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ABSTRACT

Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the
global problem with the integral transport matrix method operators have been designed and tested.
The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel
alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of
iterations and reduce work per iteration by applying an alternating red-black color-set to the sub-
domains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was
implemented as an alternative to stationary iterations. Computational results show that the PGS
method can improve on the PBJ method execution by up to ~50% when eight sub-domains per
processor are used. However, compared to traditional source iterations with diffusion synthetic
acceleration, it is still approximately an order of magnitude slower. The best-performing case are
optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed
that 64 sub-domains per processor was the best performing level of sub-domain division. An
acceleration technique that improves the convergence rate would greatly improve the ITMM. The
GMRES(m) method with a diagonal block preconditioner consumes approximately the same time
as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner.

Key Words: transport, within-group, parallel, spatial decomposition, Gauss-Seidel, GMRES

1. INTRODUCTION

The rapid growth in computing platforms is creating a demand for computational methods that
can fully utilize new architectures’ resources in an efficient, scalable manner. In terms of neutron
transport, distributing work based on energy or angular variable decomposition alone is
inadequate when tens of thousands of processing elements (PEs) are available. This inadequacy
is driven by the practical bounds to which the energy and angular variables are commonly
rcfined. However, problems with ever-increasing numbers of spatial cells are highly desired to
analyze physically larger regions and/or to employ finer spatial meshes. Therefore, focus has
rightly shifted to decomposition in multiple variables with spatial domain decomposition of the
within-group equations receiving the most attention.
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For first-order, discrete ordinates neutron transport with a structured spatial mesh, the Koch-
Baker-Alcouffe (KBA) [1], or wavefront, method has become a common choice for spatial
domain decomposition of the within-group equations. For an n-dimensional (n = 2, 3) system,
the domain is mapped to an n—1 processor topology. Mesh sweeps are performed in parallel over
individual sub-domains by communicating angular fluxes on sub-domain boundarics to
downstream neighbors, and advancing along diagonal planes. The KBA method sacrifices load
balance in favor of a synchronous parallelization of the serial algorithm. The work is reordered
only in the sense that it is distributed for faster execution, but the incoming and outgoing data
managcd by the multiple PEs is unchanged from their counterparts in the serial algorithm. The
KBA method has been implemented with traditional source iterations (SI) in the PARTISN code
[2], and more recently it has been used as an efficient way to perform matrix-vector
multiplications for a GMRES(m) scheme in Denovo [3]. Furthermore, the KBA method has been
implemented with diffusion synthetic acceleration (DSA) of the source iterations [2] and with a
DSA-based preconditioner for the Krylov solver [3].

The integral transport matrix method (ITMM) [4, 5] is designed to completely avoid repetitive
mesh sweeps by formulating and storing operators that relate the scalar flux within a sub-domain
to the angular flux on its boundaries. For a large problem, the global domain can be spatially
decomposed into several sub-domains, [6] then the PE owning each sub-domain constructs its
own I[TMM operators and is tied to the rest of the global domain via angular fluxes at its
boundaries. Therefore, the iterative process shifts from cell-average scalar fluxes, as in standard
SI, to sub-domains’ interfacial angular fluxes.

In this paper we present alternative solution methods to the parallel block Jacobi (PBJ) algorithm
described in [6]. First, the parallel red-black Gauss-Seidel (PGS) was developed to split the sub-
domains into a red/black pattern, alternating the computations of red and black sub-domains to
use more up-to-date information. Second, the parallel GMRES (PGMRES) routine was tested as
a means to abandon stationary iterations for a potentially more efficient Krylov subspace solver.

The remainder of this paper is organized as follows. Section 2 briefly outlines the ITMM, its
operators, and the local-global solution strategy using PBJ. Then the PGS and PGMRES

methods are described as alternatives to PBJ for the global solution. Section 3 presents a series of
weak scaling test results. The PGS algorithm with increasing number of sub-domains is
compared to PBJ. Then we show how the PGS algorithm performs compared to the KBA method
as implemented in PARTISN. The PGS method is then scaled to much larger systems to
determine how it behaves in massively parallel regimes. Weak scaling results for PGMRES are
presented next to show where the method currently succeeds and highlight issues targeted for
improvement. Section 4 provides a summary and the conclusions of our work.

2. PARALLELIZATION OF THE INTEGRAL TRANSPORT MATRIX METHOD

We have fully derived the ITMM process for a Cartesian mesh with diamond difference spatial
discretization, discrete ordinates angular discretization, and isotropic scattering in [6]; the same
set of equations will be applied here. Consider the within-group equations for some domain as an
iterative process, using the previous iterate of the scalar flux vector to compute a new iterate.
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With known incoming angular flux serving as sub-domain boundary conditions, the scalar flux
can be computed with

PV =1, (W + Z71q) + Ky i (1)

Standard operator notation is applied. ¢ is the scalar flux vector of length equal to the number of
spatial cells N and is given a superscript to indicate the iteration index. q is the isotropic
distributed source vector of length N. X is the NxN within-group diagonal scattering matrix. ¥,
is a vector of all incoming angular flux at the boundaries. Its length is half the numbcr of cell-
boundary surfaces N, times the number of angles N,. J and K are [ITMM operators. ] is an
NxN matrix that represents the coupling among all sub-domain-cells’ scalar fluxcs; K is an
NXNN, matrix that represents the contribution the boundary angular fluxes make, after
attenuation, to the sub-domain-cells’ scalar fluxes. Upon convergence of Eq. (1), successive
iterates of the scalar flux are equivalent and the system of equations can be rewritten as

(I=Jp)d =JpZ3"a+ Ky 03]
The matrix (I — J) is called the integral transport matrix. [4]

For the purpose of spatial decomposition into sub-domains, we must be able to calculate the
outgoing angular flux from a region, such that it can be used in the global iterative solution
strategy. Continuing with the concept of full coupling in a region, the outgoing angular flux is
computed with

Your :]¢(¢+E;1Q) +K1,bll)in- 3)

The J,, operator couples cells’ scalar flux to outgoing angular flux at the boundaries; it is an
NyNXN matrix. The K, operator represents the attenuation of incoming angular flux of along a
discrete ordinate from the incoming surfaces to the outgoing surfaces; it is an NyN, XNV, matrix.

The ITMM operators are large and dense, so the size of systems that can be solved sequentially
is very limited. To consider larger problems, parallel computing is necessary. Moreover, we have
developed this method with the intention for deployment on massively parallel systems:
minimally several hundreds of PEs but preferably thousands or tens of thousands of PEs.

When solving in parallel, the overall region is decomposed into several sub-domains, arranged in
a 3-D virtual process topology. Each sub-domain is treated as an independent problem; each has
its own set of ITMM operators and boundary conditions. The scalar flux is computed for all cells
in the sub-domain by using LAPACK routines to factorize (I — J4) and solve Eq. (2). Using this
information and the boundary conditions, all the outgoing angular fluxes are computed at the
boundaries of the sub-domain with Eq. (3). The outgoing angular flux is passed between adjacent
sub-domains in an iterative fashion. The exchanged data comprises a set of boundary conditions
for a new calculation to compute the updated scalar flux distribution within the sub-domain. An
iterative process takes place until convergence of the scalar flux in all sub-domains is achieved.
This algorithm is in the mold of the spatial domain decomposition originally proposed in [7].
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This iterative procedure is not an inner iteration scheme because it does not iterate on the
scattering source. The critical aspect of this iterative method is that the quantities being iterated
on are the angular fluxes at sub-domain boundaries, not the scalar fluxes within the sub-domain.
The scalar fluxes serve as a computationally inexpensive, intermediate step in the computation of
updated outgoing boundary angular fluxes and as a convenient tool for determining the
convergence of the global system.

When each PE owns a single sub-domain, this iterative process reduces to the PBJ global
solution method where the global problem is written as a single global system of equations. The
nonzcro elements of the resulting block coefficient matrix are the ITMM operators of the
individual sub-domains. Scalar and angular fluxes, distributed among the participating
processors, comprise the solution vector. The right hand side (RHS) vector, also distributed,
contains the distributed sources and boundary conditions. A single iteration updates all the values
of ¢ and ¥, before starting a new iteration, hence the “block Jacobi” terminology.

The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel
alternative, wherein one uses the most current information when computing new values. In the
PBJ algorithm the angular flux always lags because no improved information exists until
communication. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the
number of iterations by applying an alternating red-black color-set to the sub-domains. In the
first half of a PGS iteration, the red sub-domains are solved for ¢ and ¥, using Y, from the
previous black iteration. This is followed by sending the just-computed outgoing angular fluxes
to adjacent black sub-domains. The PGS iteration is completed when black sub-domains use
these incoming angular fluxes to compute a new iterate of their own ¢ and Y.

To avoid the problem of processor idleness, PEs are given ownership of multiple sub-domains,
half red and half black. Angular fluxes at sub-domain boundaries are exchanged either via
communication over the network interconnect or via vector copying within an individual PE’s
memory space. PEs are assigned at least two sub-domains per dimension to eliminate idleness
when alternating between the red and black halves of the iteration.

We have previously found with PBJ that increasing the number of sub-domains will increase the
number of PBJ iterations. [6] Yet when a modest increase in the number of sub-domains is
coupled with the PGS implementation, the number of iterations will only grow slightly and in
some cases decrease because of the faster rate of convergence with PGS. Each further division of
a sub-domain into even smaller ones will increase the number of PGS global iterations necessary
for convergence. Nevertheless, consider the aforementioned sizes of the ITMM operators. The
smaller sub-domains provide superlinear benefits in required computational resources (memory
and time) during construction and iterative application of the ITMM operators. Therefore, our
work has focused on optimizing the run-time based on these competing factors.

As an alternative to the stationary iterative methods, PBJ and PGS, a potentially more efficient
Krylov subspace solver can be employed for the global solution. The global problem’s
coefficient matrix is not symmetric, and we can say nothing generally about its positive
definiteness. With these characteristics, the GMRES algorithm is the only solver robust enough
for implementation. GMRES requires matrix-vector multiplications to build the subspace that is
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used to minimize the residual and compute updates to the solution vector. [8] These
multiplications manifest themselves simply as ITMM operators multiplying the ¢ and ¥y,
vectors of the same sub-domain and are therefore already distributed in our PGMRES algorithm.
Communications with adjacent sub-domains are used to exchange sub-vectors of the residual and
orthogonal basis vectors. Global communications are necessary to perform reductions on the data
needed to form the least squares problem.

Because of the large size of the global problem, the PGMRES method was implemented using m
restarts to limit the size of the subspace being built. This has the potential to cause stagnation,
stalling the reduction in the error if the restart number is set too low. To improve the method, a
diagonal block preconditioner is employed. [8] The benefit of this preconditioner is that the
diagonal blocks of the coefficient matrix are (I — J4) for the ¢ equations and I for the P,
equations. No additional operations are necessary to build the preconditioner except to factorize
(I — ] ). The PGMRES method increases the work per iteration compared to the stationary
methods. However, we seek to reduce the number of iterations sufficiently that the overall
execution time decreases.

3. COMPUTATIONAL RESULTS

Several tests have been performed to analyze the weak scaling of our parallel ITMM code. In
weak scaling tests, the size of the problem is increased with the number of processors.
Specifically, we maintain a fixed number of spatial cells per processor, holding the number of
unknowns constant for a given number of sub-domains per processor. However, changing the
number of sub-domains per processor for the PGS approach will change the number of ¥
unknowns. We are interested in the growth in the number of iterations and execution time as the
number of processors, and therefore sub-domains, is increased.

For the moment, consider a single sub-domain per processor. We rely on a generic model
problem and modify cell dimensions and material scattering cross sections to investigate the
effects optical thickness and scattering ratio have on our method. The base model domain is a
cube with side length L and four materials, as shown in Fig. 1, having no symmetries that may
influence iterative convergence. The domain is discretized via a uniform mesh of cubic cells and
the number of cells in the base model is scaled, changing the size of the ITMM operators.

For the weak scaling tests, additional processes are added to the 3-D virtual topology, and the
global domain is divided into sub-domains of equal size. The sub-domains are not periodic
repetitions of the base; instead, the base model domain is stretched in the dimension(s) that
receives additional PEs and divided into cubic sub-domains.

When each PE is assigned multiple sub-domains, the base model itself is divided into equally
sized, cubic sub-domains, half red and half black. As the problem is scaled to more PEs, the base
model is distorted in the same manner described above: each additional PE gets a cubic region,
which it divides into equally sized cubic sub-domains.

Our code has been written in the Fortran 90/95 standard. To achieve parallelism for targeted
distributed memory architectures, we used the Message Passing Interface (MPI) instruction set.
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Figure 1. Test cases’ base model of four materials and four source strengths.

Standard compiler optimizations were utilized for improved performance on each PE, namely in
the vectorization of matrix-vector operations. All cases were run multiple times, and we report
the average execution times for a more accurate estimate of typical system performance.

Test cases were performed on three different computer systems. At Los Alamos National
Laboratory (LANL), we used the Yellowrail (YR) network [9] to test our methods on up to P =
256, where P is the number of PEs. YR is a distributed memory cluster of 139 nodes with 8
CPUs (1 CPU =1 PE) and 16 GB of memory per node. Nodes are organized into a single
Connected Unit (CU), whereby a single, large switch connects all the nodes. With the initial
observations, we then scaled cases to P = 1,024 on LANL’s Redtail (RT) system [9]. RT is
composed of 14 CUs. Each RT CU has 131 nodes with 8 CPUs and 32 GB of memory per node.
For access to thousands of PEs to test our code, we used the Cray XT5 JaguarPF (CXTS5) cluster
[10] at Oak Ridge National Laboratory (ORNL). CXTS5 is composed of 18,688 nodes, each with
12 CPUs, 16 GB of memory and a SeaStar 2+ router. The interconnect is a 3-D torus topology.

3.1. Comparing PGS and PBJ Performance

Comparing the PGS and PBJ technique involves evaluating the relative performance amid
competing effects. The superlinear reduction in operator sizes leads to smaller memory
requirement per PE, faster ITMM construction time, and faster matrix-vector operations for PGS
in spite of the fact that each PE handles multiple sub-domains. Conversely, per the results of [7]
and [6], we know that for a fixed problem, increasing the number of sub-domains will induce an
increase in the number of iterations for convergence. Moreover, the increase in the number of
sub-domains per PE requires an increase in the number of communications to other PEs as well
as substantial copying of arrays among sub-domains on the same PE.
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Figure 2. PBJ/PGS test cases on YR with S}6, 10x10x10 base model, ¢ = 0.99, & varying hA.

We start with a problem where the base model is 10x10x10 spatial cells and the angular
quadrature order is 16 in the LQy quadrature set. (We will continue to use the LQy set for the
rcmainder of this paper.) Additional PEs are added in one dimension at a time, and we cycle
through the dimensions to maintain a low global surface-to-volume ratio. The PBJ case therefore
assigns a single 10x10x10 sub-domain to each PE, and the PGS case assigns eight 5x5x5 sub-
domains to each PE.

Tests were performed on YR up to P = 256, with scattering ratio ¢ = 0.99, and considering cell
dimension 2= 0.1, 1.0, and 10.0 cm to model the effects of varying the optical thickness of the
host media. (Alternatively, the total interaction cross section could have been scaled to achieve
the same result.) In Fig. 2a, the number of iterations vs P is shown for the six cases. The three
PBJ cases (solid lines) require only a single iteration for P = 1 because the entire problem
consists of that single (sub-)domain. The PGS cases (dashed lines), in contrast, require multiple
iterations. However, as P increases the two methods have very similar trends in the growth of
itcrations, and in the optically thick problem PGS uses significantly fewer iterations than PBJ.
The total execution time is shown in Fig. 2b, and one can clearly see the benefit of the PGS
decomposition: faster operation times and lower memory burden coupled with red-black
iterations reduce execution time considerably, nearly a full decade in the # = 10.0 cm case.

We repeated the experiment but using a lower order quadrature, Ss, and increased the number of
cells of the base model to 16x16x16. For PBJ, sub-domains of this size require most of the
memory available per PE. PGS cases have eight 8x8x8 cells per PE. Tests were performed on
YR up to P =256. Figure 3a shows that the iteration counts are still slightly better for the PGS
case with eight sub-domains per PE. Moreover, PGS continues to outperform PBJ in execution
time by a significant factor.
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Figure 3. PBJ/PGS test cases on YR with Sy, 16xX16x16 base model, ¢ = 0.99, & varying 4.

Although the results presented thus far show a decrease in the number of PGS iterations from
PBJ iterations, one should not assume that this trend will continue with increasing number of
red/black sub-domain divisions. Further divisions of the sub-domains for the PGS approach will
lead to higher iteration counts, and the tradeoff between the decreasing work per iteration and the
increasing number of iterations will be highlighted more clearly via tests presented shortly.

3.2. Comparing PGS and KBA Performance

Evident from the results presented in the previous subsection, PGS is a more attractive solution
method than PBJ, at least for a modest number of sub-domains per PE. We now test the ITMM
with PGS against the KBA method for mesh sweep parallelization. We have run similar test
cascs as above using our code with the PGS method and compare the results to the same test
cases using PARTISN with the KBA method. PARTISN solves the within-group equations with
the SI scheme and uses diffusion synthetic acceleration (SI DSA) to improve the convergence
rate. The ITMM code currently does not include acceleration or preconditioning of the global
problem, and improvement of the convergence rate remains an open challenge which we discuss
further in subsequent sections.

We wish to run a larger, more practical problem that will fully utilize the available memory
when run with the PGS method, not the PBJ method. Therefore, we use the 16x16x16 base
model with eight 8x8x8 sub-domains per PE and increase the quadrature order to Sg. The
scattering ratio is still ¢ = 0.99, and the cell cubic dimension is again varied as 2 =0.1, 1.0, and
10.0 cm. Additional PEs are added in the z- and y-directions before the x-direction to maximize
PARTISN’s parallel efficiency—i.e., the 2-D spatial decomposition for KBA is done in the y-z
plane. Tests are performed on the RT system up to P =1,024.
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Figure 4. PGS/KBA test case on RT with S3, 16X16x16 base model, ¢ =0.99, & /= 0.1 cm.

Figure 4 shows the results for ¢ = 0.99 and # = 0.1 cm. It must be noted that the work per
iteration is very different for the three methods prescnted: PGS, SI, and SI DSA. We use these
plots of iteration counts to observe trends in the amount of work to be performed per PE per
mcthod. For the present case the PGS and SI cases show a quickly growing number of iterations
with increasing P in Fig. 4a; with the high scattering ratio, cells are tightly coupled because the
absorption loss mechanism is weakened. Yet SI DSA convergence is unsurprisingly rapid and
the curve is flat except for a slight increase at P = 1,024; the acceleration scheme quickly kills
diffusive error modes and the small optical thickness makes for a so-called “leaky” system,
handled well by the transport sweeps. [11] The PGS execution time, shown in Fig. 4b, is divided
into the ITMM operator construction time (dotted line), iterative solution time (dashed line), and
the total time, a sum of those two components (solid line). Construction time is essentially
constant because the number of sub-domains per PE and their sizes are constant. Up to P =
1,024, both SI and SI DSA outperform the PGS method by a large factor. In fact, the ITMM
operator construction time exceeds the entire SI DSA time. However, the SI times are growing
slightly faster, needing to perform a mesh sweep evcry iteration. Moreover, every time the
domain is expanded in the x-direction, the efficiency of the KBA method is diminished, most
noticeable by a change in the slope of the SI execution time line from P =256 to 512.

The results for the ¢ = 0.99, £ = 1.0 cm case are given in Fig. 5. Now the number of iterations is
relatively flat for all methods. The PGS method has a very slight growth, indicating that the sub-
domains are not yet fully decoupled and some effects arc not completely localized. The
increasing size of the system has little effect on the necessary number of source iterations for
convergence. The exceptional performance of ST DSA leads to it having a much faster execution
time than both PGS and SI. The large number of source iterations raises its execution time,
bringing it close to PGS for large P. The PGS method execution time grows slowly due to the
slow growth in iteration count.
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Figure 5. PGS/KBA test case on RT with Sg, 16x16x16 base model, ¢ = 0.99, & i = 1.0 cm.
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Figure 6. PGS/KBA test case on RT with S, 16X16x16 base model, ¢ = 0.99, & h =10.0 cm.

The ¢ =0.99, h = 10.0 cm case 1s the most optically thick case considered. Increasing optical
thickness most benefits the PGS method because the sub-domains become decoupled—transport
effects are more localized and fewer iterations are needed. This is the toughest case for SI and SI
DSA. Although their respective iteration curves shown in Fig. 6a are flat, they are both
considerably higher than the previous cases considered. The number of PGS iterations is below
SIand SI DSA, but the greater amount of work per iteration still results in the longer execution
times observed in Fig. 6b. However, the large number of source iterations results in a longer SI
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execution time than PGS for P = 1,024, caused partly by the jump in SI execution time at P =
512. The PGS execution time grows much more slowly than SI and SI DSA due to the flat
growth in number of iterations of decoupled sub-domains.

The results thus far delineate circumstances in which the ITMM with PGS will be competitive
with ST 'and SI DSA. Namely, problems with large optical thickness undergo a decoupling effect
that provides PGS an advantage to converge more quickly. The comparison tests with PARTISN
reveal that the ITMM with PGS works well when the sub-domains are optically thick, keeping
transport effects and sub-domains decoupled. This results in a slow growth in the number of
iterations for convergence and nearly flat growth in total execution time. Furthermore, as the
problem is scaled to a greater number of cells, the sweeps become increasingly expensive,
whereas the ITMM sub-domain sizes remain constant. The parallel solution times of SI and SI
DSA continue to grow even when the iteration curves are flat because the size of the domain to
be swept continues to grow. Even for the 2 = 1.0 cm cases, the faster growth in execution time
for SI and SI DSA suggests superior scalability for PGS and potentially faster execution time
when P is increased to 10,000+ PEs. Moreover, increasing the number of sub-domains per
processor for PGS can lead to improved execution times, as illustrated in the following
subsection. However, the large difference in PGS and SI DSA execution times suggests that PGS
global iterations must be accelerated to increase the convergence rate as DSA does for SI.

3.3. Comparing Levels of PGS Sub-Domain Division in the Massively Parallel Regime

Increasing the level of PGS sub-domain division simply requires successive division of a single
sub-domain on a PE (PBJ) into more, smaller sub-domains. The results so far have considered a
single division in each dimension to yield eight sub-domains per processor. Continuing with the
base model used in Sec. 3.2, we consider cases where the PE is assigned eight 8x8x8 (PGS08),
64 4x4x4 (PGS04), and 512 2x2x2 (PGS02) sub-domains. Test cases use an Sg quadrature set, ¢
=0.99,and A =0.1, 1.0, and 10.0 cm. To test the PGS method on a more massively parallel
regime than was accessible on the LANL systems, we performed these calculations on the CXTS
system at ORNL. To fit the problems on the nodes, in terms of memory, we restricted runs to
eight PEs per node instead of using all twelve. Computations were performed up to P = 32,768.

The results for the # = 0.1 cm case are presented in Fig. 7. All three levels of PGS division
follow the same trend in increasing number of iterations. The curves are shifted upward for
increasing number of sub-domains as expected. The total execution time for low P shows that the
smaller sub-domains perform better, likely caused by the faster operations performed per
iteration and the reduced time for ITMM operators’ construction. However, for large problems,
the construction time becomes increasingly unimportant in the total execution time. The larger
number of iterations burdens the communication network and the PGS02 case eclipses PGS04
and PGSO08 in execution time. The PGS04 execution time steadily remains below the PGS08
execution time. These two cases show similar curves with PGS04 having a slightly faster growth
than PGSO08, especially as P is increased to thousands of PEs.

The small cell-optical-thickness results in Fig. 7 are expected given the tight coupling among the
sub-domains. Increasing the optical thickness, shown in Fig. 8, flattens the curves in both the
iterations and execution time plots. The same trends as the 2= 0.1 cm case are present, but the
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Figure 8. PGS test cases on CXTS5 with Sg, 16x16x16 base model, ¢ =0.99, & h=1.0 cm.

growing execution time is much slower and the method presents much better scaling properties.
Again, the PGS04 case is the fastest PGS division.

The optically thick, # = 10.0 cm cases achieve excellent scalability for the PGS08 and PGS04
strategies. Shown in Fig. 9 the iteration curves are nearly completely flat, suggesting rapid
decoupling of the sub-domains and fast convergence. The execution time plots continue to show
PGS04 as a slightly more efficient PGS division than PGS08, executing noticeably faster with
only a slightly faster rate of growth.
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Figure 9. PGS test cases on CXT5 with S;, 16x16x16 base model, ¢ =0.99, & # =10.0 cm.

The results presented in this section clearly indicatc that the PGS08 and PGS04 cases scale very
similarly. The fact that PGS04 does not rapidly climb in execution time, like PGS02, makes it a
very good choice beyond P = 32,768. More generally, the results suggest a single division in
each dimension, like PGSO08, is not necessarily the most efficient approach, even if it does mean
similar or fewer global iterations than PBJ, as shown in Sec. 3.1. Moreover, the number of
iterations and burden it places on the system for fast communications is the most influential
factor in the fast growth of PGS02 execution time. If a method is developed to accelerate the
ITMM with PGS iterations, more, smaller sub-domains may be the more attractive choice
because of faster operator construction time and matrix-vector operations.

3.4. Comparing PBJ and PGMRES Performance

As mentioned in Sec. 1, source iterations can be replaced with Krylov subspace methods, and
specifically the KBA parallel mesh sweep is used to perform matrix-vector multiplications
necessary for the GMRES algorithm. The ITMM with spatial sub-domains can also be solved
with a parallel GMRES method as an alternative to the PBJ and PGS stationary methods.

We return to the 10x10x10, S¢ base model problem to compare the PBJ method with the
PGMRES(m). For our PGMRES(im) calculations, we employed classical Gram-Schmidt
orthogonalization, a diagonal block preconditioner, and m = 20. Running on the YR system up to
P =256, the results for varying # and ¢ = 0.99 are given in Fig. 10. Evident in Fig. 10a the
number of iterations for the two methods have very similar trends. The preconditioner helps keep
the number of PGMRES iterations from growing too quickly, especially with a small restart
number. Unfortunately, because the ITMM operators are large, a low restart number must be
selected to avoid overflowing memory. The execution-time plots in Fig. 10b demonstrate
generally that the two methods have similar execution time, with PBJ doing better for the
optically thick problem, and PGMRES doing better for the optically thin problem.

2011 International Conference on Mathematics and Computational Methods Applied to 13/15
Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011



R.J. Zerrand Y.Y. Azmy

w
w

1]

10 E I [ IIIllll | III'TH[ 1 IIl[I_ lo - I I I[IIH[ 1 LN 1 H
g 13 F :
= B - QJ | -
A x — r;:;"‘/.:::;:jf = E — N
£10 E B ey H -
L = L - - - p—
= B 1 o, L PSR
g = - 1 910 F s P 3
2 1 ~— PBJ,h=0.1 5 E 27 o= ]
10 — PGMRA=0.1| & _ // ]
— PBJ,A=1.0 ﬁj _‘,"-'/f -
o | — PGMR,h =10 ! & | |
10 'U | Ll b lll : L —lJB_],h:lO 10 U i 11 lllll] )| || |l|ll2 L | llL‘LLL3
10 10 — PGMR.h =10. 10 10 10 10
Processes Processes
(a) (b)

Figure 10. PGMRES/PBJ test cases on YR with Sy6, 10x10x10 base model, m =20, ¢ = 0.99,
& varying h.

A At mA AL LAAS vrANe U wAAwAAY AA T AAA VT A MARAL/A NS D WARANWASALIL A AAMIV) NeA T ANSAAAR, UAAARG AN M LTl NeNsasaveasan vessse

assigning a PE multiple sub-domains will permit faster matrix-vector operations without any
significant changes to the parallel GMRES scheme. Second, a more powerful preconditioner can
further improve the convergence rate of PGMRES and potentially reduce the execution time.

4. CONCLUSIONS

Two new methods for parallelizing the global ITMM solution have been introduced. The PGS
method has shown an immediate benefit, reducing the execution time compared to PBJ
significantly. This is driven by superlinear reductions in matrix-vector operations and the fastcr
convergence rate Gauss-Seidel methods generally have compared to Jacobi methods. Comparing
our PGS methods to ST and SI DSA indicates that PGS is most competitive for optically thick
and highly scattering cases, where the SI approach exhibits slower convergence. Although the SI
cxccution time seems to be growing faster than PGS, the SI DSA execution time is growing
fairly slowly and remains at least a factor of ten faster than our method, even in the modestly
massively parallel regime. Some of this gap can be closed by increasing the number of PGS sub-
divisions, leading to shorter operations without an excessive gain in iterations. However, some
acceleration, perhaps multigrid, technique will ultimately be necessary to improve the
convergence rate of the PGS approach to make it generally more competitive.

The PGMRES method has been introduced as a second alternative to the PBJ method. Although
results indicate similar performance to PBJ for test cases, the preconditioner selected was very
simple. Potentially a more efficient preconditioner can be constructed to improve the
convergence rate. This remains an open area of research; the preconditioner must be powerful,
but it must be built cheaply to avoid the scenario where its construction begins to significantly
add to total execution time. Moreover, Krylov solvers are gaining popularity for use in transport
codes because of their parallel scalability and robustness. Our work demonstrates the proof-of-
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principle that the global ITMM problem can be solved with a Krylov solver with similar
scalability to that of the stationary solvers.
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