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ABSTRACT 

Using four distinct Monte Carlo estimators for momentum deposition-analog, absorption, collision, 
and track-length estimators-we compute a combined estimator. In the wide range of problems tested , 
the combined estimator always has a figure of merit (FOM) equal to or better than the other estimators. 
In some instances the gain in FOM is only a few percent higher than the FOM of the best solo estimator, 
the track-length estimator, while in one instance it is better by a factor of 2.5. Over the majority of 
configurations, the combined estimator's FOM is 10-20% greater than any of the solo estimators ' FOM. 

In addition, the numerical results show that the track-length estimator is the most important term in 
computing the combined estimator, followed far behind by the analog estimator. The absorption and 
collision estimators make negligible contributions. 

Key Words : Momentum deposition, Monte Carlo 

1. INTRODUCTION 

Estimating the momentum deposited by radiation in the host medium can be an important piece of a 
hydrodynamics simulation. In the literature [2, 7], we have four different Monte Carlo estimators for 
estimating the momentum deposition at our disposal. As others have shown [I, 8], combining statistical 
estimators can be profitable. In most cases, the resulting estimate's variance is smaller than aU of the 
constituent estimators' variances. It is only natural to apply this approach to the momentum deposition 
estimators. 

The rest of the paper is organized as follows : First, we state the four estimators. Next, the equations for 
the combination are summarized with a short note on implementing them. Finally, a broad set of numerical 
results are presented. This paper describes the use of both analog-absorption tracking and implicit-absorption 
tracking (also known as implicit-capture tracking). 
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2. FOUR MOMENTUM DEPOSITION ESTIMATORS 

The four momentum deposition estimators include one analog estimator and three non-analog estimators : the 
absorption, collision, and track-length estimators. These four estimators, described in detail by Hykes and 
Densmore [2], are briefly summarized here. The equations are directly from [2], using the same notation. 

2.1 Analog Estimator 

The standard method for estimating momentum deposition in Monte Carlo simulations is the analog estimator. 
The conceptually simplest of the four, this estimator tracks the momentum imparted at each particle interaction. 
See Urbatsch and Evans [7] for an example implementation. 

To tally the momentum deposition in a cell with volume /:!, Ve, sum over events 

P __ 1 '\' /:!'P 
dep.e - /:!, V L..J dep,e,e, 

e e 
(1) 

where /:!'Pdep,e,e is the tally for a single event e in Ve, including all relevant events in the cell. For an absorption 
event, we tally 

-; D 
/:!'P dep,e,e = -ew 

c 
(2) 

where D represents the particle direction at the time of a particular event, c is the speed of light, and ew is the 
energy-weight of the particle. In the case of implicit absorption, the tally is 

(3) 

For scattering, with DOld as the incoming direction and Dnew as the outgoing direction, the momentum 
deposited at each scatter is 

it (DOld Dnew J /:!'rdep,e,e = -c- - -c- ew 

For energy emitted by a radiation source in Ve , the tally is 

D 
/:!'Pdep,e,e = --ew 

c 

The tally equations for the analog estimator are summarized in Table I. 

2.2 Non-Analog Estimators 

(4) 

(5) 

For the non-analog estimators, we estimate the integrals appearing in a volume-integrated first angular 
moment of the transport equation, as described in [2]. The contributions from isotropic sources sum to zero. 
The remaining integrals can be estimated by tallying absorptions, collisions, or particle tracks. 
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Absorption Estimator At each absorption event, one tallies 

A it _ Q CTr,e - iieCT s,e 
ur dep,e,e - - ew , 

C CT a,e 

where CTr,c, CTs,e, and CTa,e are the total, scattering, and absorption opacities in Ve. The cosine of the mean 
scattering angle is iie. Treating implicit absorption as an absorption event, the tally in this case becomes 

it Q CTr,e - iieCTs,e 
llrdepee = - (ewold - ewnew ) 

, , C CTa,e 

The tallies for the absorption estimator are summarized in Table II. 

Collision Estimator Likewise for all collisions (both absorption and scatter), the collision estimator is 

... Q CTr,c - iieCTs,c 
llP dep,e,e = - ew 

C CTr,e 

and at each implicit absorption 

it Q CTr,e - iieCT s,e 
llrdep,e,e = - (ewold - ewnew ) 

C CTr ,e 

Note the only changes from the absorption estimator are the denominator from CTa,e to CTl,e and the inclusion 
of scattering events. The collision tallies are also stated in Table III. 

Track-Length Estimator The track-length estimator estimates the integrals by tallying the total distance 
traveled by particles in the cell. With analog tracking (no implicit absorption), a particle's energy-weight is 
constant. In this case, for each path of distance I in Ve , we tally 

For implicit absorption, the proper tally is 

it Q CTr,e - iieCT s,e 
llrdep,e,e = - (ewold - ewnew ) 

C CTa,e 

The tallies for the track-length estimator are summarized in Table IV. With implicit absorption, the absorption 
and track-length estimators are nearly equivalent. (They not are identical because implicit-absorption tracking 
switches to analog-absorption tracking when a particle falls beneath the critical energy-weight.) 
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Table I: Tallies for the analog estimator [2] 

Event 

Scatter 

Q 
-ew 
c 

- ewnew) 

Qnew) -- ew 
c 

Q 
--ew 

c 

Table II: Tallies for the absorption estimator [2] 

Event 

Absorption 
Q 

.........:._-'----

C CTa,c 

Implicit 

Table III: Tallies for the collision estimator [2] 

Event 

Collision 

Implicit 

Q CTr,c - {lcCTs,c 
-----ew 

C CTt,c 

Q CT1.C - {leCTs,c 
---'---"'-(ewold - ewnew ) 

C 

Table IV: Tallies for the <l\;""-ICH~l,U estimator [2] 

Tracking 

Analog 

Implicit absorption 

-> 
.Q CTr,c -

C 
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3. COMBINING CORRELATED ESTIMATES WITH UNEQUAL VARIANCES 

The problem of combining estimates is common. For independent estimates with unequal variances, the 
combined estimate is a linear sum of the estimates with the weights determined by the estimates' variances. 
In the case at hand, the estimates can not be assumed independent, so we must estimate and use the full 
covariance matrix. 

Halperin rigorously addressed this problem [I]. Urbatsch and others in [8, 9] provide some helpful comments 
to understand Halperin's rather terse paper, as well as demonstrating the method for two and three keft' 
estimators. Using Halperin's notation, we have k estimates, each of which was computed from n samples. All 
of the sample data can be placed in a set {XI , I, . . . , XI ,n; X2 , I, .. . , X2,n; . . . ; Xk,I , . • . , Xk,n}, where the first index 
goes with k and the second with n. The means of the k subsets, computed as Xj = I;=l xi,p/n, can be placed 

in a vector x = [XI , ... , xkf. In the present paper, n is the number of particle histories and k is the number of 
estimators. The true estimators' variances and covariances are unknown, but we approximate them with the 
sample variances and covariances. The sample covariance matrix t approximates the true covariance matrix 
1:. Both matrices have size k x k. The (i, j) element of the sample covariance matrix is computed as 

~ I n 
[1:]i,j = n _ I l)Xj,p - x,)(Xj,p - x) . 

p=l 

Eventually Halperin comes to the approximation of the true mean J1 by an approximate combined estimate, 

T ~-I 
~ e 1: x 

J1 = ' -I 
eT 1: e 

where e is the k-vector [I, ... , If. Furthermore, the variance of p can be computed as 

~ = n-I_I_(~ +dTS- ld) 
J1 n - r eTt- 1 end 

(6) 

(7) 

where Sd is the (k - I) x (k - I) submatrix of (n - I)t which excludes the first row and column of (n - I)t. The 
(k -I)-vector d is [XI - X2 , XI - X3, .. . , XI - xkf. The numerical rank of tis r (see §3.I). The (n - 1)/(n - r) 

factor makes the estimator unbiased, since we have already used r degrees of freedom to compute the means . 
For large n, this term is nearly equal to one. 

See Halperin's paper [I] and the report by Urbatsch and others [8] for the derivations of these equations. 

3.1 Implementation Issues 

Urbatsch and his coauthors [8] solved Eqns. (6-7) symbolically. For the combination of two variables, the 
final expressions were reasonably compact, but for three variables, the expressions spanned several lines. 
Partly to avoid the algebraic complexity, we have implemented the combination equations using numerical 
linear algebra, with the two main tasks being the inversion of t and Sd . Since these matrices have size four 
and three, respectively, the computational costs are low, and direct methods are an obvious choice. 

The main difficulty in the numerical approach occurs when two estimators are highly correlated or identical. 
For instance, using implicit-absorption tracking, the absorption and track-length estimators are almost 
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identical. The rank of the covariance matrix is then only three instead of four, and the matrix is singular and 
non-invertible. Thus, using an LU or related Gaussian elimination method to compute the solution to the 
linear system is untenable. 

We desire a simple and robust method which automatically identifies and corrects for high correlations 
and resulting rank deficiency. We choose to implement an algorithm based on the rank-revealing singular 
value decomposition (SVD), t = USVT , where S is a diagonal matrix comprising the singular values 
(TI ~ (T2 ~ ... ~ (Tn, U and V are unitary matrices containing the right and left singular vectors Ui and Vi of t, 
and t, u, S, V E Rnxn. See the text by Meyer for more details [6] . For a matrix of rank r, the pseudoinverse 
of t is defined as [6] 

The magnitudes of the singular values are the key to determining the rank, or more appropriately, the numerical 
rank. The rank r matrix has r "large" singular values and n - r "small" singular values. A gap of several 
orders of magnitude usually separates the large and small singular values. In the present implementation, 
r was chosen to satisfy the test (Ti/(TI > 0 for i = 1, ... , r, where 0 = Emn. Here Em is the machine epsilon. 
This is the tolerance used by the pinY function in Matlab [5], but it can be tuned if needed. This method of 
ignoring the contributions from the smallest singular values is commonly referred to as truncated SVD. 

The pseudoinverse correctly deals with a number of cases in which the covariance matrix was singular 
or nearly singular. This includes when two estimators are identical, as are the absorption and collision 
estimators in purely-absorbing media. The method also successfully handles nearly identical estimators, such 
as absorption and track-length estimators with implicit-absorption tracking. In our test problems the method 
proved to be robust. 

4. NUMERICAL RESULTS 

We characterize the behavior of the combined estimator using the same set of one-dimensional tests from [2]. 
The radiative transfer equation simplifies to 

al (Ts i l 
I I Q 

J1-a + (Ttl = "2 l(z,J1 ) dJ1 + 2" ' 
Z -I 

(8) 

where we assume isotropic scattering and slab geometry. For simplicity, we treat the dimensionless problem. 
The domain of the independent variables is z E [0,1] in space and J1 E [-1,1] in angle. The material is 
spatially homogeneous. We impose an isotropic incident intensity on the left boundary, 

(9) 

with ¢ a constant, and a vacuum on the right boundary, 

1(1,J1) =0 , -1:SJ1<0 (0) 

For simplicity, we set the speed of light equal to unity. 

To explore a diverse set of material properties, we express the total opacity, total scattering opacity, and 
radiation source in Eq. (8) as follows: 

(Tt = - , 
E 
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crs = - - E 
E 

Q = Eq . 

(12) 

(13) 

In Eq. (13), q is another constant, and E E (0,1] is a scaling parameter. For E = 1, the scattering opacity 
vanishes, creating a purely absorbing problem. As E -+ 0, the material becomes highly scattering, and the 
problem is in the asymptotic diffusion limit [3]. 

The following numerical demonstrations fall into two groups. The first group lacks a radiation source 
(q = Q = 0), but an isotropic incident intensity is specified as the left boundary condition. To have the rate of 
energy entering the slab equal one, 

(1 I/> Jo j1I(O, j1) dj1 = "4 = 1 . (14) 

we set I/> = 4 in Eq. (9). 

For the second group, both the right and left boundary conditions are vacuum (I/> = 0), but we insert a radiation 
source by letting q = 1. 

For these two groups of problems, we have constructed test problems of the two types described above with 
various values of E and have calculated momentum deposition in each problem using all five estimators 
(the four so}o estimators and the one combined estimator) for both analog tracking and implicit absorption. 
We collected tallies by dividing the problem domain into ten equally-sized spatial cells. Each simulation 
consisted of 107 particle histories. The performance of each estimator is measured by the figure of merit 
(FOM) [4], 

(15) 

Here, x is the estimate of momentum deposition averaged over all particle histories, cr(x) is the corresponding 
standard deviation, and T is the total computer time required to complete all particle histories. Because 
lower standard deviations and shorter computer times are favorable, we associate a higher FOM with better 
performance. We can also view the FOM in this case as a measure of the standard deviation, because the 
various estimators do not affect particle histories (unlike many variance-reduction techniques), and thus 
computer times do not differ significantly between estimators for a specific problem and tracking method. 

For each test, the FOM for each of the five estimators was computed for each spatial cell. Next, the absorption, 
collision, track-length, and combined estimators' FOM were normalized to the analog FOM, again for each cell. 
To be concise, only the mean, maximum, and minimum normalized FOM over all spatial cells are plotted, 
allowing the effect of f to be clear. 

In addition to the normalized FOM plots for the four estimators, we include, for qualitative purposes, an 
example of the estimates and standard deviations with increasing histories. Also, since the track-length 
estimator is the best solo estimator, one figure makes a head-to-head comparison of the combined to track­
length estimator. Finally, the weighting factors used to compute the combined estimator are presented. 
However, the solutions to the problems are not presented here; the interested reader can find them in [2]. 

4.1 Incident-Intensity Problems 

Analog-absorption tracking In this section, we present the results from the incident intensity problem 
using analog-absorption tracking. Before moving to the purely quantitative FOM results, we provide a visual 
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demonstration of the benefits of the combined estimator in I. This is the momentum in the 
far left tally cell with E == The and combined estimators are clearly superior to the other 
three estimators. While not drastic, the of the combined over the estimator is evident. 
With the following we use the FOM to quantify this gain. 2 demonstrates the performance of 
the combined estimator in relation to the others. The top line in each shaded area the maximum 
normalized FOM over the slab width, while the bottom line the minimum FOM ratio over the slab. 
The darker line in the interior rpn,rpcpnt the mean. 

Implicit-absorption tracking 3 illustrates the performance of the combined estimator for an 
incident intensity with tracking. The and estimators are nearly 
identical, so their normalized FOM is only plotted once. Notice that for purely-absorbing media, when E == I, 
the of all the estimators is the same, or nearly so. In this case, all the estimators are identical or 

and the covariance matrix has a numerical rank of one. The truncated SVD solution 
the answer we the combination of four identical estimates is the same estimate. 

4.2 Radiation-Source Problems 

Analog-absorption 4 shows the of the combined estimator in relation to the 
others for the radiation-source problem using analog-absorption tracking. 

Implicit-absorption tracking Figure 5 presents 
source with implicit-absorption tracking. As for the 

and estimators are 

of the combined estimator for a radiation­
intensity with implicit-absorption tracking, the 

so their normalized FOM is plotted once . 

4.3 Combined and ...... ,,-.," ..... ~ .. Estimator Comparison 

Since the and combined estimators are often an or more better than the 
other solo estimators, 2-5 make it difficult to directly compare the two best estimators. 6 
ameliorates this issue by plotting the ratio of the combined FOM to the track-length FOM on a linear scale. 
The ten spatial cells are again into the minimum, and mean at each E, as above. The 
combined estimator FOM is always greater than or equal to the track-length estimator FOM. The mean ratios 
are primarily in the range 1.l-1.2. The ratio achieved is 2.5. 

4.4 Watching our Weights 

The combined estimator is computed by a weighted sum of the four solo estimators. The of 

the weight vector w == e)-leTt-
1 

are plotted in 7 for each of the four cases. For the 
absorption cases, where the absorption and track-length estimators are 
sum of the instead of the two The four 
The is than 0.8, and the analog is 
two estimators are negligible (with the exception of the absorption estimator for 
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added only for ease of viewing. 

10° 
analog 

absorption 

10- 1 collision 

track -length 

----- combined 
10-2 

10-4~1 ~--~~~~~~--~--~~~~--~--~~~~~--~~~~~ 

I~ I~ I~ l~ I~ 
Number of Histories 

(b) Convergence rates of each estimator. 

Figure 1: Momentum deposition estimates in one cell of an incident intensity problem with E = Yl. 
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Figure 7: The weights used to compute the combined estimator. 

2011 International Conference on Mathematics and Computational Methods Applied to 
Nuclear Science and Engineering (M&C 2011). Rio de Janeiro, RJ, Brazil, 2011 

12/14 



Combining Four Monte Carlo Estimators for Radiation Momentum Deposition 

5. CONCLUSIONS 

After stating four Monte Carlo momentum deposition estimators and the equations for the mean and variance 
of a combined estimator, we have shown the benefits of the combined estimator quantitatively using the FOM. 

Over the range of problem and material types examined, the combined estimator FOM is greater than or equal 
to the track-length estimator FOM, the best solo estimator. In almost all cases, the combined estimator is at 
least a few percent better than the track-length estimator. The average FOM increase is in the 10-20% range, 
while the best gain was a factor of 1.7-2.5 better than the track-length estimator. The track-length estimator 
was the biggest term in the combined estimator sum, but the analog estimator also proved to be useful in the 
combination. The weights for the absorption and collision estimators were practically zero, implying that one 
would lose little by excluding them. Finally, in the numerical implementation, the truncated SVD method was 
robust in combining estimates that may be correlated. 
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