
LA-UR- )O-o;o/f 
Approved for public release; 
distribution is unlimited. 

.~ 
.) Los Alamos 

NATIONAL LABORATORY 
--- EH .1 943 ---

Title: VislO: Enabling Interactive Visualization of Ultra-Scale, Time 
Series Data via High-Bandwidth Distributed I/O Systems 

Author(s): Christopher J. Mitchell, 229505, HPC-5 / UCF 
James P. Ahrens, 113788, CCS-7 
Jun Wang, University of Central Florida 

Intended for: International Parallel and Distributed Processing 
Symposium (IPDPS) 2011 
Anchorage, Alaska 
May 16-20, 2011 

los Alamos Nalionallaboratory. an affirmative action/equal opportunity employer. is operated by the los Alamos National Security. llC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52·06NA25396. By acceptance 
of this article. the publisher recognizes that the U.S. Government retains a nonexclusive. royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so. for U.S. Government purposes. los Alamos National laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Ener,gy. los Alamos National 
laboratory strongly supports academic freedom and a researcher's right to publish: as an institution. however. the laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



VisIO: Enabling Interactive Visualization of 
Ultra-Scale, Time Series Data via High-Bandwidth 

Distributed I/O Systems 
Christopher Mitchell*, James Ahrens t, and Jun Wang* 

*Department of Electrical Engineering & Computer Science, University of Central Florida, Orlando, Florida 32816-2450 
tComputer, Computational, & Statistical Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

Email: {mitchell, jwang} @eecs.ucf.edu* , ahrens@lanl.govt 

Abstract-Petascale simulations compute at resolutions rang­
ing into billions of cells and write terabytes of data for visual­
ization and analysis. Interactive visuaUzation of this time series 
is a desired step before starting a new run. The IJO subsystem 
and associated network often are a significant impediment to 
interactive visualization of time-varying data; as they are not 
configured or provisioned to provide necessary IJO read rates. 

In this paper, we propose a new IJO library for visualization 
applications: VisIO. Visualization applications commonly use N­
to-N reads within their parallel enabled readers which provides 
an incentive for a shared-nothing approach to IJO, similar to 
other data-intensive approaches such as Hadoop. However, un­
like other data-intensive applications, visualization requires: (1) 
interactive performance for large data volumes, (2) compatibility 
with MPl and POSLX file system semantics for compatibiUty with 
existing infrastructure, and (3) use of existing file formats and 
their stipulated data partitioning rules. 

VisIO, provides a mechanism for using a non-POSLX dis­
tributed file system to provide linear scaling of 110 bandwidth. In 
addition, we introduce a novel scheduling algorithm that helps to 
co-locate visualization processes on nodes with the requested data. 
Testing using VisIO integrated into Para View was conducted 
using the Hadoop Distributed File System (HDFS) on TACC's 
Longhorn cluster. A representative dataset, VPIC, across 128 
nodes showed a 64.4% read performance improvement compared 
to the provided Lustre installation. Also tested, was a dataset 
representing a global ocean salinity simulation that showed a 
51.4% improvement in read performance over Lustre when using 
our VisIO system. VisIO, provides powerful high-performance 
IJO services to visualization applications, allowing for interactive 
performance with ultra-scale, time-series data. 

Keywords-Data Intensive Scientific Computing; Scientific Visu­
alization; Parallel Computing; Distributed Computing; IJO 

1. INTRODUCTION 

Scientific visualization applications form a core application 
area within the umbrella of Data-Intensive Computing. These 
applications have come into prominence in recent years as a 
direct result of the transition into Petascale class simulations of 
real-world phenomena as well as in-field deployment of high­
reso'lution sensors. These simulations include nuclear fusion 
research [I], and cosmology simulations of dark matter theo­
ries [2]. Likewise, the deployment of ultra-fast gene sequenc­
ing systems [3] and the Large Hadron Collider [4] exemplify 
the growth and dependence on high-resolution sensors. The 
scientific demand for transforming these TeraJPetabytes of 

produced data into meaningful insight has forced these visu­
alization applications to compute interactively while keeping 
pace with the volumes of produced data [5]. 

The 110 demands of visualization applications were high­
lighted in a recent work by Childs, et. al. [6] which demon­
strated visualization performance at scale on six supercomput­
ers across the United States Department of Energy complex. A 
key observation made was that while the actual visualization 
algorithm and rendering times were sufficiently fast for in­
teractive performance even with ultra-scale datasets, 110 time 
dwarfed these operations by an order of magnitude and in one 
test by almost two orders of magnitude. One effort to mitigate 
this effect was proposed by Peterka and Ross, et. al. [7], [8] 
through the use of MPI-IO optimizations and reordering of 
data within the input files to allow for contiguous reads of 
needed data. This software based approach, however, is still 
limited by the scalability of the underlying storage hardware 
and associated network to handle ever larger datasets. 

These visualization applications represent a unique category 
of applications that perform sophisticated cakulation routines 
but also are data-intensive in that they have to ingest data in the 
TeraJPetabyte range. These applications are tough to properly 
serve on both traditional computational-intensive platforms as 
well as on data-intensive platforms. Traditional computation­
ally intensive platforms are 110 starved [9] and leave these 
applications waiting for long periods of time while data is 
read in from a central parallel file system. On the other hand, 
these applications would struggle on a data-intensive platform 
due to the lack of high performance CPUs and/or GPUs on 
which to run the needed calculations. 

Therefore, we propose a hybrid approach that can properly 
support these visualization applications. This approach caJls 
for the use of a traditional High Performance Computing 
(HPC) cluster with mid to high end CPUs and optional GPU 
hardware. However, we forgo a traditional centralized parallel 
file system in favor of a distributed file system with local 
hard drives attached directly to the individual cluster nodes. 
Specifically, we deploy the Hadoop Distributed File System 
(HOFS) [10] in our tests and propose a library, VisIO, which 
allows for these MPI-based applications to interpret the data 
locality information exposed by the file system and appropri­
ately schedule computation on nodes locally containing the 



needed data for that MPI rank. 

Motivating this architectural proposal are the limitations 
inherent in the scalability of todays parallel file systems that 
make it difficult to handle data-intensive workloads without 
bottleneck. These centralized systems rely on a single or 
handful of network links that are statically constructed during 
installation and are responsible for transferring data to and 
from the cluster [II]. These links do not scale with the 
given problem size and while adequate for jobs that are 
below the maximum available bandwidth, quickly detriment 
the application with long latencies and slow reads when they 
are oversubscribed. Conversely, a distributed file system like 
HDFS, constructed from locally attached disks, can scale 
with the problem size and node count as needed. Thus, 
HDFS is able to sidestep the network bottlenecks inherent 
in todays parallel file systems and allow it to scale from 
Petascale datasets up towards Exascale datasets. Additionally, 
visualization applications tend to exhibit N-to-N workloads 
which differentiates from commonly seen N-to-I workloads in 
simulation environments that parallel file systems are designed 
for [12], [13]. 

Our contribution, therefore, focuses on laying out the archi­
tectural details needed to both define the VisIO library as wel l 
as the system details needed to use a distributed file system 
effectively for this class of app1lications. Specifically, we use 
Kitware's Para View visualization package and the Hadoop 
Distributed File System (HDFS) on the Texas Advanced 
Computing Center's (TACC) Longhorn visualization cluster 
to prove the potential of this system. This can be summarized 
as: 

• Development of the VisIO library for use of distributed 
file systems within visualization applications working on 
current ultra-scale and future exascale datasets. 

• Development of a new method to leverage file system data 
locality within an MPI-based program to intelligently co­
locate computation and data. 

Validation of this concept was done using two representative 
datasets: the VPIC plasma physics simulation, and an ocean 
salinity simulation. We experienced between a 50 and 65% 
improvement in read times for these datasets using VisIO 
compared to the the current I/O methods. In addition, these 
performance gains were made while successfully keeping 
approximately 92% of the data local to the node requiring 
it. Even though testing was taken to 128 nodes on one of the 
larger available visualization clusters, we believe that coming 
larger visualization clusters would yield even better improve­
ments in I/O performance due to increased node count. Thus, 
we believe that our technique will provide an opportunity to 
visualize these ever increasing datasets while meeting user 
expectations for interactivity, currently set at 10 seconds or 
less for system response [14], [15]. 

We present the rest of this paper by first detailing some 
background information in Section II. Section III details the 
full design of the VisIO library. Section IV discusses the exper­
imental methodology used to prove this system's effectiveness 

and analyzes the collected results. Finally, Section V examines 
related works whil\e Section VI discusses our conclusions. 

I I. BACKGROUND 

A. Para View and the VTK Streaming Demand Driven Pipeline 

The core tenant of the design of Para View is its streaming 
demand driven pipeline which dictates the data-flow through . 
the individual modules that transform raw data into rendered 
images. The interworking of the demand driven pipeline is 
shown in Figure 1. In this example pipeline, the user requests 
a time step to be loaded and displayed on screen in addition to 
needed filters to process the data. The client facing GUI reports 
the request to the executive which sets the parameters for this 
request on the pipeline for each node and then requests that the 
renderers produce ,the picture. Since the renderer does not have 
any input data, it requests the data range to be displayed from 
the filter sequence connected to it's input port. Likewise, the 
filters do not have the data needed to run the filer against and 
fina\lly report the requested data range to the reader to fetch 
the needed information from the file system. Once retrieved, 
the data is propagated back down the pipeline, following the 
arrows, from the reader to the filter sequence and finally to 
the renderer for display to the user's screen. This is a simple 
example of the pipeline in action but can be expanded to a 
large network of readers, filters, and renderers across numerous 
nodes to perform this operation in parallel. 

P.,. .... File 
Sya .... 

Cyrrent HPC system Architecture 

Fig. 1. VTKlParaView visualization demand driven pipeline. In this version 
of the pipeline, a globally accessible network attached file system feeds input 
data files to nodes as they are requested by the pipeline. The demand driven 
pipeline then proceeds to process and render the input files producing the final 
composited image. 

This layering approach allows for complete modularity 
within the visualization process. The pipeline enforces a stan­
dardized input and output port specification and an executive 
performs the needed operations to call various methods within 
the modules at the correct time to keep data moving through 
the pipeline. This modularity allows for an arbitrary set of 
readers to interact with an arbitrary set of filters which in tum 
work with an arbitrary set of rendering engines . Thus, it is 
possible to swap out components as needed to gain desired 
results within the visualization pipeline. In our case, the stock 
version of the reader for MultiBlock data files will be replaced 
with a custom version designed to use the VisIO system and 
associated distributed file system. This swap process does not 
impact any other piece of the pipeline thus allowing continued 
use of existing filters and rendering engines without additional 
modification being needed. 



Proposed System Architecture 
(a) 

VislO Enabled Reader 
(b) 

-----
Reader 

~ I LoceI1y - Scheduling (NEW) 

I Non-POSIX 10 
POSlX Bridge (NEW) , 

0 ... Po'_ (EXISTING) 

0010 
Pipe' 

i-----

to 
line 
~ 

Fig. 2. Proposed Visualization Pipeline with VislO enabled reader, (a) Each node is responsible for a non-overlapping sub-extent denoting a piece of the 
total picture to render. Each node has an independent visualization pipeline which only coordinates with the other nodes for final compositing and in special 
cases for some filters, Each node is scheduled a single input file out of the set based on replica placement. (b) The VislO enabled reader. within the pipeline. 
uses two new modules to access the distributed file system and intelligently schedule read operations based on data locality, 

B. The Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) is the open 
source community's response to the Google File System (GFS) 
for use with MapReduce style workloads. HDFS is designed 
with the idea that it is quicker to ship the computational 
executables to the stored data and process in-situ rather than to 
pull the needed data from storage and send it via a network to 
the compute node that has the executable loaded. Thus, HDFS 
calls for local hard drives to be installed in each compute node 
(known as a DataNode) and distributes stored data, broken 
down into chunks, across the nodes using a pseudo-random 
placement system. To combat hard drive failure rates, HDFS 
calls for these chunks to be replicated, by default, a total of 3 
times within the cluster. A chunk, by default, represents up to 
64MB of a file - a decision that reflects HDFS's design goal 
of handling large files . AU of the metadata associated with 
mapping a given chunk to a DataNode is contained within 
a memory based map loaded on the NameNode (HDFS 's 
metadata server) and backed up to the Secondary NameNode. 
Thus, this distributed file system presents the applications with 
a chunk oriented view of the files stored, with local access to 
a given chunk from three of the nodes within a cluster. 

While originally designed for use with the MapReduce 
framework, HDFS can be interfaced with traditional parallel 
programs (including those based on MPI) via it's libHDFS 
library for C/C++ based programs. By using libHDFS, a 
client program is able to make connections to the HDFS's 
NameNode, and request locality information from the file 
system for a given chunk (specified by a file name, offset 
within the file, and length of the request). The NameNode 
will respond to the client with a listing of the DataNodes (the 
actual storage locations for the chunks in question) where the 
requested chunks are stored. Reads requested from clients that 
are executing on nodes with locally stored chunks can deliver 
data directly to the application, bypassing the network, and 
improving 110 performance. Based on this information, the 
application can make decisions on where to execute a given 
piece of code. 

III. DESIGN AND IMPLEMENTATION OF VlsIO 

A. Design of a Distributed File System Enabled Reader 

As discussed, currently ParaView relies on an 110 model 
that is represented in Figure 1 and calls for a centralized 
parallel file system to service data requests for the cluster. 
Based on the foundations set fourth above, a move towards 
the 110 model shown in Figure 2 is desired to improve 110 
performance for current and next generation datasets being 
produced. This new model calls for Para View to be told which 
files are available locally via the Distributed File System (DFS) 
and assign processing responsibility for that data to the given 
node. Implementation of this idea requires a rework of the 
Para View reader modules within the visualization pipeline. 

Our VisIO enabled reader for Para View is cUlTently de­
signed to operate on VTK MultiBlock files to allow for flexa­
bility in the underlying data type (structured or unstructured). 
MultiBlock files are self-describing with XML headers and 
are composed of an index file with a ".vtmb" extension. Data 
files, one per process in the group that wrote the original 
data, are stored as raw binary representing a given type of 
data (image, rectilinear grid, etc.). As such, when placed on 
the target DFS, HDFS, the index file is replicated equal to 
the number of nodes in the cluster to enable all nodes rapid 
access to the needed metadata about the data to be visualized. 
The data files are loaded with a standard replication factor 
of 3 and the chunk size specified such that the entire data 
file fits within a single chunk. This last requirement of fitting 
the entire data file into a single chunk is done to ensure that 
each pipeline is assigned a single, contiguous (in terms of the 
contained extents) work unit. This allows for easier schedulJing 
of the data to a pipeline while improving performance by not 
requiring seeking between mUltiple chunk locations on the 
hard drive. 

One key issue that had to be addressed is interfacing 
Para View's POSIX view of the 110 system with HDFS's 
non-POSIX compliant access methods. The primary reader 
code invoked within the VTKOpenFileO method handles this 
translation . This code starts by intercepting the requested file 
name from the pipeline and if the request is for a " .vtmb" 



index fi Ie, the reader calls the assignNodesO method to execute 
the scheduling algorithm, detailed in the next section, on the 
group of data files represented by the given index file. This 
schedule is computed on the first rank within the MPI process 
group and scattered to all nodes within the group for use to 
detennine which node reads which data file. The remainder 
of the code within the VTKOpenFileO method is outlined in 
Algorithm I. This code checks if the file exists on the HDFS 
as claimed and then proceeds to get information about the file, 
particularly the file's size for use by the actual read command, 
simillar to what is done with a POSIX statO call. A character 
buffer is allocated to hold the file's binary contents and calls 
are made to the HDFS to open and then read the entire data 
file into the character buffer. This buffer is then converted to 
an STL istringstream so that the remainder of the reader code 
can be used unchanged as it is expecting a variable of type 
ifstream from this method. This conversion to an istringstream 
is the key to allowing the rest of the existing code, which 
is expecting a POSIX friendly access to the file, to continue 
working without modification. Finally, the HDFS handles are 
closed and the allocated memory reclaimed prior to handing 
the istringstream off to the rest of the reader infrastructure to 
be parsed and converted into VTK data structures for use by 
the rest of the visualization pipeline. 

Algorithm 1 VTK MultiBlock Reader 

Input: File name to open. 
Output: istringstream with requested file for XML parsing. 
Steps: 

I: Call hdfsExists to check for existence of file. 
2: if File Exists == FALSE then 
3: Return error to pipeline and exit method. 
4: end if 
5: Call hdfsGetPathlnfo to get file statistics. 
6: .-tStore file's chunk size. 
7: Allocate a character buffer the size of the file's chunk. 
8: Call hdfsOpenFile to get a handle to the file . 
9: Call hdfsPread to read the chunk from beginning to end 

into the character bu ffer. 
10: Copy the character buffer to an STL string. 
II: Assign the STL String to an istringstream 
12: Set the istringstream to be pointed to by the reader's 

stream pointer for use by the XML parser. 
13 : Call hdfsCloseFile to close file handle and free memory 

allocations for the character buffer. 

B. Node Assignment 

The key to gaining optimal read perfonnance when using 
HDFS is to assign computational processes such that the data 
they need is local to the node's hard drive. This avoids the need 
to remotely pull data from hard drives on other nodes which 
themselves are tasked with processing another subset of the 
data. However, this scheduling of computational tasks to nodes 
needs to be done with consideration of HDFS's placement 
algorithm. 

As previously mentioned, HDFS uses a pseudo-random 
placement algorithm to store chunks of data. Thus, it is pos­
sible to have data unevenly distributed on the cluster leaving 
a subset of nodes with proportionally more data than other 
nodes that are available. As such, we define a metric, scarcity, 
as the number of available nodes which can serve a file that are 
currently not allocated to a computational task. Through use of 
this metric, we devised an assignment algorithm that schedules 
the scarcest files first before handling files that have higher 
levels of availability. Any computational tasks that could not 
be assigned to a node containing a ,local copy of the needed 
data are directly paired with the remaining nodes with the 
expectation that the needed data for this small percentage of 
tasks will be pulled over the cluster network. The number of 
files that must request data over the network is tracked in our 
testing and evaluated in section IV.D. 

In comparison, a naive implementation of the assignment 
algorithm, using a first-in, first-out implementation on a list of 
fi les to be scheduled, would have a higher potential to leave 
files scheduled to non-optimal nodes without local copies of 
the needed data. This is because nodes that can be used to 
service files that are scarce in the cluster are likely to be 
assigned to process another eligible file on that node. Thus the 
optimal solution from this naive algorithm would be entirely 
dependent on the ordering of the input lists. 

To achieve scheduling via scarcity, we implement a version 
of the stable marriage algorithm [16] as shown in Algorithm 2. 
We select the next file to match to a node based on the number 
of nodes available at the start of the iteration to service that 
file - it's scarcity value. However, in the original algorithm, the 
members of each set to be matched amongst have a weighting 
system to detennine preferability to a given potential match. 
Since there is no preference between any node containing a 
replica of the original data, we simply match the file with 
the first available node within the set of nodes containing the 
file. Thus, the weighting values from the original algorithm 
are reduced to a "I" or "0" for a file's preference for a node 
based on if the node has the data or not. 

C. HDFS Use Considerations 

To achieve the best possible perfonnance from the HDFS, 
a few considerations had to be taken into account. First, 
should the file size exceed the configured chunk size for the 
HDFS instance (64 MB by default), the file will be broken 
up into multiple chunks with each chunk being replicated 
independently of the other related chunks. However, if a 
process only has a fraction of the overall assigned piece local 
and the other parts must be pulled from the network, the 
locality perfonnance advantage disappears due to the network 
overhead and possible congestion at the nodes the chunks 
were requested from. Thus, the chunk size for the fire system 
must be set to be larger than the largest data file present. 
This ensures that a process has all of the needed data for its 
assigned extents locally available. Additionally, we also size 
the data files such that each node only has to handle a single 
piece of the entire dataset for a given time step. This prevents 



Algorithm 2 Node Assignment Algorithm 

Input: 

• A set C of nodes available. 
• A set F denoting all files making up a time step. 
• A list R of tuples, < node, file >, denoting where each 

file and its replicas are stored. There may be more than 
one instance of a given node or file within R. 

Output: 

• A list A of tuples, < node, fil e >, denoting which file 
has been assigned to a given node . The values node and 
file may only be used once in A. 

Steps: 

I: while there exists an instance: F' n R -=1= 0 do 
2: Find F' with min(F' n R). 
3: C' = first node in set min(F' n R). 
4: Ac' = F' 
5: Remove C' from R. 
6: Remove F' from R. 
7: end while 
8: for all. files F' that have not been assigned do 
9: Find first Ac' == NULL 

10: Set Ac ' = F' 
II : end for 

costly context switches between multiple processes on a node 
to handle multiple pieces as well as prevents even costlier 
seeks on the hard drive to service multiple chunk requests to 
the HDFS. 

Finally, we also override the default replication of 3 times 
for the metadata files (one per time step, ".vtmb" extension) 
and replicate these files n ways where n is the number of 
DataNodes in the job allocation. This mitigates an issue where 
every Para View process at once tries to access the metadata 
file for the time step at the beginning of the time step. A 
hotspot would occur within the cluster amongst the three 
nodes storing the metadata file if the defaults were left as 
is. A future version of the reader could be updated to have a 
node containing the metadata file locally read in the file and 
broadcast it to the remaining nodes. An acceptable solution 
considering the metadata file is usually tiny (a few hundred 
kilobytes) compared to a data file. 

D. Fault Tolerance 

The notion of being able to run this system at scale brings 
the issue of fault tolerance to the forefront. Traditionally, if the 
file system were to fail, the entire Para View application would 
either crash or would render incorrect results (missing pieces 
of the image for example) depending on the severity of the 
failure. However, when using HDFS, the loss of a DataNode 
process or its underlying storage infrastructure poses no threat 
to the application or the integrity of the rendered results. Due 
to HDFS's replication system, a reader in this situation can 
still request the data on the failed node and the HDFS will 
deliver the requested chunk from one of the replica nodes. So, 

while a performance hit will be taken for the remote transfer 
of the data, Para View can still continue to run and still produce 
correctly rendered results. In comparison, parallel file systems 
rely on hardware level resiliency measures such as RAID and 
hot spares to handle faults. While providing a level of fault 
tolerance, this mechanism does not cover issues such as an 
entire RAID group of LUN going offline. Additionally, RAID 
rebuilds can slow down VO operations to any file on a RAID 
group while transfer of a replica from another node in the 
HDFS only impacts performance on the requesting and the 
servicing node . 

IV. TEST AND VALIDATION 

A. Test Cluster Setup 

Testing of our HDFS enabled ParaView reader was con­
ducted at the Texas Advanced Computing Center (TACC) on 
their Longhorn visualization cluster [17] . This system consists 
of 256 total nodes comprised of Dell PowerEdge R610 (240 
nodes) and R710 (16 nodes) servers with dual Intel Nehalem 
Xeon E5540 processors. Each node has either 48GB (R610) 
or 144GB (R71O) of RAM and all nodes have a 73GB Seagate 
Savvio 15K.2 local hard drive (model : ST973452SS) [18]. 
The node interconnect is Mellanox QDR InfiniBand and has 
interconnections to a 2lOTB Lustre parallel file system. All 
nodes were running CentOS 5.4 at the time of testing. 

Testing was conducted using ParaView 3.8.0 and Hadoop 
version 0.20.2. Additionally, Hadoop's configuration was kept 
as close to default as possible to eliminate unfair advantages 
given to Hadoop via tuning that would not be possible to 
provide to Lustre . TACC's storage infrastructure was running 
version 1.8.3 of Lustre. Lustre was left to its defaults of using 
a stripe count of four and stripe size of I MB . The Mesa 
3D graphics library, version 7.6.1, was used for off-screen 
rendering by ParaView. Finally, the supplied MVAPICH2 
version 1.4.1 MPI library was used to enable access to the 
IB interconnect within the cluster. 

It should also be noted that testing was setup such that 
reported results are based off of the performance ParaView 
sees from the given file system. Time taken to load the HDFS 
instance from archive is not counted nor is the time to transfer 
data from archive to Lustre for testing. This data migration 
issue is outside of the scope of this paper and treated as a 
cost inherent in working with a system where simulations or 
data producing sensors are not internal to the cluster running 
the visualization application. 

B. Test Datasets 

1) VPlC - Plasma Physics Simulation: This data set is the 
result of a Magnetic Reconnection experiment run using VPIC 
(a Los Alamos National Laboratory developed Particle-In-Cell 
code) [19] that was run during the LANL Roadrunner Open 
Science Runs. This data set was produced on a full system 
run on Roadrunner and represents approximately 4.68 TB of 
raw data. Due to the need to move this data set to the test 
system, from LANL, for our experiments, a subset of this 
data was selected, consisting of just the magnetic field vector, 



and converted to ParaView's MultiBlock format. It should be 
noted that the data was written out in "append" mode to allow 
for the least amount of time to be spent on parsing of the data 
as binary data in this fonnat can be directly read into memory 
by the Para View readers . Additionally, of the total 342 time 
steps, 20 were selected (steps 0 through 190 in increments of 
ten) . As a result, our test set was approximately 135 GB in 
total size and 6.9 GB per time step. 

Fig. 3. Representative images of the datasel.~ tested. The image on the len is 
from the Los Alamos National Laboratory's VPIC Plasma Physics simulation 
of magnetic reconnection. The image on the right is from the Los Alamos 
National Laboratory's Ocean Modeling Simulation showing ocean salinity. 

2) Ocean Salinity - Ocean Simulation: The ocean salinity 
data set was generated by LANL's Climate, Ocean and Sea 
Ice Modeling project [20). The model this data represents is 
a time series of the world's ocean salinity from surface to 
ocean floor ranging from February 2001 to January 2004. This 
represents 36 total time steps, one per month in the given 
range. Again, due to constraints on moving data from LANL to 
our test cluster at TACC, only one variable worth of files were 
moved. Once located on the test cluster, the data files were pre­
processed to clone the original variable ten times to match the 
original number of variables tracked by the simulation. The 
final VTK MultiBlock files, containing the data in rectilinear 
grid format, averaged 25 GB per time step. Thus, the entire 
data set, across all time steps, encompassed 887 GB worth of 
data. 

C. Validation of VisIO under Simulated Workload 

Before implementing a VisIO compatible reader, a bench­
mark was performed with a similar workload as the proposed 
reader to validate that HDFS would be capable of reading with 
the bandwidth needed for use by Para View. The benchmark 
consisted of the same sequence of IJO calls as the reader would 
make but executed against dummy files. These dummy files 
were setup such that each node in the test would be given a 
unique file that was I GB in size, thus making this a weak 
scaling test. Node count was increased from 1 to 128 nodes, in 
powers of 2, for testing. The benchmark would then proceed 
to have each of the nodes open and read into memory the 
contents of its assigned file with the process being timed. The 
results of this test are shown in Figure 4. 

The file systems tested included the Lustre parallel file 
system, and HDFS in two different configurations. The Lustre 
installation is globally shared amongst the nodes in the cluster 
and all test files were stored on the same shared volume. The 
HDFS variant 1 test was setup such that the HDFS chunk 

size was equivalent to the file size so that the file would not 
be split into chunks (and placed on various nodes) while the 
replication factor was set to equall the number of nodes in the 
cluster. This test represents an ideal case where all of the file is 
present on a given node that the MPI job could need it on. The 
variant 2 test used the HDFS defaults where the chunk size 
was set to 64 MB and the replication factor set to 3. This test 
represents the expected performance of HDFS without tuning 
and with blocks transfered over the network to reassemble 
the file for use by the MPI program. Finally, we plot the 
Max Theoretical Hard Drive Bandwidth to show the aggregate 
bandwidth possible from the given number of raw hard drives 
based on the maximum quoted data sheet bandwidth [18] for 
transferring data from the platter to the disk buffer. This sets 
the maximum upper threshold theoreticaHy possible and allows 
for comparison of the efficiency of HDFS. 

Two key observations can be made from these results that 
are important considering the nature of the application and 
its workload. First, it can be seen that both HDFS tests 
follow the same linear growth trend as the theoretical hard 
drive bandwidth but at a scaled rate. This linear growth in 
available bandwidth as the number of nodes increases indicates 
that HDFS could be used to scale IJO capacity on demand 
as larger datasets are presented to the visualization system. 
Second, it can be seen that Lustre, while able to produce 
considerable bandwidth, peaks in its ability to deliver data 
at 32 simultaneous clients and begins falling off as the node 
count continues to increase. This is due to Lustre having a 
finite network connection in which to serve data to the cluster 
that saturates and then hampers read perfonnance once this 
saturation point has been reached . This behavior is not scalable 
as dataset size increases or more nodes are added to the cluster 
and limits Lustre's ability to deliver data on demand in a 
visualization style workload. Thus these results motivate our 
exploration of a VisIO enabled reader. 

D. Testing of Para View using VislO Reader 

1) Test Setup: Once it was proven that HDFS could provide 
the needed read bandwidth to sustain Para View, the VisIO 
system was implemented per the discussion in Section III. 
Testing was conducted such that Para View would read and 
process a complete time series for a given dataset and report 
the read times for every file opened for processing. A python 
batch script was written to setup the visualization environment 
and needed filters to create a reproducible test. The script then 
instructed Para View to iterate through each of the time steps 
and produce a JPEG image of the rendered screens. This script 
was submitted to the Para View server via the provided pvbatch 
utility to produce a test run on a given node count with the 
desired file system. 

For testing, Para View with the test script was run on 16, 
32,64, and 128 nodes on TACC's Longhorn cluster. 16 nodes 
was selected as the minimum number of nodes to test on due 
to the need for enough aggregate hard drive space to store 
the datasets and their replicas. The largest value, 128 nodes, 
was chosen as it was the largest number of nodes a single 



I/O Performance Benchmark on Longhorn @ TACC -
Weak Scaling Performance 

U 
QI 

25,000.00 

~ 20,000.00 

~ 
.c 
:2 15,000.00 
~ 
-c 
c 
~ 10,000.00 
QI ... 
III 

~ 5,000.00 1~~~~~~~~~::~~=:~==~~~~=-===~::== :t 
0.00 

o 20 40 60 80 100 120 140 

Number of Nodes 

+ lustre HDFS (Variant 1) * HDFS (Variant 2) - Max Theoretical HD Bandwidth 
------~~----~----~----~----------------------------

Fig. 4. Benchmark test of Lustre and two HDFS varients showing motivation for persuing a VisIO enabled reader for Para View. Variant I tests performance 
when all files are local to the node requesting them while variant 2 represents the impact of chunking the files and replicating 3-ways thus causing network 
transfers between the DataNodes. Maximum theoretical hard drive bandwidth is also plotted for comparison to the HDFS results. The key observation from 
these results is that HDFS scales linearly for a visualization workload while Lustre peaks in its ability to deliver data and then tapers off in bandwidth as the 
number of clients increases. 

user would be allowed to acquire in a job allocation on a 
regular basis without needing intervention from the system 
administrators. 

The provided Lustre instance was directly accessed and only 
the number of clients acceSSing it was increased with each 
test set. HDFS was run such that the number of DataNodes 
was equal to the number of ParaView server nodes thus 
allowing the file system to scale with allocation size. Test 
results reported for both file systems represent the average read 
performance, per file, seen over each file opened for processing 
and across three retests for a given node count. In reporting 
average times, we can present a fairer picture of what the 
user will see over time when using the system rather than 
reporting maximum read times which show the worst case for 
a particular run as well as highlighting system noise induced 
variability. 

HDFS was tested in two configurations: with and without 
the locality awareness algorithm activated. Each HDFS variant 
was configured slightly different to produce a fair test based 
on how the file system was going to be used . Testing of HDFS 
without the locality awareness was done by directly loading 
HDFS with the test data files using the defaults of a 64 ME 
chunk size and three way replication. The ".vtmb" index files 
were replicated by the number of nodes in the cluster so that 
each node could directly look up the metadata for the dataset 
to be visualized without waiting for a network transfer (per 
section fiLC). For the HDFS test with locality, test files were 
loaded into the HDFS exactly as described in section m.c -
using a chunk size equal to file size and three way replication. 

2) Scalability of VislO Reader: The central advantage of 
leveraging HDFS rather than a central parallel file system 
is the promised ability to scale as needed to accommodate 
larger VO demands. Proving this called for a strong scaling 
test where a given real simulation dataset was processed by 
Para View with increasing node counts from 16 to 128 nodes 
(in powers of two) using the VisIO based reader (with and 
without the locality algorithm). The results were compared to 
the baseline Lustre installation using the same node count. 
The VPIC dataset was chosen due to its size which permitted 
scaling down to 16 nodes, with the data set fitting into the 
HDFS, while also allowing scaling to 128 nodes with a non­
trivial per node file size. 

Similar to the weak scaled synthetic benchmark, previously 
discussed, the strong scaling test run with ParaView showed 
that the VisIO enabled reader was capable of continuously im­
proving VO perfonnance as node count was increased. Shown 
in Figure 5, read times for the VPIC dataset exponentially 
decreased as the node count (and by extension hard drive 
count) was increased by a power of two. HDFS's performance, 
follows the same trend regardless of the reader's use of the 
locality algorithm, but as shown, the locality algorithm does 
shift the read times consistently downward with the improved 
read performance. In comparison, Lustre's read performance 
held approximately constant regardless of node count. 

Thus, from this trending, we can reasonably expect that 
given more nodes, the VisIO enabled reader would be able 
to continue to linearly gain in bandwidth allowing for still 
faster reads of the given dataset or capability to read in still 
larger datasets with acceptable perfonnance. Additionally, we 



ParaView Time Series Test - VPIC Dataset - Average Performance 

Vi" 
"0 
c: 
o 
u 5 
GI 
~ 
GI 4 

E 

A.. 
,~ 

~'" ~ 
~ i= 3 

"0 

'" GI ~ 
cr: - -o 

16 32 64 128 

Number of Nodes 

"'Lustre + VisiO + HDFS (No Locality) .... VisiO + HDFS (With Locality) 

Fig. 5. Average read times as reported by Para View for the VPIC time-series dataset. Tests run to compare performance on Lustre with the HDFS enabled 
reader both with and without the ability to sechedule MPI ranks based on file system locality information. 

notice that without the locality algorithm, HDFS is able to 
surpass Lustre in read performance for this particular dataset 
at between 64 and 128 nodes. Using the locality algorithm, the 
read performance improves enough such that HDFS matches 
and outperforms Lustre at a node count just under 64. 

3) Closer Look: Reader Performance at 128 Nodes_· While 
Figure 5 clearly indicates the scaling trend expected from the 
VisIO based reader using HDFS compared to the standard 
version using Lustre, it does not clearly show the performance 
benefits to ParaView of using HDFS as compared to Lustre. 
Taking a closer look at the 128 node test runs, we see that 
Lustre is able to read a given file out of the files needed to 
construct the entire time series in 1.512 seconds while HDFS 
takes either 1.134 seconds or 0.776 seconds depending on if 
the locality algorithm is used or not. These differences in read 
times are illustrated in Figure 6. This translates into a 28.57% 
improvement in read performance if the VisIO enabled reader 
without locality is used compared to Lustre and a 64.38% 
improvement if the locality algorithm is used. 

As a check, the ocean salinity data, was run as a second 
dataset at 128 nodes to see how it performed with the various 
readers. These results, also illustrated in Figure 6, showed a 
significant drop in read times when using HDFS. Lustre was 
able to read in the given data in 5.320 seconds per file while 
the HDFS reader was able to read in the given data at a rate of 
3.480 seconds per file without the locality algorithm and 2.509 
seconds with the locality algorithm. This represents a 41.82% 
and a 51.43% improvement respectively in per file read times. 

4) Locality Algorithm Effectiveness: Use of a distributed 
file system by VisIO provides the ability to remove the bottle­
neck of a centralized paralkl file system's network which is 
usually a fraction of the cluster interconnect fabric's capability. 
However, while this does provide a marked improvement in 
VO performance, further improved times can be realized when 

Comparison of Data Sets Visualized at 128 Nodes 

5~ T =============:=iiiiiiii=:==== v;- s:t 
~ 4.5 +-----------­
S 4 +--­
! 3.5 +------------
E 3 +------------
1= 2.5 
..., 2 +------------
: I.S 
0: 

0.5 

VPIC 
Dataset 

Ocean Salinity 

-lustre - HDFS without Locality HOFS with locality 

Fig. 6. Comparison of results collected on 128 nodes of TACC's Longhorn 
Visualization cluster. Two datasets were tested: VPIC and Ocean Salinity. 
These datasets were tested using the Lustre Parallel File System as well as 
using HDFS with its locality algorithm enabled. 

processes are scheduled to nodes Which locally contain the 
data needed, as discussed in Section III.B. Looking at the lest 
data detailed above, we see that the VPIC dataset. for example, 
achieves a 35.81 % improvement in using the locality aware 
VisIO based reader over the version that is not locality aware. 

During testing, the number of requests for files by processes 
not able to access the data locally was tracked. This number 
was then converted to a ratio of the number of remotely 
accessed files to the total number of files read over all of 
the time steps. This ratio was used to track the effectiveness 
of the locality algorithm in its ability to schedule processes 
to nodes containing local copies of the data. This remote pull 
ratio calculated for the VPIC and ocean salinity datasets was 
7.42% and 7.68% respectively. This relatively small proportion 
of remotely pulled files is a result of the HDFS's pseudo­
random placement algorithm which presents a situation where 
the needed files for a given time step may not be evenly 
distributed such that across all nodes there is at least one 



VPIC - Read Time Per flO Operation - Stock IReader, Lustre 
6,0 
S,S 

V> S,O 
"tJ 4,5 c 
0 4,0 u 
CI.I 3,5 III -CI.I 3,0 
E 1,5 
i= 2,0 
"tJ 1.5 1\1 

CI.I 1.0 ~ 
0,5 
0,0 

I/O Operation Sequence Number 

Fig, 7, Trace of time taken for each call to vtkFileSeriesReader with Ihe stock reader in ParaView 3,8,0 and using LUSlre as Ihe file system, This represents 
a baseline of what Para View currently experiences in terms of I/O read performance, 

VPIC - Read Time Per I/O Operation - VislO, No Locality 
6,0 .---------------------------------------­

V> 5,5 +--- ---------------------------------------------------------------------
~ 5,0 ++.~=====~~===========~=~~===~=====~;===========~==~:==~======;===========~~=~~=== o 4,5 
~ 4,0 1t----~~--_J~._--~Lt_1~~--~r_--~~._--1H~-J~~----t_--~ .. ~--~~~t_ 
~ 3,5 +Y,----,d~or_t_¥._~~~~bM----~r__.~~t__,IH~~~r_--_.~_.~~~_.~-~~i7 

CI.I 3,0 1it·.., .... :i.f-- :.I--f-.llftro 
E 2,5 
i= 2,0 
"tJ 1.5 
: 1.0 
~ 0,5 

0,0 

I/O Operation Sequence N'umber 

Fig, 8, Trace of time taken for each call to vlkFileSeriesReader wilh VisIO support embedded but without the locality algorithm in operation. The number 
of spikes in operation time and the wide spread of results around the trend line indicate wider variability in read times as a result of I/O not being contained 
to nodes that locally store Ihe data needed, 

unique file for that time step. 

In addition to tracking the remote file request percentage, a 
trace of the request time for each call into vtkFileSeriesReader 
was captured and plotted in Figure 7 for the stock reader in 
Para View 3.8.0 being used with Lustre. As shown, the varia­
tion in read times around the trend line is fairly wide which 
complements the computed standard deviation of 0.70 seconds. 
In addition, frequent bursts with read times several seconds 
higher than the mean are seen indicating high congestion to 
the parallel file system thus bottlenecking the application while 
the read request waits to return. 

In comparison, Figure 8 plots our VisIO enabled reader 
but with the locality algOrithm disabled. This shows strictly 
the benefit a distributed file system can provide compared 
to a parallel file system in terms of overall read times and 
the variability in the individual operations. A look at this 

trace shows that without the locality algorithm in operation, 
there are still many instances of spikes in read time that are 
significantly higher than the average but not as long in duration 
indicating improved bandwidth. While not as substantial as 
the peaks seen using Lustre, this still represents the longer 
times needed to transfer large portions of the time step over 
the network to the requesting nodes from the nodes storing 
the data. In addition, the standard deviation for this particular 
test run is 0.53 seconds showing the variability of the non­
outlier read times is less than Lustre's standard deviation of 
0.70 seconds. 

In comparison to the plot in Figure 8, the plot shown in 
Figure 9 shows the same VisIO enabled reader but with the 
locality algorithm operational. In this case, it can be seen that 
the number of outliers has been reduced to a sporadic few 
indicating the minimization of longer running network reads. 



VPIC - Read Time Per I/O Operation - VislO, With Locality 
6.0 

iii" $.$ 
"C $.0 s::: 
0 4.$ 
u 4.0 III 

'" 3.$ - 3.0 III 
E 2.$ 
j:: 2.0 

"C 1.$ 

"' 1.0 
III 0.$ 0: 0.0 

I/O Operation Sequence Number 

Fig. 9. Trace of time taken for each call to vtkFileSeriesReader with VisIO support enabled and using the locality algorithm. Compared to Figure 8, 
the number of spikes in read time are diminished and there is a tighter variability around the trend line when computation is kept predominantly to nodes 
containing local copies of the needed data. 

This also corresponds with the lower percent of remote pulls 
detailed above. Additionally, the standard deviation drops to 
0.28 seconds from 0.53 seconds without the locality algorithm. 
This in tum will yield more consistent read times for the 
visualization application; a preferable condition due to the 
interactive nature of the application's use. 

E. Multi User Environments 

While not common in traditional HPC environments, a multi 
user environment may be a possible deployment path for a data 
intensive compatible cluster. In this setup, nodes run tasks from 
multiple users either simultaneously or in a context switching 
manner thus allowing multiple user's jobs to run and access the 
distributed file system simultaneously. This is in stark contrast 
to traditional HPC setups where a user is the sole user of a 
subset of nodes in the cluster for the duration of the job. 

Effect of Single vs. Multi User on Read Performance 

- 6.0 l~~'~~i~~~~~~~~~~ 
-tl 5.5 
c 5.0 
8 4.5 

! ~ :g 
.. 3.0 
E 2.5 
;:: 2.0 

iU 
~ 0.5 

0.0 

Single User - Multi User - Single User - Multi User -

lustre lustre VistO VislO 

Test Environment 

.VPIC 

• Ocean Salinity 

Fig. 10. Comparison of single and multi user test runs. Single user runs had 
the VPIC and Ocean Salinity data run independently of each other while the 
multi user runs had both run together. As VPIC is the shorter running job, 
due to having fewer time steps, the impact of multiple jobs running is seen 
more prominently in its runs. 

Thus, to see how VisIO and HDFS would handle in an 
environment where it is not the sole user, we devised a test 
where two instances of Para View would be launched at the 
same time and asked to load two different datasets (VPIC 

and ocean salinity) from HDFS. This would simulate two 
users working on two problem sets at the same time. The 
same test was also performed against Lustre with the stock 
Para View reader to show how similar increased workloads 
would compare. The results are plotted in Figure 10 and show 
the average over three runs compared to · the numbers plotted 
in Figure 6. 

It should be noted that there is a 3.08 second increase 
in time to read the VPIC set from Lustre under increased 
load while we see only a 0.275 second increase in read time 
using the VisIO package with HDFS. In comparison, the ocean 
salinity visualization showed increases in read time but not as 
substantial. Lustre showed a 0.221 second increase in read 
time while VisIO with HDFS showed a 0.293 second increase 
from their single user values. The relatively minor increases 
in the ocean sailinity average read times can be attributed to 
the fact that the ocean salinity dataset runs for a longer time 
(12 time steps longer) than the VPIC dataset this giving the 
tail end of the test similar performance characteristics as the 
single user tests thus dampening the effect of having multiple 
processes running. 

Finally, we noted the changes in the standard deviations 
of the runs' individual VO operation times and found that 
between the multi user runs with Lustre and VisIO a standard 
deviation of 2.298 seconds and 0 .690 seconds respectively 
were seen for VPIC. Ocean salinity showed a Lustre standard 
deviation of 1.880 seconds while the VisIO standard deviation 
was 1.595 seconds. Particularly illustrated with the VPIC 
runs, it can be seen that VisIO manages to keep variability 
in individual read times closer to constant than the standard 
reader was able to using Lustre especially under increased 
loads present in a multi user environment. 

V. RELATED WORKS 

Several visualization packages exist for scientific data anal­
ysis and are in widespread use within the High Performance 
Computing (HPC) arena. VTK [21] is a framework that is used 



to abstract away the OpenGL calls needed to display graphics 
thus allowing the scientist to focus on their data rather than 
the system. Parallel VTK [22] and its front-end, Para View [23J 
are higher level implementations of the VTK framework which 
allow the user to run VTK jobs in parallel as well as to build 
and control VTK programs from an easy to use GUI, respec­
tively. Visit [24], like Para View, is a GUI front-end to VTK 
that allows the user to control the visualization process without 
needing detailed, hands-on programming. EnSight [25] is an 
alternate, commercially developed, tool and environment that 
supports scientific visualization at scale. 

Visualization at scale, however, presents its own set of chal­
lenges. Childs, et. al. [26J detail how they needed to apply a 
subset of possible problem specific optimizations dynamically 
to the Visit pipeline to allow it to perform acceptably at 
scale. These optimizations are specified in the notion of a 
contract which is passed along the pipeline detailing what 
optimizations are needed from the end of the pipeline back 
to the beginning. These optimizations include such ideas as 
minimizing disk reads and details on how to manipulate 
the data within the pipeline. Child's, et. al. [6J also detail 
the performance bottlenecks experienced when visualizing at 
scale. This work, as discussed earlier, showed that I/O times 
dwarfed the time needed to run the visualization algorithms 
(isosurfacing in this case) and render the final image. This 
result is the motivating force behind our VisIO solution to 
rework I/O within the visualization pipeline. 

Considering the demand for visualization at scale and 
evidence of an I/O bottleneck, work has been done to aUeviate 
the problems associated with large amounts of data. Parallel 
File Systems have been made available that are capable of 
allowing multiple nodes access to the same file or subset of 
files at significant bandwidths. The most prominent of these 
file systems include: PVFS2 [27], Panasas [28J, Lustre [29], 
and GPFS [30]. However, even with the success of these 
file systems, improvements have needed to be proposed and 
implemented to accommodate common patterns seen in HPC 
workloads, particularly N-to-l. Cams, et. al. [12] detail five 
techniques to help handle small file accesses within a parallel 
file system (PVFS2 in this case). Small file access poses 
a performance problem for parallel file systems which are 
designed to best handle large I/O operations. Similarly, Thakur, 
et. al. [13] detail a method for handling noncontiguous I/O 
requests from a single process and multiple processes within 
a cluster to the same file (N-to-I access pattern). For the single 
process case, data sieving is used to have a process read in 
a large chunk of a file and filter out of various smaller parts 
needed. For the multiple process case, co.llective or two-phase 
I/O calls for each process to read a contiguous region of the 
file and then use inter-process communication to redistribute 
the information read to the requesting process. While these 
techniques work well for HPC simulations, a visualization 
application working with a N-to-N pattern and without MPI-
10 support will not be able to benefit. 

While these techniques are general in nature, some work 
has been done to specifically address I/O performance within 

scientific visualization workflows. Yu, et. al. [3 lJ, discuss a 
method of using input processors to handle the data fetching 
from the file system using optimized MPI-IO routines. Their 
strategy, while showing alleviation of the I/O bottleneck, 
requires dedicated nodes to be set aside for the task of 
acting as input processors and the number required grows 
proportional to data set size. Perterka and Ross, et. al. [7], 
[8] explored running volume rendering applications at scale 
directly on their BlueGenelP system rather than on a dedicated 
visualization system. Their work shows that using MPI-IO 
operations as well as reorganization of the simulation results 
within the file assisted in providing needed I/O performance 
for large datasets. Their technique, however, relies on the 
presence of a parallel file system and interconnect network 
that is sufficiently fast as to not bottleneck the visualization 
workflow. 

Complementing this work on parallel file systems, dis­
tributed file systems were developed to address the issues of 
scaled out datacenters with large data volumes. The seminal 
distributed file system currently is the Google File System 
(GFS) [32] used to run almost all of Google's internal in­
frastructure. The GFS calls for hard drives to be locally 
installed in their servers rather than using a centralized file 
system to allow for the co-location of computat1ion on nodes 
where the needed data is stored. Since GFS is a propietary 
system, there exists a couple of open source implementations 
which strive to replicate GFS's functionality. The most mature 
of which is Hadoop's Distributed File System (HDFS) [IOJ 
and upon which our proposed improvements are based. Also 
available, are the CloudStore [33] and Ceph [34] distributed 
file systems. Finally, D.E. Shaw Research recently proposed 
a new system called Zazen [35] which migrates data from 
compute resources to caches on an analysis cluster to allow 
for local access to data for post-processing. While similar in 
spirit to our employed method, Zazen requires specially built 
analysis applications which integrate with the cache system to 
determine delegation of tasks to nodes where the data locally 
resides in a cache. In contrast, our VisIO system allows a 
general purpose visualization application to leverage the data 
locality provided by the HDFS (and without the limitations of 
a cache) with just changes to the data reader code which is a 
modular component to be replaced as needed. 

VI. CONCLUSION 

In this paper we have proposed' and developed an I/O 
system that is optimized for handling scientific visualization 
applications working with ultra-scale datasets. Our system, 
VisIO, allows traditionally MPI and POSIX based visualiza­
tion applications to leverage the increased bandwidth possible 
from a distributed file system. In addition, we further stregthen 
the ability of these applications to benefit from a DFS by 
providing a data locality aware scheduling a1gorlithm that is 
used to schedule individual process ranks on nodes that contain 
the needed data for the operation to be performed . 

A VisIO enabled Para View reader was put into operation 
on TACC's Longhorn visualization cluster and used with the 



Hadoop Distributed File System. Testing was conducted on 
data from the VPIC plasma physics simulation, and the ocean 
salinity simulation. Results showed that use of HDFS, if 
allowed to scale with the allocated node count, will linearly 
improve in read bandwidth available to the application and can 
exponentially decrease the amount of time needed to read a 
data file by a given MPI rank. Compared to the provided, 
statically-provisioned, Lustre parallel file system, HDFS is 
capable of dynamically allocating storage resources (as easily 
as CPU resources are allocated for a compute-bound job) and 
given enough nodes can over take Lustre in read performance. 
Testing showed a between 50 and 65% read performance 
improvement amongst the datasets when read via our VisIO 
enabled reader. 

Overall, this system has proven that it is a possible path 
forward for the ever increasing demands being placed on 
scientific analysis visualization applications which are being 
constantly challenged to interactively deliver insight to current 
Petascale and future Exascale simulations and experiments. 

ACKNOWLEDGMENT 

The authors would like to thank John Patchett, Joshua 
Wu, and Patricia Fasel of Los Alamos National Laboratory. 
We would also like to thank Berk Geveci, Utkarsh Ayachit, 
and David DeMarle of Kitware, Inc. Additionally, we thank 
William Daughton for access to his VPIC datasets, and the 
COSIM team for the ocean salinity dataset. Finally, we would 
like to thank the NSF for sponsoring this work under grants 
CCF-0811413 and CAREER CCF-0953946. Additionally, we 
thank the US Department of Energy for sponsoring us un­
der Early Career Principal Investigator Award: DE-FG02-
07ER25747. The authors acknowledge the Texas Advanced 
Computing Center (TACC) at The University of Texas at 
Austin for providing visualization resources that have con­
tributed to the research results reported within this paper. URL: 
http://www.tacc.utexas.edu. 

REFERENCES 

[I] G. s. Jones, "Fusion gelS faster," August 2009. [Online] . Available: 
hllp:llwww.nccs.gov!2009/08/17/fusion-getS-faster/ 

[2] S. Habib, A. Pope, Z. Lukic, D. Daniel, P. Fasel, N. Desai , K. Heitmann, 
C.-H . Hsu, L. Ankeny, G. Mark , S. Bhallacharya, and J . Ahrens, "Hybrid 
pelacomputing meetS cosmology: The roadrunner universe project," 
Joumal of Physics: Conference Series , vol. 180, p. 012019 (I0pp), 
2009. [Online] . Available: http://stacks.iop.orglI742-6596/180/012019 

[3] M. C. Schatz, B. Langmead, and S. L. Salzberg, "Cloud computing 
and the dna data race," Nat Biolech, vol. 28, no. 7, pp. 691-{)93, 07 
2010. [Online]. Available: hllp:lldx.doi.orglI0.1038/nbt0710-691 

[4] G. Lo Presti, O. Barring, A. Earl, R. Garcia Rioja, S. Ponce, G. Taurelli, 
D. Waldron, and M. Coelho Dos Santos, "Castor: A distributed storage 
resource facility for high performance data processing at cern," sep. 
2007, pp. 275 -280. 

[5] A. Larzelere, "Delivering insight: The history of the accelerated 
strategic computing initiative (asci)," Lawrence Libermore National 
Laboratory, Tech. Rep., 2009. [Online] . Available: hllps:/lasc.llnl.gov/ 
asc_history/DeliverinlLlnsight..ASCI.pdf 

[6] H. Childs, D. Pugmire, S. Ahern, B. Whitlock , M. Howison, Prabhat, 
G. Weber, and E. Bethel, "Extreme scaling of production visualization 
software on diverse architectures," Compuler Graphics and Appliealions, 
IEEE, vol. 30, no. 3, pp. 22 -31 . may. 2010. 

17] T. Peterka, H. Yu , R. Ross, K.-L. Ma, and R. Latham, "End-to-end study 
of parallel volume rendering on the ibm blue gene/p," sep. 2009, pp. 566 
-573. 

[8] R. B. Ross, T. Peterka. H.-W. Shen, Y. Hong, K.-L. Ma. H. Yu, and 
K. Moreland, "Visualization and parallel i/o at extreme scale." Journal 
of Physics: Conference Series, vol. 125, no. I. p. 012099, 2008. 
[Online]. Available: hllp:llstacks.iop.orglI742-65961125/i= l/a=012099 

[9] R, Ross, "Parallel i/o and computational parallel i/o and computational 
science at the largest scales," November 2009, slides from presentation. 
"Apache hadoop project," March 2010. [Online]. Available: http: 
//hadoop.apache.orgl 

[10] 

[II] 

[12] 

[\3] 

[14] 

[15] 

(16) 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 
[24] 

[25] 

[26J 

[27] 

[28] 
[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

G. Grider, H. Chen, J. Nunez. S. Poole, R. Wacha. P. Fields. R. Martinez, 
P. Maninez, S. Khalsa. A. Matthews, and G. Gibson, "Pascal - a new 
parallel and scalable server io networking infrastructure for supporting 
global storage/file systems in large-size linux clusters." april 2006. pp. 
10 pp. -340. 
P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig, 
"Small-file access in parallel file systems," may 2009, pp. I -II. 
R. Thakur. W. Gropp, and E. Lusk, "Data sieving and collective i/o in 
romio," feb 1999, pp. 182 -189. 
B. Shneiderman, "Response time and display rate in human performance 
with computers." ACM Compul. Surv., vol. 16. no. 3. pp. 265-285, 1984. 
J. A. Hoxmeier and C. Dicesare, "System response time and user 
satisfaction: An experimental study of browser-based applications," 
in Proceedings of the Associarion of Informalion Syslems Americas 
Conference, 2000, pp. 10-13. 
D. Gale and L. S. Shapley, "College admissions and the stability of 
marriage," The American MathemalicaIMonlhiy.voI.69.no. I. pp. pp. 
9-15, 1962. [Online]. Available: http://www.jstor.orglstable!2312726 
"Texas advanced computing center." April 2010. [Online]. Available: 
hltp:llwww.tacc.utexas.edu 
"Seagate savvio 15k.2 data sheet." September 2010. [Online]. Available: 
http://www.seagate.com/docs/pdf/datasheet/disc!ds_savvio_15k_2.pdf 
K. J. Bowers, B. J. Albright, L. Yin. W. Daughton, V. Roytershteyn, 
B. Bergen, and T. J. T. Kwan, "Advances in petascale kinetic 
plasma simulation with vpic and roadrunner: ' Journal of Physics: 
Conference Series. vol. 180. no. I. p. 012055, 2009. [Online]. Available: 
hllp:llstacks.iop.orgl 1742-6596/180!i= l/a=O 12055 
"Los alamos national laboratory climate, ocean, and sea ice modeling 
project," September 2010. [Online] . Available: hllp:llclimate.lanl.gov/ 
"The visualization toolkit (vtk)," March 2010. [Online] . Available: 
hllp:llwww.vtk.org 
J. Ahrens, C. Law, W. Schroeder, K. Manin. and 
"A parallel approach for efficiently visualizing 
large, time-varying datasets," Los Alamos National 
hllp:llwww.vtk .orglVTK/imglpvlk.pdf, Tech. Rep .. 2000. 

M. Papka, 
extremely 

Laboratory, 

"Paraview," March 20 I O. [Online J. Available: hnp:l!www.paraview.org 
"Visit visualization tool ," March 2010. [Online]. Available: www.llnl. 
govNislt! 
"Cei - ensight visualization software," March 2010. [Online]. Available: 
hllp:llwww.ensight.com/ 
H. Childs, E. Brugger. K. Bonnell, J. Meredith. M. Miller. B. Whitlock, 
and N. Max, "A contract based system for large data visualization ," OCI. 

2005, pp. 191 - 198. 
"Parallel vinual file system 2 (pvfs2)," March 2010. [Online]. Available: 
hltp:llwww.pvfs.orgl 
"Panasas," March 2010. [Online]. Available: http://www.panasas.com/ 
"Lustre file system," March 2010. [Online]. Available: hllp:l!sun.com/ 
lustre 
"General parallel file system (gpfs)," March 2010. [Online]. Available: 
http://www.almaden.ibm.com/StorageSystems/projeclSlgpfs/ 
H. Yu and K.-L. Ma. "A study of i/o techniques for parallel visualiza­
tion," Journal of Parallel Computing, vol. 31 , no. 2. 2005. 
S. Ghemawat, H. Gobioff, and S.-T. Leung, "The google file system," 
SIGOPS Oper. Sysl. Rev., vol. 37, no. 5, pp. 29-43, 2003. [Online]. 
Available: http://Iabs.googJe.com/papers/gfs-sosp2003.pdf 
"Clouds tore - high performance scalable storage ," March 20 I O. 
[Online] . Available: hllp:/lkosmosfs.sourceforge.net/ 
"Ceph - petabyte scale storage," March 2010. [Online]. Available: 
http://ceph.newdream.net/ 
T. Tu, C. A. Rendleman. P. J. Miller, F. Sacerdoti, R. O. Dror, and D. E. 
Shaw, "Accelerating parallel analysis of scientific simulation data via 
zazen." in Usenix File and Slorage Technologies (FAST) 2010, 2010. 


