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ABSTRACT

This report describes a new seismic source characterization (SSC) model for the Central and
Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central
and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard
Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore
National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is
to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis
Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent
the center, body, and range of technically defensible interpretations of the available data, models,
and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic
source characterization and ground motion characterization. These two components are used to
calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report
provides a new seismic source model.

Results and Findings

The product of this report is a regional CEUS SSC model. This model includes consideration of
an updated database, full assessment and incorporation of uncertainties, and the range of diverse
technical interpretations from the larger technical community. The SSC model will be widely
applicable to the entire CEUS, so this project uses a ground motion model that includes generic
variations to allow for a range of representative site conditions (deep soil, shallow soil, hard
rock). Hazard and sensitivity calculations were conducted at seven test sites representative of
different CEUS hazard environments.

Challenges and Objectives

The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and
who wish to use an updated SSC model. This model is based on a comprehensive and traceable
process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for
Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model
will be used to assess the present-day composite distribution for seismic sources along with their
characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use
in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined
Operating License Applications (COLAS).

Applications, Values, and Use

Development of a regional CEUS seismic source model will provide value to those who (1) have
submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2)
will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues
resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs
to meet design and periodic review requirements for current and future nuclear facilities. This
work replaces a previous study performed approximately 25 years ago. Since that study was
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completed, substantial work has been done to improve the understanding of seismic sources and
their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable
basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of
delays in new plant licensing due to more conservative interpretations in the existing and future
literature.

Perspective

The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE),
and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this
purpose was composed of distinguished subject matter experts from industry, government, and
academia. The resulting model is unique, and because this project has solicited input from the
present-day larger technical community, it is not likely that there will be a need for significant
revision for a number of years. See also Sponsors’ Perspective for more details.

Approach

The goal of this project was to implement the CEUS SSC work plan for developing a regional
CEUS SSC model. The work plan, formulated by the project manager and a technical integration
team, consists of a series of tasks designed to meet the project objectives. This report was
reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S.
Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were
considered when preparing the report. The SSC model was completed at the end of 2011.

Keywords

Probabilistic seismic hazard analysis (PSHA)
Seismic source characterization (SSC)
Seismic source characterization model
Central and Eastern United States (CEUS)
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Figure E-60 In situ tree trunks such as this one buried and killed by sand blow in New
Madrid seismic zone offer opportunity to date paleoearthquakes to the year and
season of occurrence. Photograph: M. Tuttle. ... E-127

Ixi1



Figure E-61 Portion of dendrocalibration curve illustrating conversion of radiocarbon age
to calibrated date in calendar years. In example, 2-sigma radiocarbon age of 2,280—
2,520 BP is converted to calibrated date of 770-380 BC (from Tuttle, 1999)................

Figure E-62 Empirical relation developed between A horizon thickness of sand blows
and years of soil development in New Madrid region. Horizontal bars reflect
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past 5,500 years based on dating and correlation of liquefaction features at sites
(listed at top) across region from north to south. Vertical bars represent age
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138 yr BP (AD 1811-1812); 500 yr BP £ 150 yr; 1,050 yr BP + 100 yr; and 4,300 yr
BP + 200 yr (modified from Tuttle, Schweig, et al., 2002; Tuttle et al., 20095). ..............
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past 2,000 years, similar to upper portion of diagram shown in Figure E-63. As in
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Project derived two possible uncertainty ranges for timing of paleoearthquakes,
illustrated by the darker and lighter portions of the colored horizontal bars,
respectively: 503 yr BP + 8 yr or 465 yr BP £ 65 yr, and 1,110 yr BP + 40 yr or 1055
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earthquakes in 500 yr BP and 1,050 yr BP are inferred from comparison with 1811-
1812 liquefaction fields. Magnitude estimates of December (D), January (J), and
February (F) main shocks and large aftershocks taken from several sources;
rupture scenario from Johnston and Schweig (1996; modified from Tuttle, Schweig,
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(modified from Tuttle, 2001). ...
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EXECUTIVE SUMMARY

The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities
(CEUS SSC) Project was conducted over the period from April 2008 to December 2011 to
provide a regional seismic source model for use in probabilistic seismic hazard analyses
(PSHASs) for nuclear facilities. The study replaces previous regional seismic source models
conducted for this purpose, including the Electric Power Research Institute—Seismicity Owners
Group (EPRI-SOG) model (EPRI, 1988, 1989) and the Lawrence Livermore National
Laboratory model (Bernreuter et al., 1989). Unlike the previous studies, the CEUS SSC Project
was sponsored by multiple stakeholders—namely, the EPRI Advanced Nuclear Technology
Program, the Office of Nuclear Energy and the Office of the Chief of Nuclear Safety of the U.S.
Department of Energy (DOE), and the Office of Nuclear Regulatory Research of the Nuclear
Regulatory Commission (NRC). The study was conducted using Senior Seismic Hazard Analysis
Committee (SSHAC) Study Level 3 methodology to provide high levels of confidence that the
data, models, and methods of the larger technical community have been considered and the
center, body, and range of technically defensible interpretations have been included.

The regional seismic source characterization (SSC) model defined by this study can be used for
site-specific PSHAs, provided that appropriate site-specific assessments are conducted as
required by current regulations and regulatory guidance for the nuclear facility of interest. This
model has been designed to be compatible with current and anticipated ground-motion
characterization (GMC) models. The current recommended ground-motion models for use at
nuclear facilities are those developed by EPRI (2004, 2006a, 2006b). The ongoing Next
Generation Attenuation—East (NGA-East) project being supported by the NRC, DOE, and EPRI
will provide ground-motion models that are appropriate for use with the CEUS SSC model. The
methodology for a SSHAC Level 3 project as applied to the CEUS SSC Project is explained in
the SSHAC report (Budnitz et al., 1997), which was written to discuss the evolution of expert
assessment methodologies conducted during the previous three decades for purposes of
probabilistic risk analyses. The methodological guidance provided in the SSHAC report was
intended to build on the lessons learned from those previous studies and, specifically, to arrive at
processes that would make it possible to avoid the issues encountered by the previous studies
(NRC, 2011).

The SSHAC assessment process, which differs only slightly for Level 3 and 4 studies, is a
technical process accepted in the NRC’s seismic regulatory guidance (Regulatory Guide 1.208)
for ensuring that uncertainties in data and scientific knowledge have been properly represented in
seismic design ground motions consistent with the requirements of the seismic regulation

10 CFR Part 100.23 (“Geologic and Seismic Siting Criteria”). Therefore, the goal of the SSHAC
assessment process is the proper and complete representation of knowledge and uncertainties in
the SSC and GMC inputs to the PSHA (or similar hazard analysis). As discussed extensively in
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the SSHAC report (Budnitz et al., 1997) and affirmed in NRC (2011), a SSHAC assessment
process consists of two important sequential activities, evaluation and integration. For a Level 3
assessment, these activities are conducted by the Technical Integration (TI) Team under the
leadership of the TI Lead. As described in NRC (2011),

The fundamental goal of a SSHAC process is to carry out properly and document completely the
activities of evaluation and integration, defined as:

Evaluation: The consideration of the complete set of data, models, and methods proposed by
the larger technical community that are relevant to the hazard analysis.

Integration: Representing the center, body, and range of technically defensible interpretations
in light of the evaluation process (i.e., informed by the assessment of existing data, models,
and methods).

Each of the assessment and model-building activities of the CEUS SSC Project is associated with
the evaluation and integration steps in a SSHAC Level 3 process. Consistent with the
requirements of a SSHAC process, the specific roles and responsibilities of all project
participants were defined in the Project Plan, and adherence to those roles was the responsibility
of the TI Lead and the Project Manager. The technical assessments are made by the TI Team,
who carry the principal responsibility of evaluation and integration, under the technical
leadership of the TI Lead. The Database Manager and other technical support individuals assist
in the development of work products. Resource and proponent experts participate by presenting
their data, models, and interpretations at workshops and through technical interchange with the
TI Team throughout the project. The Participatory Peer Review Panel (PPRP) is responsible for a
continuous review of both the SSHAC process being followed and the technical assessments
being made. The project management structure is headed by the Project Manager, who serves as
the liason with the sponsors and the PPRP and manages the activities of all participants. The
SSHAC Level 3 assessment process and implementation is discussed in depth in Chapter 2 of
this report.

Each of the methodology steps in the SSHAC guidelines (Budnitz, 1997) was addressed
adequately during the CEUS SSC Project. Furthermore, the project developed a number of
enhancements to the process steps for conducting a SSHAC Study Level 3 project. For example,
the SSHAC guidelines call for process steps that include developing a preliminary assessment
model, calculating hazard using that model in order to identify the key issues, and finalizing the
model in light of the feedback provided from the hazard calculations and sensitivity analyses.
Because of the regional nature of the project and the multitude of assessments required, four
rounds of model-building and three rounds of feedback were conducted. These activities ensured
that all significant issues and uncertainties were identified and that the appropriate effort was
devoted to the issues of most significance to the hazard results. A comparison of the activities
conducted during the CEUS SSC Project with those recommended in the SSHAC guidelines
themselves (Section 2.6) led to the conclusion that the current standards of practice have been
met for a SSHAC Study Level 3 process—both those that are documented in the SSHAC report
and those that resulted from precedents set by projects conducted since the SSHAC report was
issued.
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The catalog of past earthquakes that have occurred in a region is an important source of
information for the quantification of future seismic hazards. This is particularly true in stable
continental regions (SCRs) such as the CEUS where the causative mechanisms and structures for
the occurrence of damaging earthquakes are generally poorly understood, and the rates of crustal
deformation are low such that surface and near-surface indications of stresses in the crust and the
buildup and release of crustal strains are difficult to quantify. Because the earthquake catalog is
used in the characterization of the occurrence of future earthquakes in the CEUS, developing an
updated earthquake catalog for the study region was an important focus of the CEUS SSC
Project. The specific goals for earthquake catalog development and methods used to attain those
goals are given in Chapter 3.

The earthquake catalog development consists of four main steps: catalog compilation,
assessment of a uniform size measure to apply to each earthquake, identification of dependent
earthquakes (catalog declustering), and assessment of the completeness of the catalog as a
function of location, time, and earthquake size. An important part of the catalog development
process was review by seismologists with extensive knowledge and experience in catalog
compilation. The result is an earthquake catalog covering the entire study region for the period
from 1568 through the end of 2008. Earthquake size is defined in terms of the moment
magnitude scale (Hanks and Kanamori, 1979), consistent with the magnitude scale used in
modern ground-motion prediction equations (GMPEs) for CEUS earthquakes. A significant
contribution of the CEUS SSC Project is the work conducted to develop an updated and
consistent set of conversion relationships between various earthquake size measures
(instrumental magnitudes and intensity) and moment magnitude.

The conceptual SSC framework described in Chapter 4 was developed early in the CEUS SSC
Project in order to provide a consistent approach and philosophy to SSC by the TI Team. This
framework provides the basic underpinnings of the SSC model developed for the project, and it
led to the basic structure and elements of the master logic tree developed for the SSC model. In
considering the purpose of the CEUS SSC Project, the TI Team identified three attributes that are
needed for a conceptual SSC framework:

1. A systematic, documented approach to treating alternatives using logic trees, including
alternative conceptual models for future spatial distributions of seismicity (e.g., stationarity);
alternative methods for expressing the future temporal distribution of seismicity (e.g.,
renewal models, Poisson models); and alternative data sets for characterizing seismic sources
(e.g., paleoseismic data, historical seismicity data).

2. A systematic approach to identifying applicable data for the source characterization,
evaluating the usefulness of the data, and documenting the consideration given to the data by
the TI Team.

3. A methodology for identifying seismic sources based on defensible criteria for defining a
seismic source, incorporating the lessons learned in SSC over the past two decades, and
identifying the range of approaches and models that can be shown to be significant to hazard.

Each of these needs was addressed by the methodology used in the project. For example, the

need for a systematic approach to identifying and evaluating the data and information that
underlie the source characterization assessments was met by the development of Data Summary
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and Data Evaluation tables. These tables were developed for each seismic source to document
the information available at the time of the CEUS SSC assessments (the Data Summary tables)
and the way those data were used in the characterization process (the Data Evaluation tables).
Given the evolution of approaches to identifying seismic sources, it is appropriate to provide a
set of criteria and the logic for their application in the CEUS SSC Project. In the project, unique
seismic sources are defined to account for distinct differences in the following criteria:

s FEarthquake recurrence rate
¢ Maximum earthquake magnitude (Mmax)

o Expected future earthquake characteristics (e.g., style of faulting, rupture orientation, depth
distribution)

e Probability of activity of tectonic feature(s)

Rather than treat these criteria as operating simultaneously or without priority, the CEUS SSC
methodology works through them sequentially. Further, because each criterion adds complexity
to the seismic source model, it is applied only if its application would lead to hazard-significant
changes in the model. In this way, the model becomes only as complex as required by the
available data and information.

The CEUS SSC master logic tree is tied to the conceptual SSC framework that establishes the
context for the entire seismic source model. The master logic tree depicts the alternative
interpretations and conceptual models that represent the range of defensible interpretations, and
the relative weights assessed for the alternatives. By laying out the alternatives initially, the
subsequent detailed source evaluations were conducted within a framework that ensures
consistency across the sources. Important elements of the master logic tree are as follows:

e Representation of the sources defined based on paleoseismic evidence for the occurrence of
repeated large-magnitude earthquakes (RLMEs, defined as two or more earthquakes with
M > 6.5).

e Alternatives to the spatial distribution of earthquakes based on differences in maximum
magnitudes (Mmax zones approach).

e Representation of uncertainty in spatial stationarity of observed seismicity based on
smoothing of recurrence parameters.

e Representation of possible differences in future earthquake characteristics (e.g., style,
seismogenic thickness, and orientation of ruptures), which lead to definition of
seismotectonic zones in the logic tree (seismotectonic zones approach).

The methodologies used by the project to make the SSC assessments are discussed in Chapter 5.
The heart of any SSC model for PSHA is a description of the future spatial and temporal
distribution of earthquakes. Continued analysis of the historical seismicity record and network
monitoring by regional and local seismic networks has led to acceptance within the community
that the general spatial patterns of observed small- to moderate-magnitude earthquakes provide
predictive information about the spatial distribution of future large-magnitude earthquakes. The
analyses leading to this conclusion have focused on whether the observed patterns of earthquakes
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have varied through time; therefore, in effect, this is an assessment of uncertainty in whether
small- to moderate-magnitude earthquakes have been relatively stationary through time.
However, the available data on larger-magnitude earthquakes and their relationship to the spatial
distribution of smaller earthquakes based on the observed record are quite limited. These data are
not sufficient to allow confidence in the predictions generated by empirical spatial models. For
this reason, geologic and geophysical data are needed to specify the locations of future
earthquakes in addition to the observed patterns of seismicity.

Detailed studies in the vicinity of large historical and instrumental earthquakes, and liquefaction
phenomena associated with them, coupled with field and laboratory studies of geotechnical
properties, are leading to a stronger technical basis for (1) placing limits on the locations of
paleoearthquakes interpreted by the distribution of liquefaction phenomena and (2) defining their
magnitudes. In some cases, the paleoseismic evidence for RLMEs is compelling, and the TI
Team has included the RLME source in the SSC model. The locations of RLME sources
notwithstanding, the spatial distribution of distributed seismicity sources has advanced in PSHA
largely because of the assumption of spatial stationarity, and the SSC and hazard community
uses approaches to “smooth” observed seismicity to provide a map that expresses the future
spatial pattern of recurrence rates. The CEUS SSC model is based largely on the assumption,
typical in PSHA studies, that spatial stationarity of seismicity is expected to persist for a period
of approximately 50 years.

Estimating Mmax in SCRs such as the CEUS is highly uncertain despite considerable interest
and effort by the scientific community over the past few decades. Mmax is defined as the upper
truncation point of the earthquake recurrence curve for individual seismic sources, and the
typically broad distribution of Mmax for any given source reflects considerable epistemic
uncertainty. Because the maximum magnitude for any given seismic source in the CEUS occurs
rarely relative to the period of observation, the use of the historical seismicity record provides
important but limited constraints on the magnitude of the maximum event. Because of the
independent constraints on earthquake size, those limited constraints are used to estimate the
magnitudes of RLME. For distributed seismicity source zones, two approaches are used to assess
Mmax: the Bayesian approach and the Kijko approach. In the Bayesian procedure (Johnston et
al., 1994), the prior distribution is based on the magnitudes of earthquakes that occurred
worldwide within tectonically analogous regions. As part of the CEUS SSC Project, the TI Team
pursued the refinement and application of the Bayesian Mmax approach becauses it provides a
quantitative and repeatable process for assessing Mmax.

The TI Team also explored alternative approaches for the assessment of Mmax that provide
quantitative and repeatable results, and the team identified the approach developed by Kijko
(2004) as a viable alternative. While the Kijko approach requires fewer assumptions than the
Bayesian approach in that it uses only the observed earthquake statistics for the source, this is
offset by the need for a relatively larger data sample in order to get meaningful results. Both
approaches have the positive attribute that they are repeatable given the same data and they can
be readily updated given new information. The relative weighting of the two approaches for
inclusion in the logic tree is source-specific, a function of the numbers of earthquakes that are
present within the source upon which to base the Mmax assessment: sources with fewer
earthquakes are assessed to have little or no weight for the Kijko approach, while those with
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larger numbers of events are assessed higher weight for the Kijko approach. In all cases, because
of the stability of the Bayesian approach and the preference for “analogue” approaches within the
larger technical community, the Bayesian approach is assessed higher weight than the Kijko
approach for all sources.

A major effort was devoted to updating the global set of SCR earthquakes and to assessing
statistically significant attributes of those earthquakes following the approach given in Johnston
et al. (1994). In doing so, it was found that the only significant attribute defining the prior
distribution is the presence or absence of Mesozoic-or-younger extension. The uncertainty in this
assessment is reflected in the use of two alternative priors: one that takes into account the
presence or absence of crustal domains having this attribute, and another that combines the entire
CEUS region as a single SCR crustal domain with a single prior distribution. The use of the
Bayesian—and Kijko—approach requires a definition of the largest observed magnitude within
each source, and this assessment, along with the associated uncertainty, was incorporated into the
Mmax distributions for each seismic source. Consideration of global analogues led to the
assessment of an upper truncation to all Mmax distributions at 8'4 and a lower truncation at 5%.
The broad distributions of Mmax for the various seismic source zones reflect the current
epistemic uncertainty in the largest earthquake magnitude within each seismic source.

The CEUS SSC model is based to a large extent on an assessment that spatial stationarity of
seismicity will persist for time periods of interest for PSHA (approximately the next 50 years).
Stationarity in this sense does not mean that future locations and magnitudes of earthquakes will
occur exactly where they have occurred in the historical and instrumental record. Rather, the
degree of spatial stationarity varies as a function of the type of data available to define the
seismic source. RLME sources are based largely on paleoseismic evidence for repeated large-
magnitude (M > 6.5) earthquakes that occur in approximately the same location over periods of a
few thousand years. On the other hand, patterns of seismicity away from the RLME sources
within the Mmax and seismotectonic zones are defined from generally small- to moderate-
magnitude earthquakes that have occurred during a relatively short (i.e., relative to the repeat
times of large events) historical and instrumental record. Thus, the locations of future events are
not as tightly constrained by the locations of past events as for RLME sources. The spatial
smoothing operation is based on calculations of earthquake recurrence within one-quarter-degree
or half-degree cells, with allowance for “communication” between the cells. Both a- and b-
values are allowed to vary, but the degree of variation has been optimized such that b-values
vary little across the study region.

The approach used to smooth recurrence parameters is a refinement of the penalized-likelihood
approach used in EPRI-SOG (EPRI, 1988), but it is designed to include a number of elements
that make the formulation more robust, realistic, and flexible. These elements include the
reformulation in terms of magnitude bins, the introduction of magnitude-dependent weights,
catalog incompleteness, the effect of Mmax, spatial variation of parameters within the source
zone, and the prior distributions of b. A key assessment made by the TI Team was the weight
assigned to various magnitude bins in the assessment of smoothing parameters (Cases A, B,
and E). This assessment represents the uncertainty in the interpretation that smaller magnitudes
define the future locations and variation in recurrence parameters. Appropriately, the penalized-
likelihood approach results in higher spatial variation (less smoothing) when the low-magnitude
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bins are included with high weight, and much less variation (higher smoothing) in the case where
the lower-magnitude bins are given low or zero weight. The variation resulting from the final set

of weights reflects the TI Team’s assessment of the epistemic uncertainty in the spatial variation

of recurrence parameters throughout the SSC model.

The earthquake recurrence models for the RLME sources are somewhat simpler than those for
distributed seismicity sources because the magnitude range for individual RLMEs is relatively
narrow and their spatial distribution is limited geographically such that spatial variability is not a
concern. This limits the problem to one of estimating the occurrence rate in time of a point
process. The data that are used to assess the occurrence rates are derived primarily from
paleoseismic studies and consist of two types: data that provide estimated ages of the
paleoearthquakes such that the times between earthquakes can be estimated, and data that
provide an estimate of the number of earthquakes that have occurred after the age of a particular
stratigraphic horizon. These data are used to derive estimates of the RLME occurrence rates and
their uncertainty.

The estimation of the RLME occurrence rates is dependent on the probability model assumed for
the temporal occurrence of these earthquakes. The standard model applied for most RLME
sources in this study is the Poisson model, in which the probability of occurrence of an RLME in
a specified time period is completely characterized by a single parameter, A, the rate of RLME
occurrence. The Poisson process is “memoryless”—that is, the probability of occurrence in the
next time interval is independent of when the most recent earthquake occurred, and the time
between earthquakes is exponentially distributed with a standard deviation equal to the mean
time between earthquakes. For two RLME sources (Reelfoot Rift-New Madrid fault system and
the Charleston source), the data are sufficient to suggest that the occurrence of RLMEs is more
periodic in nature (the standard deviation is less than the mean time between earthquakes). For
these RLME sources a simple renewal model can also be used to assess the probability of
earthquake occurrence. In making an estimate of the probability of occurrence in the future, this
model takes into account the time that has elapsed since the most recent RLME occurrence.

The CEUS SSC model has been developed for use in future PSHAs. To make this future use
possible, the SSC model must be combined with a GMC model. At present, the GMPEs in use
for SCRs such as the CEUS include limited information regarding the characteristics of future
earthquakes. In anticipation of the possible future development of GMPEs for the CEUS that will
make it possible to incorporate similar types of information, a number of characteristics of future
earthquakes in the CEUS are assessed. In addition to characteristics that might be important for
ground motion assessments, there are also assessed characteristics that are potentially important
to the modeling conducted for hazard analysis. Future earthquake characteristics assessed include
the tectonic stress regime, sense of slip/style of faulting, strike and dip of ruptures, seismogenic
crustal thickness, fault rupture area versus magnitude relationship, rupture length-to-width aspect
ratio, and relationship of ruptures to source boundaries.

Chapters 6 and 7 include discussions of the seismic sources that are defined by the Mmax zones
and the seismotectonic zones branches of the master logic tree. Because of convincing evidence
for their existence, both approaches include RLME sources. The rarity of repeated earthquakes
relative to the period of historical observation means that evidence for repeated events comes
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largely from the paleoseismic record. By identifying the RLMEs and including them in the SSC
model, there is no implication that the set of RLMEs included is in fact the total set of RLMEs
that might exist throughout the study region. This is because the presently available studies that
locate and characterize the RLMEs have been concentrated in certain locations and are not
systematic across the entire study region. Therefore, the evidence for the existence of the RLMEs
is included in the model where it exists, but the remaining parts of the study region are also
assessed to have significant earthquake potential, which is evidenced by the inclusion of
moderate-to-large magnitudes in the Mmax distributions for every Mmax zone or seismotectonic
zone.

In Chapter 6, each RLME source is described in detail by the following factors: (1) evidence for
temporal clustering, (2) geometry and style of faulting, (3) RLME magnitude, and (4) RLME
recurrence. The descriptions document how the data have been evaluated and assessed to arrive
at the various elements of the final SSC model, including all expressions of uncertainty. The
Data Summary and Data Evaluation tables (Appendices C and D) complement the discussions in
the text, documenting all the data that were considered in the course of data evaluation and
integration process for each particular seismic source.

Alternative models for the distributed seismicity zones that serve as background zones to the
RLME sources are either Mmax zones or seismotectonic zones. The Mmax zones are described
in Chapter 6 and are defined according to constraints on the prior distributions for the Bayesian
approach to estimating Mmax. The seismotectonic zones are described in Chapter 7 and are
identified based on potential differences in Mmax as well as future earthquake characteristics.
Each seismotectonic zone in the CEUS SSC model is described according to the following
attributes: (1) background information from various data sets; (2) bases for defining the
seismotectonic zone; (3) basis for the source geometry; (4) basis for the zone Mmax (e.g., largest
observed earthquake); and (5) future earthquake characteristics. Uncertainties in the
seismotectonic zone characteristics are described and are represented in the logic trees developed
for each source.

For purposes of demonstrating the CEUS SSC model, seismic hazard calculations were
conducted at seven demonstration sites throughout the study region, as described in Chapter 8.
The site locations were selected to span a range of seismic source types and levels of seismicity.
The results from the seismic hazard calculations are intended for scientific use to demonstrate the
model, and they should not be used for engineering design. Mean hazard results are given for a
range of spectral frequencies (PGA, 10 Hz, and 1 Hz) and for a range of site conditions. All
calculations were made using the EPRI (2004, 2006) ground-motion models such that results
could be compared to understand the SSC effects alone. Sensitivity analyses were conducted to
provide insight into the dominant seismic sources and the important characteristics of the
dominant seismic source at each site. The calculated mean hazard results are compared with the
results using the SSC model from the 2008 U.S. Geological Survey national seismic hazard maps
and the SSC model from the Combined Operating License applications for new nuclear power
reactors. The hazard results using the CEUS SSC model given in Chapter 8 are reasonable and
readily understood relative to the results from other studies, and sensitivities of the calculated
hazard results can be readily explained by different aspects of the new model. The TI Team
concludes that the SSC model provides reasonable and explainable calculated seismic hazard
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results, and the most important aspects of the SSC model to the calculated hazard (e.g.,
recurrence rates of RLME sources, recurrence parameters for distributed seismicity sources,
Mmax) and their uncertainties have all been appropriately addressed.

Presumably, the GMC model input to the PSHA calculations will be replaced in the future by the
results of the ongoing NGA-East project. The calculated hazard at the demonstration sites in
Chapter 8 comes from the regional CEUS SSC model and does not include any local refinements
that might be necessary to account for local seismic sources. Depending on the regulatory
guidance that is applicable for the facility of interest, additional site-specific studies may be
required to provide local refinements to the model.

To assist future users of the CEUS SSC model, Chapter 9 presents a discussion on the use of the
model for PSHA. The basic elements of the model necessary for hazard calculations are given in
the Hazard Input Document (HID). This document provides all necessary parameter values and
probability distributions for use in a modern PSHA computer code. The HID does not, however,
provide any justification for the values, since that information is given in the text of this report.

Chapter 9 also describes several simplifications to seismic sources that can be made to increase
efficiency in seismic hazard calculations. These simplifications are recommended on the basis of
sensitivity studies of alternative hazard curves that represent a range of assumptions on a
parameter’s value. Sensitivities are presented using the test sites in this study. For applications of
the seismic sources from this study, similar sensitivity studies should be conducted for the
particular site of interest to confirm these results and to identify additional simplifications that
might be appropriate. For the seismic sources presented, only those parameters that can be
simplified are discussed and presented graphically. The sensitivity studies consisted of
determining the sensitivity of hazard to logic tree branches for each node of the logic tree
describing that source. The purpose was to determine which nodes of the logic tree could be
collapsed to a single branch in order to achieve more efficient hazard calculations without
compromising the accuracy of overall hazard results.

Finally, this report provides a discussion of the level of precision that is associated with seismic
hazard estimates in the CEUS. This discussion addresses how seismic hazard estimates might
change if the analysis were repeated by independent experts having access to the same basic
information (geology, tectonics, seismicity, ground-motion equations, site characterization). It
also addresses how to determine whether the difference in hazard would be significant if this
basic information were to change and that change resulted in a difference in the assessed seismic
hazard. This analysis was performed knowing that future data and models will continue to be
developed and that a mechanism for evaluating the significance of that information is needed.
Based on the precision model evaluated, if an alternative assumption or parameter is used in a
seismic hazard study, and it potentially changes the calculated hazard (annual frequency of
exceedence) by less than 25 percent for ground motions with hazards in the range 10~ to 10°°,
that potential change is within the level of precision at which one can calculate seismic hazard. It
should be noted, however, that a certain level of precision does not relieve users from performing
site-specific studies to identify potential capable seismic sources within the site region and
vicinity as well as to identify newer models and data. Also, this level of precision does not
relieve users from fixing any errors that are discovered in the CEUS SSC model as it is
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implemented for siting critical facilities. In addition, NRC has not defined a set value for
requiring or not requiring siting applicants to revise or update PSHAs.

Included in the report are appendices that summarize key data sets and analyses: the earthquake
catalog, the Data Summary and Data Evaluation tables, the paleoliquefaction database, the HID,
and documentation important to the SSHAC process. These data and analyses will assist future
users of the CEUS SSC model in the implementation of the model for purposes of PSHA. The
entire report and database will be provided on a website after the Final Project Report is issued.

The TI Team, Project Manager, and Sponsors determined the approach for quality assurance on
the CEUS SSC Project in 2008, taking into account the SSHAC assessment process and national
standards. The approach was documented in the CEUS SSC Project Plan dated June 2008 and
discussed in more detail in the CEUS SSC Report (Appendix L). Beyond the assurance of quality
arising from the external scientific review process, it is the collective, informed judgment of the
TI Team (via the process of evaluation and integration) and the concurrence of the PPRP (via the
participatory peer review process), as well as adherence to the national standard referred to in
Appendix L, that ultimately lead to the assurance of quality in the process followed and in the
products that resulted from the SSHAC hazard assessment framework.
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Gentlemen:

Reference: Central and Eastern United States Seismic Source Characterization for Nuclear
Facilities Project: Participatory Peer Review Panel Final Report

Introduction

This letter constitutes the final report of the PPRP' (“the Panel”) for the Central and Eastern
United States Seismic Source Characterization for Nuclear Facilities Project (the “CEUS SSC
Project” or “the Project”). The eight Panel members (Jon P. Ake, Walter J. Arabasz, William J.
Hinze, Annie M. Kammerer, Jeffrey K. Kimball, Donald P. Moore, Mark D. Petersen, J. Carl
Stepp) participated in the Project in a manner fully consistent with the SSHAC Guidance.” The
Panel was actively engaged in all phases and activities of the Project’s implementation, including
final development of the Project Plan and planning of the evaluation and integration activities,
which are the core of the SSHAC assessment process.

! Participatory Peer Review Panel

? Budnitz, R. J., G. Apostolakis, D. M. Boore, L. S. Cluff, K. L. Coppersmith, C. A. Cornell, and P. A.
Morris, 1997. Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty
and the Use of Experts (known as the “Senior Seismic Hazard Analysis Committee Report,” or the
“SSHAC Guidance”). NUREG/CR-6372, U. S. Nuclear Regulatory Commission. TIC; 235076.
Washington, DC.
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The Panel’s involvement, described more fully later in this letter, also included review of
analyses performed by the Project to support the evaluation and integration processes, review of
interim evaluation and integration products, and review of the interim draft project report and the
final project report. Additionally, panel members participated in specific analyses as resource
experts, and panel members were observers in or participated as resource experts in eight of the
eleven Technical Integrator Team (TI Team) working meetings held to implement the integration
phase of the assessment process. We want to express our appreciation for the opportunity to
participate in the CEUS SSC Project in this way.

In the remainder of this letter we provide our observations and conclusions on key elements of
the project implementation process, and we summarize our reviews of the draft and final project
reports. As we explain in our comments, assurance that the center, body, and range of the
technically-defensible interpretations (“CBR of the TDI””)’ have been properly represented in the
CEUS SSC Model fundamentally comes from implementing the structure and rigor of the
SSHAC Guidance itself. We are aware that the SSHAC Guidance is accepted by the Nuclear
Regulatory Commission and the Department of Energy for developing seismic hazard models
that provide reasonable assurance, consistent with the seismic safety decision-making practices
of these agencies, of compliance with their seismic safety policies and regulatory requirements.
For these reasons, we describe aspects of the SSHAC Guidance to provide context for our
observations and conclusions.

Project Plan: Conformity to the SSHAC Assessment Process

The SSHAC Guidance recognizes that observed data, available methods, models, and
interpretations all contain uncertainties. These uncertainties lead to alternative scientific
analyses and interpretations. In other words, experts in the broad technical community do not
hold a single interpretation. Accepting this scientific situation, the SSHAC assessment process is
designed to engage the scientific community in an orderly assessment of relevant data, methods,
models, and interpretations that constitute current scientific knowledge as the basis for
development of a seismic hazard model that represents the CBR of the TDI.

The assessment process is carried out by means of two main activities: evaluation and
integration.” In implementation, the evaluation activities are structured to inform the integration
activities. The evaluations are carried out by means of workshops in which the TI Team engages
proponents of alternative interpretations that represent the range of relevant current community
knowledge. Resource experts in the various relevant data sets are also engaged. The workshops
have the dual purposes of, first, evaluating the degree to which alternative interpretations are
supported by observed data and, second, defining uncertainties in the degree to which the
interpretations are defensible, given the observed data. Integration is carried out by individual
evaluator experts or evaluator expert teams (Level 4 process) or by a Technical Integrator (T1)
Team (Level 3 process) who, informed by the evaluation activities, characterize the range of

3 See Section 2.1 in the CEUS SSC Final Report for discussion of concepts relating to the center, body,
and range of the “technically-defensible interpretations” vs. the center, body, and range of the “informed
technical community.”

4 For an excellent discussion of this two-stage process, see Practical Implementation Guidelines for
SSHAC Level 3 and 4 Hazard Studies, USNRC NUREG-XXXX, Draft for Review, Office of Nuclear
Regulatory Research, May 2011.
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defensible alternative interpretations in an integrated hazard model and assess the scientific
uncertainty distribution. Based on our review of the Project Plan and our subsequent discussions
with the Project Team, we concurred that the Plan conformed with the SSHAC Guidance,
incorporating lessons learned from fourteen years experience using the Guidance, and that the
planned implementation was structured to properly carry out the SSHAC assessment process for
development of the CEUS SSC Model.

SSHAC Level 3 Assessment Process

The SSHAC Guidance describes implementation processes for four levels of assessment
depending on the scientific complexity of the assessment and the intended use of the assessed
hazard model. For an assessment such as the regional SSC model for the Central and Eastern
United States, which will be used at many sites for making safety and licensing decisions for
nuclear facilities, the SSHAC Guidance recommends using an assessment Level 3 or Level 4.

There are process differences between a Level 3 and Level 4 implementation, but the objective is
the same: to obtain from multiple proponent experts information that supports an informed
assessment of the range of existent relevant interpretations and associated uncertainties that
together represent current community knowledge and to perform an informed assessment of the
CBR of the TDI. We understand that within the SSHAC assessment process “technically
defensible” means that observed data are sufficient to support evaluation of the interpretation and
the corresponding uncertainty.

In a Level 4 assessment process a TI Team facilitates the assessment, identifying and engaging
proponent and resource experts, performing supporting analyses, and conducting knowledge
evaluation workshops and assessment integration working meetings. Multiple experts or teams
of experts perform as evaluators of the range of existent interpretations and as integrators of the
hazard model. The individual evaluator experts or evaluator expert teams take ownership of
their individual or team assessments. In a Level 3 assessment all of these activities are
consolidated under a single TI Team consisting of a TI Lead, multiple evaluator experts
representing the scope of required scientific expertise, and experienced data and hazard analysts.

As we noted earlier in this report, assurance that the CBR of the TDI is properly represented in a
hazard model comes from rigorously implementing the SSHAC assessment process itself. We
note that an important lesson learned from multiple implementations of the SSHAC Guidance
over the past fourteen years is that the Level 3 and Level 4 assessment processes provide
comparably high assurance that the relevant scientific knowledge and the community uncertainty
distribution are properly assessed and represented in the hazard model. The Level 3 assessment
is significantly more integrated and cohesive and is more efficient to implement. These
considerations led us to endorse use of the Level 3 assessment for implementation of the CEUS
SSC Project in our Workshop No. 1 review letter. During the course of the Project we observed
that the higher level of cohesiveness inherent in the Level 3 assessment process leads to
significantly improved communication, facilitating the experts’ performance of their technical
work.
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Overall Project Organization

A complex project with multiple sponsors such as the CEUS SSC Project cannot be successful
unless it is well organized and energetically managed so that the various participants understand
the interconnectedness of their activities and perform their technical work as a cohesive group.

In this regard the adopted project management structure allowed the Project Manager to provide
integrated overall project leadership, manage the database development activities, and effectively
maintain communication with the PPRP and project sponsors while allowing TI Team lead to
concentrate on the structural and technical activities of the assessment as the Project unfolded.
We conclude that the project organization was effective overall and particularly so with regard to
facilitating the TI Team’s implementation of the assessment process.

Implementing the SSHAC Level 3 Assessment Process

Irrespective of the level of implementation, evaluation and integration are the main activities of a
SSHAC assessment. The evaluation activities aim to identify and evaluate all relevant available
data, models, methods, and scientific interpretations as well as uncertainties associated with each
of them. The integration activities, informed by the evaluations, aim to represent the CBR of the
TDI in a fully integrated SSC model.

Evaluation

Consistent with the SSHAC Guidance the evaluation phase of the CEUS SSC project
accomplished a comprehensive evaluation of the data, models, methods, and scientific
interpretations existent in the larger technical community that are relevant to the SSC model. In
significant part the process was carried out in three structured workshops, each focusing on
accomplishing a specific step in the evaluation process.

The first workshop (WS-1) focused on evaluations of relevant geological, geophysical, and
seismological datasets (including data quality and uncertainties) and on identification of hazard-
significant data and hazard-significant SSC assessment issues. It became clear that a number of
issues relating to the earthquake catalog, the paleoliquefaction data set, the potential-field
geophysical data, updating procedures for assessing maximum earthquake magnitude, and
development of procedures for assessing earthquake recurrence would require focused analyses.
These analyses were appropriately carried out within the TI Team working interactively with
appropriate resource experts recognized by the larger scientific and technical community.

WS-2 focused on evaluations of the range of alternative scientific interpretations, methods, and
models within the larger scientific community and on corresponding uncertainties. WS-3
focused on evaluations of hazard feedback derived at seven representative test locations using a
preliminary CEUS SSC model. Specifically, the workshop focused on the identification of the
key issues of most significance to completing the SSC model assessment.

Experience has shown that evaluations to gain understanding of the quality of various data sets
and uncertainties associated with them are essential for fully informing an SSC assessment. We
observed that in WS-1 resource experts for the various data sets did a high-quality job of
describing the data sets and giving their perspective about the data quality and associated
uncertainties. We conclude that the understanding of data quality and uncertainties gained in
WS-1 together with continued interactions between the TI Team and data resource experts
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significantly informed the TI Team’s evaluations. The TI Team’s evaluations of the data quality
and uncertainties are well documented in the innovative “Data Summary Tables” and “Data
Evaluation Tables” included in the Project Report. Importantly, the TI Team continued to
effectively engage data resource experts in productive analyses of potential-field geophysical
data, the earthquake catalog, development of the paleoearthquake data set (including an
integrated assessment of the paleoliquefaction data in order to extend the earthquake catalog), the
development of methods for assessing maximum earthquakes, and the development of
earthquake recurrence analyses. All of these focused analyses strongly informed the assessment
process. Moreover, documentation of the analyses resulted in stand-alone products of the Project
that will serve future users of the CEUS SSC Model.

The compilation and evaluation of potentially relevant methods, models, and alternative
scientific interpretations representing the community knowledge and corresponding uncertainties
must be considered the core process activity of any SSHAC assessment. This step was largely
carried out in WS-2. Success in defining the community knowledge depends on fully engaging
proponent experts representing the range of methods, models, and interpretations existent at the
time. Full engagement means that the proponent experts completely and clearly describe their
interpretations and the data that support them and provide their individual evaluations of
corresponding uncertainties. We observed that the actions taken by the Project and TI Team to
explain the workshop goals and to guide participants toward meeting those goals was very
productive. We conclude that the workshop was highly successful in meeting the stated goals
and that it fully met the expectation of the SSHAC Guidance with respect to evaluating the range
of alternative scientific interpretations. The discussions during the workshop and between the TI
Team and Panel following the workshop evolved the “SSC Framework” concept, which
provided transparent criteria that framed the TI Team’s systematic identification and assessment
of seismic sources throughout the CEUS.

Feedback from hazard calculations and sensitivity analyses is an important step in a SSHAC
assessment to understand the importance of elements of the model and inform the final
assessments. For development of a regional SSC model to be used for site-specific probabilistic
seismic hazard analyses (PSHASs) at many geographically distributed sites, feedback based on the
preliminary model is particularly important. Following WS-2 a preliminary SSC model termed
“the SSC sensitivity model,” was developed and used for hazard sensitivity calculations that
were evaluated in WS-3. While the SSC sensitivity model was clearly preliminary, the
evaluation of sensitivity results that took place in WS-3 provided important feedback for
completing analyses and for supporting the TI Team’s development of the preliminary CEUS
SSC model. The Panel was able to review the preliminary model and provide feedback in a
subsequent project briefing meeting on March 24, 2010.

Together the three workshops provided the TI Team interactions with the appropriate range of
resource and proponent experts. These experts were carefully identified to present, discuss, and
debate the data, models, and methods that together form the basis for assuring that the CBR of
the TDI have been properly represented in the hazard model. Experts representing academia,
government, and private industry participated. The TI Team also reached out to a wide range of
experts as they developed the database and performed the integration activities to develop the
SSC model. The Panel participated throughout this process, and is satisfied that the TI Team
fully engaged appropriate experts to accomplish the goals of a SSHAC Guidance.
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Integration

Consistent with the SSHAC Guidance, integration is the process of assessing the CBR of the TDI
and representing the assessment in the SSC model. Informed by the evaluation process, the
integration process includes representation of the range of defensible methods, models, and
interpretations of the larger technical community together with new models and methods
developed by analyses during the evaluation and integration process.

For the CEUS SSC Project, development of the earthquake catalog, methods for assessing and
representing maximum earthquake magnitudes, and methods for earthquake recurrence
assessment continued during the integration process. The Panel reviewed all the analyses at
various stages of development and provided comments and recommendations. The TI Team
performed the integration process by means of eleven working meetings. Members of the Panel
participated in most of these working meetings as observers or resource experts. The full Panel
participated in the discussions during both feedback meetings and provided formal comments
and recommendations following the meetings. We observed that the integration process was
thorough and that it acceptably complied with the SSHAC Guidance. Based on our participation
and observations we conclude that the integrated CEUS SSC Model appropriately represents the
center, body, and range of current methods, models and technically defensible interpretations.

PPRP Engagement

Consistent with the SSHAC Guidance, the Panel was fully engaged in peer-review interactions
with the TI Team and the Project Manager of the CEUS SSC Project throughout the entire
project period—from development of the Project Plan in early to mid 2008 through production of
the Final Project Report in mid to late 2011.° The Panel provided both written and oral peer-
review comments on both technical and process aspects at many stages of the Project’s

evolution. Key PPRP activities, leading up to this final report, have included:

e Review of the Project Plan.

e Formulation of a PPRP implementation plan, specifically for the CEUS SSC Project, to
ensure adherence to the general guidance provided by SSHAC and NUREG-1563 for the
scope and goals of a PPRP review.

e Involvement in each of the three Project workshops, including advising in the planning
stage; participating collectively as a review panel during the workshop (and individually
as resource experts when requested by the TI Team), providing timely comments on
technical and process issues; and submitting a written report of the Panel’s observations
and recommendations following each workshop.

e Development and implementation of a process, together with the TI Team, to document
the resolution of recommendations made in PPRP formal communications.

e Participation as observers (and occasionally as resource experts when requested by the TI
Team) in eight of the TI Team’s 11 working meetings.

e Peer-review and written comments, including several informal reports, on the TI Team’s
intermediate work products, particularly early versions of the CEUS SSC Model.

> See CEUS SSC Final Report: Section 2.5, Table 2.2-1, and Appendix I
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e Direct interaction with the TI Team and Project Manager in more than 20 teleconferences
and four face-to-face briefings—in addition to the three workshops and eight working
meetings of the TI Team noted above.

e [Extensive, critical peer-review of the Project’s 2010 Draft Report and 2011 Final Report.

The Panel, collectively and individually, fully understood the SSHAC Guidance for a structured
participatory peer review and the requirements for a Level 3 assessment process; had full and
frequent access to information and interacted extensively with the TI Team and Project Manager
throughout the entire project; provided peer-review comments at numerous stages; and, as
documented within the Final Project Report, was fully engaged to meet its peer-review
obligations in an effective way.

Project Report

The SSHAC Guidance makes clear that adequate documentation of process and results is crucial
for their understanding and use by others in the technical community, by later analysis teams,
and by the project sponsors. The Panel understood what was needed to conform to the SSHAC
requirements, and it was committed to ensuring that the documentation of technical details
associated with the CEUS SSC Model in the Project Report was clear and complete. The Panel
was equally committed to ensuring the transparency of process aspects of the project, both in
implementation and in description in the Project Report.

The Panel provided lengthy compilations of review comments (see Appendix I of the Project
Report) for both the 2010 Draft Report and the 2011 Final Report. These included hundreds of
comments, categorized as general, specific, relating to clarity and completeness, or editorial.
The massive amount of detail provided by the TI Team in the Project Report and the
intensiveness of the Panel’s review comments both reflect great diligence and a mutual
understanding by the TI Team and the PPRP of the thoroughness and high quality of
documentation expected in the Project Report.

The Project Manager and the TI Lead provided review criteria to the Panel for both the draft and
final versions of the Project Report. The criteria for reviewing the Draft Report® covered the
range of technical and process issues consistent with requirements of the SSHAC Guidance,
including draft implementation guidance (see footnote #4). Key criteria, among others, include
sufficiency of explanatory detail; adequate consideration of the full range of data, models, and
methods—and the views of the larger technical community; adequate justification of the data
evaluation process, logic-tree weights, and other technical decisions; proper treatment of
uncertainties; and conformance to a SSHAC Level 3 assessment process. To be clear, the PPRP
is charged with judging the adequacy of the documented justification for the CEUS SSC Model
and its associated logic-tree weights. The TI Team “owns” the Model and logic-tree weights.

Criteria for reviewing the Final Report focused on reaching closure to comments made on the
Draft Report and ensuring that no substantive issues remained unresolved. To that end, among
its many review comments on the Final Report the Panel identified “mandatory” comments,
which the TI Team was required to address in the final version of the Project Report.

% See PPRP report dated October 4, 2010, in Appendix I of CEUS SSC Final Report
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The Panel made thorough, extensive efforts in its documented reviews of the 2010 Draft Report
and the 2011 Final Report (as well as in many related interactions with the TI Team) to ensure a
high-quality Project Report that fully meets SSHAC requirements for clear, complete, and
transparent documentation of all aspects of the CEUS SSC Project. We are pleased to confirm
that implementation of the CEUS SSC Project fully conformed with the SSHAC Guidance and
that the resulting CEUS SSC Model properly meets the SSHAC goal of representing the center,
body, and range of technically-defensible interpretations.

This concludes our PPRP Final Report for the CEUS SSC Project.
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SPONSORS’ PERSPECTIVE

This report describes a new seismic source characterization model for the Central and Eastern
United States (CEUS) for use in probabilistic seismic hazard analysis (PSHA) for nuclear
facilities. PSHA has become a generally accepted procedure for supporting seismic design,
seismic safety and decision making for both industry and government. Input to a PSHA consists
of seismic source characterization (SSC) and ground motion characterization (GMC); these two
components are necessary to calculate probabilistic hazard results (or seismic hazard curves) at a
particular geographic location.

The 1986 Electric Power Research Institute and Seismicity Owners Group (EPRI-SOG) study
included both an SSC and GMC component. Recent applications for new commercial reactors
have followed U.S. Nuclear Regulatory Commission (NRC) regulatory guidance (RG 1.208) by
using the EPRI-SOG source model as a starting point and updating it as appropriate on a site-
specific basis. This CEUS SSC Project has developed a new SSC model for the CEUS to replace
the SSC component of the EPRI-SOG study.

The CEUS SSC Project was conducted using a Senior Seismic Hazard Analysis Committee
(SSHAC) Level 3 process, as described in the NRC publication, Recommendations for
Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts
(NUREG/CR-6372). The goal of the SSHAC process is to represent the center, body, and range
of technically defensible interpretations of the available data, models, and methods. The CEUS
SSC model is applicable to any site within the CEUS and can be used with the EPRI 2004/2006
GMC model to calculate seismic hazard at any site of interest. Long-term efforts to replace the
EPRI 2004/2006 GMC model with the Next Generation Attenuation Relationships for Central
and Eastern North America obtained from the NGA-East Project is scheduled for completion in
2014.

The updated CEUS SSC model provides industry and government with the following: a new
model for the commercial nuclear industry to perform PSHAs for future reactor license
applications; the NRC to support its review of early site permit (ESP) and construction and
operating license (COL) applications; and the U.S. Department of Energy (DOE) to support
modern PSHASs to meet design and periodic review requirements for its current and future
nuclear facilities. Specific benefits of the model are as follows:

e Consistency: For many sites, seismic sources at distances up to 300 km (186 mi.) or more
significantly contribute to hazard at some spectral frequencies. Consequently, seismic hazard
models for many sites have significant geologic overlap. If done separately, there is a
likelihood of conflicting assessments for the same regions. A regional source model allows
for consistent input into a PSHA. An updated conceptual SSC framework that provides a
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consistent basis for identifying and characterizing seismic sources in the CEUS has been
developed. The NRC will no longer need to review each time each applicant’s regional SSC
model when the accepted CEUS SSC model is used. This will avoid lengthy review of the
regional SSC model in ESP and COL applications for sites within the CEUS that use the
accepted regional CEUS SSC model to develop its site-specific SSC model.

Stability: This CEUS SSC model was developed using the accepted state-of-practice
SSHAC methodology that involved the following tasks:

o Development of a comprehensive database and new tools for documenting the data
consideration process.

o Multiple workshops to identify applicable data, debate alternative hypotheses, and
discuss feedback.

o Multiple working meetings by the Technical Integration (TI) Team to develop the SSC
model and fully incorporate uncertainties.

o Technical advancements in a number of areas, such as developing a uniform earthquake
catalog, developing an updated approach for assessing maximum magnitude, compiling
data evaluation tables, incorporating paleoseismic data, and using spatial smoothing
tools.

o Participatory peer review, including four panel briefings, multiple interactions, and
periodic formal feedback.

o Proper documentation of all process and technical aspects of the project.

Experience has shown that stability is best achieved through proper and thorough
characterization of our knowledge and uncertainties, coupled with the involvement of the
technical community, regulators, and oversight groups.

Greater Longevity: An explicit goal of the SSHAC methodology is to represent the center,
body, and range of the technically defensible interpretations of the available data, models,
and methods. Using the SSHAC process provides reasonable assurance that this goal has
been achieved. Representing the center, body, and range of interpretations at the time of the
study means that as new information is acquired and various interpretations evolve as a
result, the current thinking at any point is more likely to be addressed in the study. As new
information becomes available, an existing SSC will require periodic reviews to evaluate the
implications of the new findings. The need for updates to a particular study is now better
understood as a result of findings of the CEUS SSC Project sensitivity studies to determine
the significance of source characteristics.

Cost and Schedule Savings: The CEUS SSC model can be used to perform a PSHA at any
geographic location within the CEUS. It is applicable at any point within the CEUS, subject
to site-specific refinements required by facility-specific regulations or regulatory guidance.
Having stable, consistent input into a regional PSHA will reduce the time and cost required
to complete a commercial nuclear site’s ESP or COL licensing application, prepare a DOE
site’s PSHA, and develop design input for new commercial and DOE mission-critical nuclear
facilities.
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¢ Advancement of Science: The CEUS SSC Project provides new data, models, and methods.
This information was shared at three workshops with international observers as a means to
provide technology transfer for application in other regions. The CEUS SSC earthquake
catalog, which merges and reconciles several catalogs and provides a uniform moment
magnitude for all events, and the CEUS SSC paleoliquefaction database provide a new
baseline for future research and updates. New approaches used in this project for spatial
smoothing of recurrence parameters, assessment of maximum magnitude, and systematical
documentation of all data considered and evaluated also benefit future research and PSHA
updates.

The sponsors of the CEUS SSC Project are utilities and vendors on the EPRI Advanced Nuclear
Technology Action Plan Committee, the DOE Office of Nuclear Energy, the DOE Office of the
Chief of Nuclear Safety, and the NRC Office of Nuclear Regulatory Research. Technical experts
from the DOE, NRC, U.S. Geological Survey (USGS), and Defense Nuclear Facility Safety
Board (DNFSB) participated in the study as part of the TI Team or as members of the
Participatory Peer Review Panel (PPRP).

The product of the CEUS SSC Project is a robust peer-reviewed regional CEUS SSC model for
use in PSHAs. This model will be applicable to the entire CEUS, providing an important
baseline for future research and updates. The CEUS SSC Project demonstrates that a SSHAC
Level 3 approach can achieve the goals of considering the knowledge and uncertainties of the
larger technical community within a robust and transparent framework. The value of the new
CEUS SSC model has been enhanced by the participation of key stakeholders from industry,
government, and academia who were part of the CEUS SSC Project Team.

Looking forward, the NRC will publish NUREG-2117 (2012), Practical Implementation
Guidelines for SSHAC Level 3 and 4 Hazard Studies that provides SSHAC guidance on the need
to update a regional model. The guidance covers updating both regional and site-specific
assessments. It addresses the “refinement” process of starting with a regional model and refining
it for site-specific applications.
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ABBREVIATIONS

AD

AFE

AIC

ALM

AM

AHEX

ANSS

ANT

APC

BA

BC

BCFZ

BFZ

BL

BMA

BP

BPT

BTP

CAD

anno domini (in the year of the Lord)

annual frequency of exceedance

Akaike information criterion
Alabama-Louisiana-Mississippi (zone of possible paleoseismic features)
Atlantic Margin (seismotectonic zone)

Atlantic Highly Extended Crust (seismotectonic zone)
U.S. Advanced National Seismic System

Advanced Nuclear Technology

Action Plan Comittee

Blytheville arch

before Christ

Big Creek fault zone

Blytheville fault zone

Bootheel lineament

Brunswick magnetic anomaly

before present

Brownian passage time

Branch Technical Position

computer-aided design
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Abbreviations

CBR

CCFZ

CDhZ

CENA

CERI

CEUS

CFzZ

CFR

CGL

CGRGC

CI

CNWRA

COCORP

COCRUST

COL

COLA

COMP

CON

Cov

CPT

CVSz

D&G

DEM

CcX

center, body, and range

Crittenden County fault zone

Commerce deformation zone

Central and Eastern North America

Center for Earthquake Research and Information
Central and Eastern United States

Commerce fault zone

Code of Federal Regulations

Commerce geophysical lineament

Cottonwood Grove—Rough Creek graben
confidence interval

Center for Nuclear Waste Regulatory Analysis
Consortium for Continental Reflection Profiling
Consortium for Crustal Reconnaissance Using Seismic Techniques
combined construction and operating license
combined operating license application
composite prior, composite superdomain
contemporary (with earthquake occurrence)
coefficient of variation

cone penetration test

Central Virginia seismic zone

Dewey and Gordon (1984 catalog)

digital elevation model



DNFSB

DOE

DWM

ECC

ECC-AM

ECC-GC

ECFS

ECFS-C

ECFS-N

ECFS-S

EC-SFS

ECMA

ECRB

ECTM

EP

EPRI

EPRI-SOG

ERM

ERM-N

ERM-RP

ERM-S

Abbreviations

Defense Nuclear Facilities Safety Board

U.S. Department of Energy

Division of Waste Management

Extended Continental Crust

Extended Continental Crust—Atlantic Margin (seismotectonic zone)
Extended Continental Crust—Gulf Coast (seismotectonic zone)
East Coast fault system

East Coast fault system—central segment

East Coast fault system—northern segment

East Coast fault system—southern segment

East Coast—Stafford fault system

East Coast magnetic anomaly

East Continent rift basin

Eastern Canada Telemetered Network

expected moment magnitude listed in the CEUS SSC catalog for an earthquake
eastern North America

Eau Plain shear zone

Electric Power Research Institute

Electric Power Research Institute—Seismicity Owners Group
Eastern rift margin

Eastern rift margin—north

Eastern rift margin—river (fault) picks

Eastern rift margin—south
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Abbreviations

ERM-SCC
ERM-SRP
ERRM
ESP

ESRI
ETSZ
EUS
FAFC
FGDC

ft

FTP

ft/s

ft/yr
FWLA

FWR

GC
GCVSz
GHEX
GIS
GLTZ
GMC

GMH

cxil

Eastern rift margin—south/Crittenden County
Eastern rift margin—south/river (fault) picks
Eastern Reelfoot Rift Margin

early site permit

Environmental Systems Research Institute
Eastern Tennessee seismic zone

Eastern United States

Fluorspar Area fault complex

Federal Geographic Data Committee

foot or feet

file transfer protocol

feet per second

feet per year

Fugro William Lettis & Associates

Fort Wayne rift

billion years ago

Gulf Coast

Giles County, Virginia, seismic zone

Gulf Coast Highly Extended Crust (seismotectonic zone)
geographic information system

Great Lakes tectonic zone

ground-motion characterization (model)

Great Meteor Hotspot (seismotectonic zone)



GMPE
GMRS
GPR
GPS
GSC
Gyr
HF

HID

IAEA
IBEB
IPEEE
IRM
ISC
ITC
ka
K-Ar
km
km
km/sec
K-S

K-S-B

ground-motion prediction equation
ground-motion response spectra
ground-penetrating radar

global positioning system
Geological Survey of Canada
gigayears (10’ years)

Humboldt fault

hazard input document

maximum intensity

International Atomic Energy Agency
Illinois Basin Extended Basement (seismotectonic zone)
Individual Plant Examination for External Events
lapetan rifted margin

International Seismological Centre
informed technical community
thousand years ago

potassium-argon

kilometer(s)

square kilometer(s)

kilometers per second
Kijko-Sellevoll
Kijko-Sellevoll-Bayes

thousand years

Abbreviations
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Abbreviations

LDO
LHS
LLNL
In(FA)
LS
LSA

LWLS

MpLg
Mc

MCMC

MESE
MESE-N

MESE-W

MIDC

cXiv

Lamont-Doherty Earth Observatory (catalog)

Latin hypercube sampling

Lawrence Livermore National Laboratory

logarithm of felt area (with felt area measured in km?)

least squares

La Salle anticlinal belt

locally weighted least squares

meter(s)

magnitude

moment magnitudes

million years ago

Marianna (RLME source)

body-wave magnitude (short period)

body-wave magnitude determined from higher-mode (L,) surface waves
coda magnitude

Markov Chain Monte Carlo

duration magnitude

Mesozoic and younger extended crust

Mesozoic-and-younger extended crust or Mmax zone that is “narrow”
Mesozoic-and-younger extended crust or Mmax zone that is “wide”
mile(s)

square mile(s)

midcontinent



MidC

Mfa

My

Minax, Mmax
MMI

mm/yr

My

NADS3
NAP
Nd
NEDB
NEI
NEIC
NF
NMESE

NMESE-N

Midcontinent-Craton (seismotectonic zone)
felt-area magnitude

local magnitude

maximum magnitude
modified Mercalli intensity
millimeters per year

Nuttli magnitude

Scalar seismic moment
Midcontinent rift system
meters per second
surface-wave magnitude

Meeman-Shelby fault

million years

North American Datum of 1983

Northern Appalachian (seismotectonic zone)
neodymium

National Earthquake Database

Nuclear Energy Institute

National Earthquake Information Center
Niagara fault zone

Non-Mesozoic and younger extended crust

Abbreviations

Mesozoic-and-younger extended crust or Mmax zone that is “narrow”
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Abbreviations

NMESE-W

NMES

NMN

NMS

NMSZ

NN

NOAA

NPP

NR

NRC

NRHF

NSHMP

NW

OKA

OKO

OSL

PEZ

PGA

PM

PPRP

PSHA

PVHA
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Mesozoic-and-younger extended crust or Mmax zone that is “wide”

New Madrid fault system

New Madrid North fault

New Madrid South fault

New Madrid seismic zone

New Madrid north (fault segment as designated by Johnston and Schweig, 1996)
National Oceanic and Atmospheric Administration

nuclear power plant(s)

Nemaha Ridge

U.S. Nuclear Regulatory Commission

Nemaha Ridge—Humboldt fault

National Seismic Hazard Mapping Project

New Madrid west (fault segment as designated by Johnston and Schweig, 1996)
Oklahoma aulacogen (seismotectonic zone)

Oklahoma Geological Survey Leonard Geophysical Observatory (catalog)
optically stimulated luminescence

probability of activity (of being seismogenic)

Paleozoic Extended Crust (seismotectonic zone)

peak ground acceleration

Project Manager

Participatory Peer Review Panel

probabilistic seismic hazard analysis

probabilistic volcanic hazard analysis



RCG

RLME

RR

RS

SA

SCL

SCML

SCR

SCSN

SEUS

SEUSSN

SGFZ

SHmax

SLR

SLTZ

SLU

SNM

SOG

SPT

SRA

SRTM

Rough Creek graben

Reelfoot fault

Reelfoot thrust (fault)

repeated large-magnitude earthquake (source)
Reelfoot rift zone

Reelfoot South (fault segment)

spectral acceleration

St. Charles lineament

south-central magnetic lineament

stable continental region

South Carolina Seismic Network
Southeastern United States (catalog)
Southeastern United States Seismic Network
Ste. Genevieve fault zone

maximum horizontal stress, compression, or principal stress
St. Lawrence rift (seismotectonic zone)

Spirit Lake tectonic zone

Saint Louis University (catalog)

Sanford et al. (2002 catalog)

Seismicity Owners Group

standard penetration test

Stover, Reagor, and Algermissen (1984 catalog)

Shuttle Radar Topography Mission

Abbreviations
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Abbreviations

SSC
SSE
SSHAC
Str&Tur
SUSN
TC

TFI

TI
USGS
USNSN
UTC
Vp/Vs
WES
WIPP
WQSZ
WRFZ
WUS
WVES
WVSZ

WWSSN
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seismic source characterization

safe shutdown earthquake

Senior Seismic Hazard Analysis Committee
Street and Turcotte (1977 catalog)
Southeastern United States Network
technical community

technical facilitator/integrator

technical integration

U.S. Geological Survey

U.S. National Seismograph Network
Coordinated Universal Time

ratio of P-wave velocity to S-wave velocity
Weston Observatory (catalog)

Waste Isolation Pilot Project

Western Quebec seismic zone

White River fault zone

Western United States

Wabash Valley fault system

Wabash Valley seismic zone

World-Wide Standardized Seismograph Network





