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ABSTRACT

Using four distinct Monte Carlo estimators for momentum deposition—analog, absorption, collision,
and track-length estimators—we compute a combined estimator. In the wide range of problems tested,
the combined estimator always has a figure of merit (Fom) equal to or better than the other estimators.
In some instances the gain in FoM is only a few percent higher than the Fom of the best solo estimator,
the track-length estimator, while in one instance it is better by a factor of 2.5. Over the majority of
configurations, the combined estimator’s Fom is 10-20% greater than any of the solo estimators’ FoMm.
In addition, the numerical results show that the track-length estimator is the most important term in
computing the combined estimator, followed far behind by the analog estimator. The absorption and
collision estimators make negligible contributions.

Key Words: Momentum deposition, Monte Carlo

1. INTRODUCTION

Estimating the momentum deposited by radiation in the host medium can be an important piece of a
hydrodynamics simulation. In the literature [2, 7], we have four different Monte Carlo estimators for
estimating the momentum deposition at our disposal. As others have shown [1, 8], combining statistical
estimators can be profitable. In most cases, the resulting estimate’s variance is smaller than all of the
constituent estimators’ variances. It is only natural to apply this approach to the momentum deposition
estimators.

The rest of the paper is organized as follows: First, we state the four estimators. Next, the equations for
the combination are summarized with a short note on implementing them. Finally, a broad set of numerical
results are presented. This paper describes the use of both analog-absorption tracking and implicit-absorption
tracking (also known as implicit-capture tracking).
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2. FOUR MOMENTUM DEPOSITION ESTIMATORS

The four momentum deposition estimators include one analog estimator and three non-analog estimators: the
absorption, collision, and track-length estimators. These four estimators, described in detail by Hykes and
Densmore [2], are briefly summarized here. The equations are directly from [2], using the same notation.

2.1 Analog Estimator

The standard method for estimating momentum deposition in Monte Carlo simulations is the analog estimator.
The conceptually simplest of the four, this estimator tracks the momentum imparted at each particle interaction.
See Urbatsch and Evans [7] for an example implementation.

To tally the momentum deposition in a cell with volume AV,, sum over events
1
ﬁdep,c = A_‘Z Ze: AP,dep.c,e B (D

where Aﬁdep'c,e is the tally for a single event e in V., including all relevant events in the cell. For an absorption
event, we tally

—

" Q
APgepce = -C—ew . )
where § represents the particle direction at the time of a particular event, ¢ is the speed of light, and ew is the

energy-weight of the particle. In the case of implicit absorption, the tally is

i

Q
A13’dep,c,e = 'g(ewold ~ €Wnew) - 3)

. . = . - - . =2 - . -
For scattering, with Qg4 as the incoming direction and Qpey, as the outgoing direction, the momentum
deposited at each scatter is

Aﬁdep,c,e = {ﬁzld - —ﬁnﬂ] ew . @

c

For energy emitted by a radiation source in V,, the tally is

-

Q
BPayiz = ——ew (5

The tally equations for the analog estimator are summarized in Table I.

2.2 Non-Analog Estimators

For the non-analog estimators, we estimate the integrals appearing in a volume-integrated first angular
moment of the transport equation, as described in [2]. The contributions from isotropic sources sum to zero.
The remaining integrals can be estimated by tallying absorptions, collisions, or particle tracks.
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Absorption Estimator At each absorption event, one tallies

ﬁ Ote = HeOsc
Af’dep,c,e =——l——Ze¢w ,
¢ Tac
where o, 075, and o, are the total, scattering, and absorption opacities in V.. The cosine of the mean
scattering angle is fi.. Treating implicit absorption as an absorption event, the tally in this case becomes

R
Qo —HcOse

Aﬁdep,c,e == ————(eWold — €Wnew)
C Tac

The tallies for the absorption estimator are summarized in Table I

Collision Estimator Likewise for all collisions (both absorption and scatter), the collision estimator is

3 Q Ore = HcO s
APdep.c,e R — A
C Orc

and at each implicit absorption

ﬁ Ore — HeTsc
AI_D'dep,c,e = —————(eWold — €Wnew)
¢ e
Note the only changes from the absorption estimator are the denominator from o, . to o, . and the inclusion
of scattering events. The collision tallies are also stated in Table IIL.

Track-Length Estimator The track-length estimator estimates the integrals by tallying the total distance
traveled by particles in the cell. With analog tracking (no implicit absorption), a particle’s energy-weight is
constant. In this case, for each path of distance / in V., we tally

Aﬁdep.c,e = ?(O—I,C —RBcTsc)ewl
For implicit absorption, the proper tally is

fi Ote— 1O
AP'dep,c,e = _M(ewold — €Wnew)
¢ Tac
The tallies for the track-length estimator are summarized in Table IV. With implicit absorption, the absorption
and track-length estimators are nearly equivalent. (They not are identical because implicit-absorption tracking
switches to analog-absorption tracking when a particle falls beneath the critical energy-weight.)
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Table 1: Tallies for the analog estimator [2]

Event Aﬁdep‘ae
. o)
Absorption —ew
¢

-

G
Implicit absorption  —(ewqid — €Wnew)

Goa G
Scatter [ od "ewj ew
¢ c
e}
Source — W
¢

Table II: Tallies for the absorption estimator [2]

Event AP) dep.c.e

>
. Q O-g - jﬁ} o
Absorption e DL
¢ Oac
Qo - .o

P . £ [l ¥ iy
Implicit absorption  — ———"""2Z(ew 14 — eWnew)
C Tac

Table I11: Tallies for the collision estimator [2]

Event Aﬁdep,c‘e
S‘.i -
. Cr * - (}-"?
Collision T T,
¢ CTre
.. . Go 1o~ HeTs,
Implicit absorption ——C—&i(ewoid — EWnew)
c Tire

Table IV: Tallies for the track-length estimator [2]

Trackihg Aﬁ dep.e,e

s

Q
Analog ?(C";.cﬁ = {05 c)ewl

g -
Qore = [0,

Implicit absorption
O-G,C

(ewold — €Wnew)
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3. COMBINING CORRELATED ESTIMATES WITH UNEQUAL VARIANCES

The problem of combining estimates is common. For independent estimates with unequal variances, the
combined estimate is a linear sum of the estimates with the weights determined by the estimates’ variances.
In the case at hand, the estimates can not be assumed independent, so we must estimate and use the full
covariance matrix.

Halperin rigorously addressed this problem [1]. Urbatsch and others in [8, 9] provide some helpful comments
to understand Halperin’s rather terse paper, as well as demonstrating the method for two and three keg
estimators. Using Halperin’s notation, we have k estimates, each of which was computed from n samples. All
of the sample data can be placed in a set {x) 1,...,X10;X2,1,---> X2} " 3 Xk.15 - - - » Xk n}, Where the first index
goes with k and the second with n. The means of the k subsets, computed as &; = ZZ=1 Xip/n, can be placed
in a vector X = [%},...,%]". In the present paper, n is the number of particle histories and k is the number of
estimators. The true estimators’ variances and covariances are unknown, but we approximate them with the
sample variances and covariances. The sample covariance matrix £ approximates the true covariance matrix
X. Both matrices have size k X k. The (i, j) element of the sample covariance matrix is computed as

[£];; =

n-—

1 n
1 Z(Xi,p = X)(xjp — %))
p=1

Eventually Halperin comes to the approximation of the true mean y by an approximate combined estimate,

a1 _

T
. eX X

A=— (6)
el e

where e is the k-vector [1,..., 1]7. Furthermore, the variance of /i can be computed as
- 1 1

2=l L (-+de;1d) , %

n—r eTZ e n

where S is the (k— 1) x (k— 1) submatrix of (n— 1)E which excludes the first row and column of (n— 1)E. The
(k—1)-vector d is [¥) — %, X1 — %3, ..., % — %]7. The numerical rank of £ is r (see §3.1). The (n—1)/(n—7r)
factor makes the estimator unbiased, since we have already used r degrees of freedom to compute the means.
For large n, this term is nearly equal to one.

See Halperin’s paper [1] and the report by Urbatsch and others [8] for the derivations of these equations.

3.1 Implementation Issues

Urbatsch and his coauthors [8] solved Eqns. (6—7) symbolically. For the combination of two variables, the
final expressions were reasonably compact, but for three variables, the expressions spanned several lines.
Partly to avoid the algebraic complexity, we have implemented the combination equations using numerical
linear algebra, with the two main tasks being the inversion of £ and S,. Since these matrices have size four
and three, respectively, the computational costs are low, and direct methods are an obvious choice.

The main difficulty in the numerical approach occurs when two estimators are highly correlated or identical.
For instance, using implicit-absorption tracking, the absorption and track-length estimators are almost
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identical. The rank of the covariance matrix is then only three instead of four, and the matrix is singular and
non-invertible. Thus, using an LU or related Gaussian elimination method to compute the solution to the
linear system is untenable.

We desire a simple and robust method which automatically identifies and corrects for high correlations
and resulting rank deficiency. We choose to implement an algorithm based on the rank-revealing singular
value decomposition (svp), £ = USVT, where S is a diagonal matrix comprising the singular values
o1 20,2 20, Uand V are unitary matrices containing the right and left singular vectors u; and v; of £,
and £,U,S,V € R™"_ See the text by Meyer for more details [6]. For a matrix of rank r, the pseudoinverse
of £ is defined as [6]
gt _ v

= 9
The magnitudes of the singular values are the key to determining the rank, or more appropriately, the numerical
rank. The rank r matrix has r “large” singular values and n — r “small” singular values. A gap of several
orders of magnitude usually separates the large and small singular values. In the present implementation,
r was chosen to satisfy the test o;/oy > 6 fori = 1,...,r, where § = ¢,n. Here ¢, is the machine epsilon.
This is the tolerance used by the pinv function in Matlab [5], but it can be tuned if needed. This method of
ignoring the contributions from the smallest singular values is commonly referred to as truncated svp.

The pseudoinverse correctly deals with a number of cases in which the covariance matrix was singular
or nearly singular. This includes when two estimators are identical, as are the absorption and collision
estimators in purely-absorbing media. The method also successfully handles nearly identical estimators, such
as absorption and track-length estimators with implicit-absorption tracking. In our test problems the method
proved to be robust.

4. NUMERICAL RESULTS

We characterize the behavior of the combined estimator using the same set of one-dimensional tests from [2].
The radiative transfer equation simplifies to

ol o (! s gy B
#6_z+0-[1_?£11(z’#)d# +5 5 (8)

where we assume isotropic scattering and slab geometry. For simplicity, we treat the dimensionless problem.
The domain of the independent variables is z € [0, 1] in space and ¢ € [-1,1] in angle. The material is
spatially homogeneous. We impose an isotropic incident intensity on the left boundary,

RQM:% , O<u<l , )
with ¢ a constant, and a vacuum on the right boundary,

I(l,w=0, -1<u<0 . (10)
For simplicity, we set the speed of light equal to unity.

To explore a diverse set of material properties, we express the total opacity, total scattering opacity, and
radiation source in Eq. (8) as follows:
]
g == 5 (11)
€
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1
os=——€ ; (12)
€

O=gg . (13)

In Eq. (13), g is another constant, and € € (0, 1] is a scaling parameter. For € = 1, the scattering opacity
vanishes, creating a purely absorbing problem. As € — 0, the material becomes highly scattering, and the
problem is in the asymptotic diffusion limit [3].

The following numerical demonstrations fall into two groups. The first group lacks a radiation source
(¢ = Q = 0), but an isotropic incident intensity is specified as the left boundary condition. To have the rate of
energy entering the slab equal one,
1
f (0, ) dp = %S =1 . (14)
0
we set ¢ = 4 in Eq. (9).

For the second group, both the right and left boundary conditions are vacuum (¢ = 0), but we insert a radiation
source by letting g = 1.

For these two groups of problems, we have constructed test problems of the two types described above with
various values of € and have calculated momentum deposition in each problem using all five estimators
(the four solo estimators and the one combined estimator) for both analog tracking and implicit absorption.
We collected tallies by dividing the problem domain into ten equally-sized spatial cells. Each simulation
consisted of 107 particle histories. The performance of each estimator is measured by the figure of merit
(Fom) [4],
5&2

T oADT
Here, % is the estimate of momentum deposition averaged over all particle histories, o(%) is the corresponding
standard deviation, and T is the total computer time required to complete all particle histories. Because
lower standard deviations and shorter computer times are favorable, we associate a higher rom with better
performance. We can also view the Fom in this case as a measure of the standard deviation, because the
various estimators do not affect particle histories (unlike many variance-reduction techniques), and thus
computer times do not differ significantly between estimators for a specific problem and tracking method.

FOM

(15)

For each test, the Fom for each of the five estimators was computed for each spatial cell. Next, the absorption,
collision, track-length, and combined estimators’ rFom were normalized to the analog FoMm, again for each cell.
To be concise, only the mean, maximum, and minimum normalized Fom over all spatial cells are plotted,
allowing the effect of € to be clear.

In addition to the normalized rFom plots for the four estimators, we include, for qualitative purposes, an
example of the estimates and standard deviations with increasing histories. Also, since the track-length
estimator is the best solo estimator, one figure makes a head-to-head comparison of the combined to track-
length estimator. Finally, the weighting factors used to compute the combined estimator are presented.
However, the solutions to the problems are not presented here; the interested reader can find them in [2].

4.1 Incident-Intensity Problems

Analog-absorption tracking In this section, we present the results from the incident intensity problem
using analog-absorption tracking. Before moving to the purely quantitative Fom results, we provide a visual
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demonstration of the benefits of the combined estimator in Figure 1. This is the momentum deposited in the
far left tally cell with € = J/2. The track-length and combined estimators are clearly superior to the other
three estimators. While not drastic, the advantage of the combined over the track-length estimator is evident,
With the following figures, we use the Fom to quantify this gain. Figure 2 demonstrates the performance of
the combined estimator in relation to the others. The top line in each shaded area represents the maximum
normalized Fom over the slab width, while the bottom line represents the minimum rom ratio over the slab.
The darker line in the interior represents the mean.

Implicit-absorption tracking Figure 3 illustrates the performance of the combined estimator for an
incident intensity with implicit-absorption tracking. The absorption and track-length estimators are nearly
identical, so their normalized rom is only plotted once. Notice that for purely-absorbing media, when e = 1,
the performance of all the estimators is the same, or nearly so. In this case, all the estimators are identical or
highly correlated, and the covariance matrix has a numerical rank of one. The truncated svp solution gives
the answer we expect: the combination of four identical estimates is the same estimate.

4,2 Radiation-Source Problems

Analog-absorption tracking Figure 4 shows the performance of the combined estimator in relation to the
others for the radiation-source problem using analog-absorption tracking.

Implicit-absorption tracking Figure 5 presents the performance of the combined estimator for a radiation-
source with implicit-absorption tracking. As for the incident intensity with implicit-absorption tracking, the
absorption and track-length estimators are nearly identical, so their normalized Fom is only plotted once.

4.3 Combined and Track-length Estimator Comparison

Since the track-length and combined estimators are often an order-of-magnitude or more better than the
other solo estimators, Figures 2-5 make it difficult to directly compare the two best estimators. Figure 6
ameliorates this issue by plotting the ratio of the combined rom to the track-length Fom on a linear scale.
The ten spatial cells are again collapsed into the minimum, maximum, and mean at each ¢, as above. The
combined estimator rom is always greater than or equal to the track-length estimator rom. The mean ratios
are primarily in the range 1.1-1.2. The largest ratio achieved is 2.5.

4.4 Waiching our Weights

The combined estimator is computed by a weighted sum of the four solo estimators. The components of
the weight vector w = (e7£ ™ e)~'eTE£ ™" are plotted in Figure 7 for each of the four cases. For the implicit-
absorption cases, where the absorption and track-length estimators are nearly identical, we only display the
sum of the weights instead of plotting the two separately. The four figures are remarkable for their similarity.
The track-length weight is greater than 0.8, and the analog weight is less than 0.2. The weights for the other
two estimators are negligible (with the exception of the absorption estimator for implicit-absorption tracking).
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(a) Qualitative comparison of the performance of the momentum deposition estimators. The error bars represent one standard deviation.
The dotted black line represents the converged solution with 5 - 10® histories. The horizontal spacing between points in each clump is
added only for ease of viewing.
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(b) Convergence rates of each estimator.

Figure 1: Momentum deposition estimates in one cell of an incident intensity problem with ¢ = %.
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Figure 2: Incident intensity, analog-absorption tracking,
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Figure 3: Incident intensity, implicit-absorption tracking.
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Figure 5: Radiation source, implicit-absorption tracking.
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Figure 7: The weights used to compute the combined estimator.
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5. CONCLUSIONS

After stating four Monte Carlo momentum deposition estimators and the equations for the mean and variance
of a combined estimator, we have shown the benefits of the combined estimator quantitatively using the Fom.
Over the range of problem and material types examined, the combined estimator Fom is greater than or equal
to the track-length estimator rom, the best solo estimator. In almost all cases, the combined estimator is at
least a few percent better than the track-length estimator. The average rFoM increase is in the 10-20% range,
while the best gain was a factor of 1.7-2.5 better than the track-length estimator. The track-length estimator
was the biggest term in the combined estimator sum, but the analog estimator also proved to be useful in the
combination. The weights for the absorption and collision estimators were practically zero, implying that one
would lose little by excluding them. Finally, in the numerical implementation, the truncated svb method was
robust in combining estimates that may be correlated.
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