

LA-UR-12-20581

Approved for public release; distribution is unlimited.

Title: The jump-off velocity of an impulsively loaded spherical shell

Author(s): Chabaud, Brandon M.
Brock, Jerry S.

Intended for: Report

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

The jump-off velocity of an impulsively loaded spherical shell

Brandon Chabaud Jerry Brock

April 11, 2012

1 Introduction

We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density ρ and Lamé coefficients λ and μ . The inner and outer radii of the shell are r_i and r_o , respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure $p(t)$. We also assume that the shell is initially at rest. The equation of motion and boundary and initial conditions for this problem are

$$c^{-2}\ddot{u} = u'' + \frac{2}{r}u' - \frac{2}{r^2}u; \quad r_i < r < r_o, \quad t > 0 \quad (1)$$

$$\alpha_i u'(r_i, t) + \beta_i u(r_i, t) = 0; \quad t > 0 \quad (2)$$

$$\alpha_o u'(r_o, t) + \beta_o u(r_o, t) = -p(t); \quad t > 0 \quad (3)$$

$$u(r, 0) = 0, \quad \dot{u}(r, 0) = 0; \quad r_i \leq r \leq r_o \quad (4)$$

where $u(r, t)$ is the displacement, $u' = \frac{\partial u}{\partial r}$ is the radial strain, $\dot{u} = \frac{\partial u}{\partial t}$ is the velocity, $\alpha_i = \alpha_o = \lambda + 2\mu$, $\beta_i = \frac{2}{r_i}\lambda$, $\beta_o = \frac{2}{r_o}\lambda$, and

$$c = \sqrt{\frac{\lambda + 2\mu}{\rho}}$$

is the speed of sound through the material [1, 2, 3].

We want to compute the jump-off time and velocity of the pressure wave, which are the first time after $t = 0$ at which the pressure wave from the outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave $p(t) = P_0 e^{-\alpha t}$, where $\alpha \geq 0$. We notice that a constant pressure wave $P(t) = P_0$ is a special case ($\alpha = 0$) of a decaying pressure wave. Both of these boundary conditions are considered in [3].

As described in [1] using the method of characteristics, the displacement and velocity have the forms

$$u(r, t) = \frac{1}{r}[\psi_1'(r - ct) + \psi_2'(r + ct)] - \frac{1}{r^2}[\psi_1(r - ct) + \psi_2(r + ct)], \quad (5)$$

$$\dot{u}(r, t) = \frac{c}{r}[\psi_2''(r + ct) - \psi_1''(r - ct)] - \frac{c}{r^2}[\psi_2'(r + ct) - \psi_1'(r - ct)], \quad (6)$$

where the functions $\psi_1(\xi)$ and $\psi_2(\eta)$ for $\xi = r - ct$ and $\eta = r + ct$ are determined from (2), (3), and (4). Figure 1 gives a picture of the strips used to compute the functions ψ_1 and ψ_2 and shows how a pressure wave front originating on the outer radius at time $t = 0$ propagates through the shell. In strip [0] of the figure, ψ_1 is computed from (4), so ψ_1 and all of its derivatives are identically 0 for all ξ in the strip. Likewise, in strip {0}, ψ_2 and all of its derivatives are identically 0.

2 Solution for compressible material

In strip $\{N\}$ for $N = 1, 2, \dots$, ψ_2 is computed from (3). When the material is compressible (i.e. when the Poisson ratio $\nu \neq 1/2$), $\psi_2(\eta)$ in strip $\{N\}$ is given by

$$\begin{aligned}\psi_{2\{N\}}(\eta) &= E_{\{N\}1} e^{a_{\{1\}}\eta} \cos b_{\{1\}}\eta + E_{\{N\}2} e^{a_{\{1\}}\eta} \sin b_{\{1\}}\eta - \frac{1}{b_{\{1\}}} \int_{\eta_{\{N\}}^*}^{\eta} e^{a_{\{1\}}(\eta-\gamma)} \left[\frac{r_o}{\alpha_o} p \left(\frac{\gamma - r_o}{c} \right) \right. \\ &\quad \left. + \psi''_{1[N-1]}(2r_o - \gamma) + \frac{1}{r_o} \left(\frac{\beta_o r_o}{\alpha_o} - 2 \right) \psi'_{1[N-1]}(2r_o - \gamma) + \frac{1}{r_o^2} \left(2 - \frac{\beta_o r_o}{\alpha_o} \right) \psi_{1[N-1]}(2r_o - \gamma) \right] \\ &\quad \sin b_{\{1\}}(\eta - \gamma) d\gamma,\end{aligned}\quad (7)$$

where $\psi_{1[N-1]}$ is $\psi_1(\xi)$ in strip $[N-1]$,

$$a_{\{1\}} = \frac{1 - 2\nu}{r_o(1 - \nu)}, \quad b_{\{1\}} = \frac{\sqrt{1 - 2\nu}}{r_o(1 - \nu)},$$

$\eta_{\{N\}}^* = r_o + (N - 1)R$ is the lower boundary of strip $\{N\}$, $R = r_o - r_i$ is the thickness of the shell, and $E_{\{N\}1}$, $E_{\{N\}2}$ are constants chosen so that

$$\begin{aligned}\psi_{2\{N\}}(\eta_{\{N\}}^*) &= \psi_{2\{N-1\}}(\eta_{\{N\}}^*), \\ \psi'_{2\{N\}}(\eta_{\{N\}}^*) &= \psi'_{2\{N-1\}}(\eta_{\{N\}}^*).\end{aligned}$$

Thus both ψ_2 and ψ'_2 are continuous across strip boundaries. The constants $E_{\{N\}1}$, $E_{\{N\}2}$ are given by the vector equation

$$\begin{bmatrix} E_{\{N\}1} \\ E_{\{N\}2} \end{bmatrix} = \frac{e^{-a_{\{1\}}\eta_{\{N\}}^*}}{b_{\{1\}}} \begin{bmatrix} a_{\{1\}} \sin b_{\{1\}}\eta_{\{N\}}^* + b_{\{1\}} \cos b_{\{1\}}\eta_{\{N\}}^* & -\sin b_{\{1\}}\eta_{\{N\}}^* \\ -a_{\{1\}} \cos b_{\{1\}}\eta_{\{N\}}^* + b_{\{1\}} \sin b_{\{1\}}\eta_{\{N\}}^* & \cos b_{\{1\}}\eta_{\{N\}}^* \end{bmatrix} \begin{bmatrix} \psi_{2\{N-1\}}(\eta_{\{N\}}^*) \\ \psi'_{2\{N-1\}}(\eta_{\{N\}}^*) \end{bmatrix}.$$

In strip $[N]$ for $n = 1, 2, \dots$, ψ_1 is computed from (2). When the material is compressible, $\psi_1(\xi)$ in strip $[N]$ is given by

$$\begin{aligned}\psi_{1[N]}(\xi) &= E_{[N]1} e^{a_{[1]}\xi} \cos b_{[1]}\xi + E_{[N]2} e^{a_{[1]}\xi} \sin b_{[1]}\xi - \frac{1}{b_{[1]}} \int_{\xi_{[N]}^*}^{\xi} e^{a_{[1]}(\xi-\gamma)} \left[\psi''_{2\{N-1\}}(2r_i - \gamma) \right. \\ &\quad \left. + \frac{1}{r_i} \left(\frac{\beta_i r_i}{\alpha_i} - 2 \right) \psi'_{2\{N-1\}}(2r_i - \gamma) + \frac{1}{r_i^2} \left(2 - \frac{\beta_i r_i}{\alpha_i} \right) \psi_{2\{N-1\}}(2r_i - \gamma) \right] \sin b_{[1]}(\xi - \gamma) d\gamma,\end{aligned}\quad (8)$$

where $\psi_{2\{N-1\}}$ is $\psi_2(\eta)$ in strip $\{N-1\}$,

$$a_{[1]} = \frac{1 - 2\nu}{r_i(1 - \nu)}, \quad b_{[1]} = \frac{\sqrt{1 - 2\nu}}{r_i(1 - \nu)},$$

$\xi_{[N]}^* = r_i - (N - 1)R$ is the lower boundary of strip $[N]$, and $E_{[N]1}$, $E_{[N]2}$ are constants chosen so that

$$\begin{aligned}\psi_{1[N]}(\xi_{[N]}^*) &= \psi_{1[N-1]}(\xi_{[N]}^*), \\ \psi'_{1[N]}(\xi_{[N]}^*) &= \psi'_{1[N-1]}(\xi_{[N]}^*).\end{aligned}$$

Thus both ψ_1 and ψ'_1 are continuous across strip boundaries. The constants $E_{[N]1}$, $E_{[N]2}$ are given by the vector equation

$$\begin{bmatrix} E_{[N]1} \\ E_{[N]2} \end{bmatrix} = \frac{e^{-a_{[1]}\xi_{[N]}^*}}{b_{[1]}} \begin{bmatrix} a_{[1]} \sin b_{[1]}\xi_{[N]}^* + b_{[1]} \cos b_{[1]}\xi_{[N]}^* & -\sin b_{[1]}\xi_{[N]}^* \\ -a_{[1]} \cos b_{[1]}\xi_{[N]}^* + b_{[1]} \sin b_{[1]}\xi_{[N]}^* & \cos b_{[1]}\xi_{[N]}^* \end{bmatrix} \begin{bmatrix} \psi_{1[N-1]}(\xi_{[N]}^*) \\ \psi'_{1[N-1]}(\xi_{[N]}^*) \end{bmatrix}.$$

We see from Figure 1 that the pressure wave originates at $r = r_o$, $t = 0$ and initially travels along the characteristic line $r + ct = r_o$, so it first reaches r_i at time $t = R/c$, so this is the jump-off time. We recall that the speed of sound through a compressible linearly elastic isotropic material is

$$c = \sqrt{\frac{\lambda + 2\mu}{\rho}}.$$

After jump-off, the wave travels back into the shell along the characteristic line $r - ct = r_i - R$. In order to obtain the jump-off velocity, we notice from (6) that the velocity \dot{u} depends on the second derivatives of ψ_1 and ψ_2 . Since the pressure wave travels along a strip boundary, \dot{u} along the wave may be discontinuous because ψ_1'' and ψ_2'' may be discontinuous.

For simplicity we consider a special type of pressure wave, an exponentially decaying impulse:

$$p(t) = \begin{cases} 0; & t < 0 \\ P_0 e^{-\alpha t}; & t \geq 0 \end{cases} \quad (9)$$

with $\alpha \geq 0$. Notice that when $P_0 \neq 0$, the outer boundary pressure $p(t)$ is not consistent with the initial conditions (i.e. $-p(0) \neq \alpha_o u'(r_o, 0) + \beta_o u(r_o, 0)$), so there is a discontinuity that propagates along the characteristics. We compute the velocity as t approaches the jump-off time R/c both for $\eta \in \{1\}$, $\xi \in [1]$ and for $\eta \in \{1\}$, $\xi \in [2]$, which correspond to the velocities obtain by the pressure wave traveling along the characteristic line $\eta = r_o$ and $\xi = r_i - R$, respectively. These velocities correspond to what [3] calls the particle velocity and the material surface velocity, respectively. Along $\eta = r_o$, the jump-off velocity is

$$\dot{u}_{\{1\}[1]}(r_i, \frac{R}{c}) = \lim_{t \rightarrow R/c, \eta \in \{1\}, \xi \in [1]} \dot{u}(r_i, t) = \frac{c}{r_i} [\psi''_{2\{1\}}(r_o) - \psi''_{1[1]}(r_i - R)] - \frac{c}{r_i^2} [\psi'_{2\{1\}}(r_o) - \psi'_{1[1]}(r_i - R)].$$

Plugging these arguments into the derivatives of ψ_1 and ψ_2 in the appropriate strips, we obtain the jump-off velocity

$$\dot{u}_{\{1\}[1]}(r_i, \frac{R}{c}) = -\frac{r_o P_0}{r_i \rho c}$$

after using the fact that $\alpha_o = \rho c^2$. This velocity is called the particle velocity in [3]. Along $\xi = r_i - R$, the jump-off velocity is

$$\dot{u}_{\{1\}[2]}(r_i, \frac{R}{c}) = \lim_{t \rightarrow R/c, \eta \in \{1\}, \xi \in [2]} \dot{u}(r_i, t) = \frac{c}{r_i} [\psi''_{2\{1\}}(r_o) - \psi''_{1[2]}(r_i - R)] - \frac{c}{r_i^2} [\psi'_{2\{1\}}(r_o) - \psi'_{1[2]}(r_i - R)].$$

Plugging these arguments into the derivatives of ψ_1 and ψ_2 in the appropriate strips, we obtain the jump-off velocity

$$\dot{u}_{\{1\}[2]}(r_i, \frac{R}{c}) = -\frac{2r_o P_0}{r_i \rho c}.$$

This velocity is called the material surface velocity in [3], and it is consistent with the inner surface velocity computed in [1, pg. 22] for general stress boundary conditions.

We conclude this section by making a few observations about the jump-off velocities computed here. First, we notice that the decay parameter α does not appear anywhere in the jump-off velocities. Therefore, these velocities apply to the case where a constant pressure $p(t) = P_0$ is applied to the outer surface for all time. Second, we notice that the material surface velocity $\dot{u}_{\{1\}[2]}(r_i, \frac{R}{c})$ is twice the particle velocity $\dot{u}_{\{1\}[1]}(r_i, \frac{R}{c})$. This difference is explained by the velocity doubling rule described in [4, pg. 716-719].

3 Solution for incompressible material

For our purposes, we define an incompressible material to be a linearly elastic solid with Poisson ratio $\nu = 1/2$ and finite bulk modulus K . The speed of sound through such a material is

$$c = \sqrt{\frac{K}{\rho}}.$$

This is not physically realistic, but it is sometimes used as a simplifying assumption [1, 2, 3]. For such a spherical shell, the equation of motion (1) and the initial conditions (4) are the same as in the compressible case, but the boundary conditions take a slightly different form. In this case, $\beta_i = \frac{2}{r_i} \alpha_i$, $\beta_o = \frac{2}{r_o} \alpha_o$, and $\alpha_i = \alpha_o = \rho c^2$.

$$\rho c^2 [u'(r_i, t) + \frac{2}{r_i} u(r_i, t)] = 0, \quad t > 0 \quad (10)$$

$$\rho c^2 [u'(r_o, t) + \frac{2}{r_o} u(r_o, t)] = -p(t), \quad t > 0 \quad (11)$$

The velocity \dot{u} has the same form (6) as in the compressible case, and the functions ψ_1 , ψ_2 are computed by the same method of characteristics. However, the equations for ψ_1 and ψ_2 in each strip in Figure 1, and hence their solutions, take a different form. Taking $p(t)$ to have the form given in (9), the equation for ψ_2 in strip {1} is

$$\psi''_{\{1\}}(\eta) = -\frac{r_o}{\rho c^2} P_0 e^{-\alpha(\eta-r_o)/c}$$

and its solution is

$$\psi_{\{1\}}(\eta) = - \int_{r_o}^{\eta} \int_{r_o}^{\beta} \frac{r_o}{\rho c^2} P_0 e^{-\alpha(\gamma-r_o)/c} d\gamma d\beta$$

after accounting for continuity of ψ_2 and its first derivative across the $\eta = r_o$ strip boundary. In strip [1],

$$\psi_{1[1]}(\xi) = 0$$

for all ξ inside the strip. ψ_1 in strip [2] is

$$\psi_{1[2]}(\xi) = \int_{r_i-R}^{\xi} \int_{r_i-R}^{\beta} \frac{r_o}{\rho c^2} P_0 e^{-\alpha(r_i-R-\gamma)/c} d\gamma d\beta.$$

Finally, computing the jump-off velocities along the characteristic lines $\eta = r_o$ and $\xi = r_i - R$, we find that the particle velocity is

$$\dot{u}_{\{1\}[1]}(r_i, \frac{R}{c}) = -\frac{r_o P_0}{r_i \rho c}$$

and the material surface velocity is

$$\dot{u}_{\{1\}[2]}(r_i, \frac{R}{c}) = -\frac{2r_o P_0}{r_i \rho c}.$$

Thus the jump-off velocities are the same as in the compressible case. Also, as in the compressible case, the decay parameter α does not appear in the final result, so these jump-off velocities apply equally well to a constant loading stress $p(t) = P_0$. Finally, we note that these jump-off velocities are equal to the particle and inner surface material jump-off velocities computed in [3].

References

- [1] Todd O. Williams, Shengtai Li, Jerry S. Brock, and James R. Kamm. Spherical shell analysis for material modeling. *LA-UR-05-8038*, 2005.
- [2] James R. Kamm, Todd O. Williams, Jerry S. Brock, and Shengtai Li. Application of gegenbauer polynomial expansion to mitigate gibbs phenomenon in fourier-bessel series solution of a dynamic sphere problem. *Commun. Numer. Meth. Engng.*, 26(10):1276–1292, 2010.
- [3] Wayne N. Weseloh. The response of a spherical shell to an impulsive pressure. *LA-UR-04-1683*, 2004.
- [4] Y. B. Zel'dovich and Y. P. Raizer. *Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena*. Dover Publications, Inc., 2002.

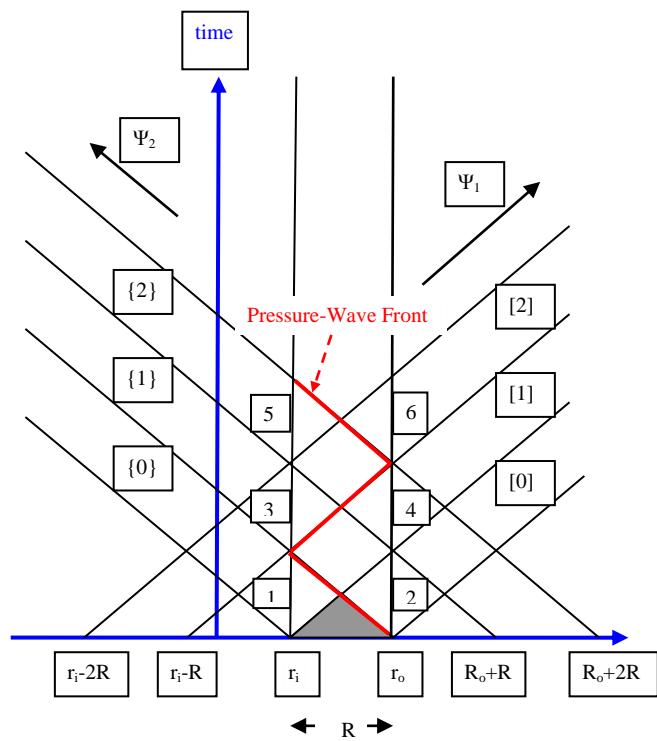


Figure 1: Pressure wave front.