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ABSTRACT 

Extremely large scale analysis is becoming increasingly important 
as supercomputers and. their simulations move from petascale to ex­
ascale. The lack of dedicated hardware acceleration for rendering 
on today's supercomputing platforms motivates our detailed eval­
uation of the possibility of interactive rendering on the supercom­
puter. In order to facilitate our understanding of rendering on the su­
percomputing platform, we focus on scalability of rendering algo­
rithms and architecture envisioned for exascale datasets. To under­
stand tradeoffs for dealing with extremely large datasets, we com­
pare three different rendering algorithms for large polygonal data: 
software based ray tracing, software based rasterization and hard­
ware accelerated rasterization. We present a case study of strong 
and weak scaling of rendering extremely large data on both GPU 
and CPU based parallel supercomputers using Para View, a parallel 
visualization tool. Wc use three different data sets : two synthetic 
and one from a scientific application. At an extreme scale, algorith­
mic rendering choices make a difference and should be considered 
while approaching exascale computing, visualization, and analy­
sis. We find software based ray-tracing offers a viable approach for 
scalable rendering of the projected future massive data sizes. 

I NTRO DUCTION 

Ever increasing data sizes result in greater challenges for pre­
existing visualization methods. In this paper we explore visualiza­
tion strategies for large-scale data analysis focusing on large-scale 
rendering. A prime motivator for our study are our experiences with 
a team of researchers using the VPIC code to investigate issues in 
magnetic reconnection on various computers including two of the 
top three on the top 500: Oak Ridge National Laboratory's Jaguar 
and Los Alamos National Laboratory's Roadrunner. This magnetic 
reconnect ion team views interactive visualization as integral to their 
workflow for each iterative run of their simulation. As an example 
one of their runs was on the RoadRunnder supercomputer consum­
ing 4096 processors to compute on a 8096x8096x448 grid. They 
currently use striding and subsetting to make the visualization op­
erations more practical for their interactive workflow but would like 
to visualize all of the data rather than just sub-samples. 

A standard visualization workflow for extremely large data, like 
that of the magnetic reconnection researchers, normally involves an 
ordered set of activities: application simulation, visualization algo­
rithms, rendering, and display as shown in Figure 1. Each of these 
stages produces a resulting output whose size can vary but is gen­
erally related to the size of the input, except for the rendered image 
which is fixed based on the requested image size. Each portion 
of the rendering and simulation process is often distributed across 
hardware which is suited to each stage. The simulation typically 
writes data to disk that is proportional to the size of the run. This 
data is then read from disk and geometry is generated and saved to 
disk. The geometry is then read back from a remote resource or read 
and transferred to a different filesystem, which is often at a different 
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Figure 1: A remote visualization workflow with a seperate compute 
cluster and rendering cluster. 

geographic location. Transferring 10 Terabytes over a 5Mbps con­
nection with 10 simultaneous streams would take almost 19 days to 
transfer to a remote resource such as a render cluster. Where high 
speed gigabit connections exist to the rendering cluster, transferring 
10 Terabytes over a 1Gb connection would still take several hours 
to transfer. 

As we approach exascale computing, data sizes are increasing 
and the typical output size of geometry increases with the size of 
the input data. Thus, transfer of data offsite is a less viable option. 
As compute clusters grow in size and cost, so must the supporting 
visualization clusters to handle the increased data. This process 
of saving data, moving data, and then analyzing data prohibits the 
scientists' ability to quickly analyze and rerun simulations in cases 
of error. 

To avoid long data transfer times rendering can be done directly 
on the supercomputer. This new workflow is shown in Figure 2. 

Figure 2: A remote visualization workflow with rendering done on the 
supercomputer. 

We believe a user's ability to interact with data is of great im­
portance to insight and that 5-10 frames per second is the mini­
mum speed necessary for a positive interactive experience. This 
type of interactivity has traditionally come at the cost of buying 
a second GPU-based supercomputer, albeit typically smaller than 
the supercomputer that produced the simulation results. We ask 
the following question: Can this interactivity be accomplished on 
massive data sets using the computing platform? We believe the 
question of rendering on the computing platform is important as 
we focus on the exascale future and allows for in situ visualization 
techniques. This work will benefit the super computing community 
providing insight to better understand the algorithmic and architec­
tural choices and their implications of performing visualization and 
analysis on increasingly large data sets. 



To understand tradeoffs for dealing with extremely large 
datasets, we compare three different rendering algorithms for large 
polygonal data: software based ray tracing, software based rasteri­
zation and hardware accelerated rasterization. The contribution of 
this paper is a case study of strong and weak scaling of rendering 
extremely large data on both GPU and CPU based parallel super­
computers using Para View, a real world parallel visualization tool. 
We use three different data sets: two synthetic and one from a real 
world application. 

In the next section, we review related work. We then describe 
three commonly used rendering methods in Section 3. Section 4 
describes visualization of large scale data with Para View. We then 
provide results comparing rendering with the three commonly used 
methods including weak and strong scaling studies in Section 5. 
Lastly, we conclude and describe future directions in Section 6. 

2 RELATED WORK 

There have been many strategies developed to visualize large scale 
data. Transferring the data to a GPU cluster for rendering is a well 
developed practice that displays large datasets at very high framer­
ates by splitting up data for rendering [4J and compositing the re­
sulting images together using algorithms such as the Binary-Swap 
method [13]. While there is a lot of time devoted to disc and net­
work UO this is the most robust for visualization as any number of 
software packages designed to work on clusters can be used to visu­
alize the data and often at high frame rates. These clusters can also 
be used to generate geometry and feed back smaller sets of geome­
try for rendering to a desktop machine [12]. Common visualization 
tools that run on GPU clusters include such programs as Paraview 
[2, 8] and VisIt [II] which present Client/Server parallel rendering 
frameworks built on top of the Visualization Toolkit (VTK). 

Massive polygon rendering presents challenges for traditional 
rasterization methods. OpenGL relies on hidden surface removal 
with a simple Z-buffer test to determine whether to shade a tri­
angle. This not only requires transforming vertex coordinates but 
also unnecessarily shading fragments rendered back-to-front along 
the camera axis. When dealing with millions of triangles, many of 
which are likely obscured behind other triangles, these unnecessary 
transforms and shading operations vastly degrade performance re­
sulting in a linear or greater decrease in speed in relation to the num­
ber of triangles. Approaches to address this have included spatial 
subdivision schemes which are used for occlusion culling hidden 
triangles. The acceleration structure's nodes are traversed front-to 
back and rendered. If the current Z-buffer's values m:e less than 
the Z value of the next node than the entire node can be skipped. 
Implementations of these methods include the hierarchical Z-buffer 
[6] and the hierarchical occlusion map [23] which optimize perfor­
mance through hierarchical Z-Pyramids. Prioritized-Iayred projec­
tion also provides an approximate version for instances where exact 
results aren't required [911. GPU optimized occlusion queries devel­
oped and allowed for querying if faces of the acceleration structure 
are behind the current Z-buffer in hardware [7]. However, since 
these methods require front-to-back traversal of the polygons or are 
not efficient, they are rarely used. 

The most efficient method for looking at large amounts of data 
generated on a cluster node would be to use the same node to render 
with the same acceleration structures used for the simulation. This 
would require no extra I/O except for a rendered image and minimal 
rendering time. This method is ideal but requires a great deal of 
customization to the simulation software as well as the visualization 
software. A compromise is to send the generated data to another 
visualization application running on the same cl.uster that utilizes 
software rendering. One such example wouM be using Paraview 
paired with a software implementation of Mesa. Using currently 
available implementations, software rasterization is often very slow. 

Ray tracing on clusters for visualizing large scale datasets is 

a well developed field with benefits over traditional rasterization 
methods. Ray tracing performance has been shown to scale very 
linearly from one to hundreds of processors [18], but limited by net­
work latency to around 20 frames per second [21]. Tracing rays also 
scales very well with the amount of geometry in the scene [14,22] 
due to the logarithmic acceleration structures used. Advanced clus­
ter based ray tracing methods can split up data and rays by image­
space or data-space. The former relies on rays around similar ar­
eas of the image space requesting the same data as their neighbors. 
When a node needs a new part of the scene, data is paged in. In 
highly efficient implementations, the same page faults used by the 
operating system can be remapped to network requests instead of 
disc reads [3]. The cost of tracing large datasets can be reduced 
greatly by intelligent techniques such as tracing groups of rays in 
packets [20] and slice based techniques which can determine ge­
ometry intersection for groups of rays and exploit SIMD vector op­
erations. Additionally cache dependent rendering can provide sig­
nificant speedups for memory intensive ray tracing operations [19]. 
While ray tracing on the CPU provides for expanded use of large 
memory spaces available to the CPU memory, access times have 
decreased much slower than processing time [5] and so methods to 
reduce memory requirements are still vital to software ray tracing. 
The real-time ray tracing software Manta incorporates packets but 
is only designed to be run on SMP machines, not clusters [I]. This 
design makes it ideal when combined with other cluster based visu­
alization programs such as Paraview which handle data distribution 
and image compositing. 

3 RENDERING METHODS 

For this paper we explore three commonly used rendering meth­
ods: hardware accelerated rasterization, software based rasteriza­
tion, and software based ray tracing. Each method has its advan­
tages and drawbacks. After evaluating each method, software ray 
tracing was chosen as the method to use going forward for large­
scale data visual ization. 

Hardware accelerated rasterization has proven to be fast for mod­
est data sizes and is widely used and heavily supported. The disad­
vantages are the requirement for additional hardware, small mem­
ory sizes on the GPU, and rendering times that scale linearly with 
the amount of geometry in the scene. In order to achieve better scal­
ing, occlusion algorithms might be used and approximative LOD 
methods might be utilized. It remains unclear, however, how well 
these methods will scale into the billions of triangles much less into 
petascale and exascale sized datasets. Therefore, we do not con­
sider them. 

Software rasterization through Mesa offers the same support for 
programs that would normally use hardware acceleration methods. 
The main drawback of this method is speed as Mesa remains single 
threaded and delivers very slow performance even for low geometry 
counts. A benefit over hardware acclerated rasterization, however, 
is that it does not require additional graphics hardware and can uti­
lize large system memory. 

Software ray tracing provides a rendering method that scales in 
k*O(log(n)) where k is image size and n is the number of polygons. 
This scaling performance assumes non-overlapping polygons and a 
well balanced acceleration structure. Because of the largely screen 
space dependent performance with logarithmic scaling to geometry, 
ray tracing provides great performance for large geometry counts; 
even those that contain sub-pixel geometry. Using an acceleration 
structure to test ray intersections also allows easy and straightfor­
ward occlusion culling where only the nearest geometry needs to be 
shaded once for each pixel. Hardware ray tracing also exists, but we 
chose to focus only on software ray tracing as our implementation 
was intended for compute clusters without hardware acceleration. 
We test these methodologies with Para View. 



4 YISUALIZATION USING PARAYIEW 

ParaYiew is an open-source visualization framework designed for 
local and remote visualization of a large variety of datasets. It is 
also designed to run on PC hardware up to large cluster arrays using 
client/server separation and parallel processing. Server/data sepa­
ration allows ParaYiew to be broken into three main components : 
a data server, render server, and client [2) . Much of the actual ren­
dering code is based around the Yisualization Toolkit (VTK) while 
much of the client/server model is unique to Para View. 

4.1 Data Distribution 

Para View's data server abstraction layer allows for operations such 
as processing data 01'1 one node and sending the resulting geom­
etry to another node for rendering. This allows for changing the 
data processing and rendering pipeline across heterogenous archi­
tectures for balanced workload distribution. When rendering on 
multiple nodes, sort-last compositing is required. Sort-last data and 
geometry distribution balances data processing and rendering, how­
ever, it requires a composite operation for each node used. This 
method of data distribution is good for rasterization and not nec­
essarily optimal for ray tracing where render time is dependent 
more on screen distribution than data distribution . When zoomed 
out, distributed cluster-based ray-tracing often produces a balanced 
workload distribution, however, if a small portion of the data is tak­
ing up the majority of screen space then the majority of work is 
being done by one render node. Thus using ParaView's work dis­
tribution methods is not optimal, however, we have found it to be 
usable in practice as shown in Section S. 

4.2 Com.positing 

The sort-last distribution requires a compositing step taking all the 
partial results and combining them into a final image using the 
depth and alpha values of each pixel. Distributing the compositing 
work across a cluster is vital for efficient cluster utilization. For this 
we implement Binary-Swapeompositing in ParaView [13). Binary­
Swap is an efficient parallel compositing algorithm that exchanges 
portions of images between processes to produce a correct rendered 
result. 

Figure 3 shows a diagram of the compositing process. Four 
nodes shown at the top each have a portion of geometry. The next 
step is to split those images in half and composite each half to­
gether. Thus L I and L2 are composited together and R I and R2 are 
composited together such that each half of the image now has the 
composited result from half of the geometry. At the next step each 
node is assigned a quarter of the final image which composites that 
quarter of the image together. At each step of the algorithm each 
node is doing an equal amount of work thus fully utilizing the clus­
ter of nodes. The final step is then to take each quarter and tile them 
together into the final composited image. 

Binary-Swap is not the default compositing scheme in ParaView 
which is IceT [16). IceT breaks up compositing to only compos­
ite portions of the image that are actually rendered instead of the 
entire screenspace. This can potentially save a lot of network traf­
fic by not compositing unused space if each node is only render­
ing a small portion of the final image. The IceT library was not 
used because its performance is very viewpoint and data dependent, 
whereas Binary-Swap essentially represents the worst-case perfor­
mance of IceT consistently. 

4.3 ParaYiew Manta Plugin 

The Manta rendering architecture is displayed in Figure 4. Im­
age pixels are generated by a pixel sampler which then generates 
rendering tiles by an image traverser which are distributed among 
threads by a load balancer. These tiles are then broken up into pack­
ets which are then traced by each thread through the scene in the 
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Figure 3: The stages of Binary-Swap Compositing. 
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Figure 4: Manta architecture. 

rendering stage. At the end of a rendering step the threads are syn­
cronized and state is updated. This is where state can safely be ac­
cessed and modified outside of Manta through a series of callbacks 
called transactions. The image is displayed while the next rendering 
stage is running. This results in a one frame delay between render­
ing and display. Since Para View is set to render only on an update 
this means that in the default system Manta would need to finish 
rendering its current scene, get the updated scene from Para View, 
display the last rendered image, render the modified scene, synchro­
nize with no updates, render the same scene again while displaying 
the image, and then by the next synchronization the image would 
finally be available through a transaction. 

The rendering architecture of Manta was modified slightly to 
have the image display before the rendering stage as a seperate syn­
chronization step which is only released upon a render event in Par­
a View. This eliminates uneccessary rendering before a render event 
and the final unecessary rendering step to get the image display. The 
Manta context is created in Para View through a custom render win­
dow and implemented through a plugin. The plugin must be loaded 
on both the client and server and any rendering contexts closed. A 
Manta render instance can then be selected. Certain VTK calls are 
then redirected to Manta implementations through a custom Manta 
object factory such as a custom actor class that keeps track of Manta 
related state for each object and a custom Poly Data Mapper which 
sends data to Manta and creates acceleration structures specifically 



for ray tracing. Unfortunately because of the differences in how 
meshes are represented between Manta and Para View there is cur­
rently a lot of memory overhead due to geometry duplication. A 
rendering call triggers Manta to release its rendering lock and ren­
der a frame. The frame is then copied back to Para View. Due to the 
differences in how an image is stored this requires an image conver­
sion step. ParaView then displays the rendered image or sends the 
image out for compositing if it is being rendered remotely through 
a cluster. The compositing step required the introduction of a Z­
buffer into the ray ,tracer which simply deposits the resulting depth 
value into the buffer after rendering instead of using the buffer in 
the rendering process itself. 

Precomputation must also be done with each change in geom­
etry. With each new Manta actor introduced into the scene accel­
eration structures are generated. for very large scenes consisting 
of millions of triangles this can take several seconds of precompu­
tation time. The amount of time also depends on the acceleration 
structure used. Grid based acceleration structures can be faster to 
update, however, we chose to use a Bounding Volume Heirarchie, 
BVH, as it gave the best performance for most types of goemetry. 

Additional GUI elements were also added to Para View to allow 
for ray tracing specific scene and material properties. These addi­
tional options include such materials as glass and ambient occlusion 
as well as muItisampling and threading options. The result is shown 
in Figure 5. 

Figure 5: Manta running in Paraview on a single multi-core node 
using shadows and reflections rendering the impact of an aluminum 
bali on an aluminum plate. 

5 RESULTS 

We evaluated the rendering performance of various methods on 
two supercomputing platforms, Lobo, a Los Alamos Linux com­
pute cluster and Longhorn, a latest generation GPU-based visual­
ization cluster at the Texas Advanced Computing Center (fACC). 
We also used a single next-generation multi-core node to test ren­
dering performance. We used three datasets of varying sizes includ­
ing randomly generated triangles, a synthetic wavelet datasel, and 
a dataset from Los Alamos's plasma simulation code, VPIC. Three 
different rendering packages were tested: Manta, an open·source 
ray tracer, Mesa, a software OpenGL ray tracer, and hardware­
acclerated OpenGL, all running within the ParaView application. 

Supercomputing Platforms 
• Lobo is a 272 node 4X DDR InfiniBand connected cluster 

of AMD based nodes. It has 32 GB of RAM and 4 AMD 
opteron model 8354 quad core processors, for a total of 16 
cores, per node at 2.2 GHz. Each core has a 64KB Ll cache, 
and a 5]2KB L2 cache, while each quad core shares a 2MB 

L3 cache. Lobo is a TriLab Linux Capacity Cluster (fLCC) 
system, similar systems are available to users at Los Alamos, 
Livermore, and Sandia National Laboratories. 

• Longhorn is an NSF XD visualization and data analysis clus­
ter located! at the Texas Advanced Computing Center (TACC). 
Longhorn has 256 4X QDR InfiniBand connected nodes, each 
with 2 Intel Nehalem quad core CPUs (model E5540) at 2.53 
GHz and 48 GB of RAM. Each node of Longhorn also has 2 
NVidia FX 5800 GPUs. 

• Kratos Kratos is an HP Proliant DL785 G5 with 8-quadcore 
AMD Operton 8380 processors at 2.5 GHz with 128GB 
RAM. 

Datasets 
• Random Triangles We created a random triangle strip test 

dataset. An image showing a rendering of 8 million of these 
triangles is shown in Figure 6(a). 

• VPIC Visualization-Generated Triangles Using an early 
timestep from the VPIC plasma simulation, we calculated col­
lections of isosurfaces that produced 1,2,4, 8, and 16 million 
triangles for use in our evaluation. At the start of this simu­
lation, these isosurfaces form two parallel nearly planar sur­
faces. A view of this data set can be seen in Figure 6(b). 

• Wavelet Triangles The wavelet triangle dataset is a computed 
synthetic dataset source released with Para View. We gener­
ated a 201 3 dataset and then calculated as many isosurfaces 
as needed to produce a requested quantity of triangles. The 
isosurfaces are nested within each other. This dataset high­
lights performance optimizations in the renderers that result 
from occlusion culling. Images produced with 8 million tri­
angles from each of these datasets are shown in Figure 6(c). 

5.1 Single Node Rendering Per10rmance 
Figures 7, 8, and 9 show a comparison of single node petformance 
of the three rendering methods we evaluated: GPU accelerated ras­
terization on Longhorn, CPU ray tracing on Lobo with Manta, and 
CPU rasterization on Lobo with Mesa. Figure 7 shows the perfor­
mance of random triangles. The x-axis shows millions of triangles 
in the rendered scene, and the y-axis shows the average framerate 
in frames per second as the camera rotates around the scene in 3 
degree increments. The random triangle benchmark produces the 
worst-case performance of the three datasets. We believe this is 
due to the irregularity of the data and lower depth complexity in the 
dataset. 

To achieve the optimal performance on Lobo, Mesa was run with 
MPI using 16 processes, Manta was run with I process using 16 
threads, and Longhorn was run with I process using a single GPU. 
Of the three renderers, the Mesa renderer performs the worst, ren­
dering performance did not exceed seven frames per second on any 
test. The Manta renderer shows improve CPU-based rendering per­
formance over Mesa. The Manta and GPU performance converge 
at 16 million polygons in all three dataset test cases. 

Figure 10 shows the results of running MantalPara View on 
Kratos using 32 threads and single node GPU accelerated Para View 
on varying sized random triangle datasets up to 256 million trian­
gles. The results show good scaling of ray tracing well beyond 
16 million triangles. As data sizes increase, Manta's logarithmi­
cally scaling performance provides for interactive framerates well 
beyond the unoptimized GPU performance . 

On both Lobo and Kratos, the rendering performance on 16 mil­
lion triangles using a CPU based cluster node is very similiar to that 
of the GPU based cluster. As the number of polygons increases up 
to 256 million triangles, we observe the Manta performance of 5-\ 0 
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Figure 7: Single node rendering performance on random triangles. 
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Figure 8: Single node rendering performance on wavelet contours. 

(b) VPIC Contours 
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Figure 6: 8 million triangle version of the 3 test data sets. 
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Figure 1 0: Single node rendering using MantaiKratos and 
LonghornlGPU to test performance with large polygon counts. 

frames per second. As discussed in Section 3, this stable perfor­
mance is due to the Manta's algorithmic run time of k*O(/og(n)) 
where k is the image size, n is the number of polygons. This log 
performance is due to Manta's tree-based accelerated polygon/ray 
intersection data structure. Decreasing GPU performance is due to 
an algorithmic GPU run time of O(n), where n is the number of 
polygons. Note that we do not expect image size, k to significantly 
increase (to gigapixel or terascale sizes) due to the limits of the hu­
man visual system. 

5.2 Cluster Compositing 
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Figure 11: Compositing baseline for Lobo and Longhorn. 

Image compositing is a parallel algorithm that merges images 
from each process and produces a final correct image. In our per­
formance tests we used a binary-swap compositing algorithm[ 10]. 
This is an efficient parallel compositing algorithm that exchanges 
portions of images between processes to produce a correctly ren­
dered result. The IceT compositing library[17] is the default com­
positing scheme in ParaView. Although very efficient, leeT's per­
formance is also very data dependent and leeT optimizations inte­
grate directly in with the renderer. In order to clarify our rendering 
and compositing performance results we used the binary swap com­
positor. Figure II shows the compositing performance baseline for 
both Lobo and Longhorn. The x-axis shows the number of physical 
compute nodes Rot processors (for processor core counts, multiply 
by 8 for Longhorn and 16 for Lobo). The y-axis shows frames per 

second. As the number of nodes increase both show asymptotic 
behaviour. The asymptote is completely dependent on the speed 
and quality of the nodes and the network. The Longhorn network 
is QDR infiniband and is expected to be twice as fast as Lobo's 
DDR network. Noise on the compute nodes and/or the network, 
that is more likely to be encountered for larger node counts, can 
adversely effect the compositing performance. To time the com­
positing cost in Para View we ran in parallel and rendered empty 
scenes. Note that both machines provide about 20 frames per sec­
ond at 128 nodes. Recall, the Longhorn GPU cluster has a faster 
network than the Lobo CPU cluster. This difference will effect our 
rendering performance results. 

5.3 Cluster Scaling 
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Figure 12: Strong scaling of 16 million random triangles. 
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Figure 13: Weak scaling with 16 million random triangles per node. 

Possible parallel rendering approaches include sort-first meth­
ods in which polygons are sorted prior to rendering and distributed 
to processors that are responsible for a portion of the display [15]. 
Sort-last methods distribute the subsets of the polygons to each pro­
cessor. A full display image is rendered along with a depth image 
and then a compositing step produces a final image, depth-sorted 
from all nodes. In our study, we use sort-last rendering and com­
positing. The total time to produce an image is the sum of the 
rendering and compositing time (i.e. image-time = render-time + 
composite-time ). 



5.3.1 Strong Scaling 

A strong scaling study keeps the problem size constant while in­
creasing processor resources to solve the problem. Figure 12 shows 
strong scaling of 16 million random triangles on both Longhorn 
and Lobo. The total number of triangles processed across the en­
tire job was held constant at 16 million. For this strong scaling 
graph the number of triangles per node decreases, specifically each 

processor is assigned T~::aT~dd!~s. As the number of nodes in­
creases the number of triangles per node decreases and thus the 
time for each node to render those triangles decreases. As the num­
ber of rendering resources increases, the rendering time would dis­
sipate and the total time would equal compositing ( image-lime = 
composile-lime). This can be seen in the Longhorn results as the 
smaller polygon counts are rendered very quickly. Longhorn shows 
an initial increase in overall performance from splitting the render­
ing load among more processors. As the rendering time decreases, 
compositing time dominates and we note that between 16 and 32 
nodes frame rate decreases. Lobo with CPU rendering, doesn't 
show the initial performance increase since the decrease in render­
lime is similar to the increase in composile-time. On both machines 
however, composile-lime becomes the upper bound. When parallel 
rendering a fixed number of polygons with an increasing number of 
rendering resources, ultimately maximum performance is limited to 
the performance of compositing. 

5.3.2 Weak Scaling 

In a weak scaling study the problem size scales with the proces­
sor resources. For our testing we chose to assign 16 million trian­
gles per node. The total triangles for a data point in Figure 13 can 
be calculated by multiplying 16 million by the number of nodes. 
Since the render-lime remains constant and the composile-lime ap­
proaches a constant as we scale we expect the image-lime to ap­
proach a constant. Our weak scaling results can be seen in Figure 
13. We rendered up to 2 billion polygons on Longhorn and I billion 
on Lobo.1 Recall that rendering 16 million polygons on a single 
node produced similar timings for both CPU and GPU based nodes 
and therefore we see relatively similar results. This weak scaling 
study shows the ability to render large quantities of polygons at 
similar rates with both CPU and GPU resources. 

6 CONCLUSION 

With ever increasing data sizes, we have shown that integrating a 
software ray tracer, which scales in k* O(Log(n)), into an open­
source visualization tool is a wise investment for the future. For 
massive data sizes, we believe that an additional GPU-based vi­
sualization cluster is unnecessary. Rendering is executed directly 
on the supercomputer eliminating long data transfer times to a net­
worked visualization cluster. Utilizing CPU system memory allows 
for the visualization of larger polygon counts. Ray tracing scales 
very well with the amount of geometry without complicated oc­
clusion steps or approximative LOD methods. In our performance 
evaluation software-based ray-tracing surpassed GPU performance 
at larger triangle counts. 
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