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1 Introduction

We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material
with density p and Lamé coefficients A and p. The inner and outer radii of the shell are r; and 7,
respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a
uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. The equation
of motion and boundary and initial conditions for this problem are

-2 " 2/ 2
cu=u +-u ——=u rm<r<r, t>0

“u - 5 &)
o (ri, t) + Biu(ri, t) = 0; £ >0 (2)
ot (ro,t) + Bou(ro, t) = —p(t); >0 (3)
u(r,0) =0, a(r,0)=0; r<r<r, (4)

where u(r, t) is the displacement, v’ = g—:‘, is the radial strain, u = %7; is the velocity, a; = ap, = A\ +2u,

B = 2, B = 2, and
. A+ 2u
P

is the speed of sound through the material [1, 2, 3].

We want to compute the jump-off time and velocity of the pressure wave, which are the first time
after ¢ = 0 at which the pressure wave from the outer surface reaches the inner surface. This analysis
computes the jump-off velocity and time for both compressible and incompressible materials. This
differs substantially from [3], where only incompressible materials are considered. We will consider
the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = Pye™ !, where
a > 0. We notice that a constant pressure wave P(t) = P, is a special case (a« = 0) of a decaying
pressure wave. Both of these boundary conditions are considered in [3].

As described in [1] using the method of characteristics, the displacement and velocity have the
forms

u(r,2) = [ (r —ct) + 4 + ct)] — o (r — et) + alr + )], (5)
(1) = S+ ct) — Ul — ct)] — ST+ ef) — i — et )

where the functions ¥1(§) and 12(n) for £ = r — ¢t and n = r 4 ct are determined from (2), (3), and
(4). Figure 1 gives a picture of the strips used to compute the functions ¢; and 2 and shows how
a pressure wave front originating on the outer radius at time ¢ = 0 propagates through the shell. In
strip [0] of the figure, 1 is computed from (4), so 11 and all of its derivatives are identically 0 for
all £ in the strip. Likewise, in strip {0}, ¢2 and all of its derivatives are identically 0.

1 LA-UR-12-xxxxx



2 Solution for compressible material

In strip {N} for N = 1,2,..., ¥ is computed from (3). When the material is compressible (i.e.
when the Poisson ratio v # 1/2), ¥2(n) in strip { N} is given by

. 1 K a —_ N1 To —To
Yany(n) = Epnyi e cosbpuyn + Eqnyoe® " sinbpyn — o— / O] (A A
n

{1} IN} Qo €
1 Boro 1 BoTo
+ vy (210 —7) + ,,To( - 2)Yyn—1)(2r0 =) + E@ Y J1n—1)(2ro — V)]

sinbygyy(n — v)dy,

where ¥y y_1) is 91(§) in strip [N — 1],

1 -2v bt — v1—2v

agy = To(l—V)’ {1} — To(l—V)’

nf{‘N} =1, + (N — 1)R is the lower boundary of strip {N}, R =, — r; is the thickness of the shell,
and Eyn)1, Eyn)2 are constants chosen so that

Yoy (M{ny) = Yoyv—13 (NN}

Uorny (ny) = Yav—1y (ny)-

Thus both 9 and ¢} are continuous across strip boundaries. The constants E(ny1, Eqny2 are given
by the vector equation

[E{N}l}:e‘”””?“ agy sinbiynjyy + by cosbuynfyy  —sinbynjyy | | Yapv-ny ()
Einye b1y —ag1y cos byyyniny + by sinbpyniny - cosbuyingyy Uoin—1y (M wy)

In strip [N] for n = 1,2, ..., 91 is computed from (2). When the material is compressible, 1 ()
in strip [N] is given by

. I _
Yin(€) = E[z\/]lﬁ’a[”§ cos b€ + E[N]Qeam5 sin b€ — . /5 e (€= [¢/2,{N—1}(27“i -7) (8)

ERESHY
1 Biri 1 Biri )
+7“7(07 - 2)%{1\/—1}(27’@‘ —7)+ g@ T Yo n—1}(2ri — )] sinbpy(§ —v)dy,
where 1o n_1y is a(n) in strip {N — 1},
1-—2v v1—2v

o= ri(l —v)’ by = ri(l —v)’

5[“1\,] =1, — (N — 1)R is the lower boundary of strip [N], and Ejy};, E|y)2 are constants chosen so
that

Y1y (Eny) = Yav-1(€);
Vi Eivy) = Yiv—1 (Evy)-

Thus both ¢ and ¢} are continuous across strip boundaries. The constants Enj1s Efnj2 are given
by the vector equation

|: E[N]l :| _ eia[l]g[*N] af) sin b[l]ff}\]] + bm Ccos b[l]fka} —sin b[l]gf}v]
E[N]2 bm —ajy] Cos bmffﬁN] + b[l] sin b[l]gka] CcOs b[l]ff}v]

Y1v-1](§[n)
A&y |
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We see from Figure 1 that the pressure wave originates at r = r,, ¢ = 0 and initially travels along
the characteristic line r + ¢t = 75, so it first reaches r; at time t = R/c, so this is the jump-off time.
We recall that the speed of sound through a compressible linearly elastic isotropic material is

A+ 2u
c= :
p

After jump-off, the wave travels back into the shell along the characteristic line r — ¢t = r; — R. In
order to obtain the jump-off velocity, we notice from (6) that the velocity @ depends on the second
derivatives of 11 and 9. Since the pressure wave travels along a strip boundary, @ along the wave
may be discontinuous because 1} and 14 may be discontinuous.

For simplicity we consider a special type of pressure wave, an exponentially decaying impulse:

0; t<0
p(t) = { Poe—oct; t Z 0 (9)

with a > 0. Notice that when Py # 0, the outer boundary pressure p(t) is not consistent with the
initial conditions (i.e. —p(0) # a,t/(1,0) + Bou(r,,0)), so there is a discontinuity that propagates
along the characteristics. We compute the velocity as t approaches the jump-off time R/c both for
n € {1}, £ € [1] and for n € {1}, £ € [2], which correspond to the velocities obtain by the pressure
wave traveling along the characteristic line n = r, and £ = r; — R, respectively. These velocities
correspond to what [3] calls the particle velocity and the material surface velocity, respectively. Along
1N = T4, the jump-off velocity is

R

J iy ) = l .
e 2) = lim

(1:,t) [¥51y(r0) = Ui (ri — R)] — T%Wéu}(ro) — Yy (ri — R)].

_c
T
Plugging these arguments into the derivatives of 1; and 9 in the appropriate strips, we obtain the
jump-off velocity

. R TOPO

agypy(ri, ) = = ripe

after using the fact that o, = pc?. This velocity is called the particle velocity in [3]. Along ¢ = r;— R,
the jump-off velocity is

tim i) = [y (o) — Ui (ri = R)] = 50y (re) — i (ri — R))

iy ) =
{1}[2] b C o t—»R/C,ne{l}vge[Q]

Plugging these arguments into the derivatives of ¢); and 2 in the appropriate strips, we obtain the
jump-off velocity

. R 2TOP()

Ay (ri ) = e
This velocity is called the material surface velocity in [3], and it is consistent with the inner surface
velocity computed in [1, pg. 22] for general stress boundary conditions.

We conclude this section by making a few observations about the jump-off velocities computed
here. First, we notice that the decay parameter oz does not appear anywhere in the jump-off velocities.
Therefore, these velocities apply to the case where a constant pressure p(t) = Py is applied to the
outer surface for all time. Second, we notice that the material surface velocity 1y (7i, %) is twice
the particle velocity w1y (s, %) This difference is explained by the velocity doubling rule described
in [4, pg. 716-719].
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3 Solution for incompressible material

For our purposes, we define an incompressible material to be a linearly elastic solid with Poisson
ratio v = 1/2 and finite bulk modulus K. The speed of sound through such a material is

This is not physically realistic, but it is sometimes used as a simplifying assumption [1, 2, 3]. For
such a spherical shell, the equation of motion (1) and the initial conditions (4) are the same as in the
compressible case, but the boundary conditions take a slightly different form. In this case, 3; = T%ai,

_ 2 _ _ 2
ﬁo—gao, and o; = @, = pc°.

pc2[u (ri,t) + ;u(m,t)] =0, t>0 (10)
P (rort) + Sl )] = —p(t), 1> 0 (11)

The velocity @ has the same form (6) as in the compressible case, and the functions 1, 1o are
computed by the same method of characteristics. However, the equations for ¥ and 12 in each strip
in Figure 1, and hence their solutions, take a different form. Taking p(¢) to have the form given in
(9), the equation for 15 in strip {1} is

—a(n=ro)/c

" o
%{1}(77) = _pcg

and its solution is

Yoy (1) / / o Pye 07 ey

after accounting for continuity of ¢» and its first derivative across the n = r, strip boundary. In
strip [1],

%[1] (f) =0
for all € inside the strip. ¢4 in strip [2] is

/ / p02 a(ri*R*V)/cdryd/@.
ri— ri—R

Finally, computing the jump-off velocities along the characteristic lines n = r, and £ = r; — R, we
find that the particle velocity is

. R ro
iy (i ;) - r;pC
and the material surface velocity is
. R 2r, Py
Ay (i ) = = e

Thus the jump-off velocities are the same as in the compressible case. Also, as in the compressible
case, the decay parameter a does not appear in the final result, so these jump-off velocities apply
equally well to a constant loading stress p(t) = Fy. Finally, we note that these jump-off velocities
are equal to the particle and inner surface material jump-off velocities computed in [3].
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Figure 1: Pressure wave front.
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