
LA-UR- /V-{)joly
Approved for public release;
distribution is unlimited.

-QAlamos
NATIONAL LABORATORY
---EST.1943 ---

Title: Approaching the Exa-scale: A Real-World Evalutation of
Rendering Extemely Large Data Sets

Author(s): John Patchett CCS-7 148176
Carson S. Brownlee CCS-7/University of Utah 229465
Christopher J. Mitchell CCS-7/University of Florida 229505
James P Ahrens CCS-7 113788
Chuck Hansen University of Utah
U-T a Lo CCS-7 194699

Intended for: Pacific Visualization Conference March 1-4, 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Approaching the Exa-scale: A Real-World Evalutation of Rendering
Extemely Large Data Sets

Submission 178

ABSTRACT

Extremely large scale analysis is becoming increasingly important
as supercomputers and. their simulations move from petascale to ex­
ascale. The lack of dedicated hardware acceleration for rendering
on today's supercomputing platforms motivates our detailed eval­
uation of the possibility of interactive rendering on the supercom­
puter. In order to facilitate our understanding of rendering on the su­
percomputing platform, we focus on scalability of rendering algo­
rithms and architecture envisioned for exascale datasets. To under­
stand tradeoffs for dealing with extremely large datasets, we com­
pare three different rendering algorithms for large polygonal data:
software based ray tracing, software based rasterization and hard­
ware accelerated rasterization. We present a case study of strong
and weak scaling of rendering extremely large data on both GPU
and CPU based parallel supercomputers using Para View, a parallel
visualization tool. Wc use three different data sets : two synthetic
and one from a scientific application. At an extreme scale, algorith­
mic rendering choices make a difference and should be considered
while approaching exascale computing, visualization, and analy­
sis. We find software based ray-tracing offers a viable approach for
scalable rendering of the projected future massive data sizes.

I NTRO DUCTION

Ever increasing data sizes result in greater challenges for pre­
existing visualization methods. In this paper we explore visualiza­
tion strategies for large-scale data analysis focusing on large-scale
rendering. A prime motivator for our study are our experiences with
a team of researchers using the VPIC code to investigate issues in
magnetic reconnection on various computers including two of the
top three on the top 500: Oak Ridge National Laboratory's Jaguar
and Los Alamos National Laboratory's Roadrunner. This magnetic
reconnect ion team views interactive visualization as integral to their
workflow for each iterative run of their simulation. As an example
one of their runs was on the RoadRunnder supercomputer consum­
ing 4096 processors to compute on a 8096x8096x448 grid. They
currently use striding and subsetting to make the visualization op­
erations more practical for their interactive workflow but would like
to visualize all of the data rather than just sub-samples.

A standard visualization workflow for extremely large data, like
that of the magnetic reconnection researchers, normally involves an
ordered set of activities: application simulation, visualization algo­
rithms, rendering, and display as shown in Figure 1. Each of these
stages produces a resulting output whose size can vary but is gen­
erally related to the size of the input, except for the rendered image
which is fixed based on the requested image size. Each portion
of the rendering and simulation process is often distributed across
hardware which is suited to each stage. The simulation typically
writes data to disk that is proportional to the size of the run. This
data is then read from disk and geometry is generated and saved to
disk. The geometry is then read back from a remote resource or read
and transferred to a different filesystem, which is often at a different

--~ .. = .. -~ iiIIiIiIiiII ~ .. ~
Su rco~~ut%., . . ~ .'~

Graph.", CluSlor DIsplay

Figure 1: A remote visualization workflow with a seperate compute
cluster and rendering cluster.

geographic location. Transferring 10 Terabytes over a 5Mbps con­
nection with 10 simultaneous streams would take almost 19 days to
transfer to a remote resource such as a render cluster. Where high
speed gigabit connections exist to the rendering cluster, transferring
10 Terabytes over a 1Gb connection would still take several hours
to transfer.

As we approach exascale computing, data sizes are increasing
and the typical output size of geometry increases with the size of
the input data. Thus, transfer of data offsite is a less viable option.
As compute clusters grow in size and cost, so must the supporting
visualization clusters to handle the increased data. This process
of saving data, moving data, and then analyzing data prohibits the
scientists' ability to quickly analyze and rerun simulations in cases
of error.

To avoid long data transfer times rendering can be done directly
on the supercomputer. This new workflow is shown in Figure 2.

Figure 2: A remote visualization workflow with rendering done on the
supercomputer.

We believe a user's ability to interact with data is of great im­
portance to insight and that 5-10 frames per second is the mini­
mum speed necessary for a positive interactive experience. This
type of interactivity has traditionally come at the cost of buying
a second GPU-based supercomputer, albeit typically smaller than
the supercomputer that produced the simulation results. We ask
the following question: Can this interactivity be accomplished on
massive data sets using the computing platform? We believe the
question of rendering on the computing platform is important as
we focus on the exascale future and allows for in situ visualization
techniques. This work will benefit the super computing community
providing insight to better understand the algorithmic and architec­
tural choices and their implications of performing visualization and
analysis on increasingly large data sets.

To understand tradeoffs for dealing with extremely large
datasets, we compare three different rendering algorithms for large
polygonal data: software based ray tracing, software based rasteri­
zation and hardware accelerated rasterization. The contribution of
this paper is a case study of strong and weak scaling of rendering
extremely large data on both GPU and CPU based parallel super­
computers using Para View, a real world parallel visualization tool.
We use three different data sets: two synthetic and one from a real
world application.

In the next section, we review related work. We then describe
three commonly used rendering methods in Section 3. Section 4
describes visualization of large scale data with Para View. We then
provide results comparing rendering with the three commonly used
methods including weak and strong scaling studies in Section 5.
Lastly, we conclude and describe future directions in Section 6.

2 RELATED WORK

There have been many strategies developed to visualize large scale
data. Transferring the data to a GPU cluster for rendering is a well
developed practice that displays large datasets at very high framer­
ates by splitting up data for rendering [4J and compositing the re­
sulting images together using algorithms such as the Binary-Swap
method [13]. While there is a lot of time devoted to disc and net­
work UO this is the most robust for visualization as any number of
software packages designed to work on clusters can be used to visu­
alize the data and often at high frame rates. These clusters can also
be used to generate geometry and feed back smaller sets of geome­
try for rendering to a desktop machine [12]. Common visualization
tools that run on GPU clusters include such programs as Paraview
[2, 8] and VisIt [II] which present Client/Server parallel rendering
frameworks built on top of the Visualization Toolkit (VTK).

Massive polygon rendering presents challenges for traditional
rasterization methods. OpenGL relies on hidden surface removal
with a simple Z-buffer test to determine whether to shade a tri­
angle. This not only requires transforming vertex coordinates but
also unnecessarily shading fragments rendered back-to-front along
the camera axis. When dealing with millions of triangles, many of
which are likely obscured behind other triangles, these unnecessary
transforms and shading operations vastly degrade performance re­
sulting in a linear or greater decrease in speed in relation to the num­
ber of triangles. Approaches to address this have included spatial
subdivision schemes which are used for occlusion culling hidden
triangles. The acceleration structure's nodes are traversed front-to
back and rendered. If the current Z-buffer's values m:e less than
the Z value of the next node than the entire node can be skipped.
Implementations of these methods include the hierarchical Z-buffer
[6] and the hierarchical occlusion map [23] which optimize perfor­
mance through hierarchical Z-Pyramids. Prioritized-Iayred projec­
tion also provides an approximate version for instances where exact
results aren't required [911. GPU optimized occlusion queries devel­
oped and allowed for querying if faces of the acceleration structure
are behind the current Z-buffer in hardware [7]. However, since
these methods require front-to-back traversal of the polygons or are
not efficient, they are rarely used.

The most efficient method for looking at large amounts of data
generated on a cluster node would be to use the same node to render
with the same acceleration structures used for the simulation. This
would require no extra I/O except for a rendered image and minimal
rendering time. This method is ideal but requires a great deal of
customization to the simulation software as well as the visualization
software. A compromise is to send the generated data to another
visualization application running on the same cl.uster that utilizes
software rendering. One such example wouM be using Paraview
paired with a software implementation of Mesa. Using currently
available implementations, software rasterization is often very slow.

Ray tracing on clusters for visualizing large scale datasets is

a well developed field with benefits over traditional rasterization
methods. Ray tracing performance has been shown to scale very
linearly from one to hundreds of processors [18], but limited by net­
work latency to around 20 frames per second [21]. Tracing rays also
scales very well with the amount of geometry in the scene [14,22]
due to the logarithmic acceleration structures used. Advanced clus­
ter based ray tracing methods can split up data and rays by image­
space or data-space. The former relies on rays around similar ar­
eas of the image space requesting the same data as their neighbors.
When a node needs a new part of the scene, data is paged in. In
highly efficient implementations, the same page faults used by the
operating system can be remapped to network requests instead of
disc reads [3]. The cost of tracing large datasets can be reduced
greatly by intelligent techniques such as tracing groups of rays in
packets [20] and slice based techniques which can determine ge­
ometry intersection for groups of rays and exploit SIMD vector op­
erations. Additionally cache dependent rendering can provide sig­
nificant speedups for memory intensive ray tracing operations [19].
While ray tracing on the CPU provides for expanded use of large
memory spaces available to the CPU memory, access times have
decreased much slower than processing time [5] and so methods to
reduce memory requirements are still vital to software ray tracing.
The real-time ray tracing software Manta incorporates packets but
is only designed to be run on SMP machines, not clusters [I]. This
design makes it ideal when combined with other cluster based visu­
alization programs such as Paraview which handle data distribution
and image compositing.

3 RENDERING METHODS

For this paper we explore three commonly used rendering meth­
ods: hardware accelerated rasterization, software based rasteriza­
tion, and software based ray tracing. Each method has its advan­
tages and drawbacks. After evaluating each method, software ray
tracing was chosen as the method to use going forward for large­
scale data visual ization.

Hardware accelerated rasterization has proven to be fast for mod­
est data sizes and is widely used and heavily supported. The disad­
vantages are the requirement for additional hardware, small mem­
ory sizes on the GPU, and rendering times that scale linearly with
the amount of geometry in the scene. In order to achieve better scal­
ing, occlusion algorithms might be used and approximative LOD
methods might be utilized. It remains unclear, however, how well
these methods will scale into the billions of triangles much less into
petascale and exascale sized datasets. Therefore, we do not con­
sider them.

Software rasterization through Mesa offers the same support for
programs that would normally use hardware acceleration methods.
The main drawback of this method is speed as Mesa remains single
threaded and delivers very slow performance even for low geometry
counts. A benefit over hardware acclerated rasterization, however,
is that it does not require additional graphics hardware and can uti­
lize large system memory.

Software ray tracing provides a rendering method that scales in
k*O(log(n)) where k is image size and n is the number of polygons.
This scaling performance assumes non-overlapping polygons and a
well balanced acceleration structure. Because of the largely screen
space dependent performance with logarithmic scaling to geometry,
ray tracing provides great performance for large geometry counts;
even those that contain sub-pixel geometry. Using an acceleration
structure to test ray intersections also allows easy and straightfor­
ward occlusion culling where only the nearest geometry needs to be
shaded once for each pixel. Hardware ray tracing also exists, but we
chose to focus only on software ray tracing as our implementation
was intended for compute clusters without hardware acceleration.
We test these methodologies with Para View.

4 YISUALIZATION USING PARAYIEW

ParaYiew is an open-source visualization framework designed for
local and remote visualization of a large variety of datasets. It is
also designed to run on PC hardware up to large cluster arrays using
client/server separation and parallel processing. Server/data sepa­
ration allows ParaYiew to be broken into three main components :
a data server, render server, and client [2) . Much of the actual ren­
dering code is based around the Yisualization Toolkit (VTK) while
much of the client/server model is unique to Para View.

4.1 Data Distribution

Para View's data server abstraction layer allows for operations such
as processing data 01'1 one node and sending the resulting geom­
etry to another node for rendering. This allows for changing the
data processing and rendering pipeline across heterogenous archi­
tectures for balanced workload distribution. When rendering on
multiple nodes, sort-last compositing is required. Sort-last data and
geometry distribution balances data processing and rendering, how­
ever, it requires a composite operation for each node used. This
method of data distribution is good for rasterization and not nec­
essarily optimal for ray tracing where render time is dependent
more on screen distribution than data distribution . When zoomed
out, distributed cluster-based ray-tracing often produces a balanced
workload distribution, however, if a small portion of the data is tak­
ing up the majority of screen space then the majority of work is
being done by one render node. Thus using ParaView's work dis­
tribution methods is not optimal, however, we have found it to be
usable in practice as shown in Section S.

4.2 Com.positing

The sort-last distribution requires a compositing step taking all the
partial results and combining them into a final image using the
depth and alpha values of each pixel. Distributing the compositing
work across a cluster is vital for efficient cluster utilization. For this
we implement Binary-Swapeompositing in ParaView [13). Binary­
Swap is an efficient parallel compositing algorithm that exchanges
portions of images between processes to produce a correct rendered
result.

Figure 3 shows a diagram of the compositing process. Four
nodes shown at the top each have a portion of geometry. The next
step is to split those images in half and composite each half to­
gether. Thus L I and L2 are composited together and R I and R2 are
composited together such that each half of the image now has the
composited result from half of the geometry. At the next step each
node is assigned a quarter of the final image which composites that
quarter of the image together. At each step of the algorithm each
node is doing an equal amount of work thus fully utilizing the clus­
ter of nodes. The final step is then to take each quarter and tile them
together into the final composited image.

Binary-Swap is not the default compositing scheme in ParaView
which is IceT [16). IceT breaks up compositing to only compos­
ite portions of the image that are actually rendered instead of the
entire screenspace. This can potentially save a lot of network traf­
fic by not compositing unused space if each node is only render­
ing a small portion of the final image. The IceT library was not
used because its performance is very viewpoint and data dependent,
whereas Binary-Swap essentially represents the worst-case perfor­
mance of IceT consistently.

4.3 ParaYiew Manta Plugin

The Manta rendering architecture is displayed in Figure 4. Im­
age pixels are generated by a pixel sampler which then generates
rendering tiles by an image traverser which are distributed among
threads by a load balancer. These tiles are then broken up into pack­
ets which are then traced by each thread through the scene in the

11 R1 l2 R2 R1 R1 R1

~"
T2 g" :i 81 82 83

lliU ll+l4 R3+R4

[JJ lower left lower RighI
81+l13 82+84

Tt+T3 T2+T4 ~ ~ Upperl.eft Upper RighI

Final Compo<i ••

Figure 3: The stages of Binary-Swap Compositing.

Sune Inters.ection I Malenal Shading

~I Carnera Renderer
SampleCooRk LO' ==~--------~

~ Pixel Sampler

Lood Bolonc., Image Traverser

. - I • r Frame Buffer 1

~~~.~.:~:~:~~~~:~~~~ .. l ......... .t. ........ . 
Frame; i Rendering Stage i.: Image Display ! 
Frame ;+7 , ................ _ .......... . .. . .. :. t:·~·~;~~~~ .. ~~~~~:::! 

Figure 4: Manta architecture. 

rendering stage. At the end of a rendering step the threads are syn­
cronized and state is updated. This is where state can safely be ac­
cessed and modified outside of Manta through a series of callbacks 
called transactions. The image is displayed while the next rendering 
stage is running. This results in a one frame delay between render­
ing and display. Since Para View is set to render only on an update 
this means that in the default system Manta would need to finish 
rendering its current scene, get the updated scene from Para View, 
display the last rendered image, render the modified scene, synchro­
nize with no updates, render the same scene again while displaying 
the image, and then by the next synchronization the image would 
finally be available through a transaction. 

The rendering architecture of Manta was modified slightly to 
have the image display before the rendering stage as a seperate syn­
chronization step which is only released upon a render event in Par­
a View. This eliminates uneccessary rendering before a render event 
and the final unecessary rendering step to get the image display. The 
Manta context is created in Para View through a custom render win­
dow and implemented through a plugin. The plugin must be loaded 
on both the client and server and any rendering contexts closed. A 
Manta render instance can then be selected. Certain VTK calls are 
then redirected to Manta implementations through a custom Manta 
object factory such as a custom actor class that keeps track of Manta 
related state for each object and a custom Poly Data Mapper which 
sends data to Manta and creates acceleration structures specifically 



for ray tracing. Unfortunately because of the differences in how 
meshes are represented between Manta and Para View there is cur­
rently a lot of memory overhead due to geometry duplication. A 
rendering call triggers Manta to release its rendering lock and ren­
der a frame. The frame is then copied back to Para View. Due to the 
differences in how an image is stored this requires an image conver­
sion step. ParaView then displays the rendered image or sends the 
image out for compositing if it is being rendered remotely through 
a cluster. The compositing step required the introduction of a Z­
buffer into the ray ,tracer which simply deposits the resulting depth 
value into the buffer after rendering instead of using the buffer in 
the rendering process itself. 

Precomputation must also be done with each change in geom­
etry. With each new Manta actor introduced into the scene accel­
eration structures are generated. for very large scenes consisting 
of millions of triangles this can take several seconds of precompu­
tation time. The amount of time also depends on the acceleration 
structure used. Grid based acceleration structures can be faster to 
update, however, we chose to use a Bounding Volume Heirarchie, 
BVH, as it gave the best performance for most types of goemetry. 

Additional GUI elements were also added to Para View to allow 
for ray tracing specific scene and material properties. These addi­
tional options include such materials as glass and ambient occlusion 
as well as muItisampling and threading options. The result is shown 
in Figure 5. 

Figure 5: Manta running in Paraview on a single multi-core node 
using shadows and reflections rendering the impact of an aluminum 
bali on an aluminum plate. 

5 RESULTS 

We evaluated the rendering performance of various methods on 
two supercomputing platforms, Lobo, a Los Alamos Linux com­
pute cluster and Longhorn, a latest generation GPU-based visual­
ization cluster at the Texas Advanced Computing Center (fACC). 
We also used a single next-generation multi-core node to test ren­
dering performance. We used three datasets of varying sizes includ­
ing randomly generated triangles, a synthetic wavelet datasel, and 
a dataset from Los Alamos's plasma simulation code, VPIC. Three 
different rendering packages were tested: Manta, an open·source 
ray tracer, Mesa, a software OpenGL ray tracer, and hardware­
acclerated OpenGL, all running within the ParaView application. 

Supercomputing Platforms 
• Lobo is a 272 node 4X DDR InfiniBand connected cluster 

of AMD based nodes. It has 32 GB of RAM and 4 AMD 
opteron model 8354 quad core processors, for a total of 16 
cores, per node at 2.2 GHz. Each core has a 64KB Ll cache, 
and a 5]2KB L2 cache, while each quad core shares a 2MB 

L3 cache. Lobo is a TriLab Linux Capacity Cluster (fLCC) 
system, similar systems are available to users at Los Alamos, 
Livermore, and Sandia National Laboratories. 

• Longhorn is an NSF XD visualization and data analysis clus­
ter located! at the Texas Advanced Computing Center (TACC). 
Longhorn has 256 4X QDR InfiniBand connected nodes, each 
with 2 Intel Nehalem quad core CPUs (model E5540) at 2.53 
GHz and 48 GB of RAM. Each node of Longhorn also has 2 
NVidia FX 5800 GPUs. 

• Kratos Kratos is an HP Proliant DL785 G5 with 8-quadcore 
AMD Operton 8380 processors at 2.5 GHz with 128GB 
RAM. 

Datasets 
• Random Triangles We created a random triangle strip test 

dataset. An image showing a rendering of 8 million of these 
triangles is shown in Figure 6(a). 

• VPIC Visualization-Generated Triangles Using an early 
timestep from the VPIC plasma simulation, we calculated col­
lections of isosurfaces that produced 1,2,4, 8, and 16 million 
triangles for use in our evaluation. At the start of this simu­
lation, these isosurfaces form two parallel nearly planar sur­
faces. A view of this data set can be seen in Figure 6(b). 

• Wavelet Triangles The wavelet triangle dataset is a computed 
synthetic dataset source released with Para View. We gener­
ated a 201 3 dataset and then calculated as many isosurfaces 
as needed to produce a requested quantity of triangles. The 
isosurfaces are nested within each other. This dataset high­
lights performance optimizations in the renderers that result 
from occlusion culling. Images produced with 8 million tri­
angles from each of these datasets are shown in Figure 6(c). 

5.1 Single Node Rendering Per10rmance 
Figures 7, 8, and 9 show a comparison of single node petformance 
of the three rendering methods we evaluated: GPU accelerated ras­
terization on Longhorn, CPU ray tracing on Lobo with Manta, and 
CPU rasterization on Lobo with Mesa. Figure 7 shows the perfor­
mance of random triangles. The x-axis shows millions of triangles 
in the rendered scene, and the y-axis shows the average framerate 
in frames per second as the camera rotates around the scene in 3 
degree increments. The random triangle benchmark produces the 
worst-case performance of the three datasets. We believe this is 
due to the irregularity of the data and lower depth complexity in the 
dataset. 

To achieve the optimal performance on Lobo, Mesa was run with 
MPI using 16 processes, Manta was run with I process using 16 
threads, and Longhorn was run with I process using a single GPU. 
Of the three renderers, the Mesa renderer performs the worst, ren­
dering performance did not exceed seven frames per second on any 
test. The Manta renderer shows improve CPU-based rendering per­
formance over Mesa. The Manta and GPU performance converge 
at 16 million polygons in all three dataset test cases. 

Figure 10 shows the results of running MantalPara View on 
Kratos using 32 threads and single node GPU accelerated Para View 
on varying sized random triangle datasets up to 256 million trian­
gles. The results show good scaling of ray tracing well beyond 
16 million triangles. As data sizes increase, Manta's logarithmi­
cally scaling performance provides for interactive framerates well 
beyond the unoptimized GPU performance . 

On both Lobo and Kratos, the rendering performance on 16 mil­
lion triangles using a CPU based cluster node is very similiar to that 
of the GPU based cluster. As the number of polygons increases up 
to 256 million triangles, we observe the Manta performance of 5-\ 0 



.40 G~ptrL°='~:-~::'= =:;:: 
CPU, Lobo, MMe, 18 pl'OCOU.' . . . • •. . 

'20 

.00 

80 

:~ - .--... - .. - -::::========------4 
o .. .. ...... .. ... . , .... . ... .... ........... ...... ....... .. ........ . , 16 

Millions 01 Random Tr1I1f'1OIe .. 

Figure 7: Single node rendering performance on random triangles. 

(a) Random Triangles 

• 40 
GPU, Longhorn, Qupa FX 5800 -

CPU, Lobo, ManIa, lellY_d, - ..... . 
CPU, Lobo , M&l.a, '8procesS91 ... . .. . 

80 

60 

40 

20 ----*------- - .. -. 

o L, ==:::.l:."' ... "' ... "' ... "' .. "' ... "' ... "' ... =.-= .. = ........ ==== __ ~ ____ ...... " 

Millions alContour Triangles 

Figure 8: Single node rendering performance on wavelet contours. 

(b) VPIC Contours 

'40 G~pt,~~:I:'~= =:= 
cpu, LoCo , hoM ... , 18 Pf~HI .. . e-- . 

'20 

'00 

80 

:~ ..... -.-- .---.-- .. -.. ~ :::::-.= ... ====:=:=~-l 
0=-2-·_···_···_··_···-'·· , ,," .:.. .. . .:.. .. "'."' ... .:.. .. "' .. . "' ... .:.. .. "' ... "' ... "' .. "'.'7-------------..J •• 

Milionsof Triangle, 

Figure 9: Single node rendering performance on VPIC contours, 

(c) Wavelet Contours 

Figure 6: 8 million triangle version of the 3 test data sets. 



~ ~~-'----'---------'-----------~K,~a~-.-___ --' 
Longhorn 

3S 

JO 

20 

15 ~ \ 

10 ~ \.l 
5 ~~-------~---J 

O~~~--~==~==~~----------------~ 
(DIS 16 32 54 ", 

Milions olTriangJ"s 
258 

Figure 1 0: Single node rendering using MantaiKratos and 
LonghornlGPU to test performance with large polygon counts. 

frames per second. As discussed in Section 3, this stable perfor­
mance is due to the Manta's algorithmic run time of k*O(/og(n)) 
where k is the image size, n is the number of polygons. This log 
performance is due to Manta's tree-based accelerated polygon/ray 
intersection data structure. Decreasing GPU performance is due to 
an algorithmic GPU run time of O(n), where n is the number of 
polygons. Note that we do not expect image size, k to significantly 
increase (to gigapixel or terascale sizes) due to the limits of the hu­
man visual system. 

5.2 Cluster Compositing 

14(1 

120 

100 

40 

20 - ''"M~_ '_ '' _ _ ______ ' __ 

o.~~~--~--------~------------------~ 
24 6 16 32 64 128 

ode. 

Figure 11: Compositing baseline for Lobo and Longhorn. 

Image compositing is a parallel algorithm that merges images 
from each process and produces a final correct image. In our per­
formance tests we used a binary-swap compositing algorithm[ 10]. 
This is an efficient parallel compositing algorithm that exchanges 
portions of images between processes to produce a correctly ren­
dered result. The IceT compositing library[17] is the default com­
positing scheme in ParaView. Although very efficient, leeT's per­
formance is also very data dependent and leeT optimizations inte­
grate directly in with the renderer. In order to clarify our rendering 
and compositing performance results we used the binary swap com­
positor. Figure II shows the compositing performance baseline for 
both Lobo and Longhorn. The x-axis shows the number of physical 
compute nodes Rot processors (for processor core counts, multiply 
by 8 for Longhorn and 16 for Lobo). The y-axis shows frames per 

second. As the number of nodes increase both show asymptotic 
behaviour. The asymptote is completely dependent on the speed 
and quality of the nodes and the network. The Longhorn network 
is QDR infiniband and is expected to be twice as fast as Lobo's 
DDR network. Noise on the compute nodes and/or the network, 
that is more likely to be encountered for larger node counts, can 
adversely effect the compositing performance. To time the com­
positing cost in Para View we ran in parallel and rendered empty 
scenes. Note that both machines provide about 20 frames per sec­
ond at 128 nodes. Recall, the Longhorn GPU cluster has a faster 
network than the Lobo CPU cluster. This difference will effect our 
rendering performance results. 

5.3 Cluster Scaling 

140 

120 

100 

20 1---------.-.... -....... -... --.- ---.. ~_ 
1f"'411-~·-"'" - · - -- --· 

'124 a 18 32 64 126 
No<jo, 

Figure 12: Strong scaling of 16 million random triangles. 

"8 

Figure 13: Weak scaling with 16 million random triangles per node. 

Possible parallel rendering approaches include sort-first meth­
ods in which polygons are sorted prior to rendering and distributed 
to processors that are responsible for a portion of the display [15]. 
Sort-last methods distribute the subsets of the polygons to each pro­
cessor. A full display image is rendered along with a depth image 
and then a compositing step produces a final image, depth-sorted 
from all nodes. In our study, we use sort-last rendering and com­
positing. The total time to produce an image is the sum of the 
rendering and compositing time (i.e. image-time = render-time + 
composite-time ). 



5.3.1 Strong Scaling 

A strong scaling study keeps the problem size constant while in­
creasing processor resources to solve the problem. Figure 12 shows 
strong scaling of 16 million random triangles on both Longhorn 
and Lobo. The total number of triangles processed across the en­
tire job was held constant at 16 million. For this strong scaling 
graph the number of triangles per node decreases, specifically each 

processor is assigned T~::aT~dd!~s. As the number of nodes in­
creases the number of triangles per node decreases and thus the 
time for each node to render those triangles decreases. As the num­
ber of rendering resources increases, the rendering time would dis­
sipate and the total time would equal compositing ( image-lime = 
composile-lime). This can be seen in the Longhorn results as the 
smaller polygon counts are rendered very quickly. Longhorn shows 
an initial increase in overall performance from splitting the render­
ing load among more processors. As the rendering time decreases, 
compositing time dominates and we note that between 16 and 32 
nodes frame rate decreases. Lobo with CPU rendering, doesn't 
show the initial performance increase since the decrease in render­
lime is similar to the increase in composile-time. On both machines 
however, composile-lime becomes the upper bound. When parallel 
rendering a fixed number of polygons with an increasing number of 
rendering resources, ultimately maximum performance is limited to 
the performance of compositing. 

5.3.2 Weak Scaling 

In a weak scaling study the problem size scales with the proces­
sor resources. For our testing we chose to assign 16 million trian­
gles per node. The total triangles for a data point in Figure 13 can 
be calculated by multiplying 16 million by the number of nodes. 
Since the render-lime remains constant and the composile-lime ap­
proaches a constant as we scale we expect the image-lime to ap­
proach a constant. Our weak scaling results can be seen in Figure 
13. We rendered up to 2 billion polygons on Longhorn and I billion 
on Lobo.1 Recall that rendering 16 million polygons on a single 
node produced similar timings for both CPU and GPU based nodes 
and therefore we see relatively similar results. This weak scaling 
study shows the ability to render large quantities of polygons at 
similar rates with both CPU and GPU resources. 

6 CONCLUSION 

With ever increasing data sizes, we have shown that integrating a 
software ray tracer, which scales in k* O(Log(n)), into an open­
source visualization tool is a wise investment for the future. For 
massive data sizes, we believe that an additional GPU-based vi­
sualization cluster is unnecessary. Rendering is executed directly 
on the supercomputer eliminating long data transfer times to a net­
worked visualization cluster. Utilizing CPU system memory allows 
for the visualization of larger polygon counts. Ray tracing scales 
very well with the amount of geometry without complicated oc­
clusion steps or approximative LOD methods. In our performance 
evaluation software-based ray-tracing surpassed GPU performance 
at larger triangle counts. 

ACKNOWLEDGEMENTS 

REFERENCES 

[I] J. B. I. W. A. Stephens, S. Boulos and S. G. Parker. An application 
of scalable massive model interaction using shared memory systems. 
In Proceedings of the Eurographics Symposium on Parallel Graphics 
and Visualization, pages 19-26, 2006. 

[2] A. CediInik, B. Geveci, K. Morel, J. Ahrens, and J. Favre. Remote 
large data visualization in the paraview framework. 2006. 

t A NUMA memory-allocation issue prevented us from rendering 2 bil­
lion lriangJes on Lobo. 

[3] D. E. DeMarle, C. Gribble, and S. Parker. Memory-savvy dislributed 
interactive ray tracing. In Proc. of Eurographics Symposium on Par­
allel Graphics and Visualizatioll , pages 93-100, 2004. 

[4] F. K. A. E. Fan, Z. Qiu. Zippy: A framework for computation and 
visualization on a gpu cluster. Computer Graphics Forum, 27(2):341-
350,2008. 

[5] E. Gobbetti, D. Kasik, and S.-e. Yoon. Technical strategies for massive 
model visualization. In SPM '08: Proceedings of the 2008 ACM sym­
posium on Solid and physical modeling, pages 405-415, New York, 
NY, USA, 2008. ACM. 

[6) N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. 
In SIGGRAPH '93: Proceedings of the 20lh annual conference on 
Computer graphics and interaClive techniques, pages 231-238, New 
York, NY, USA, 1993. ACM. 

[7] H. P. W. P. Ji? Bittner, Michael Wimmer. Coherent hierarchical 
culling: Hardware occlusion queries made useful. Computer Graphics 
Forum, 23(3), 2004. 

[8) Kitware. Paraview - Open Source Scielllijic Visualization, 2010. 
http://www.paraview.org/. 

[9] J. T. KJosowski and C. T. Silva. The prioritized-layered projection al­
gorithm for visible set estimation. IEEE Transactions on Visualization 
and Computer Graphics, 6(2): 108-123, 2000. 

[10) K. liu Ma, J. S. Painter, and C. D. Hansen. Parallel volume render­
ing using binary-swap compositing. IEEE Computer Graphics and 
Applications, 14:59-68, 1994. 

[II] LLNL. VisIt Visualization Tool, 2010. ht tps : / lwei . 11n 1 . g o v / 
eodes / visit/. 

[12] E. Luke and C. Hansen. Semotus visum: a flexible remote visualiza­
tion framework. In Proc. of the conference on Visualization '02, pages 
61-68,2002. 

[13) J. S. H. C. D. K. M. F. Ma, K.-L. Painter. Parallel volume rendering 
using binary-swap compositing. IEEE COMPUTER GRAPHICS AND 
APPLICATIONS, 14(4):59, 1994. 

[14] K.-L. Ma and S. Parker. Massively parallel software rendering for 
visualizing large-scale data sets. IEEE Computer GraphicS alld Appli­
catiolls, 21 :72-83, 200 I. 

[15] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classifi­
cation of parallel rendering. IEEE Computer Graphics Applications, 
14(4):23-32, 1994. 

[16] K. Moreland, B. Wylie, and C. Pavlakos. Sort-last parallel rendering 
for viewing extremely large data sets on tile displays. Parallel and 
Large-Data Visualization and Graphics, IEEE Symposium Oil , 0:85-
92, 2001. 

[17) K. Moreland, B. Wylie, and C. Pavlakos. Sort-last parallel rendering 
for viewing extremely large data sets on tile displays. Parallel and 
Large-Data Visualization and Graphics, IEEE Symposium on, 0:85-
92,2001. 

[18] S. Parker. Interactive ray tracing on a supercomputer. pages 187-194, 
2002. 

[19] M. Pharr, C. Kotb, R. Gershbein, and P. Hanrahan. Rendering com­
plex scenes with memory-coherent ray tracing. In SIGGRAPH '97: 
Proceedings of the 24th annual conference Of! Computer graphics and 
interactive techniques, pages 101-108, New York, NY, USA, 1997. 
ACM Press/Addison-Wesley Publishing Co. 

[20] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing al­
gorithm. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 
1176-1185, New York, NY, USA, 2005. ACM. 

[21J I. Wald, C. Benthin, A. Dietrich, and P. Slusallek. Interactive ray 
tracing on commodity pc clusters. LECTURE NOTES IN COMPUTER 
SCIENCE, pages 499-508, 2003. 

[22] I. Wald, P. Slusallek, and C. Benthin. interactive distributed ray tracing 
of highly complex. models. In Proc. of Eurographics Workshop on 
Rendering, pages 274-285,2001. 

[23] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff, Ill. Visibility 
culling using hierarchical occlusion maps. In SIGGRAPH '97: Pro­
ceedings of the 24th annual conference on Computer graphics and in­
teractive techniques, pages 77-88, New York, NY, USA, 1997. ACM 
Press/ Addison-Wesley Publishing Co. 


