0.043 13 14 0.088 19 23 0.122
2 46.8 46.8 46.8 42.32 240.0 -150.0 2 8 0.034 14 23 0.14 16 23 0.179
7 193.5 155.23 193.5 174.58 540.0 0.0 6 7 0.052
13 758.8 609.43 623.55 (684.32 720.0 0.0 g
14 41.1 411 41.1 41.1 200.0 -150.0 TABLE III
15 0.15 0.15 0.08 0.13 3300 0.0 NEW CORRIDOR LINE CHARGING
16 75.66 75.66 45,88 68.17 240.0 -150.0
18 412.2 4122 207.13 246.63 600.0 -150.0
21 324.6 324.6 257.24 291.32 600.0 -150.0
2 | -8928 -89.28 -89.28 -89.28 288.0 -180.0 - - i
23 64.6 195.45 406.08 287.94 930.0 -375.0 Physlcal Violations
TABLE I 2300 .
AC GENERATION s 1 Determinism
== 5 Determinism
= 10 Determinism |-
|+ » « 100 Determinism
Bus  Q(g) | Bus  Q(g) | Bus  Q(g) | Bus  Q(g) | Bus Qlg)
1 66 5. 42 8 105 13 162 18 204
2 60 6 84 9 108 15 192 19 111
3 111 7 75 10 120 16 60 20 78
4 45
TABLE 11
AC LoAD

the linearized DC flow model are used as implementations of
&. It is important to note that since T2000 uses convergence
methods for solving the power flow equations, there is no
guarantee of a unique solution. Thus, it is possible that a stable
flows exists for a o that achieves a better value n than the
one returned by S. However, as the approach is not tied to a
particular choice of S, a user may supply a simulation model
that either returns a unique solution or the best of a set of
solutions, if desired.

The four benchmarks proposed in reference [33] are based
on the RTS-79 and RTS-96 problems of [37], [38]. [33]
grew demand and generation of the RTS by 200-300%. The
problems allow up to 3 additional circuits in the 34 existing
corridors and up to 3 circuits in each of 7 new corridors
(thus, the domain of each circuit variable has size 4). The
benchmarks pessimistically assume that generation cannot
be dispatched. This provides worst case scenarios, €.g. all
generation is wind-based. The approach described here does
not depend on this property, as dispatching and/or optimal
power flow are definable within S, when appropriate.

The definition of the original RTS problems provide all the
parameters for solving AC and DC power flows, however, as
[33] used DC power flows, some information was not provided
in the new problems, namely growth in AC generation and
demand and line charging for circuits in new corridors. To
overcome this limitation the AC load and generation were
scaled by the same factors as [33]. We also modeled the
generators as “voltage” controlled, thereby allowing S to
adjust reactive generation to achieve certain voltage levels.
This makes the problems easier, as the intent of the bench-
marks is to make generation fixed. However, allowing reactive
generation to fluctuate does provide a fairer comparison with
results based on DC flows (as the behavior of the AC flows can
be improved with flexible AC generation). The AC generation
parameters for problems Gl, G2, G3, and G4 are in Tables I,
I, and I1I.

DC Power Flow Expansions We first test the approach on

—.—————_—..\

. T b o FTTT s o Powwn ¢ 00 s 1_n.5_ s
0 5 10 15 26 25 L 5 Q a8 50
Iterations

Fig. 6. A comparison of the different parameter settings of DPLS on problem
G2 for n.

the benchmarks of [33] using the linearized DC power flow
equations and compare the algorithm described in this paper
with existing approaches in the literature.

The first results are described in Figure 6 and consider some
of the parameter settings of DPLS on problem G2 for 7. It
shows the performance of varying w = ¢ = {1,5,10,100}
(determinism) and keeping the other parameters fixed. The
figure plots the best  found during the course of the search on
average for P = 100 (the number of nodes visited in the search
tree (iterations)). It is clear that some randomness around
the branching heuristic improves the efficiency of the search.
However, with too much randomness (like w ¢ = 100),
the search quality begins to degrade, thereby providing an
indication of the value of the branching heuristic as a guide
for the search. These results are further confirmed in Figure 7
which plots the best s found during the search. Once again,
a determinism factor of between 5 and 10 brings the most
benefit.

In Figure 7 a comparison of DPLS and its randomized
counterpart is presented on problem G2. The figure plots &
as a function of the number of nodes visited in the search
tree. The figure plots the best performance of DBLS from
its set of possible parameter settings (between 1 and 5 for
d,ct, and ). The DPLS parameters are set statically to be
w= =10, P =100, T =1 and ¢t = .25 and the results
are an average of multiple runs. In this figure, DBLS initially
performs better, however it is very quickly outpaced by DPLS.
This provides evidence that while the branching heuristic is
a good guide, the deterministic version of the search can
spend time in unproductive regions of the search tree. The
randomized version is able to more quickly probe other areas
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Fig. 7. A comparison of the different parameter settings of DPLS on problem
G2 for k.

DBLS DPLS
Problem | n(o) (o) | nle) «(o)
Gl 52 431 8 8
G2 32 7881 11 1028
G3 7 1813 5 65
G4 8 35 7 70
TABLE 1V

NODE COUNTS FOR ACHIEVING THE BEST QUALITY SOLUTION FOR
DIFFERENT PORTIONS OF THE OBJECTIVE FUNCTION.

of the search tree, biased by the guidance of the branching
heuristic. This observation is reinforced by the results in Table
V. This table shows the best performance of DPLS and DBLS
in terms of number of search tree nodes explored to find the
best values for 7 and . Note that on problems G3 and G4,
the best result of DBLS is worse than the best result for DPLS
for k.

Finally, Table V provides the best solutions that we aware
of in the literature for the benchmarks and the best solution
found by the approaches presented in this paper. In the table

Algorithm Comparison

80000 | e ——

560000
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500000 | —>——— — —
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442303 et R — —
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420000 - — =
420000 — -
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Iterations J

Fig. 8. A comparison between the deterministic and randomized discrepancy
bounded local search.

Problem Best Known Ref Best Found
Gl 438K RRMS 390K
G2 451K FH 392K
G3 218K RRMS 272K
G4 376K FH 341K

TABLE V

BEST SOLUTIONS TO BENCHMARKS OF [33]
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A comparison of 7 on DBLS and DPLS when using nonlinear AC

RRMS refers to [17] and FH refers to [33]. In three cases,
improved solutions are discovered. The solution to G1 adds
the following circuits: [7,8](2), [16,17](2), [16,19], [6,10],
[17,18](2), [14, 16], [1,5], [15, 24], [3, 24]. The solution to G2
adds the following circuits: [10,11], [3,24], [14,16], [7,8],
[16,17](2), [6,10], [1,5], [15,24], [17,18](2). The solution
to G4 adds the following circuits: [15,24], [14, 16], [7,8](2),
[6,10], [16,17], [3,9], [3,24], [10,12].

AC Power Flow Expansions The second test of the DPLS
algorithm uses nonlinear AC for S on the benchmarks of [33].
&S is implemented using T2000 [36]. The behavior of DBLS
and DPLS for nonlinear AC is illustrated in Figure 9. The
figure plots the best case performance of DBLS for o = 3 =
d ={1,2,3,4,5} and the average case performance of DPLS
forw = ¢ =10, P = 100,7" = 1 and ¢t = .1. For the most part,
the algorithms behave roughly the same early in the search
procedure. However, as the search proceeds, DBLS begins to
explore poorer regions of the search space whereas DPLS is
able to more quickly sample solutions from other areas of the
search space.

The solutions obtained under nonlinear AC power flow
models are interesting to compare with the solutions obtained
under linearized DC power flow models. For example, the
solution to G1 require 1316K in expansion costs. The DC
solution required 390K in expansion costs. In other words,
the AC solution is more than 3 times as expensive. This
provides evidence that in planning scenarios where gener-
ation is not dispatchable, plans obtained using DC power
flow models do not necessarily approximate the expansions
required for AC based expansion very well. For reference,
the solution to Gl is [1,5](2), [1,2], [1,3], [1,8], [2,4],



[2,6], [2,8], [3,24], [5,10](2), [6,10], [7,8], [6,7](3), [8,10],
[8,9], [9,12](2), [9, 11], [12,13], [14, 16](2), [15, 21], 15, 16],
[15,24](2), [16,17], [16,19], [17,18], [21,22].

New Mexico Expansions. While the algorithm is very effec-
tive in solving the benchmark problems, it is also important
test its effectiveness on real networks. To perform this test,
we took the transmission system for the state of New Mexico
and modified the peak power demands according to the 2020
projections of [3]. We also added the generation that is
scheduled to be built by 2020, which includes wind generation
in the eastern part of the state. Under this planning scenario,
if the grid is not upgraded, there is roughly 1700 MVA
of overloads (spread over 31 transmission corridors) in the
system as highlighted in Figure 10 (a). In order to resolve the
physical violations, DPLS finds a solution within 100 search
tree nodes that eliminates all physical violations at a cost of
about $300,000,000, using the transmission expansion cost
estimates of [39]. This solution adds 30 circuits in 28 existing
corridors.

VI. CONCLUSION

As discussed, the electric power system is currently un-
dergoing a revolutionary transformation that requires new ap-
proaches for solving the TNEP. The increased desire and need
to incorporate sustainable power generation (wind and solar)
that is less controllable has created a situation where nonlinear
flows must be accounted for when evaluating expansion plans.
Prior work has shown that DBLS is a powerful approach for
solving problems with non-linear representations. This paper
has shown that randomization strategies for the DBLS vastly
improves its computational efficiency and thereby scaling
the approach to larger problem instances. Furthermore, the
approach relies on encapsulating portions of the problem’s
model as a black box similar to simulation optimization. The
strength of this approach is that it uses the black box for
more than just an evaluation criteria, but to direct the search
procedure itself. A core contribution of the algorithms is a
general search procedure that is decouples the model used for
flows from the search and achieves solutions to the TNEP
using non-linear flow equations.

Given the success of the approach described in this paper, it
will be interesting to explore how to generalize this approach
to more types of expansion options such as generation expan-
sion, voltage upgrades, and other types of control components.
The randomization strategies should help improve computa-
tional efficiencies when the number of variables is increased
to this extent. Second, it will also be important to account for
uncertainty in the planning process as described in [40], [41],
in particular as it relates to the intermittent output of renewable
energy. Once again, this increases the scale of the problems
and DPLS should help make this problem tractable. Finally, it
will be important to the study the effects on expansion solution
quality when dispatchable generation or load management is
included in S. This will allow and understanding of when the
DC power flow model is a good approximation of the more
complex power flows in expansion planning. The approach
suggested in [42] for comparing DC models with AC models

for different applications may be a good starting point for this
sort of analysis.
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