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ABSTRACT 

Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the 
global problem with the integral transport matrix method operators have been designed and tested. 
The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel 
alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of 
iterations and reduce work per iteration by applying an alternating red-black color-set to the sub­
domains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was 
implemented as an alternative to stationary iterations. Computational results show that the PGS 
method can improve on the PBJ method execution by up to ~50% when eight sub-domains per 
processor are used. However, compared to traditional source iterations with diffusion synthetic 
acceleration, it is still approximately an order of magnitude slower. The best-performing case are 
opticaUy thick because sub-domains decouple, yielding faster convergence. Further tests revealed 
that 64 sub-domains per processor was the best performing level of sub-domain di vision. An 
acceleration technique that improves the convergence rate would greatly improve the ITMM. The 
GMRES(m) method with a diagonal block preconditioner consumes approximately the same time 
as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner. 

Key Words: transport, within-group, parallel, spatial decomposition, Gauss-Seidel, GMRES 

1. INTRODUCTION 

The rapid growth in computing platforms is creating a demand for computational methods that 
can fully utilize new architectures' resources in an efficient, scalable manner. In terms of neutron 
transport, distributing work based on energy or angular variable decomposition alone is 
inadequate when tens of thousands of processing elements (PEs) are available. This inadequacy 
is driven by the practical bounds to which the energy and angular variables are commonly 
refined. However, problems with ever-increasing numbers of spatial cells are highly desired to 
analyze physically larger regions and/or to employ finer spatial meshes. Therefore, focus has 
rightly shifted to decomposition in multiple variables with spatial domain decomposition of the 
within-group equations receiving the most attention. 
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For first-order, discrete ordinates neutron transport with a structured spatial mesh, the Koch­
Baker-Alcouffe (KBA) [l], or wavefront, method has become a common choice for spatial 
domain decomposition of the within-group equations. For an n-dimensional (n = 2,3) system, 
the domain is mapped to an n-l processor topology. Mesh sweeps are perfonned in parallel over 
individual sub-domains by communicating angular fluxes on sub-domain boundaries to 
downstream neighbors, and advancing along diagonal planes. The KBA method sacrifices load 
balancc in favor of a synchronous parallelization of the serial algorithm. The work is reordered 
only in the sense that it is distributed for faster execution, but the incoming and outgoing data 
managed by the multiple PEs is unchanged from their counterparts in the serial a1gorithm. The 
KBA method has been implemented with traditional source iterations (SI) in the PARTISN code 
[2], and more recently it has been used as an efficient way to perform matrix-vector 
multiplications for a GMRES(m) scheme in Denovo [3]. Furthennore, the KBA method has been 
implcmented with diffusion synthetic acceleration (DSA) of the source iterations [2] and with a 
DSA-based preconditioner for the Krylov solver [3]. 

The integral transport matrix method (ITMM) [4,5] is designed to completely avoid repetitive 
mesh sweeps by fonnulating and storing operators that relate the scalar flux within a sub-domain 
to the angular flux on its boundaries. For a large problem, the global domain can be spatially 
decomposed into several sub-domains, [6] then the PE owning each sub-domain constructs its 
own ITMM operators and is tied to the rest of the global domain via angular fluxes at its 
boundaries. Therefore, the iterative process shifts from cell-average scalar fluxes, as in standard 
SI, to sub-domains' interfacial angular fluxes. 

In this paper we present alternative solution methods to the parallel block Jacobi (PBJ) algorithm 
described in [6]. First, the parallel red-black Gauss-Seidel (PGS) was developed to split the sub­
domains into a red/black pattern, alternating the computations of red and black sub-domains to 
use more up-to-date infonnation. Second, the parallel GMRES (PGMRES) routine was tested as 
a means to abandon stationary iterations for a potentially more efficient Krylov subspace solver. 

The remainder of this paper is organized as follows. Section 2 briefly outlines the ITMM, its 
operators, and the loca1-global solution strategy using PBJ. Then the PGS and PGMRES 
methods are described as alternatives to PBJ for the global solution. Section 3 presents a series of 
weak scaling test results . The PGS algorithm with increasing number of sub-domains is 
compared to PBJ. Then we show how the PGS algorithm perfonns compared to the KBA method 
as implemented in PARTISN. The PGS method is then scaled to much larger systems to 
determine how it behaves in massively parallel regimes. Weak scaling results for PGMRES are 
presented next to show where the method currently succeeds and highlight issues targeted for 
improvement. Section 4 provides a summary and the conclusions of our work. 

2. PARALLELIZATION OF THE INTEGRAL TRANSPORT MATRIX METHOD 

We have fully derived the ITMM process for a Cartesian mesh with diamond difference spatial 
discretization, discrete ordinates angular discretization, and isotropic scattering in [6]; the same 
set of equations will be applied here. Consider the within-group equations for some domain as an 
iterative process, using the previous iterate of the scalar flux vector to compute a new iterate. 

20 II International Conference on Mathematics and Computational Methods Applied to 
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazi I, 20 II 

2/l 5 



Parallel Solution ofITMM 

With known incoming angular flux serving as sub-domain boundary conditions, the scalar flux 
can be computed with 

(1) 

Standard operator notation is applied. 4> is the scalar flux vector of length equal to the number of 
spatial cells N and is given a superscript to indicate the iteration index . q is the isotropic 
distributed source vector of length N. Ls is the NxN within-group diagonal scattering matrix. l/Jin 
is a vector of all incoming angular flux at the boundaries. Its length is half the numbcr of cell­
boundary surfaces Nb times the number of angles N,. ] ¢ and K ¢ are ITMM operators. ] ¢ is an 

NxNmatrix that represents the coupling among all sub-domain-cells' scalar fluxes; K¢ is an 

NxNtN, matrix that represents the contribution the boundary angular fluxes make, after 
attenuation, to the sub-domain-cells' scalar fluxes. Upon convergence of Eq. (1), successive 
iterates of the scalar flux are equivalent and the system of equations can be rewritten as 

The matrix (1- ] ¢) is called the integral transpOlt matrix. [4] 

For the purpose of spatial decomposition into sub-domains, we must be able to calculate the 
outgoing angular flux from a region, such that it can be used in the global iterative solution 
strategy. Continuing with the concept of full coupling in a region, the outgoing angular flux is 
computed with 

(2) 

(3) 

The] lj; operator couples cells' scalar flux to outgoing angular flux at the boundaries; it is an 

N~,xN matrix . The Klj; operator represents the attenuation of incoming angular flux of along a 

discrete ordinate from the incoming surfaces to the outgoing surfaces; it is an N~,xN~1 matrix. 

The ITMM operators are large and dense, so the size of systems that can be solved sequentially 
is very limited. To consider larger problems, parallel computing is necessary. Moreover, we have 
developed this method with the intention for deployment on massively parallel systems: 
minimally several hundreds of PEs but preferably thousands or tens of thousands of PEs. 

When solving in parallel, the overall region is decomposed into several sub-domains, ananged in 
a 3-D virtual process topology. Each sub-domain is treated as an independent problem; each has 
its own set of ITMM operators and boundary conditions. The scalar flux is computed for all cells 
in the sub-domain by using LAPACK routines to factorize (1- ] ¢) and solve Eq. (2) . Using this 
infonnation and the boundary conditions, all the outgoing angular fluxes are computed at the 
boundaries of the sub-domain with Eq. (3). The outgoing angular flux is passed between adjacent 
sub-domains in an iterative fashion . The exchanged data comprises a set of boundary conditions 
for a new calculation to compute the updated scalar flux distribution within the sub-domain . An 
iterative process takes place until convergence of the scalar flux in all sub-domains is achieved. 
This algorithm is in the mold of the spatial domain decomposition originally proposed in [7]. 
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This iterative procedure is not an inner iteration scheme because it does not iterate on the 
scattering source. The critical aspect of this iterative method is that the quantities being iterated 
on are the angular fluxes at sub-domain boundaries, not the scalar fluxes within the sub-domain. 
The scalar fluxes serve as a computationally inexpensive, intermediate step in the computation of 
updated outgoing boundary angular fluxes and as a convenient tool for detennining the 
convergence of the global system. 

When each PE owns a single sub-domain, this iterative process reduces to the PBJ global 
solution method where the global problem is written as a single global system of equations. The 
nonzcro elements of the resulting block coefficient matrix are the ITMM operators of the 
individual sub-domains. Scalar and angular fluxes, distributed among the participating 
processors, comprise the solution vector. The right hand side (RHS) vector, also distributed, 
contains the distributed sources and boundary conditions. A single iteration updates all the values 
of ¢ and l/lout before starting a new iteration, hence the "block Jacobi" terminology. 

The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel 
alternative, wherein one uses the most current information when computing new values. In the 
PBJ algorithm the angular flux always lags because no improved information exists until 
communication. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the 
number of iterations by applying an alternating red-black color-set to the sub-domains. In the 
first half of a PGS iteration, the red sub-domains are solved for ¢ and l/l out using l/lin from the 
previous black iteration. This is followed by sending the just-computed outgoing angular fluxes 
to adjacent black sub-domains. The PGS iteration is completed when black sub-domains use 
these incoming angular fluxes to compute a new iterate of their own ¢ and l/lout. 

To avoid the problem of processor idleness, PEs are given ownership of multiple sub-domains, 
half red and half black. Angular fluxes at sub-domain boundaries are exchanged either via 
communication over the network interconnect or via vector copying within an individual PE's 
memory space. PEs are assigned at least two sub-domains per dimension to eliminate idleness 
when alternating between the red and black halves of the iteration. 

We have previously found with PBJ that increasing the number of sub-domains will increase the 
number of PBJ iterations. [6] Yet when a modest increase in the number of sub-domains is 
coupled with the PGS implementation, the number of iterations will only grow slightly and in 
some cases decrease because of the faster rate of convergcnce with PGS. Each further division of 
a sub-domain into even smaller ones will increase the number ofPGS global iterations necessary 
for convergence. Nevertheless, consider the aforementioned sizes of the ITMM operators . The 
smaller sub-domains provide superlinear benefits in required computational resources (memory 
and time) during construction and iterative application of the ITMM operators. Therefore, our 
work has focused on optimizing the run-time based on these competing factors. 

As an alternative to the stationary iterative methods, PBJ and PGS, a potentially more efficient 
Krylov subspace solver can be employed for the global solution. The global problem's 
coefficient matrix is not symmetric, and we can say nothing generally about its positive 
definiteness. With these characteristics, the GMRES algorithm is the only solver robust enough 
for implementation. GMRES requires matrix-vector multiplications to build the subspace that is 
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used to minimize the residual and compute updates to the solution vector. [8] These 
multiplications manifest themselves simply as ITMM operators multiplying the <p and 1/lout 

vectors of the same sub-domain and are therefore already distributed in our PGMRES algorithm. 
Communications with adjacent sub-domains are used to exchange sub-vectors of the residual and 
orthogonal basis vectors. Global communications are necessary to perform reductions on the data 
needed to form the least squares problem. 

Because of the large size of the global problem, the PGMRES method was implemented using m 
restarts to limit the size of the subspace being built. This has the potential to cause stagnation, 
stalling the reduction in the error if the restart number is set too low. To improve the method, a 
diagonal block preconditioner is employed. [8] The benefit of this preconditioner is that the 
diagonal blocks of the coefficient matrix are (I - J 4J for the <p equations and I for the 1/l out 

equations. No additional operations are necessary to build the preconditioner except to factorize 
(I - J ¢). The PGMRES method increases the work per iteration compared to the stationary 
methods. However, we seek to reduce the number of iterations sufficiently that the overall 
execution time decreases. 

3. COMPUTATIONAL RESULTS 

Several tests have been performed to analyze the weak scaling of our parallel ITMM code. In 
weak scaling tests, the size of the problem is increased with the number of processors. 
Specifically, we maintain a fixed number of spatial cells per processor, holding the number of 
unknowns constant for a given number of sub-domains per processor. However, changing the 
number of sub-domains per processor for the PGS approach will change the number of 1/l 
unknowns. We are interested in the growth in the number of iterations and execution time as the 
number of processors, and therefore sub-domains, is increased. 

For the moment, consider a single sub-domain per processor. We rely on a generic model 
problem and modify cell dimensions and material scattering cross sections to investigate the 
effects optical thickness and scattering ratio have on our method. The base model domain is a 
cube with side length L and four materials, as shown in Fig. 1, having no symmetries that may 
influence iterative convergence. The domain is discretized via a uniform mesh of cubic cells and 
thc number of cells in the base model is scaled, changing the size of the ITMM operators. 

For the weak scaling tests, additional processes are added to the 3-D virtual topology, and the 
global domain is divided into sub-domains of equal size. The sub-domains are not periodic 
repetitions of the base; instead, the base model domain is stretched in the dimension(s) that 
receives additional PEs and divided into cubic sub-domains. 

When each PE is assigned multiple sub-domains, the base model itself is divided into equally 
sized, cubic sub-domains, half red and half black. As the problem is scaled to more PEs, the base 
model is distorted in the same manner described above: each additional PE gets a cubic region, 
which it divides into equally sized cubic sub-domains. 

Our code has been written in the Fortran 90/95 standard. To achieve parallelism for targeted 
distributed memory architectures, we used the Message Passing Interface (MPI) instruction set. 
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Figure 1. Test cases' base model of four materials and four source strengths. 

Standard compiler optimizations were utilized for improved performance on each PE, namely in 
the vectorization of matrix-vector operations. All cases were run multiple times, and we report 
the average execution times for a more accurate estimate of typical system performance. 

Test cases were performed on three different computer systems. At Los Alamos National 
Laboratory (LANL), we used the Yellowrail (YR) network [9] to test our methods on up to P = 

256, where P is the number of PEs. YR is a distributed memory cluster of 139 nodes with 8 
CPUs (1 CPU = 1 PE) and 16 GB of memory per node. Nodes are organized into a single 
Connected Unit (CU), whereby a single, large switch connects all the nodes. With the initial 
observations, we then scaled cases to P = 1,024 on LANL's Redtail (RT) system [9]. RT is 
composed of 14 CUs. Each RT CU has 131 nodes with 8 CPUs and 32 GB of memory per node. 
For access to thousands of PEs to test our code, we used the Cray XT5 JaguarPF (CXT5) cluster 
[10] at Oak Ridge National Laboratory (ORNL). CXT5 is composed of 18,688 nodes, each with 
12 CPUs, 16 GB of memory and a SeaStar 2+ router. The interconnect is a 3-D torus topology. 

3.1. Comparing PGS and PBJ Performance 

Comparing the PGS and PBJ technique involves evaluating the relative performance amid 
competing effects. The superiinear reduction in operator sizes leads to smaller memory 
requirement per PE, faster ITMM construction time, and faster matrix-vector operations for PGS 
in spite of the fact that each PE handles multiple sub-domains. Conversely, per the results of [7] 
and [6], we know that for a fixed problem, increasing the number of sub-domains will induce an 
increase in the number of iterations for convergence. Moreover, the increase in the number of 
sub-domains per PE requires an increase in the number of communications to other PEs as well 
as substantial copying of arrays among sub-domains on the same PE. 
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Figure 2. PBJ/PGS test cases on YR with S16, 10xlOxlO base modeJ, c = 0.99, & varying h. 

We start with a problem where the base model is 10xlOxl0 spatial cells and the angular 
quadrature order is 16 in the LQN quadrature set. (We will continue to use the LQN set for the 
remainder of this paper.) Additional PEs are added in one dimension at a time, and we cycle 
through the dimensions to maintain a low global surface-to-volume ratio. The PBJ case therefore 
assigns a single lOx 1 Ox 10 sub-domain to each PE, and the PGS case assigns eight 5x5x5 sub­
domains to each PE. 

Tests were performed on YR up to P = 256, with scattering ratio c = 0.99, and considering cell 
dimension h = 0.1,1.0, and 10.0 em to model the effects of varying the optical thickness of the 
host media. (Alternatively, the total interaction cross section could have been scaled to achieve 
the same result.) In Fig. 2a, the number of iterations vs P is shown for the six cases. The three 
PBJ cases (solid lines) require only a single iteration for P = 1 because the entire problem 
consists of that single (sub-)domain. The PGS cases (dashed lines), in contrast, require mUltiple 
iterations. However, as P increases the two methods have very similar trends in the growth of 
iterations, and in the optically thick problem PGS uses significantly fewer iterations than PBJ. 
The total execution time is shown in Fig. 2b, and one can clearly see the benefit of the PGS 
decomposition: faster operation times and lower memory burden coupled with red-black 
iterations reduce execution time considerably, nearly a full decade in the h = 10.0 cm case. 

We repeated the experiment but using a lower order quadrature, S4, and increased the number of 
cells of the base model to 16x16x16. For PBJ, sub-domains of this size require most of the 
memory available per PE. PGS cases have eight 8x8x8 cells per PE. Tests were performed on 
YR up to P = 256. Figure 3a shows that the iteration counts are still slightly better for the PGS 
case with eight sub-domains per PE. Moreover, PGS continues to outperform PBJ in execution 
time by a significant factor. 
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Figure 3. PBJ/PGS test cases on YR with S4, 16x16x16 base model, c = 0.99, & varying h. 

Although the results presented thus far show a decrease in the number of PGS iterations from 
PBl iterations, one should not assume that this trend will continue with increasing number of 
red/black sub-domain divisions. Further divisions of the sub-domains for the PGS approach will 
lead to higher iteration counts, and the tradeoff between the decreasing work per iteration and the 
increasing number of iterations will be highlighted more clearly via tests presented shortly. 

3.2. Comparing PGS and KBA Performance 

Evident from the results presented in the previous subsection, PGS is a more attractive solution 
method than PBl, at least for a modest number of sub-domains per PE. We now test the lTMM 
with PGS against the KBA method for mesh sweep parallelization . We have run similar test 
cases as above using our code with the PGS method and compare the results to the same test 
cases using PARTISN with the KBA method. PARTISN solves the within-group equations with 
thc SI scheme and uses diffusion synthetic acceleration (SI DSA) to improve the convergence 
rate. The ITMM code currently does not include acceleration or preconditioning of the global 
problem, and improvement of the convergence rate remains an open challenge which we discuss 
further in subsequent sections . 

We wish to run a larger, more practical problem that will fully utilize the available memory 
when run with the PGS method, not the PBl method. Therefore, we use the 16x16x16 base 
model with eight 8x8x8 sub-domains per PE and increase the quadrature order to Ss. The 
scattering ratio is still c = 0.99, and the cell cubic dimension is again varied as h = 0.1, 1.0, and 
10.0 cm. Additional PEs are added in the z- and y-directions before the x-direction to maximize 
PARTISN's parallel efficiency-i.e., the 2-D spatial decomposition for KBA is done in the y-z 
plane. Tests are performed on the RT system up to P = 1,024. 
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Figure 4. PGS/KBA test case on RT with S8, 16x16x16 base model, c = 0.99, & h = 0.1 cm. 

Figure 4 shows the results for c = 0.99 and h = 0.1 cm. It must be noted that the work per 
iteration is very different for the three methods prescnted: PGS, SI, and SI DSA. We use these 
plots of iteration counts to observe trends in the amount of work to be performed per PE per 
mcthod. For the present case the PGS and SI cases show a quickly growing number of iterations 
with increasing P in Fig. 4a; with the high scattering ratio, cells are tightly coupled because the 
absorption loss mechanism is weakened. Yet SI DSA convergence is unsurprisingly rapid and 
the curve is flat except for a slight increase at P = 1,024; the acceleration scheme quickly kills 
diffusive error modes and the small optical thickness makes for a so-called "leaky" system, 
handled well by the transport sweeps. [11] The PGS execution time, shown in Fig. 4b, is divided 
into the ITMM operator construction time (dotted line), iterative solution time (dashed line), and 
the total time, a sum of those two components (solid line). Construction time is essentially 
constant because the number of sub-domains per PE and their sizes are constant. Up to P = 

J ,024, both SI and SI DSA outperform the PGS method by a large factor. In fact, the ITMM 
operator construction time exceeds the entire SI DSA time. However, the SI times are growing 
slightly faster, needing to perform a mesh sweep every iteration. Moreover, every time the 
domain is expanded in the x-direction, the efficiency of the KBA method is diminished, most 
noticeable by a change in the slope of the SI execution time line from P = 256 to 512. 

The results for the c = 0.99, h = 1.0 em case are given in Fig. 5. Now the number of iterations is 
relatively flat for all methods. The PGS method has a very slight growth, indicating that the sub­
domains are not yet fully decoupled and some effects arc not completely localized. The 
increasing size of the system has little effect on the necessary number of source iterations for 
convergence. The exceptional performance of SI DSA leads to it having a much faster execution 
time than both PGS and SI. The large number of source iterations raises its execution time, 
bringing it close to PGS for large P. The PGS method execution time grows slowly due to the 
slow growth in iteration count. 
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Figure 6. PGS/KBA test case on RT with S8, 16x16x16 base model, c = 0.99, & h = 10.0 cm. 

The c = 0.99, h = 10.0 cm case is the most optically thick case considered. Increasing optical 
thickness most benefits the PGS method because the sub-domains become decoupled-transpOli 
effects are more localized and fewer iterations are needed. This is the toughest case for SI and SI 
DSA. Although their respective iteration curves shown in Fig. 6a are flat, they are both 
considerably higher than the previous cases considered. The number ofPGS iterations is below 
SI and SI DSA, but the greater amount of work per iteration still results in the longer execution 
times observed in Fig. 6b. However, the large number of source iterations results in a longer SI 
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execution time than PGS for P = 1,024, caused partly by the jump in SI execution time at P = 
512 . The PGS execution time grows much more slowly than SI and SI DSA due to the flat 
growth in number of iterations of decoupled sub-domains. 

The results thus far delineate circumstances in which the ITMM with PGS will be competitive 
with SI and SI DSA. Namely, problems with large optical thickness undergo a decoupling effect 
that provides PGS an advantage to converge more quickly. The comparison tests with PARTISN 
reveal that the ITMM with PGS works well when the sub-domains are optically thick, keeping 
transport effects and sub-domains decoupled. This results in a slow growth in the number of 
iterations for convergence and nearly flat growth in total execution time. Furthelmore, as the 
problem is scaled to a greater number of cells, the sweeps become increasingly expensive, 
whereas the ITMM sub-domain sizes remain constant. The parallel solution times of SI and SI 
DSA continue to grow even when the iteration curves are flat because the size of the domain to 
be swept continues to grow. Even for the h = 1.0 cm cases, the faster growth in execution time 
for SI and SI DSA suggests superior scalability for PGS and potentially faster execution time 
when P is increased to 10,000+ PEs . Moreover, increasing the number of sub-domains per 
processor for PGS can lead to improved execution times, as illustrated in the following 
subsection. However, the large difference in PGS and SI DSA execution times suggests that PGS 
global iterations must be accelerated to increase the convergence rate as DSA does for SI. 

3.3. Comparing Levels of PGS Sub-Domain Division in the Massively Parallel Regime 

Increasing the level of PGS sub-domain division simply requires successive division of a single 
sub-domain on aPE (PBJ) into more, smaller sub-domains. The results so far have considered a 
single division in each dimension to yield eight sub-domains per processor. Continuing with the 
base model used in Sec. 3.2, we consider cases where the PE is assigned eight 8x 8x8 (PGS08), 
64 4x4x4 (PGS04), and 512 2x2x2 (PGS02) sub-domains. Test cases use an S8 quadrature set, C 

= 0.99, and h = 0.1 , 1.0, and 10.0 cm. To test the PGS method on a more massively parallel 
regime than was accessible on the LANL systems, we performed these calculations on the CXT5 
system at ORNL. To fit the problems on the nodes, in terms of memory, we restricted runs to 
eight PEs per node instead of using all twelve. Computations were performed up to P = 32,768. 

The results for the h = 0.1 cm case are presented in Fig. 7. All three levels ofPGS division 
follow the same trend in increasing number of iterations. The curves are shifted upward for 
increasing number of sub-domains as expected. The total execution time for low P shows that the 
smaller sub-domains perform better, likely caused by the faster operations performed per 
iteration and the reduced time for ITMM operators' construction. However, for large problems, 
the construction time becomes increasingly unimportant in the total execution time. The larger 
number of iterations burdens the communication network and the PGS02 case eclipses PGS04 
and PGS08 in execution time. The PGS04 execution time steadily remains below the PGS08 
execution time. These two cases show similar curves with PGS04 having a slightly faster growth 
than PGS08, especially as P is increased to thousands of PEs. 

The small cell-optical-thickness results in Fig. 7 are expected given the tight coupling among the 
sub-domains. Increasing the optical thickness, shown in Fig. 8, flattens the curves in both the 
iterations and execution time plots . The same trends as the h = 0.1 cm case are present, but the 
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growing execution time is much slower and the method presents much better scaling properties. 
Again, the PGS04 case is the fastest PGS division. 

The optically thick, h = 10.0 cm cases achieve excellent scalability for the PGS08 and PGS04 
strategies. Shown in Fig. 9 the iteration curves are nearly completely flat, suggesting rapid 
decoupling of the sub-domains and fast convergence. The execution time plots continue to show 
PGS04 as a slightly more efficient PGS division than PGS08, executing noticeably faster with 
only a slightly faster rate of growth . 
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The results presented in this section clearly indicatc that the PGS08 and PGS04 cases scale very 
similarly. The fact that PGS04 does not rapidly climb in execution time, like PGS02, makes it a 
vcry good choice beyond P = 32,768. More generally, the results suggest a single division in 
each dimension, like PGS08, is not necessarily the most efficient approach, even if it does mean 
similar or fewer global iterations than PBJ, as shown in Sec. 3.1. Moreover, the number of 
iterations and burden it places on the system for fast communications is the most influential 
factor in the fast growth of PGS02 execution time. If a method is developed to accelerate the 
ITMM with PGS iterations, more, smaller sub-domains may be the more attractive choice 
because of faster operator constmction time and matrix-vector operations. 

3.4. Comparing PBJ and PGMRES Performance 

As mentioned in Sec. I, source iterations can be replaced with Krylov subspace methods, and 
specifically the KBA parallel mesh sweep is used to perform matrix-vector multiplications 
necessary for the GMRES algorithm. The ITMM with spatial sub-domains can also be solved 
with a parallel GMRES method as an alternative to the PBJ and PGS stationary methods. 

We return to the 10xlOx10, Sl6 base model problem to compare the PBJ method with the 
PGMRES(m). For our PGMRES(m) calculations, we employed classical Gram-Schmidt 
orthogonalization, a diagonal block preconditioner, and In = 20. Running on the YR system up to 
P = 256, the results for varying hand c = 0.99 are given in Fig. 10. Evident in Fig. lOa the 
number of iterations for the two methods have very similar trends. The preconditioner helps keep 
the number ofPGMRES iterations from growing too quickly, especially with a small restart 
number. Unfortunately, because the ITMM operators are large, a low restart number must be 
selected to avoid overflowing memory. The execution-time plots in Fig. lOb demonstrate 
generally that the two methods have similar execution time, with PBJ doing better for the 
optically thick problem, and PGMRES doing better for the optically thin problem. 
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assigning a PE multiple sub-domains will pennit faster matrix-vector operations without any 
significant changes to the parallel GMRES scheme. Second, a more powerful preconditioner can 
further improve the convergence rate ofPGMRES and potentially reduce the execution time. 

4. CONCLUSIONS 

Two new methods for parallelizing the global 1TMM solution have been introduced. The PGS 
method has shown an immediate benefit, reducing the execution time compared to PBJ 
significantly. This is driven by superlinear reductions in matrix-vector operations and the faster 
convergence rate Gauss-Seidel methods generally have compared to Jacobi methods. Comparing 
our PGS methods to S1 and S1 DSA indicates that PGS is most competitive for optically thick 
and highly scattering cases, where the S1 approach exhibits slower convergence. Although the SI 
execution time seems to be growing faster than PGS, the S1 DSA execution time is growing 
fairly slowly and remains at least a factor of ten faster than our method, even in the modestly 
massively parallel regime. Some of this gap can be closed by increasing the number of PGS sub­
divisions, leading to shorter operations without an excessive gain in iterations. However, some 
acceleration, perhaps multigrid, technique will ultimately be necessary to improve the 
convergence rate of the PGS approach to make it generally more competitive. 

The PGMRES method has been introduced as a second alternative to the PBJ method. Although 
results indicate similar perfonnance to PBJ for test cases, the preconditioner selected was very 
simple. Potentially a more efficient preconditioner can be constructed to improve the 
convergence rate. This remains an open area of research; the preconditioner must be powerful, 
but it must be built cheaply to avoid the scenario where its construction begins to significantly 
add to total execution time. Moreover, Krylov solvers are gaining popularity for use in transport 
codes because of their parallel scalability and robustness. Our work demonstrates the proof-of-
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principle that the global ITMM problem can be solved with a Krylov solver with similar 
scalability to that of the stationary solvers. 
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