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Abstract 

 

In this work, we demonstrated engineered modification of propagation of thermal 

phonons, i.e. at THz frequencies, using phononic crystals.  This work combined 

theoretical work at Sandia National Laboratories, the University of New Mexico, the 

University of Colorado Boulder, and Carnegie Mellon University; the MESA 

fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce 

world-leading control of phonon propagation in silicon at frequencies up to 3 THz.  

These efforts culminated in a dramatic reduction in the thermal conductivity of silicon 

using phononic crystals by a factor of almost 30 as compared with the bulk value, and 

about 6 as compared with an unpatterned slab of the same thickness. 
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1.  INTRODUCTION 
 

 

1.1. Thermoelectrics 
 

1.2.1. Thermoelectric Basics 
 

The thermoelectric effect is defined as the process whereby a sustained temperature gradient 

across a material generates a proportional electric potential difference, and vice versa.  On an 

atomic scale the effect can be understood by noting that an applied temperature gradient causes 

charged carriers in the material to diffuse from the hot side to the cold side in accordance with 

the second law of thermodynamics hence inducing a thermal current and consequently a 

potential difference.  Such a phenomenon can thus be used to transform heat into electricity, in 

which case it is commonly referred to as the ―Peltier effect‖ and has the potential to enable the 

recycling of waste heat or thermal energy, a natural outcome of almost all artificial and natural 

processes, to the more useful form of electrical energy.  While the thermoelectric effect can and 

was initially observed in metals, we are particularly interested in the case where the material in 

use is a semiconductor for reasons that will become self-evident later on in our discussions. 

 

Consider for example the scenario depicted in Figure 1.  Here an n-type and a p-type 

semiconductor are both electrically connected from at one end and placed in contact with a heat 

source (e.g., a microprocessor) meanwhile the other end is maintained at a lower temperature 

(e.g., a heat sink). Because of the temperature gradient, the carriers in both legs start diffusing 

from the hot side to the cold side. If both legs on the cold side are then connected to a load 

resistor, the difference in the carrier type in both legs (electrons in the n-type, and holes in the p-

type) generate an electric current that flows in the direction of the arrows shown in Figure 1.  

The potential drop across the load resistor can now be used to derive an appropriate electric 

device assuming enough power is generated.  In this scenario, in is clear that the amount of 

electric power generated depends directly on the temperature gradient   that can be sustained 

across the thermoelectric module. 

 

 
Figure 1.  A schematic diagram of a thermoelectric power generator. 

 

Conversely, by applying an external voltage and managing the polarity of the electrical 

connections, the Peltier effect can be used for cooling applications.  Consider for example the 

case depicted in Figure 2.  Here the applied electric potential forces the carriers to migrate from 

the cold surface to the hot surface resulting in the decrease in temperature of the cold side and an 

increase in that of the hot side.  Alternately, in this scenario of operation, the amount of cooling 
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or temperature drop on the cold side is directly proportional to the applied electric voltage, which 

also directly depends on the temperature difference  between the hot and the cold sides of the 

thermoelectric module. 

 

 
Figure 2.  A schematic diagram of a thermoelectric cooler. 

 

Whether the thermoelectric (TE) device is operated as a cooler or a power generator, it is evident 

that the ability to mold and control the direction of motion of the charge carriers in the system is 

key to the operation of the TE device. In fact the performance of a material’s efficacy for use in a 

TE setting is often quantified by the dimensionless figure of merit, ZT [1-3]: 

,
2

T
S

ZT



                                                                (1) 

where S is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity 

and T is the temperature.  For an actual TE module with both n-type and p-type legs, the 

expression for the figure of merit is slightly more complicated and takes on the form: 
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Here, the subscripts n and p denote the semiconductor leg-type, and T denotes the average 

temperature of the hot and the cold sides of the TE module. 

 

The importance of the figure of maximizing merit ZT becomes quite evident by examining the 

maximum efficiency ηmax, or the maximum coefficient of performance υmax of a TE power 

generation or cooling unit respectively [3]: 
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In Eqs. (3) and (4), the subscripts H and C refer to the hot and the cold sides of the TE module, 

respectively. 

 

It is worthwhile looking at the composition of ZT to gain insight into the role of each of its 

fundamental components.  S, is the open circuit voltage and is a measure of the magnitude of an 

induced thermoelectric voltage in response to a temperature difference across that material, while 

σ measures the ability of the charge carriers to diffuse from one side of the TE device to the 
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other.  The increase in the value of both quantities is thus favorable form a TE deice perspective, 

and hence their appearance in the numerator the in expression in Eq. (1).  , on the other hand 

measures the ability of heat to freely flow from the hot side to the cold side, thus resulting in the 

minimization of  across the TE device.  The minimization of  is thus favorable for optimal 

TE performance, hence its appearance in the denominator of Eq. (1). 

 

When attempting to optimize TE performance, it is worth paying special attention to the 

interdependence of the 3 Z components.  For example, since S is a measure of the entropy per 

carrier [2], it is generally maximized by increasing the disorder in the system, while σ, on the 

other hand, is a measure of the ability of the charge carriers to navigate the system, and hence 

decreases with increased disorder (e.g. scattering) in the system.  This inverse relationship 

between S and σ is best captured in the formulation of the Mott relation [4]: 

,
))(ln(1))(ln(

~

FF
d

d

d

d
S

 









                                     (5) 

where ε is the carrier energy and εF is the Fermi level energy. 

 

While both S and σ are governed by the electrical properties of the system,  on the other hand is 

a composite quantity that has an electronic and a phononic component.  Bearing in mind that in a 

semiconducting material  is dominated by the phononic contribution, and that phonons do not 

carry any electrical charge, they will simply act to quench the temperature difference between 

the hot and cold sides of a TE module without contributing to the generation of the electrical 

current in a TE generation scheme (Figure 1); meanwhile, since they are unaffected by the 

biasing potential in Figure 2, they would flow opposite to the direction of the charge carriers 

from the hot side to the cold side, thus leading to a decrease in the cooling performance. 

 

Thus the most obvious way to increase ZT is by attempting to suppress the phonon contribution 

to , leaving the electron component unaltered.  Fundamentally, such approaches make use of 

the fact that the electron mean free path in most TE materials (especially the most popular 

semiconductor-based ones) is at least an order of magnitude smaller than that of the phonons.  

This allows for a large percentage of the thermal conductivity to be reduced with minor 

perturbations to the electrical conductivity.  Examples of such approaches are phonon control 

based on texturing the surface to increase phonon scattering or shrinking the effective cross-

section in the direction of current flow to prevent bulk propagation, much like a cutoff 

waveguide.  The waveguide cutoff approach, however, is only capable of cutting-off low 

frequency phonons, rather than the high frequency phonons that are most relevant to heat 

transfer.  Surface texturing, on the other hand, suppresses only surface phonon states that lie 

within the narrow spectral range comparable to the texturing length scale.  Thus, both approaches 

lack the fundamental ability to manipulate a wide spectral range of phonons at the relevant 

terahertz (THz) frequencies, not to mention the fact that the introduced hard interfacial 

boundaries inadvertently scatter electrons, resulting in a simultaneous decrease in both σ and , 

thus yielding no net gain in ZT. 
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1.2.1. Challenges to Current TE Technologies 

The interdependence of the 3 Z components makes it extremely difficult to optimize all 3 of them 

concurrently.  As such, almost all existing literature on Z employ an ―Edisonian‖ approach 

whereby the focus is on the enhancement of only one of its three components, leaving the 

remaining two to chance.  Even when successful in enhancing the TE performance, one of the 

most fundamental challenges is the transitioning of new TE technologies into actual deployed 

devices.  There, concerns about practicality, integration, and mass production on a large scale are 

major barriers.  For example, while it has proven to be a difficult task to ensure the increase in  

at the expense of , given that electrons conduct both heat and electricity, nanotubes have 

achieved just that by promoting the ballistic transport of electrons though the hollow core of the 

tube.  The major drawback in such an approach remains one of device development and the 

integration of such nanotubes into realistic devices for applications. 

Other approaches like super lattices [5-7] have relied on lattice matching between the different 

layers in the stack, thus enabling the electrons to tunnel from one layer to the next with minimal 

scattering.  The issue here is that the thicknesses of the individual stack layers are on the 

angstrom length scale and are usually deposited via atomic layer deposition techniques.  This 

renders mass production extremely difficult and very costly.  Furthermore, a common drawback 

in both the nano-wire/tube based approaches and those that rely on super lattices is the fact that 

the ZT enhancement is in the vertical direction parallel to the length of the wire/tube or in the 

stacking direction.  Given the small size of the overall device, this limits the maximum 

sustainable temperature gradient and hence caps the TE operational efficiency. 

Furthermore, given the strong interdependence of S and  and their opposite correlation to 

carrier entropy, it has been suggested that one possible way to increase S with minimal effects to 

 is via quantum confinement and reduced dimensionality [8, 9].  Here the idea is to maximize 

the entropy per carrier, where the reduction in dimensionality automatically increases the carrier 

contribution to entropy and hence automatically increases S.  To avoid the issues pertaining to 

one-dimensional systems described above, the idea is then to operate in what is equivalent to a 

two-dimensional electronic system.  This, however, implies a thin-membrane like topology 

whose cross-section is on the order of the electron mean free path, i.e. a few nanometers.  

Despite the novelty of the idea, the practicality and integration of such a solution pose 

fundamental challenges. 

Thus, from a practical standpoint, any proposed TE solution aiming at enhancing ZT must at the 

same time observe the practicality requirement.  In other words, what is needed is a TE solution 

where a large spatial separation between the hot and cold sides can be maintained.  Furthermore, 

such a solution must be amenable to mass production and lend itself with ease to plausible 

integration schemes.  It is our thesis in this work that that phononic crystals can act as the vehicle 

for that solution.  In the next few sections, we define what a phononic crystal is, explain how it 

operates, and outline the path with which it can be used to enhance TE performance.  We further 

provide experimental and theoretical evidence on the possibility of doubling the ZT value of 

material systems that are amenable to the phononic crystal technology. 
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1.2. Thermal Conductivity Applications of Phononic Crystals 
 
A phononic crystals (PnC) is the acoustic analogue of a photonic crystal, and typically consists 

of a periodic arrangement of scattering centers embedded in a homogeneous background matrix 

with a lattice spacing comparable to the acoustic wavelength [10] (Figure 3b and d).  When 

properly designed, a superposition of Bragg and Mie resonant scattering results in the opening of 

a frequency band over which there can be no propagation of elastic waves in the crystal, 

regardless of direction [11, 12].  In addition to the coherent scattering mechanisms responsible 

for the bandgap creation, coherent scattering also results in a rich complicated dispersion 

spectrum accompanied by a redistribution of the phononic density of states (DOS).  This new 

anomalous dispersion spectrum, shown in Figure 4a as compared to the unperturbed bulk 

material,  results in the creation of dispersion-less (flat) bands where the phonon group velocity 

is greatly reduced, in addition to negatively sloping bands (negative group velocities) or 

backward propagation of phonons (backscattering). 

 
Figure 3.  Phononic crystal concept: a) Schematic of the phonon distribution in a bulk material.  

b) Schematic of the phonon distribution in a 2D PnC structure.  c) Conceptual visualization of 

Bragg and Mie resonance scattering.  d) SEM image of a fabricated PnC consisting of a square 

array of tungsten rods in a Si membrane; a is the lattice constant, r is the radius of the tungsten 

rods, and t is the membrane thickness (not shown in image).  
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Figure 4.   a) Right panel shows the calculated band structure for a PnC composed of air holes in 

a Si matrix (blue) compared with the band structure f an unpatterned Si slab (red) of the same 

thickness ―t‖. Left panel shows the corresponding PnC density of states (DOS).  b) The 

integrated density of photon states for the PnC and Si slabs for the exemplar case of a = 500 nm, 

r/a = 0.3, and t/a = 1.0, where a is the lattice constant, r is the radius of the air hole and t is the 

slab thickness. 

 

In general we can classify the phonon spectrum in any material into 2 regions: acoustic and 

optical phonons (see Figure 5).  At a given temperature, the contribution of these phonons to  is 

mandated by their mean free path and the Boltzman distribution for a given material dispersion.  

In general, depending on the thickness of the slab, up to ~30% of the thermal conductivity can 

come from the optical branches [13, 14].  To understand how one can modify , we use the 

Holland-Callaway model description: 
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where   is the reduced Planck’s constant,  q  is the phonon dispersion, Bk  is the Boltzmann 

constant, T  is the phonon temperature,     qqqv    is the phonon group velocity,  qj is 

the phonon scattering time, and q  is the wavevector.  Here,   is summed over all phonon modes 

―j‖.  Assuming only Umklapp and boundary scattering:        ,
11

,

  Lqvqq
jjUj   where 

     TBqATqjU /exp21

,   , A and B are dispersion-fit coefficients, and L is the minimum 

distance between sample boundaries (minimum feature size).  Thus, in order to modify , we 

have to engineer the dispersion (q) or the phonon lifetime (q). 

 

The periodic mechanical impedance mismatch in a PnC [15] results in anomalous dispersion not 

found in a homogeneous material. This includes the creation of phononic bandgaps, 

dispersionless (low group velocity) bands, and even negative dispersion (negative group velocity 

or backward scattering) bands.  Figure 4 shows an illustration of these phenomena in a SiC/air 

PnC.  The result is the complete inhibition of phonon propagation in the bandgap region and 

generally a large reduction in the phonon mobility elsewhere.  All such phenomena are termed 

―coherent scattering‖ and are manifested only in the frequency ranges where the phonon 

wavelength is of the same order of the PnC lattice periodicity.  Thus, in PnCs with minimum 

feature sizes on the order of 250 nm, we predict that these coherent effects will affect acoustic Si 

phonons up to the validity of the Debye material limit, i.e., 15 THz for the acoustic longitudinal 

phonons and 10 THz for the transverse acoustic ones.  However, coherent scattering can also 

affect ultra-high frequency phonons in an indirect yet effective manner.  This is due to the fact 

that 30% of all optical phonon relaxation processes involve an acoustic phonon [16].  Thus by 

suppressing the acoustic phonon population we indirectly inhibit the optical phonon relaxation 

by up to 30% and hence limit their contribution to thermal conductivity. 

 

 
Figure 5.   Classification of phonon spectrum. 
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In addition to coherent scattering, incoherent boundary scattering events are concurrently present 

in the PnC lattice.  These are instigated by the simple existence of the scattering centers 

irrespective of their arrangement.  The dominant factor here is the edge-to-edge separation of the 

scattering centers, or minimum feature size L, which caps the phonon lifetime .  Incoherent 

scattering influences phonons across the high frequency bands, provided that their corresponding 

wavelengths are smaller than or on the order of the minimum feature size of the PnC lattice.  

This ultimately results in a reduction in the thermal conductivity by as much as 90% [15] with 

minimal effects on the electrical conductivity. 

 

 
Figure 6.   Schematic of a TE PnC thermoelectric device. 

 

The overall effect is anticipated to be the doubling of the thermoelectric figure of merit ZT over 

that of the underlying material, in this case Si.  Given the fact that the PnC technology is portable 

to any material set, we anticipate that this factor of 2 enhancement in ZT can be realized in any 

material system subject to it lending itself to PnC fabrication and assuming that  is phonon 

dominated.  This result promises to have profound implications for TE technology, and we 

anticipate that it may indeed lead to the creation of the next generation of high-ZT TE devices, 

such as the schematic shown in Figure 6. 

 

A detailed description of the experimental and theoretical validation of these results is given in 

the following sections.  
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2.  CALCULATION OF THE THERMAL CONDUCTIVITY OF PHONONIC 
CRYSTALS 

 

The thermal conductivity of a crystalline solid is directly dependent on the phonon band 

structure.  Properties such as the phonon group velocity, heat capacity, and phonon scattering 

rates can be extracted from the phonon dispersion.  The Callaway-Holland method combines 

these properties to predict thermal conductivity, and is applicable for materials where the thermal 

conductivity is dominated by phonon, rather than electron, transport.  The plane wave expansion 

(PWE) technique is employed in this work to determine dispersion for various PnC systems, with 

the material modeled as a continuum at the macro-scale.  This information is incorporated into 

the Callaway-Holland model, while also the lattice dynamics (LD) behavior for the host bulk 

material is utilized. 

 

2.1. Callaway-Holland Methods 
 

There are two general forms of the Callaway-Holland model for the calculation of the thermal 

conductivity from phonon dispersion.  The difference lies in whether the dispersion information 

is integrated over frequency space (which includes a density of states calculation) or wave vector 

space.  Both forms require knowledge of the modal velocities, heat capacity, and scattering 

lifetimes deduced from the dispersion.  One form of this model may be more convenient to 

implement over the other depending on variables such as the occurrence of branch crossings in 

frequency versus wave vector space and the ease of calculating the phonon density of states of a 

given system. 

  

Both forms of the Callaway-Holland originate from the first law of thermodynamics, where 

energy is conserved as it is transferred by phonons through the lattice.  The Boltzmann transport 

equation further defines the problem for crystalline structures by relating the change of phonon 

distribution to an applied temperature gradient and wave speed through the medium.  The three 

factors considered when calculating thermal conductivity κ are: the volumetric specific heat Cp 

of the phonons, the group velocity at which the phonons travel through the lattice gv


, and their 

rate of scattering τ.  Thus, the thermal conductivity can be calculated by integrating these factors 

together over the non-dimensional wave vector q and summed for all polarization branches  

[17]: 

.),(),()ˆ),(( 2 


 qdqqClqv pg


                                            (7) 

In Eq. (7), the phonon heat capacity is expressed per volumetric unit a
3
 and the phonon velocity 

is dotted with the unit vector l along the principle axes.  A change of variable from q to k, which 

has dimensions of m
-1

, is done to incorporate the lattice constant a: 

2/akdqd


 .                                                                (8) 

A factor of 2π appears in the formula to account for the volume of the Brillouin zone geometry 

of face-centered cubic structures.  This enables us to replace Cp with Cph, which is the heat 

capacity expressed in units of joules per Kelvin. Now Eq. (7) becomes  

 





 kdklkvkC gph
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3
 .                                  (9) 
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The material in this case is assumed to be isotropic, allowing for the variable of integration k to 

be evaluated over the volume of a sphere and expressed as a scalar, that is 

 
a

dkkkd
/2

0

24





.                                                        (10) 

This is an approximation to the near-spherical shape of the first Brillouin zone.  In addition, the 

dot product in Eq. (9) for a 3D system or three coordinate directions is reduced to 3
-1/2

: 

.
3

)ˆ),((
v

lkvg 


                                                         (11) 

The final form of the Callaway-Holland equation in k-space is expressed for a face-centered 

cubic lattice along the Γ-X path (0 to 2π/a) as 












a

gph dkkkkvkC
/2

0

22

3
),(),(),(

)2(

3/4
 .                                    (12) 

The heat capacity Cph measures the energy of each phonon mode and incorporates the 

Boltzmann-Einstein distribution to account for quantum effects at low wavenumbers.  Here ω is 

the phonon frequency, kB is the Boltzmann constant, ħ is the reduced Plank’s constant, and T is 

the temperature: 
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The phonon group velocity is calculated by taking the derivative of the phonon frequency with 

respect to the wave number: 

k

k
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                                                         (14) 

Finally, the phonon scattering lifetime can be broken into three major components based on the 

Umklapp (τU), impurity (τI), and boundary (τB) scattering processes. The inverse of these 

variables are summed according to Matthiessen’s rule, which enables certain terms to be 

dominant over the others:  
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The Umklapp scattering, which models the phonon-phonon interactions, has two fitted 

parameters A and B.  The impurity scattering (e.g., from the natural defects of the material) are 

accommodated by the parameter D.  The final term of boundary scattering incorporates surface 

interactions, or more generally any interactions with interfaces. The boundary scattering is 

dependent on the speed of sound through the material c (more accurately evaluated as ν(k,λ)) and 

the minimum feature length L, which is determined by boundaries, grains, or voids introduced 

within the material.     

 

We use the relationship between the scalar component of the group velocity and that of the phase 

velocity,  

,
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k

k
kv p


                                                          (16) 

to change the variable of integration of the Callaway-Holland formulation from wave vector 

space to frequency space.  This relationship allows us to modify the integrand as 
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This expression can be further simplified by introducing the phonon density of states per unit 

volume (note that N=ʃ k
2
dk) defined as [18]: 
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The final form of the Callaway-Holland model in frequency space can thus be written as 
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where υ is the available states (e.g., branch polarizations) across dω.  This is the most general 

form of the frequency space version of the model; however, due to the difficulty in identifying 

the mode type in the phonon dispersion calculations (especially when the band structure is 

complex), Eq. (19) is implemented in this work with the following approximation 
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where Cph(ω) is the heat capacity at a given frequency irrespective of the dispersion branch, 

νg(ω) is the group velocity of the bulk material at a given frequency averaged over the first three 

branches, τ(ω) is the scattering time constant calculated according to Eq. (15) at a given 

frequency irrespective of the dispersion branch and using νg(ω) for the sound velocity, and the 

density of states is summed over all dispersion branching prior to integrating. 

 

2.2. Bloch Mode Plane-Wave Expansion Technique 
 

Many methods are available for calculating the transmission and dispersion properties of PnCs, 

depending on the behavior being studied; whether time-domain or frequency-domain information 

is desired; and what a priori assumptions, if any, can be made.  Perhaps the most commonly used 

of these techniques are finite-difference time-domain (FDTD), finite element modeling (FEM), 

and plane-wave expansion (PWE).  In this work, we primarily utilized the FDTD and PWE 

methods, with lattice dynamics (LD) used solely for the calculation of the bulk phonon 

dispersion of Si.  FDTD is useful for simulating structures having finite dimensions (rather than 

infinitely periodic) and obtaining transmission and reflection data that can be used to directly 

compare with experimental results.  However, for revealing phononic bandgaps and calculating 

the heat transport properties of PnCs, it is often more appropriate to assume and infinite crystal 

and calculate the dispersion behavior of the unperturbed PnC.  Thus, PWE was used extensively 

in this study, since it provides frequency and spatial profile information about the dispersion of 

all elastic modes allowed by the periodicity of the PnC.  The technique and its application to 

thermal conductivity modeling are described here. 

 

The plane-wave expansion technique [19, 20] operates under the assumption of Bloch’s theorem 

for periodic media, which asserts that the elastic wave displacement u(r) can be written in the 

following form: 

,)( rie  k

kuru                                                             (21) 
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where r is the position vector, k is wave vector and uk is a periodic function having the same 

periodic structure as the materials that make up the PnC.   The density ρ(r) and elastic stiffness 

tensor C(r) can be written as expressions having corresponding forms.  Using Fourier analysis, 

the components of the displacement can be expanded as 
  31,,  where,   kjieuu tii
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                                       (22) 

where uG is a Fourier coefficient, ω is the angular frequency, t is time, and G is the reciprocal 

lattice vector.  This Fourier expansion can be substituted into the second-order elastic wave 

equation for displacement fields with no body force, written as 
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where xi is the i-th component of the position vector.  After expanding the resulting set of 

equations and collecting like terms, an eigenvalue problem can be constructed of size 3N x 3N, 

where N is the number of reciprocal lattice vectors (RLVs) used to expand the displacement 

field.  The eigenvalues of this equation system correlate with the frequencies of each mode at a 

given point in k-space; hence the dispersion diagram for a PnC is calculated by finding the 

eigenvalues at consecutive points defining the irreducible Brillouin zone (IBZ) of the periodic 

lattice.  The corresponding eigenvectors contain information about the spatial distribution of the 

elastic displacement field, and can be used to reconstruct the displacement field of a given PnC 

mode. 

 

While this technique as presented is perfectly suitable for 2D simulations or simulations of 3D 

that are periodic in all three dimensions, an adjustment must be made to simulate planar PnC 

structures that have a finite thickness in the third dimension.  In this case, the supercell method 

[21] can be used to account for the finite thickness of the PnC slab.  With this modification, the 

Fourier structure factor components are calculated for a full 3D structure, where a slab of air is 

included above and below the slab to isolate it elastically from the adjacent virtual‖ unit cells in 

the vertical direction, as shown schematically in Figure 7.  Although RLVs corresponding to the 

third dimension are now included, the z-component of the wave vector is zero, since there is not 

actual periodicity in that direction.  Additionally, several terms in the eigenvalue problem that 

dropped out in the 2D case can no longer be neglected, resulting in a significantly more 

complicated calculated at each k-point.  Note that unlike in Ref. [21], where the Fourier structure 

factor components were calculated analytically, the code used for this study used a more 

universal fast-Fourier transform (FFT) implementation. 
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Figure 7.  Illustration of the computation domain used for the supercell PWE calculation, with air 

layers above and below the Si PnC later (red).  The actual unit cell used in the simulations is 

shown in blue. 

 

A notable improvement to the plane-wave expansion scheme can be implemented in a 

straightforward fashion using the reduced Bloch-mode expansion (RBME) technique.  This 

modification allows for convergence of the calculated dispersion using fewer RLVs by 

expanding the displacement field with calculated solutions to the eigenvalue problem at nearby 

k-points.  Thus, the full 3N x 3N, problem need only be solved the high-symmetry points of the 

IBZ, after which those Bloch wave solutions are used in place of the ordinary plane waves  to 

expand the fields for the intermediate points.  This can result in more than an order of magnitude 

reduction in the required computation time for calculation of the dispersion diagram of a PnC, 

greatly speeding up parametric sweep calculations used to plot the bandgap map of a given PnC 

topology.  The resulting bandgap map for a finite-thickness PnC composed of cylindrical air 

holes in a Si matrix is shown in Figure 8, where complete bandgap formation is observed only 

for normalized radii r/a > 0.4 and slab thicknesses between t/a = 0.25 and 2 [22].  The material 

properties assumed in the simulation are given in Table 1; notice that non-physical parameters 

were used for ―air‖ to ensure stability of the code. 
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Figure 8.  Bandgap map versus hole radius for a PnC composed of air holes in Si for various slab 

thicknesses. 

 
Table 1.  Material parameters used in PWE simulations of Si PnCs 

Material Density (kg/m
3
) C11 (GPa) C12 (GPa) C44 (GPa) 

Silicon 2330 217.3 84.5 66.4 

Air 10
-4

 10
-3

 -10
-3

 10
-3

 

 

2.3. Lattice Dynamics Technique 
 

For bulk silicon, we consider a discrete (e.g., an atomic-level) model for which we obtain the 

dispersion using LD [23]. We consider a primitive cell consisting of a two-atom basis (with each 

having three degrees of freedom) and generate the equations of motion by identifying the 

prescribed interactions of each atomic pair.  An interatomic energy potential, which can be 

obtained empirically, is used to derive the force constant matrix  for atoms j and j’.  The 

equations of motion are thus written as 
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j jjujjum                                               (24) 

where u denotes displacement, m denotes atomic mass and α and β represent Cartesian 

directions.   Upon assuming a travelling wave solution, 

,),(  tiiAetru  rk                                                          (25) 

where A denotes complex displacement amplitude, the following eigenvalue problem is 

constructed (under the quasi-harmonic approximation): 

  0)()()( 2   AID                                                     (26) 

In Eq. (26), D is the dynamical matrix of size of 3M x 3M, where M represents the number of 

atoms considered in the primitive cell.  Upon solving Eq. (26) we obtain ω() and A(), which 

are the phonon frequencies and polarization vectors, respectively.  As in the continuum 
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mechanics method using plane wave expansion, the dispersion is calculated by finding the 

eigenvalues at consecutive k-points defining the boundary of the irreducible Brillouin zone 

which in this case corresponds to the primitive cell of bulk silicon.   

 

The Tersoff potential [24, 25] is used to model the interatomic forces with second nearest 

neighbor interactions considered, allowing for a relaxed Si-Si atomic separation distance of a = 

0.38nm.  The available degrees-of-freedom for two atoms allow for six branches to be plotted 

across the Γ-to-X direction of the primitive cell IBZ with a k-space resolution n  set to be greater 

than 256. The baseline thermal conductivity of Si was calculated from these data using the above 

Callaway-Holland k-space formulation. 

 

2.4. Thermal Conductivity Calculations  
 

Both forms of the Callaway-Holland require knowledge of the modal velocities, which in the 

bulk case can be calculated from LD simulations, and the phonon scattering lifetimes, which are 

typically parameterized and fit numerically to experimental data.  In the PnC case, the modal 

velocities cannot be easily calculated due to the complexity of the dispersion diagram, and are 

therefore approximated using various methods, as described next. 

 

2.4.1. Density of States Method 
 

Using the DOS formulation, the phononic DOS is calculated by first calculating the dispersion 

behavior, not for just the boundary of the IBZ, but for the entire k-space area enclosed in it.  The 

frequency axis is then divided into bins, and the number of modes lying within each bin is 

summed, giving the DOS.  Note that it is impossible to separate modes of different types (i.e. 

longitudinal, in-plane transverse, or out-of-plane transverse) in this calculation, making direct 

calculation of the appropriate velocity for a given mode very difficult and thus necessitating an 

approximation of the velocity to be made.  The simplest approximation that can be made that still 

preserves a measure of accuracy is based on the Debye model [18], which essentially assumes 

that dispersion of the bulk material is linear, giving a single velocity for the transverse and 

longitudinal modes, respectively.  As shown in Figure 9, this approximation gives significant 

errors in the velocity of the bulk material on the highly-dispersive frequencies ranges, and in the 

case of the transverse modes in the region where there is a mode gap. 
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Figure 9.  Phononic dispersion of bulk Si for Γ–Χ (black curves), along with the corresponding 

dispersion from the Debye approximation for transverse (red dashed curve) and longitudinal 

(blue dashed curve) modes. 

 

Additionally, the PWE technique is also limited by the available computing resources as to how 

high in frequency the dispersion behavior can be calculated, since more RLVs are required to 

reach higher frequencies.  Since the size of the problem is approximately dependent on the 

square of the number of RLVs, the computational load requirements quickly become larger than 

what can be handled by a supercomputer in a reasonable amount of time.  For example, a PWE 

dispersion calculation for 20 k-points using 25
3
 RLVs takes about 60 hours to complete on the 

Redsky supercomputer at Sandia Labs using 8 processors (8 cores each) and 96 GB of memory.  

This hefty calculation yields a maximum frequency of only 3 THz for a PnC having a lattice 

constant of 500 nm.  Furthermore, the since the results of  PWE are known to be inaccurate for at 

least the highest half of the frequencies calculated, these values must be thrown out, further 

limiting the maximum frequency that can be reached.  Therefore, the Callaway-Holland 

calculation of thermal conductivity is carried up to the maximum phonon frequency in Si of 

about 15 THz by simply supplementing the PWE data with the known bulk dispersion behavior 

of Si for frequencies greater than what can be calculated accurately using PWE. 

 

However, the errors introduced by these issues are mitigated by dividing the calculated thermal 

conductivity of a given PnC structure by the thermal conductivity of a slab of the same thickness 

but having no air holes (r = 0) calculated using the same assumptions.  In this way, the errors due 

to approximation, which should be roughly the same in the two calculations, can be canceled out, 

resulting in a reasonable estimation of the thermal conductivity of the sample relative to an 

unpatterned slab.  Given that the thermal conductivity of a slab can be calculated relative to a 

bulk material of known thermal conductivity, the reduction in thermal conductivity of a PnC 

relative to bulk (as well as the absolute value) can be extracted as well. 

 

This method was used to calculate the thermal conductivity reduction of a set of PnC samples 

fabricated in Mesa facilities at Sandia Labs, composed of 500 nm thick Si with a square lattice of 
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air holes with lattice constants ranging from 500 to 800 nm and hole radii from 150 to 200 nm 

[26].  The results of the simulations are shown in Figure 10, along with a model of the thermal 

conductivity of an unpatterned slab and measured data from three other published results.  For 

the thermal conductivity predictions, the velocities used in the Callaway-Holland model were a 

weighted combination of the Debye velocities for the Γ–Χ direction in Si, assuming that there 

are two transverse modes for each longitudinal one.  The measured thermal conductivities of the 

porous structures are multiplied by a factor of (1 + 2ff/3)/(1 - ff) (where ff is the filing fraction) to 

account for the porosity of the structures, and thereby directly compare the thermal conductivity 

of the solid matrix in the porous structures to the model of the unpatterned slab.  Clearly, Figure 

10 demonstrates that the calculated thermal conductivity ratios agree well with the experimental 

data measured using the TDTR technique described in Section 4.2. 

 

 
Figure 10.  The thermal conductivity of Si structures at room temperature as a function of L for 

the PnCs (unfilled squares), microporous solids (filled pentagons), nanomesh (filled diamond), 

and a suspended 500 nm thick Si films that is, an unpatterned Si slab (unfilled circle).  The 

references are from [26].  The solid line represents predictions of the unpatterned slab at room 

temperature as a function of L.  The dashed line represents predictions of the PnC thermal 

conductivity using DOS data from PWE calculations. 

 

2.4.2. DOS with Slab Padding 
 

Since the PWE method only account for porosity and coherent scattering (not incoherent 

scattering), it is reasonable to expect that the dispersion behavior of a PnC slab should gradually 

approach that of an unpatterned slab as frequency increases due to the shorter wavelength 

phonons no longer ―seeing‖ the periodic lattice of ―large‖ inclusions but rather a bulk effective 

medium.  This is confirmed by plotting the integrated DOS for both a given PnC and its 

corresponding slab.  As seen in Figure 11, the difference between the two curves becomes 

negligible after a point, indicating that the behavior of the two structures from the thermal 

conductivity point of view is equivalent.  Moreover, since the PWE simulations are performed 

using normalized parameters (i.e. frequency scales inversely with lattice constant) and an 
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unpatterned slab has no in-plane variation with lattice constant, the data from the slab 

simulations can be rescaled to reach higher frequencies.  In other words, assuming that the slab 

thickness does not change, a slab having a normalized thickness t/a = 1 has similar dispersive 

behavior to a slab of thickness t/a = 10, but with a lattice constant that is 10 times smaller 

(resulting in frequencies that are 10 times higher).  Thus, the PnC DOS data can be ―padded‖ 

with slab data for frequencies greater than this point, eliminating some of the error in 

approximating the structure as bulk for frequencies greater than what can be reached with PWE. 

 

 
Figure 11.  Integrated DOS for a Si slab of 500 nm thickness and a PnC of the same thickness 

and with 150 nm radius air holes. 

 

2.4.3. Dispersion Method with Mode Velocities 
 

In an effort to further improve the accuracy of the PWE calculations, particularly at higher 

frequencies, a scheme was developed to account for the dispersive behavior of bulk Si in the 

Callaway-Holland model.  The theory behind this scheme is that the dispersion of Si can be 

approximately accounted for in PWE, which assumes that the material parameters are constant 

with respect to frequency (i.e. dispersionless), by calculating an effective mode velocity at each 

point in the dispersion diagram based on the actual modal velocities of the bulk material.  The 

underlying assumption in this method is that the dispersive effects of the PnC act as a 

perturbation of the bulk dispersion in the vicinity of the corresponding frequency.  Thus, the 

velocity of a given mode at a point in the dispersion can be approximated as a weighted average 

of the two modal velocities of the bulk material at that frequency, given by 
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where vPWE is the velocity of a mode at frequency ω calculated using PWE; ux, uy, and uz are the 

x, y, and z components of the displacement, respectively; vL is the longitudal mode velocity of the 

bulk material at frequency ω, and vT is the transverse mode velocity of the bulk material at 
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frequency ω.  The mode velocities of the bulk material are calculated from the dispersion from 

the LD technique.  Using this approach, the linear dispersion approximation from the Debye 

model is removed, and even though transverse modes at frequencies in the mode gap will 

incorrectly appear in the PWE calculations, they will be assigned zero velocity, thus eliminating 

them from consideration in the Callaway-Holland calculation. 

 

2.4.4. Multi-Scale Method 
 

A final improvement to the inherent approximations in the PWE technique involves combining 

the dispersion calculated from PWE for a PnC with the PWE dispersion for a slab of the same 

thickness and LD dispersion for the bulk material in a strategic manner to capture the effects of 

the PnC on thermal conductivity as accurately and efficiently as possible.  Using this multiscale 

approach, dispersion from PWE is used at lower frequencies, where the PnC has the greatest 

effect on phonon propagation, and is padded with the dispersion from LD for the bulk material at 

higher frequencies, where PWE calculation become inaccurate or intractable.  Since the PnC will 

still be padded with data for the slab of corresponding thickness, as described above in Section 

5.2.2, there are now two adjustable parameters in the frequency domain: the upper frequency for 

which the PWE dispersion is accurate and is distinguishable from the slab DOS, and the upper 

frequency for which the Debye approximation is still accurate and thus the re-scaled PWE 

dispersion for the unpatterned slab can still be used.  The former frequency, fPnC, is 

approximately 1 THz, and the latter frequency, fslab, is approximately 2.5 THz (lower of the 

Debye limits for the transverse and longitudinal modes), as shown schematically in Figure 9.  

The parameters must be ―tuned‖ to best fit experimental data, and generally vary slightly 

depending on the dimensions of the PnC under consideration. 
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3.  FABRICATION OF PHONONIC CRYSTAL DEVICES 
 

To validate our theoretical predictions above, we needed to fabricate phononic crystal samples 

with a high degree of fidelity and yield.  Below is a description of the two methods that were 

used as venues for achieving the desired structural values. 

 

3.1. MESA Silicon-Fab 
 

The Microsystems & Engineering Sciences Applications (MESA) Complex at Sandia National 

Laboratories represents the essential facilities and equipment to design, develop, manufacture, 

integrate, and qualify microsystems for the nation’s national security needs that cannot or should 

not be made in industry—either because the low volumes required for these applications are not 

profitable for the private sector or because of stringent security requirements for high-

consequence systems such as nuclear warheads.  Microsystems extend the information 

processing of silicon integrated circuits to add functions such as sensing, actuation, and 

communication—all integrated within a single package.  The MESA Complex integrates the 

numerous scientific, engineering, and computational disciplines necessary to produce functional, 

robust, integrated microsystems at the center of Sandia’s investment in microsystems research, 

development, and prototyping activities. 

 

The designed test structures, shown in Figure 12, were fabricated in Sandia MESA facility.  

Figure 13 shows the schematics of the thermal conductivity test structure fabrication process.  

The fabrication starts with 6-inch silicon-on-insulator (SOI) wafers.  The device layer is 500 nm-

thick lightly p-type doped (boron, concentration 10
16

/cm
3
) single crystal silicon.  On top of the 

SOI wafers, 100 nm of undoped amorphous silicon was blanket deposited as an electrical 

isolation layer between the underlying device layer and the following metal contact layer (Figure 

13a).  High temperature annealing was used to relax the high stress in the amorphous silicon 

layer.  Then, aluminum was deposited and patterned to form heaters, temperature sensors, 

interconnects, and bondpads (Figure 13b).  Using plasma etching, phononic crystals and release 

trenches were defined in the silicon layers (Figure 13c).  As the final step, the buried oxide 

(SiO2) underneath the test structure was removed by a timed HF vapor etch to release the bridge 

(Figure 13d).  Figure 14 shows scanning electron microscope (SEM) images of a fabricated 

thermal conductivity test structure. 
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Figure 12.  A schematic of the thermal conductivity test structure design. A phononic crystal bridge is 

suspended from the substrate.   Serpentine aluminum traces are installed at both the bridge center and 

both bridge ends.  While heat is supplied at the center, the temperature gradient across the bridge is 

measured to extract device thermal characteristics. 

 

 
Figure 13.  Schematics of the fabrication process for the thermal conductivity measurement 

structures. 
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Figure 14.  SEM images of fabricated simple cubic (SC) phononic crystal thermal conductivity 

test devices. 

 
 

3.2. Focused Ion Beam 
 

This section describes how PnCs were fabricated with a tool called a focused ion beam, or FIB.  

All of the FIB milling and nanoFIBrication in this work was performed on a dual-beam Quanta 

3D FEG made by the FEI Corporation.  The dual-beam refers to the system having both a FIB 

and an SEM. 

 

A FIB is a system that generates a focused stream of charged particles (ions).  Ions are extracted 

from a material, accelerated, and then focused into a narrow beam with a Gaussian density 

distribution using various apertures and electro-magnetic fields in an octopole arrangement.  

Figure 15 shows a schematic of the basic components in a FIB. 

 

 
Figure 15.  Schematic of a focused ion beam (FIB) system.  Ions are extracted and then focused 

by multiple apertures and electromagnetic fields onto a sample.  All of the FIB components and 

sample are under vacuum to prevent degradation.  (Image courtesy of FEI) 
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A common source for generating ions is called a liquid metal ion source (LMIS) [27].  Figure 16 

shows a drawing of a LMIS.  Liquid metal from a reservoir is allowed to flow onto the tip of a 

sharp needle.  The most common metal used is gallium due to its low melting point, low vapor 

pressure, and low reactivity with other elements, along with the fact that it produces mainly 

singly charged ions and it has enough mass to dislodge material at an acceptable rate [28].  As 

the liquid metal rests at the tip of the needle, an extractor lens with a large accelerating voltage 

pulls positively charged ions from the liquid.  Typical accelerating voltages are between 5 and 30 

kV. 

 

 
Figure 16.  Drawing of a liquid metal ion source.  Liquid metal wets a sharp tip and an extractor 

lens extracts ions from the metal by using a high accelerating voltage in the kV range. 

 

Once the focused beam of ions leave the ion column, they interact with the sample surface.  

When a single Ga
+
 ion strikes the sample surface, it can have enough energy and momentum to 

cause other atoms at the sample surface be removed, or sputtered away.  The mean number of 

atoms removed for a single ion striking the sample surface is known as the sputter rate of the 

material, which is a dependent on the type of ion bombarding the surface, the accelerating 

voltage of the ion, and the angle of incidence.  Increasing the accelerating voltage increases the 

sputter rate.  As the angle of incidence changes from 0 to approximately 80° (with respect to 

normal), the sputter rate increases then quickly drops from 80° to 90°.  A plot of sputter rate 

versus angle for various materials is shown in Figure 17.  The ion species is Ga
+
 at 30 kV.  

Sputter rates were calculated using a Monte Carlo simulation package named TRIM (Transport 

of Ions in Matter).  TRIM calculates the stopping and range of ions into matter using a quantum 

mechanical treatment of ion-atom collisions [29].  The solid lines in Figure 17 are interpolated 

values. 
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Figure 17.  Sputter rates for various materials as a function of angle.  Incident ion is Ga

+
 at 30kV.  

Sputter rates were calculated using a Monte Carlo simulation package named TRIM.  Solid black 

lines are interpolated values. 

 

Prior to milling PnCs with the FIB, it was necessary to micro-fabricate freestanding Si 

membranes that serve as the matrix material of the phononic crystal.  Two different paths were 

used.  In the first path, the Si matrices were freely suspended prior to nanoFIBrication, and in the 

other path, suspension of the PnC was performed after milling with the FIB.  Both paths use a 

top-down approach, starting with a bulk material and selectively removing the unnecessary 

material. 

 

For the first path, the first step in fabricating PnCs was creating a thin device layer on a silicon-

on-insulator (SOI) wafer.  Studies show that thin membranes produce a band gap that is 

unaltered by slab modes [11].  More specifically, the membrane must be thinner than the lattice 

spacing.  For example, a 33 GHz PnC requires a device layer less than or equal to 100 nm.  To 

thin the initial 450 nm thick device layer of the SOI wafer down to a thickness of 100 nm or less, 

thermal oxide layers were grown from the Si and subsequently etched away until the desired 

thickness was attained.  Initial variation of the device layer (±25 nm) caused similar variation in 

the final membrane thickness.  After thinning, outlines of the PnC were patterned on the wafer.  

The process for creating the PnC outlines is show in Figure 18a. 
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Figure 18.  Fabrication process for creating a thin-freestanding membrane for PnCs.  a) Cross 

sectional view of fabrication process.  b) Released freestanding membrane. 

 

The second method for fabricating Si matrices is similar to the first method, but the release step 

is performed after milling with the FIB.  The process flow is shown in Figure 19. 

 

 
Figure 19.  Second fabrication method for creating a thin-freestanding PnC. a) Cross sectional 

view of fabrication process. b) Released freestanding PnC. 

 

In both methods, a protective layer is placed on top of the Si.  The protective layer minimizes 

Ga
+
 doping in the Si layer, which can affect both the electrical [30] and thermal properties [31]

 

of Si.  Since the goal of this effort is to determine how a PnC affects the thermal conductivity of 
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Si, it is important to minimize any additional variables that could affect the thermal properties of 

Si. 

 

The choice of the proper protective layer is dependent on a number of factors.  It must be 

relatively easy to add and remove.  The protective layer needs to be compatible with the 

fabrication process.  It must also be relatively thin.  If it is too thick, then the ion beam will have 

a difficult time penetrating both the protective layer and the Si.  Another consideration is 

electrical conductivity.  If it is not conductive, then the incoming charged ions will be affected.  

As charge builds up on the sample surface, the ion beam will become distorted and will no 

longer mill the desired area.  Last, it should have a sputter rate that is less than that of Si. 

 

The best types of materials to be used as a protective layer are metals.  Metals make a good 

protective layer for multiple reasons.  They are easy to deposit, it is easy to find an etchant with a 

high selectivity between a given metal and Si, they are highly conductive which improves 

imaging in the SEM, and only a thin layer is required to block Ga
+
 ions from penetrating into Si.  

For example, TRIM calculations of Ni show that 30 kV Ga
+
 ions have a mean penetration depth 

of 9.7 nm into a 100 nm thick layer of Ni, and only a small percentage reach beyond 30 nm 

(Figure 20).  Unfortunately, Ni reacts with the fluorine in a hydrofluoric acid vapor and leaves a 

thin, greenish layer of NiF2 on the PnC.  Ti has a mean penetration depth of 17.9 nm, which is 

greater than Ni, but Ti has the advantage of being etched by hydrofluoric acid.  Since 

hydrofluoric acid is required for removing the BOX layer and thus releasing the PnC, Ti makes a 

good choice for a protective layer.  To ensure no Ga
+
 reaches the Si, a 50 nm thick layer of Ti is 

used as the protective layer for fabricating PnCs with the FIB. 

  

 
Figure 20.  30kV Ga+ ion penetration into 50 nm thick layer of Ni on top of 50 nm layer of Si.  

No ions reach the Si layer. 
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4.  CHARACTERIZATION OF THERMOELECTRIC FIGURE-OF-MERIT 
 

Three measurement techniques were implemented under this project to characterize the 

thermoelectric properties of our phononic crystal samples.  Two of these, the four-point 

measurement and suspended island techniques, were used to probe the in-plane properties of the 

devices, and the third, time domain thermoreflectance, was used to probe the cross-plane thermal 

conductivity.  The in-plane configuration of this method is mentioned as well, although it was 

not used in this work.  Each of the setups is described in the following sections. 

 

4.1. In-Plane Measurement Techniques 
 

4.1.1. Equilibrium Thermoelectric Measurements 
 

Figure 12 shows the design of the thermal conductivity test structure.  Specifically, a 60um-wide 

and 200 um-long bridge-shaped structure containing periodic holes (PnC) was suspended above 

the substrate.  At the bridge center, a 250nm-wide serpentine aluminum trace was installed that 

functioned as both heater and a temperature sensor.  Two additional temperature sensors 

(serpentine traces) were placed symmetrically at both edges of the bridge.  While heat is supplied 

at the center, the temperatures of bridge center and edges are measured to estimate device 

thermal resistance and thermal conductivity of the PnC membrane. 

 

To measure the thermal conductivity of the samples, the temperature dependence of resistances 

of both the heater serpentine trace at the bridge center and temperature sensor traces at the bridge 

ends were first calibrated by a separate heated chuck measurement.  Figure 21a shows the 

measured resistance changes with varying temperatures and Figure 21b shows their relative 

changes (base is 30˚ C).  Both the heater trace and sensor traces exhibit almost identical relative 

resistance change due to temperature change with a temperature coefficient of resistance (TCR) 

of 0.0027 being extracted from the measured data. 

 

 
Figure 21.  Trace resistance vs. temperature calibration data from a heated chuck measurement.  

a) Measured resistance values of heater trace and sensor trace with changing temperature.  b) For 

both heater and sensor traces, their relative resistance changes were almost identical.  The slope 

of this line is 0.0027. 
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Figure 22 shows the thermal resistance measurement setup diagram.  Heat is supplied at the 

center of the test structure by applying power across the serpentine heater.  By measuring the 

voltage across the heater and the current through it, both the supplied heat and resistance change 

can be simultaneously monitored.  At the same time, the resistance change of the sensor traces at 

the bridge ends is also measured.  Using the above TCR of 0.0027 (from Figure 21), the 

temperature changes of the heater and sensors are calculated.  All measurements were conducted 

in vacuum (< 1 mTorr) while sweeping the heating power from 0 to 1 mW and back to 0 mW 

again.  Figure 23 shows an example plot of the measured temperature vs. heating power.  For 

each design set (hole pitch and diameter combination), 6 devices were tested. 

 
Figure 22.  Test setup diagram for thermal conductivity measurement. 

 

 
Figure 23.  An example plot of measured temperature vs. heating power plot (Device ID-7).  

Temperature difference across the phononic crystal bridge was measured using calibrated 

serpentine traces while heating power supplied at the bridge center was sweeping between 0 to 1 

mW. 

 

From the measured temperature changes vs. heating power data, the thermal conductivities were 

extracted using ANSYS Finite Element simulation models and equivalent thermal circuit models, 

as shown in Figure 24.  Since all measurements took place in vacuum, convectional heat leakage 

can be ignored.  Also, radiative heat transfer was estimated to not exceed a maximum of 0.4% of 

the conductive heat transfer, and therefore was ignored as well in these models. 
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Figure 24.  a) ANSYS FEM simulation model and b) equivalent thermal circuit model of thermal 

conductivity test structures. 

 

The amount of other parasitic thermal resistance (mostly through the traces connecting the 

heaters and bondpads across the bridge) in these models of Figure 24 were verified by measuring 

the thermal characteristics of  specially prepared samples, of which the phononic crystal regions 

were cut out using focused ion beam milling.  After accounting for these parasitics, the thermal 

resistances only across the phononic crystal regions were extracted and by multiplying with the 

cross section areas and dividing with the length, the phononic crystal thermal conductivities were 

calculated.  Figure 25 shows an example plot of extracted thermal conductivity versus 

temperature.  As can be seen, at low heating power, the current measurement is too noisy and it 

was not easy to obtain reliable and repeatable data.  Therefore, for reliability, we used thermal 

conductivity values when the average temperature across the bridge is 7˚ C above room 

temperature (300 K). 
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Figure 25.  An example of extracted thermal conductivity values using the models shown in 

Figure 24.  At low heating power, the data are scattered.  In this study, thermal conductivities 

values at 300 K were used, which were more reliable and repeatable.  Red circles indicate when 

the temperature was ramping up and blue circles when ramping down.  This plot is the measured 

data of Device ID-7. 

 
4.1.2. Suspended Island Technique 
 

A micron-scale multi-use test platform based on accepted designs in the literature was designed 

and fabricated that can measure in-plane thermal conductivity, electrical conductivity, and 

Seebeck coefficient of micro- and nano-scale sized samples [32, 33].  For this report, the samples 

are phononic crystals (PnCs).  Figure 26a shows a SEM image of the test platform; it is tilted 52° 

to highlight the undercut of the fabrication process.  The platform is comprised of two silicon 

nitride (SiNx) islands connected to each other by a small strip of SiNx.  Figure 26b shows a 

zoomed-in view of the small SiNx strip between the islands and also of the Pt contact pads for 

mounting the PnCs.  Prior to making measurements, the SiNx bridge is cut to remove the 

potential for heat to flow across it instead of the PnC.  On top of each island is a serpentine 

pattern of Pt acting as a resistance temperature detector (RTD).  Each island has four 

connections; three are for performing three-point measurements on the RTDs and one is for 

measuring electrical resistance.  The island on the left side of Figure 26a is the heating island.  

Power is applied to the RTD on the heater and its resistance is simultaneously measured to 

determine the temperature of the heating island.  It is important to freely suspend the heater 

island so that a majority of the heat generated by Joule heating on the island travels through the 

sample and to the sensing island.  All four legs connected to the heater island are designed to 

have a considerably larger thermal resistance as compared to the sample connecting the islands, 

which also ensures that the majority of the heat passes through the PnC.  On the right side of 

Figure 26a is the sensing island.  By measuring the resistances of the RTDs on both islands, one 

can determine the ΔT across the sample suspended between the two islands. 
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Figure 26.  SEM images of multi-use test platform for measuring thermal conductivity of 

phononic crystals.  Both images are tilted 52° with respect to normal.  a. Overview of suspended 

islands.  b. Zoom-in of the SiNx bridge connecting the heater and sensing islands.  Pt pads on 

either side of the bridge provide a location for the PnCs to be welded on to the islands. 

 

 
Figure 27.  Process flow for fabrication of in-plane thermal conductivity test platform. 

 

All of the platforms were fabricated using standard microfabrication techniques; see Figure 27.  

First a Si wafer with a 1 µm thick LPCVD SiNx film is spin coated by 1.4 µm thick positive 

photoresist (PR).  Consequently, 80 nm of platinum is deposited on the wafers by thermal 

evaporation.  Afterwards, 2 µm thick positive PR is patterned on the wafers to protect the 

devices during (reactive ion etching).  The SiNx pattern is cut by RIE inside an atmosphere of 
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98% CF4 and 2% O2 plasma.  Finally, the silicon underneath the devices is removed with a dry 

etch of XeF2 at a pressure of 1 T. 

 

Fabrication of the phononic crystals was undertaken using a focused ion beam technique 

developed as a result of this project.  Two different phononic crystals comprised of air inclusions 

in a Si matrix were tested on the multi-use platform.  Both used the same lattice spacing and r/a 

ratio.  Each PnC had a lattice constant of 250 nm and a radius of 41 nm, which corresponds to an 

r/a ratio of 0.16 and critical length of 168 nm.  The thickness of the Si was 250 nm (250 nm thick 

device layer on a SOI wafer), so the critical length is dominated by the spacing between 

inclusions.  The difference between the PnCs is the lattice type; one used a simple cubic lattice 

and the other used a hexagonal lattice.  Figure 28 shows SEM images of the PnCs.  The 

measured radius for the simple cubic PnC was 41.5 nm ± 2 nm and the hexagonal PnC had a 

measured radius of 41 nm ± 2 nm. 

 

 
Figure 28.  SEM images of PnCs measured with multi-use platform.  a. Simple cubic PnC.  b. 

Hexagonal PnC. 

 

Both PnCs were fabricated with a focused ion beam, or FIB.  The FIB for this work is FEI’s 

Quanta 3D FEG dual beam system, which has both a FIB and SEM.  The electron beam is 

mounted vertically, and the ion column is mounted 52° from vertical.  The beam profile of the 

FIB has a Gaussian density distribution of Ga
+
 ions, and it can be as small as 7 nm at full-width-

half-maximum (FWHM).  The accelerating voltage of the Ga
+
 ions is 30 kV. For the devices 

fabricated in this work, a 50 nm protective layer of Ti was deposited on the device layer of the 

SOI wafer.  By using a protective layer, surface damage by Ga
+
 ions is confined to the Ti and 

does not reach the surface of the thin Si membrane between each via [34].  Protection of the Si 

surface also minimizes the possibility of Ga doping affecting the thermal conductivity.  Once the 

vias are milled, the samples are dipped in 6:1 buffered oxide etch (BOE), which etches both Ti 

and the 2 µm thick BOX layer.  Next, the samples are dried with a CO2 critical dryer to prevent 

stiction failure.  For more details about this process see Section 3.2 of this Report. 

 

Since the PnC is not integrated into the test platform, it must be transferred on to the gap 

between the islands of the platform.  The transfer process makes use of the dual beam FIB/SEM 

system that is also equipped with an Omniprobe™ and a Pt gas injection system.  The 
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Omniprobe is equipped with a fine tipped W needle with high precision translation movements.  

A Pt gas injection system allows Pt to be deposited at user defined location and depth.  First, a 

protective mask is milled which will be placed on top of the PnC during the transfer process.  

This is done to limit Ga doping of the PnC during the transfer to the test platform. Two tabs are 

left to suspend the protective layer so the Omniprobe can be attached.  After cutting out the 

mask, it is welded to the tip of the Omniprobe with Pt and the tabs are then cut to fully release 

the mask.  Next, the PnC is cut from its resting place.  Again, two tabs are left to suspend the 

PnC so the mask can be placed on top.  Once the protective layer is on top the PnC, it is welded 

to the PnC.  Next, the tabs are cut and the PnC is transferred to the gap between the test 

platforms.  With both ends of the PnC touching the Pt pads on the heater and sensing island, a 

thin strip of Pt is used to connect the PnC to the Pt pads.  Last, the protective layer attached to 

the Omniprobe is removed.  A picture of mounted PnC on a platform is shown in Figure 29. 

 

 
Figure 29.  PnC mounted onto a thermal conductivity platform. 

 

A thermal circuit of the test platform is shown in Figure 30.  Heat generated by the heating island 

is labeled QH.  QL refers to the heat that passes through a single suspended leg connected to the 

heating island, and QS is the heat that passes through the PnC and sensing island.  TH is the 

temperature of the heating island, TS is the temperature of the sensing island, and TA is the 

ambient temperature. 
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Figure 30.  Electrical and Thermal Circuit of test platform. 

 

The starting point for determining the thermal conductivity is straightforward; heat in equal heat 

out: 
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where Th

LR  is the thermal resistance of a single suspended leg.  Heat loss across the PnC is given 

by 
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where Th

PnCR  is the thermal resistance of the PnC.  Because the sensing island does not have free 

standing legs, the boundary condition of the constant ambient temperature is right beside the 

island instead and so the temperature of the sensing island is assume to be almost equal to 

ambient.  Combining Equations 28 through 30 gives 
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The relationship between resistance and temperature is given by  

,TRRR oo                                                            (32) 

where R is the electrical resistance of the RTD at a given temperature, Ro is the electrical 

resistance of the RTD at the initial temperature, and α is the temperature coefficient of resistance.   

Substituting Eq. (32) into Eq. (31) gives 
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where κPnC is the thermal conductivity of the phononic crystal, and APnC and LPnC are the cross-

sectional area and length of the PnC respectively.  By rearranging the terms in Eq. (33), a point-

slope equation is reached 
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with R as the independent variable and a slope, m, given by 
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If the thermal resistance of a single suspended leg is large compared to the thermal resistance of 

the PnC, then the second term in the bracket of Eq. (35) can be neglected.  For a 100 µm long 

suspended leg, the thermal resistance is estimated to be 12 MK/W.  If the PnC has a thermal 

conductivity near 10 W/m-K, a thickness of 250 nm, width of 6 µm, and length of 17 µm, then 

its thermal resistance is less than one-tenth of the leg.  Neglecting the second term, the thermal 

conductivity of the PnC is given by 
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                                                        (36) 

All of the PnC dimensions are measured with the SEM.  The α-term is determined by calibrating 

the platform.  Ro is measured during testing, and the slope m, is derived from the plot of input 

heat versus heater resistance.  From these values and measurements, the thermal conductivity of 

the PnC can be calculated. 

 

4.2. Cross-Plane Thermal Conductivity Measurement 
 

4.1.2. Time Domain Thermoreflectance Technique 
 

Pump-probe transient thermoreflectance techniques utilizing short pulsed lasers have been 

extensively used to measure thermal conductivity, , and thermal boundary conductance, hK, of 

nanomaterials and interfaces of nanomaterials, such as  in metal films [35], dielectric films 

[36], phase change materials [37], thermally anisotropic materials [38], superlattice structures 

[39], and layered nanolaminates [40, 41] and hK across metal-metal [42] metal-dielectric [43-47] 

and metal-liquid [48] interfaces.  These transient thermoreflectance techniques measure the 

change in reflectance of the surface of a material as a function of time after a short pulsed 

heating event.  The change in reflectance is related to the temperature change of the electrons in 

the material, and the measured change in temperature as a function of time is then related to  

and hK through a conduction heat equation.  This experiment is referred to as time domain 

thermoreflectance (TDTR). 

 

4.2.1. Cross-Plane TDTR 
 

The experiments and analyses in this LDRD are focused on pulsed laser heating from a 

Ti:sapphire oscillator with a fundamental output of 90 fs pulses at 80 MHz (12.5 ns between 

laser pulses); the laser pulses are then further modulated at with an electro-optic modulator to 

create a modulated heating event at the sample surface, and the temperature decay on the surface 

of the samples from this modulated heating events are monitored over ~4 - 8 ns.  The laser pulses 

are treated as delta functions in time due to the ultrashort pulse width compared to the time delay 

of the experiments.  The thermal penetration depth of the modulated heat source is estimated by 

 fD  , where D is the diffusivity and f is the modulation frequency.  For most solids 

subjected to MHz thermal modulation rates, the thermal penetration depth is anywhere from 100 

nm – 10 m.  To ensure mostly cross plane (one dimensional) transport, the laser spot size of the 



48 

modulated heating source should be greater than the thermal penetration depth.  Typical TDTR 

experiments utilize pump spot sizes on the order of 10 m.  Therefore, for low diffusivity 

systems, the thermal transport measured in TDTR experiments is nearly entirely cross-plane due 

to the small thermal penetration depth.  

 

In typical TDTR experiments, the pump and probe beams have spatially Gaussian intensity 

distributions when incident on the film surface.  Therefore, depending on the relative sizes and 

overlap of the beams, the radial distributions of the pump beam could affect the temperature 

measured by the probe beam.  In this case, the assumption a one dimensional heat transfer model 

may not be applicable since it assumes that the probe reflectance, or the measured change in 

temperature, is measuring a uniformly heated plane at the surface of the film.  To correct for this, 

Cahill [49] derived an expression for (r), the temperature rise at the surface of the film, 

assuming radial spreading in a half-sphere from the pump pulse.  This begins by considering the 

axially symmetric heat equation in cylindrical coordinates is given by 
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where r is the radial coordinate, the subscript r and z denote the radial and cross plane 

conductivities, and C is the volumetric heat capacity.  Taking the Hankel transform along the 

radial, planar dimension, then applying a Fourier transform, Eq. (37) leads to  
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where  is the angular frequency of the pump pulses and  
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where K is the transform variable.  This anisotropic q was used by Schmidt et al. [38] to 

determine the directionally dependent thermal conductivities of graphite in anisotropic 

structures.  In this work, however, we consider isotropic materials and we are only interested in 

cross plane properties, so  iCKqT  22
. 

 

The temperature change on the surface of the film due to heat flow through underlying materials 

is easily taken into account through Carslaw and Jaeger’s solution for steady periodic 

temperature change in composite slabs [50].  A convenient implementation of this is presented 

by Feldman [51] and discussed here.  The change in surface temperature of material 1 is given by  
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where 


1TF  and 


1TF  are temperature change coefficients related to the forward and backward 

propagating waves on the surface (top side) of material 1 and where  = qT.  The forward and 

backward propagating wave at the top side of material 1 are related to the waves on the bottom 

side through 
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where d is the material thickness.  For material 1, the top side is assumed at the slab/air interface 

and the bottom side is assumed as the interface between material 1 and material 2 (i.e., 

film/substrate).  Given a thermal boundary conductance, hK, between material 1 and material 2, 

the temperature at the top of slab 2 is related to the temperature at the bottom side of slab 1 by 

 














































2

2

12,K

2

1

2

12,K

2

1

2

12,K

2

1

2

12,K

2

1

2

1

1

11

11

2

1

T

T

B

B

F

F

hh

hh

F

F





















. (42) 

Assuming a bulk substrate, heat cannot reach the bottom side of slab 2 at rates comparable to the 

modulation frequency (semi-infinite), so there is no thermal buildup of waves and  
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with Eqs. (40) – (42), this approach gives a straight forward method to solve for heat conduction 

through several materials and interfaces via successive implementation of Eqs. (41) and (42) for 

each layer and then Eq. (43) for the final, semi-infinite layer.  This is much less computationally 

expensive than solving the heat equation in the time domain for each interface and material. 

 

To determine the temperature oscillations on the surface of material 1 with the frequency domain 

model in Eq. (38) due to cooling from underlying layers described by Eqs. (41) – (43), a top 

surface boundary condition must be imposed.  In TDTR, this is described by first convoluting 

Eq. (40) with the pump-beam distribution [38], given by 
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where wPU is the 1/e
2
 radius of the pump beam, and then taking the weighted average of the 

surface temperature oscillations by the probe beam of 1/e
2
 radius wPR to yield [49] 
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Equation (45) gives the change in temperature as a function of heating event modulation 

frequency at the surface of the film.  This axially symmetric thermal model has been used by 

several groups to determine hK [46, 52] and, due to its simple extension to multilayer structures, 

thermal conductivity of thin layers and multilayered structures [36, 40, 41, 53-55].  Note, that in 

this development, the pump source is assumed to be applied only at the surface, so substrate 

effects on the pump distribution are nonexistent.  Although Eq. (45) accounts for radial effects in 

TDTR, it does not give the response as a function of time, which is measured in TDTR.  To 

examine the temporal evolution of Eq. (45), the response of the material systems to the laser and 

modulation repetition rates must be considered.  This is described in detail through lock-in 

response functions. 

 

Due to the relatively small change in voltage due to the probe thermoreflectance response as 

compared to the DC voltage from the reflected probe, a lock-in amplifier is used in TDTR data 

collection to monitor the temporal decay in the thermoreflectance response occurring at the 

modulation frequency of the heating event.  The output of the lock-in amplifier serves to relate 

frequency domain models to the time domain.  The lock-in output will be the magnitude, R, and 
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phase, , of the probe signal at the heating event modulation frequency.  Mathematically, the 

lock-in output takes the form of [38] 

       tiZtiR 000 expexp   , (46) 

where 0  is the modulation frequency of the pump pulses and  0Z  is the transfer function of 

the lock-in.  In the frequency domain, the transfer function can be represented as [49] 
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where   is calculated with Eq. (45), s  is the modulation frequency of the laser system (not the 

modulation frequency of the heating event; so for a Ti:Al2O3 oscillator,  2s  is approximately 

80 MHz),   is the delay time between the pump and probe pulses,   is a constant that is related 

to the gain of the electronics, the power of the pump and probe pulses, and the thermoreflectance 

coefficient of the material.  The thermoreflectance coefficient, which relates the change in 

temperature from the model to the change in reflectance measured in the experiment, is a 

material property that is related to the band structure, electronic transitions, and dielectric 

function [56].  In the low perturbation regime (i.e., small temperature rise of the film compared 

to ambient) in which this work is focused, the change in reflectance is linearly related to the 

change in temperature and the thermoreflectance coefficient is a constant.  From Eq. (47), the 

lock-in outputs are given by  

      00 Im ,Re  ZYZX  , (48) 

where X and Y are the real and imaginary components of the measured frequency response, and 
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By nature of Eq. (47), pulse-to-pulse heating and thermal accumulation due to pump modulation 

is taken into account with a frequency domain model (note that, in this work, when calculating 

temporal response with the frequency domain models, it is implied that the frequency domain 

models are used in conjunction with Eq. (47) to determine the time domain response).  Although 

a similar model can be derived for pulse accumulation in the time-domain [38], it has not been 

used in previous works, most likely due to the numerical cost which negates the benefit of using 

the simplified model in the time domain.  Even with exact analytical forms of the conduction 

thermal diffusion equation obtained by Laplace transforms [57], accounting for pulse 

accumulation can be computationally expensive compared to that in the frequency domain since, 

in the time domain, the solution must take into account the multiple pulses in the pump 

modulation envelope occurring every 12.5 ns while providing picosecond resolution in the 

analysis. 

 

The thermal model and lock-in transfer function discussed above are applied to data determining 

hK and  from pump-probe measurements using the TDTR experimental setup at Sandia National 

Labs.  The experimental setup, shown in Figure 31, is nearly identical to similar setups that 

exploit coaxial pump-probe geometries discussed in previous works [38, 58, 59].  The laser 

pulses in this specific experimental setup emanate from a Spectra Physics Mai Tai oscillator 

outputting 350 mW of power at a repetition rate of 80 MHz and pulse widths of 90 fs at a 

wavelength of 785 nm.  The setup shown in Figure 31 differs from previous collinear setups by 

two slight modifications.  First, the pulses are first passed through a pair of collimating lenses to 
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minimize probe divergence at the sample surface due to the variable delay stage; upon 

characterization with a sweeping knife edge [60], the probe (and pump) radius at minimum 

pump-probe delay is ~ 15 m and exhibits less than 1 m divergence at maximum delay.  Then, 

the pulse train passes through an adjustable half-waveplate before being split into the pump and 

probe paths by a polarizing beam splitter cube (PBS); this fixes the pump and probe path as 

orthogonally polarized and the waveplate therefore allows for easy adjustment of the pump and 

probe powers; the relative pump and probe powers are adjusted to achieve a maximum 

thermoreflectance signal.  We vary the temperature of the sample of interest by mounting the 

sample in a cryostat with optical access that can operate from 77 – 500 K. 

 

 
Figure 31.  Schematic of TDTR experiment built at Sandia as part of this LDRD. 

 

The data must be post processed to remove any electronic noise that would lead to unwanted 

signals.  These signals would appear as a change in the imaginary component of the signal, Y, as 

 crosses zero, since Y should not change as the pump-probe delay time goes from negative to 

positive.  Schmidt et al. [38] determined the change in the real and imaginary components of the 

signals and calculated a phase noise to subtract from the data.  Cahill [49] corrected for this by 

multiplying the signal by a small phase factor.  Here, we employ the following correction: the 

change in the lock-in signals as the delay time crosses  = 0, X and Y, are computed from the 

collected data.  The measured signals are corrected by rotating the signal in the complex plane, 

so that the corrected values for X and Y are given by [61] 
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and 
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A similar method of data correction was employed by Costescu et al. [52] to correct the data for 

radial diffusion in the substrate.  In practice, the phase of the lock-in is adjusted before each 

measurements so that Y is constant as the stage moves across  = 0 [49] so that Eqs. (50) and (51) 



52 

can be used simply as a check to ensure that the phase adjustment has removed the majority of 

the instrument noise.  This also allows for the instrument noise to be quantified in terms of the 

lock-in phase so that this adjustment can be used in future measurements and analysis [62]. 

 

To evaluate the various thermophysical properties of interest, we must determine an appropriate 

range in which to fit the various models to the experimental data.  For example, a given material 

system may be extremely sensitive to changes in hK over a certain range but not .  This aspect 

of the models is used to determine ranges in which to fit the various models to the data.  

Costescu et al. [52] defined a sensitivity factor as 
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where p is some thermophysical property of interest.  To determine the sensitivity of hK or  over 

the pump probe delay time in the TDTR data, we perturb the value of hK or  by 1% in 

calculations of Eq. (52) so effectively our sensitivity becomes 
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where the derivative of the ratio is estimated by subtracting the model calculations from the 

perturbed model calculations.  Figure 32 shows the sensitivities of the thermal transport from 

TDTR as a function of pump probe delay time for a 100 nm Al film on Si and SiO2 substrates at 

room temperature assuming a 15 m pump and probe spot size.  In the sensitivity calculations, 

the thermal boundary conductance is taken as 200 MW m
-2

 K
-1

 for Al/Si and 50 MW m
-2

 K
-1

 for 

Al on SiO2 [47, 63].  We use literature values for the thermal properties of the Al, Si, and SiO2 

[64].  There are two aspects of the sensitivity curve that are important when fitting the model to 

the TDTR data, the magnitude and the curvature.  An optimal sensitivity curve will exhibit a 

large magnitude and variance over the pump-probe delay time.  For example, the sensitivity to 

the thermal conductivity of the Si substrate is ideal since it is relatively large and very dynamic 

compared to that of SiO2.  The sensitivity to hK across the Al/Si interface is also appealing but 

loses sensitivity around 500 – 1,000 ps.  Note that the sensitivity of the model in the Al/SiO2 

system is primarily due to the thermal conductivity of the substrate.  For low thermal 

conductivity structures, this is powerful if only the thermal conductivity needs to be determined 

and not hK since it reduces the number of free parameters in the fit.  We do not include the 

sensitivity to the Al film thermal conductivity since the TDTR measurements are nearly 

insensitive to this parameter over the majority of the pump-probe time delay.  Assuming a 

diffusivity of Al as D = 97.1x10
-6

 m
2
 s

-1
, the time it takes for the heat to diffuse through the film 

is given by Dd 2  where d is the film thickness [64].  For a 100 nm Al film, the thermal energy 

has fully diffused through the film thickness after only 100 ps. 
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Figure 32.  TDTR data from a 117 nm Al film evaporated on a Si substrate along with the best fit 

from the thermal model.  The thermophysical properties determined from the model best fits are 

hK = 210 MW m
-2

 K
-1

 for the Al/Si interface and  = 141 W m
-1

 K
-1

 for the Si substrate. 

 

TDTR data on a 117 nm Al film evaporated onto a single crystalline, lightly doped Si substrate 

are shown in Figure 33 along with the best fit from the thermal model.  The thermal conductivity 

of the 117 nm Al film is 200 W m
-1

 K
-1

, as determined from electrical resistivity measurement 

and the Wiedemann-Franz Law.  Although this procedure for determining the Al thermal 

conductivity is really a measure of in-plane conductivity where the model requires cross plane, 

since the Al film is polycrystalline, it is valid to assume that the in-plane and cross plane 

conductivities are equivalent for an approximately 100 nm Al film.  The thickness of the Al film 

was measured with picosecond ultrasonics, another powerful aspect of this TDTR experimental 

setup [65, 66].  The thermal model, which accounts for pulse accumulation and radial spreading, 

is fit to the data by adjusting hK,12 and 2.  The data shown here are the real component of the 

lock-in signal divided by the imaginary component; i.e., -X/Y.  This approach of normalizing the 

signal by the imaginary component of the voltage cancels out detection noise and makes the 

signal insensitive to various experimental parameters that can be difficult to account for during 

data analysis [49].  This approach is the same as using the phase of the signal [38, 48].  Note that 

analyzing the ratio (i.e., -X/Y) also removes the requirement of scaling the model to the data, 

thereby giving more sensitivity in the fit to various thermophysical parameters. 

 

 
Figure 33.  Thermal sensitivities in TDTR to hK and  of the substrate in 100 nm Al/Si and 

Al/SiO2 systems. 
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4.2.2. In-Plane TDTR 
 

Using the measurement approach and apparatus discussed above, TDTR measurements can 

easily be extended to interrogate suspended structures along with anisotropy in thermal 

conductivity.  Using the thermal model outlined above, the TDTR signal can be interpreted on a 

suspended structure by simply prescribing the layer adjacent to the back end of the suspended 

structure as highly insulative.  For example, for a structure that has a 100 nm Al transducer on a 

500 nm Si membrane that is suspended, the thermal model would treat the ―layer‖ underneath the 

Si (i.e., the air) as a highly insulative, semi-infinite material (this can be accomplished by 

arbitrarily setting the thermal conductivity and thermal boundary conductance for that layer to 

extremely low values).  This is valid as long as convective and radiative losses are negligible 

from the rear face, which is valid for TDTR experiments due to the spot size and time domain of 

the measurement [67].  In-plane and cross-plane thermal conductivity measurements can be 

isolated by varying the pump and probe radii along with the modulation frequency.  This aspect 

of TDTR is discussed in detail elsewhere [38, 63].  In brief, at high pump modulation 

frequencies and large spot sizes, the thermal transport in TDTR experiments is nearly entirely 

one-dimensional and cross-plane.  Decreasing the spot size and modulation frequency leads to a 

larger in-plane thermal transport component during the measurements.  Therefore, by taking two 

measurements on a sample (one with large spot sizes are high frequencies and one with small 

spot sizes at low frequencies), both in-plane and cross-plane thermal conductivities can be 

determined.  Care must be taken during the in-plane measurements (small spot size and low 

frequency), however, since large uncertainties can be introduced into the determined  due to 

uncertainties in the spot size and low frequency modulation can introduce relatively noisy signals 

due to 1/f (―pink‖) noise.  In these cases, the spot sizes should be characterized as accurately as 

possible, along with minimizing any ellipticity in the spots and rigorous error analysis to insure 

accurate determination of the in-plane thermal conductivity. 
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5.  RESULTS 
 

This section summarizes the experimental results that were obtained and steps in the course of 

this program leading up to the validation of the doubling in the ZT value over that of bulk in a 

silicon phononic crystal membrane.  

 

5.1. Experimental Measurements 
 

5.1.1. Measurement of Thermal and Electrical Conductivity Reduction in PnCs 
 

To investigate the impact of PnCs on the silicon thermal conductivity, various lattice constants 

and hole diameters in square lattices were prepared, as summarized in Table 2.  The smallest 

design feature size was 200 nm, which was limited by the capability of the ASML lithography 

stepper in Sandia’s Microelectronics Development Laboratory (MDL).  The actual hole sizes had 

some discrepancy compared to the designed size. In general, holes with designed diameters 

smaller than 300 nm turned out to be smaller than the design, and ones with larger than 300 nm 

became larger than the actual design.  Device ID-1 is the control device which does not have any 

holes in the silicon membrane.  The limiting dimensions were determined as the minimum 

distance between two holes. 

 
Table 2.  Summary of designed hole pitches and diameters. 

Device ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A, lattice 

constant (nm) 
N/A 500 500 600 600 600 700 700 700 700 700 800 800 800 800 800 900 

D, design 

diameter (nm) 
N/A 250 300 250 300 350 250 300 350 400 450 300 350 400 450 500 500 

Dm, measured 

diameter (nm) 
N/A 213.6 303.3 204.9 295.9 365.6 209 294.5 360.5 424.5 486.5 290.9 357.6 419.6 479.8 535 532.6 

Lm, limiting 

dimensions(nm) 
N/A 286.4 196.7 395.1 304.1 234.4 491 405.5 339.5 275.5 213.5 509.1 442.4 380.4 320.2 265 367.4 

 
Because the exact sizes of phononic crystal holes are very critical for this study, we optically 

measured the actual fabricated hole sizes for all designed diameters.  First, SEM images of 

16~20 holes were captured from 10 different locations in the fabricated devices, and using the 

MATLAB image processing toolbox, the areas of holes were estimated by pixel counting and 

their corresponding diameters were calculated.  Figure 34 explains the detailed image processing 

procedure, and the measured diameters using this method are summarized in Table 2.  As seen in 

the table, the actual fabricated hole sizes had some discrepancies compared to the designed 

dimensions.  In general, it was observed that holes with designed diameters smaller than 300 nm 

became smaller than the designed dimension, while holes designed for diameters larger than 300 

nm turned out to be larger than the actual design.  For all of the data analysis conducted in this 

study, the actual measured hole sizes were used instead of the designed hole sizes. 
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Figure 34.  The steps of image processing for the hole size measurement.  a) SEM images 

containing 16~20 holes were taken.  b) Complementary images were made.  c) By setting the 

gray threshold, the hole boundaries are determined and the number of white pixels were counted 

to calculated hole areas and diameters. 

 

All the measured data are summarized in Figure 35 and Table 3.  As can be seen in Figure 35, all 

the samples containing holes (phononic crystals) showed significant reduction in thermal 

conductivity compared to the control device (Device ID-1), which had no holes. 

 
Table 3.  Summary of the measured thermal conductivity values (300 K). 

Device ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A, lattice 

constant (nm) 
N/A 500 500 600 600 600 700 700 700 700 700 800 800 800 800 800 900 

Dm, measured 

diameter (nm) 
N/A 213.6 303.3 204.9 295.9 365.6 209 294.5 360.5 424.5 486.5 290.9 357.6 419.6 479.8 535 532.6 

Lm, limiting 

dim. (nm) 
N/A 286.4 196.7 395.1 304.1 234.4 491 405.5 339.5 275.5 213.5 509.1 442.4 380.4 320.2 265 367.4 

mean km 

(W/mK) 
104.0 63.3 42.4 73.7 56.3 42.8 79.4 65.7 54.1 43.3 32.6 72.2 63.4 53.5 44.4 35.8 45.1 

st. dev km 

(W/mK) 
1.4 1.3 1.6 1.5 1.3 1.4 1.0 1.4 1.2 1.4 1.3 1.1 1.1 1.1 1.2 1.2 1.0 

 

 
Figure 35.  Measured thermal conductivity values. The control device (Device ID-1), which has 

no holes, measured km = 104 W m
-1

 K
-1

; this is consistent with literature values for 500 nm-thick 

single crystal silicon. 
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To better understand the thermal effects of the PnC, the first step is to evaluate how much of a 

contribution to the reduction in thermal conductivity came from simple volume reduction when 

introducing the air holes.  The Maxwell-Eucken model [26, 68] is one of the most widely used 

methods to estimate the reduction in conductivity due to the volume removal effect.  The Eucken 

factor is given as 

        
   

      
                                                            (54) 

where ϕ is the porosity of the material.  This empirical model is based on randomly distributed 

spherical pores, but is known to agree well with many general cases.  We have also conducted 

ANSYS FEM analysis for the case of cylindrical holes arranged in a square lattice as shown in 

Figure 36a.  This ANSYS simulation captures only classical volume reduction effect, not any 

phononic effects.  As shown in the comparison plot in Figure 36b, the Maxwell-Eucken model 

approximates the trend of the volume reduction effect.  However, compared to the ANSYS FEM 

results, the Maxwell-Euken precision is limited.  In this study we have used FFEM (volume 

reduction effect factor from ANSYS FEM), instead of FEucken, which is shown as the red curve in 

Figure 36b. 

 

 
Figure 36.  a) ANSYS FEM simulation for the effective conductivity reduction by introducing 

periodic holes.  b) Volume reduction effect factors comparison between ANSYS FEM 

simulation model and Maxwell-Eucken model. 

 

Table 4 and Figure 37 compare the relative thermal and electrical conductivity compared to the 

control sample for each device design as well as their corresponding, FFEM.  As can be seen, for 

all samples, the ratio of the thermal conductivities, km/km,control, (relative thermal conductivity 

with respect to the control device), were much lower than that predicted from ANSYS FEM 

simulation.  In contrast, the ratio of the electrical conductivities, σm/σm,control (relative electrical 

conductivity with respect to the control device), measured from n-type doped samples with the 

same hole pitches and diameters, match very well with FFEM, the ANSYS FEM predictions due 

to the volume reduction effect.  These results suggest that inclusion of sub-micron periodic holes 

reduced the thermal conductivity much more than the contribution from the volume reduction 

effect, whereas the electrical conductivities are reduced simply by the amount of volume 

reduction. 
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Table 4.  Comparison between km/km,control (relative thermal conductivity with respect to 
the control device), σm/σm,control (relative electrical conductivity with respect to the control 

device), and FFEM (modeled volume reduction effect from ANSYS FEM).  

Device ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A (nm) N/A 500 500 600 600 600 700 700 700 700 700 800 800 800 800 800 900 

Dm, (nm) N/A 213.6 303.3 204.9 295.9 365.6 209 294.5 360.5 424.5 486.5 290.9 357.6 419.6 479.8 535 532.6 

km/ km,control 1 0.608 0.408 0.708 0.541 0.412 0.763 0.632 0.520 0.416 0.313 0.694 0.609 0.514 0.427 0.344 0.434 

σm/ σm,control 1 0.744 0.532 0.823 0.668 0.535 0.864 0.747 0.647 0.543 0.434 0.802 0.726 0.641 0.556 0.473 0.568 

FFEM 1 0.750 0.551 0.834 0.679 0.547 0.871 0.757 0.655 0.551 0.447 0.813 0.729 0.645 0.558 0.478 0.568 

 

 
Figure 37.  Comparison between km/km,control (relative thermal conductivity with respect to the 

control device), σm/ σm,control (relative electrical conductivity with respect to the control device), 

and FFEM (reduction effect factor from ANSYS FEM).  The measured σm/ σm,control match very 

well with FFEM for all Device IDs; some data points are difficult to distinguish because they 

exactly overlap with each other.  However, the km/km,control ratios are much smaller than FFEM for 

all cases, inferring a reduction in the thermal conductivity that is beyond the contribution from 

the volume reduction effect. 

 

To evaluate phononic impact on thermal conductivity, all measured relative thermal conductivity 

values are normalized by FFEM, i.e., 

   
             

    
                                                            (55) 

This kn indicates how much the thermal conductivity is reduced beyond the contribution from the 

volume reduction effect.  For example, Device ID-11 had a measured kn = 0.696 in Table 5, 

which means thermal conductivity was reduced by an additional 30.4%, even after taking the 

volume reduction effect into account. 
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Table 5.  Summary of kn, relative thermal conductivity values (km/km,control) normalized by 
ANSYS FEM volume reduction effect factors (FFEM). 

Device ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A, lattice 

constant (nm) 
N/A 500 500 600 600 600 700 700 700 700 700 800 800 800 800 800 900 

Dm, measured 

diameter (nm) 
N/A 213.6 303.3 204.9 295.9 365.6 209 294.5 360.5 424.5 486.5 290.9 357.6 419.6 479.8 535 532.6 

Lm, limiting 

dim. (nm) 
N/A 286.4 196.7 395.1 304.1 234.4 491 405.5 339.5 275.5 213.5 509.1 442.4 380.4 320.2 265 367.4 

mean kn  1 0.805 0.736 0.844 0.790 0.747 0.871 0.829 0.787 0.750 0.696 0.847 0.830 0.792 0.759 0.714 0.759 

st. dev. kn 0 0.006 0.017 0.008 0.007 0.013 0.008 0.009 0.007 0.013 0.017 0.007 0.003 0.005 0.009 0.013 0.007 

 

Figure 38 compares the normalized thermal conductivity, kn, versus limiting dimension 

(minimum spacing between holes) with the same lattice constant.  For all measured devices, kn 

consistently decreases as the limiting dimension decreases, implying that incoherent scattering 

plays a significant role in the thermal conductivity reduction. 

 

 
Figure 38.  Comparison of kn versus limiting dimension with the same lattice constant.  As the 

limiting dimension decreases, the kn decreases, which indicates that incoherent scattering plays a 

significant role to reduce thermal conductivity of phononic crystals.  Numbers adjacent the data 

points are the Device IDs.  Each data point is averaged from 6 measured devices. 

 

Figure 39 compares kn versus lattice constant at the same limiting dimension; kn decreases as the 

lattice constant increases even with the same limiting dimension.  These differences in kn 

indicate that incoherent scattering is not the only mechanism contributing to the reduction in 

thermal conductivity beyond the volume reduction effect.  A schematic in Figure 40 describes a 

hypothetical explanation for this phenomenon.  At a given limiting dimension, as the lattice 

constant increases the two Bragg resonant frequencies, fΓ-X and fΓ-M, of the phononic crystals 

approach each other.  Therefore, it is possible that at a certain lattice constant a phononic 
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bandgap opens, and as the lattice constant increases the bandgap widens, enhancing coherent 

scattering and resulting in a further reduction in thermal conductivity.  It is well known that 

vacuum/solid phononic crystals only open a bandgap at very large filling fractions and that the 

bandgap widens as the filling fraction increases [22]. 

 

 
Figure 39.  Comparison of kn versus lattice constant with the same limiting dimension.  Even 

with the same limiting dimensions, kn decreases, as the lattice constant increases, which infers 

that incoherent scattering is not the only mechanism for the thermal conductivity reduction.  

Numbers adjacent the data points are the Device IDs.  Each data point is averaged from 6 

measured devices. 

 

 
Figure 40.  Hypothetical schematic explaining coherent scattering enhancement at a given 

limiting dimension.  As the lattice constant increases, the two Bragg resonant frequencies 

approach each other, opening a phononic bandgap at some point which widens as the lattice 

constant increases. 
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 In summary, in single crystal silicon phononic crystals the thermal conductivity, unlike 

electrical conductivity, is reduced much more than what is predicted by the simple volume 

reduction effect.  The primary contribution to this further reduction in thermal conductivity 

beyond the volume reduction effect is incoherent scattering at small limiting dimensions between 

the holes, but is supplemented by coherent scattering from the periodically placed sub-micron-

sized holes. 

 

5.1.2. Dependence of Thermal Conductivity on Lattice Type and Topology 
 

Each suspended island test platform (see Section 4.1.2) was calibrated prior to transferring a PnC 

to ensure the platform itself behaved linearly as expected and to determine α separately for the 

heater and sensor.  During the calibration process, the temperature of the die containing the test 

platform was ramped up from 20 to 60° C in increments of 5° C and then back down in similar 

increments.  At each temperature the resistances of the heater and sensing islands were sampled 

five times.  Figure 41 shows the calibration data from one of the test platforms.  Both the heater 

and sensor show linear trends across a 40° C temperature range. 

 

 
Figure 41.  Calibration data from a test platform.  Black refers to the heater island and blue refers 

to the sensor island.   Both the heater and sensor showed linear trends across a 40° C temperature 

range. 

 

After calibrating the platforms and transferring the PnCs, the test platform was placed under 

vacuum (< 1 mTorr) and the heat input vs. resistance relationship was determined.  Testing the 

system in vacuum conditions ensured minimal heat was lost due to convection.  Input power to 

the heater was ramped up and down from 1 µW up to 10 µW twice.  At each input power, the 

resistances of the heater and sensing islands were sampled five times for a total of 20 

measurements at each input power level.  Figure 42 shows the plot of input power versus heater 

resistance for the hexagonal PnC. 
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Figure 42.  Plot of input power vs. heater resistance for the hexagonal PnC. 

 

Table 6 lists the preliminary measured thermal conductivity values for the hexagonal (―Hex‖) 

and simple cubic (―Sqr‖) PnCs.  The last column takes porosity into account for a Si film with 

the same thickness.  For a 250 nm thick Si film, the thermal conductivity goes from a bulk value 

of 148 W/m-K down to 80 W/m-K [69].  If the porosity of the PnC is accounted for, then the 

thermal conductivity drops to approximately 70 W/m-K [68].  Based on the large difference 

between the porous thermal conductivity value and the measured thermal conductivity of the 

PnC, it is clear that simply removing material does not account for the ability of the PnC to 

reduce the thermal conductivity of silicon.  This is evidence that the PnC itself creates coherent 

scattering that reduces the thermal conductivity of Si.  If it were based solely on incoherent 

scattering, one would expect the porous and PnC thermal conductivity values to be roughly 

equal. 

 
Table 6.  Results of thermal conductivity for hexagonal and simple cubic PnC 

Lattice 

Type 

Thickness 

(nm) 

Lattice Spacing 

(nm) 

Via Diameter 

(nm) 

Porosity κPnC 

(W/m-K) 

κporous 

(W/m-K) 

Hex 250 250 82 0.058 5.7 73.2 

Sqr 250 250 83 0.084 5.9 70.3 

 
5.1.3. Full ZT Characterization of PnC Samples 
 

Test structures for ZT characterization were designed similarly to the thermal conductivity test 

structures.  As shown in Figure 43, in a symmetric bridge structure, serpentine 

heater/temperature sensor is again installed at the center, however half of the bridge was n-type 

doped (Ph) and the other was p-type doped (B).  Also, at the bridge ends, electrical contacts we 

were provided.  When heat is supplied at the bridge center, the temperature gradient induces 
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electricity due to the thermoelectric effect.  Therefore, by measuring the voltage potential and 

current at the bridge ends, device thermoelectric characteristics can be measured. 

 
Figure 43.  A schematic of the ZT measurement test structure design. A phononic crystal bridge is 

suspended from the substrate. One half of the bridge is doped n-type while the other half is doped p-type. 

Electrical contacts are provided at the bridge ends to measure the amount of thermoelectrically induced 

current and voltage when heat is supplied at the bridge center. 

 

The fabrication process of ZT measurement device is similar to that of thermal conductivity test 

structures, except for some extra steps required for doping and electrical contact.  Figure 44 

shows the schematics of the ZT measurement device fabrication process.  Starting from SOI 

wafers, the wafers are first locally doped n-type and p-type using phosphorous and boron 

implantation, respectively (Figure 44a and Figure 44b).  The target doping concentration is 

10
20

/cm
3
 for both dopants.  Next, an undoped amorphous silicon insulation layer is deposited, 

followed by high temperature annealing.  Electrical vias to the doped region are patterned 

penetrating the insulation layer (Figure 44c).  Aluminum traces, bondpads, and 

heaters/temperature sensors are defined (Figure 44d), followed by the PnC and release trench 

etching (Figure 44e).  Finally, the test structure is release using a HF vapor etch (Figure 44f). 
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Figure 44.  Schematics of the fabrication process for the ZT measurement structures. 

 

The recent ZT measurement test structure fabrication run had an issue with the high temperature 

annealing equipment leaving the stress in the a-Si insulation layer unrelieved; as a result, after 

the HF release all the bridge structures were snapped down to the substrate.  Currently, another 

fabrication run is ongoing resolving this issue.  At the time of this report, we have measured only 

the electrical conductivities of the devices that have not been HF released.  The ZT measurement 

test structures are still under fabrication, and once the fabrication is completed the ZT 

characteristics of the phononic crystal structures will be measured.  However, since the Seebeck 

coefficient of the air holes is essentially zero, it is anticipated that the PnC patterning using only 
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air holes will result in an overall Seebeck coefficient equivalent to that of the doped silicon 

matrix.  Assuming that this indeed is the case, our results indicate an increase in ZT by a factor of 

up to 1.5 over that of an unpatterned slab and by up to a factor of 2 over that of bulk silicon.  

Figure 45 below shows a summary of the anticipated ZT values for some of our PnC samples. 

 

 

 
Figure 45.  Sumary of predicted ZT enhancement for the fabricated PnC devices. 
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6.  CONCLUSIONS AND FUTURE OUTLOOK 
 

This work represents a revolutionary advance in the engineering of thermoelectric materials for 

optimal, high-ZT performance.  We have demonstrated the significant reduction of the thermal 

conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication 

techniques and in a planar platform that is amenable to integration with typical microelectronic 

systems.  The measured reduction in thermal conductivity as compared to bulk silicon was about 

a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction.  Since 

the electrical conductivity was only reduced by a corresponding factor of about 3 due to the 

removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain 

constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by 

a factor of 2.  Given the number of papers in literature devoted to only a small, incremental 

change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal 

conductivity is groundbreaking. 

 

The results in this work were obtained using silicon, a material that has benefitted from 

enormous interest in the microelectronics industry and that has a fairly large thermoelectric 

power factor.  In addition, the techniques and scientific understanding developed in the research 

can be applied to a wide range of materials, with the caveat that the thermal conductivity of such 

a material be dominated by phonon, rather than electron, transport.  In particular, this includes 

several thermoelectric materials with attractive properties at elevated temperatures (i.e., greater 

than room temperature), such as silicon germanium and silicon carbide.  It is reasonable that 

phononic crystal patterning could be used for high-temperature thermoelectric devices using 

such materials, with applications in energy scavenging via waste-heat recovery and 

thermoelectric cooling for high-performance microelectronic circuits. 

 

The only part of the ZT picture missing in this work was the experimental measurement of the 

Seebeck coefficient of our phononic crystal devices.  While a first-order approximation indicates 

that the Seebeck coefficient should not change significantly from that of bulk silicon, we were 

not able to actually verify this assumption within the timeframe of the project.  Additionally, 

with regards to future high-temperature applications of this technology, we plan to measure the 

thermal conductivity reduction factor of our phononic crystals as elevated temperatures to 

confirm that it does not diminish, given that the nominal thermal conductivity of most 

semiconductors, including silicon, decreases with temperature above room temperature.  We 

hope to have the opportunity to address these concerns and further advance the state-of-the-art of 

thermoelectric materials in future projects.  
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