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1 Abstract 

This report summarizes the achievements and final results of this program. The objective 
of this program is to develop a comprehensive systems approach to integrated design of 
sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, 
using advanced model-based techniques. In particular, this program is focused on the 
model-based sensing and control system design for the core gasification section of an 
IGCC plant. The overall approach consists of (i) developing a first-principles physics-
based dynamic model of the gasification section, (ii) performing model-reduction where 
needed to derive low-order models suitable for controls analysis and design, (iii) 
developing a sensing system solution combining online sensors with model-based 
estimation for important process variables not measured directly, and (iv) optimizing the 
steady-state and transient operation of the plant for normal operation as well as for startup 
using model predictive controls (MPC). Initially, available process unit models were 
implemented in a common platform using Matlab/Simulink®, and appropriate model 
reduction and model updates were performed to obtain the overall gasification section 
dynamic model. Also, a set of sensor packages were developed through extensive lab 
testing and implemented in the Tampa Electric Company IGCC plant at Polk power station 
in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant 
operation data was also used to validate the overall gasification section model. The overall 
dynamic model was then used to develop a sensing solution including a set of online 
sensors coupled with model-based estimation using nonlinear extended Kalman filter 
(EKF). Its performance in terms of estimating key unmeasured variables like gasifier 
temperature, carbon conversion, etc., was studied through extensive simulations in the 
presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier 
kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal 
sensing to optimize the plant operation during startup pre-heating as well as steady state 
and transient operation under normal high-pressure conditions, e.g. part-load, base-load, 
load transition and fuel changes. The MPC simulation studies showed significant 
improvements both for startup pre-heating and for normal operation. Finally, the EKF and 
MPC solutions were coupled to achieve the integrated sensing and control solution and its 
performance was studied through extensive steady state and transient simulations in the 
presence of sensor and modeling errors. The results of each task in the program and 
overall conclusions are summarized in this final report. 

2 Executive Summary 

This section briefly summarizes the key accomplishments of the program. They are 
described in more detail for each key task in the subsequent sections. 

2.1 Task 1 – Modeling for gasification section 

The objective in Task 1 was to (i) develop a detailed transient model of the gasification 
section to be used for simulation studies and sensing & control system design in Tasks 2 
& 3, and (ii) implement sensors in RSC in the TECO IGCC plant to obtain data for model 
validation. In particular, a dynamic model was developed for nominal, high-pressure 
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operation of the gasification section for both steady state as well as transient operation like 
turndown (i.e., load/throughput changes) and fuel changes (coal or coal+petcoke blends). 
This model was then extended to encompass the post-ignition, pressure ramp-up portion 
of the startup process as well, where both the syngas pressure and the steam pressure 
are raised gradually to nominal operating pressures. In parallel, another set of models was 
developed for the pre-heating phase of the startup, wherein the thermal transients in the 
gasifier refractory and the RSC and the corresponding thermal stresses are modeled 
during the pre-heating operation. All the models were implemented in Matlab/Simulink® 
except for the gasifier preheating where a dynamic thermal model in Matlab/Simulink® 
was coupled with a stress calculation model in ANSYS®. For the gasifier model, a 
systematic model-reduction was also performed to enable fast real-time computation for 
simulation and controls design. The implemented models were used for all sensing and 
control simulation studies in this program. 

2.2 Task 1 – Sensor Implementation in RSC at TECO Plant 

In this subtask, the objective was to install sensors in the RSC in the TECO IGCC plant 
and obtain plant operation data that could be used for model validation. Initially, three 
sensor candidates were identified: (i) radial temperature profiles at levels 7 & 10, (ii) axial 
temperature profile between levels 7 &10, and (iii) strain measurement in the RSC dome 
outside the hot syngas path. Initial lab tests for the axial temperature profile indicated high 
risks in packaging survivability and thus, it was not pursued for implementation.  Extensive 
lab tests were performed in 2007 and 2008 to study and improve the performance of the 
optical Fiber Bragg Grating (FBG) sensors under expected thermal and strain conditions. 
Finally, packaging design and fabrication for the radial temperature sensor probes with 
integrated Type B thermocouples and optical fiber FBGs was completed in 2008, and 
installed in the RSC on levels 7 and 10 in the TECO IGCC plant in February/March 2009. 
The probe on level 10 worked very well and survived for more than the thirty days aimed 
for. The probe at level 7 also provided valuable temperature profile data for five days of 
operation after plant startup. However, on the fifth day of operation, the ceramic packaging 
broke off abruptly – it is suspected that the hot gas and/or slag impinged directly onto the 
probe causing the abrupt breakage. A set of fiber optic FBG strain sensors was also 
installed in the RSC dome outside the hot syngas path to monitor strain evolution over 
time due to gradual fouling buildup on the heat transfer area. A key challenge for this 

sensor was for the optical fibers to survive a large thermal strain (~6000 ) due to the 
temperature rise at startup, and thereafter accurately measure a very small mechanical 

strain (~50 ) due to fouling buildup over few weeks of operation. This sensor also 
worked very well for more than six weeks, matching very well with estimated mechanical 
strain due to gradual fouling buildup. 
 

2.3 Task 2 - Sensing System Design 

The objective of this task was to design a model-based sensing/estimation system that 
provides online measurement/estimate of process variables in the gasification section that 
are important for monitoring and control, e.g., gasifier temperature, carbon conversion, 
gasification efficiency, slag viscosity and syngas properties. To this end, initially, a linear 
model-based Kalman filter analysis was performed at baseload operating condition to 
study the performance of model-based estimation in the presence of sensing and 
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modeling errors. Also, a sensitivity study was performed to identify key sensor biases and 
model parameter errors that contribute to the uncertainty in overall estimation accuracy. 
This analysis was then followed by a full nonlinear model-based estimation using an 
Extended Kalman Filter (EKF) to verify the performance of nonlinear estimator in the 
presence of errors in model parameters and sensor noise/bias. One problem with the 
standard EKF is that it does not enforce any constraints on the estimated state or 
parameter variables (e.g. mole fractions that should be between 0 and 1). To address this, 
the EKF implementation was extended to include constraints on all estimated variables 
and force them to be in the appropriate range.  The performance of the constrained EKF 
was tested through extensive simulation studies in the presence of unknown errors in the 
model parameters, e.g. RSC fouling and gasifier kinetics, and random combinations of 
sensor biases. The EKF simulations showed that the unknown model parameters were 
correctly identified and updated to match simulated variations, thereby allowing accurate 
estimation of key process variables that are not measured but are important for monitoring 
and control, e.g. gasifier temperature, carbon conversion, slag viscosity and overall 
efficiency. The EKF was then later coupled with the MPC designed in Task 3 to achieve 
the integrated sensing & control system. 

2.4 Task 3 – Control System Design 

In this task, initially a nonlinear model predictive controller (MPC) was designed and 
implemented to optimize the steady state and transient operation during nominal plant 
operation (e.g. turndown and fuel changes) as well as during startup, specifically pre-
heating of gasifier and RSC during startup. The online real-time optimization in MPC 
allows a flexible optimization (e.g. ramp rate, oxygen consumption, carbon conversion, 
power output) depending on the operation mode. Initially in 2008 & 2009, the MPC 
implementation assumed “ideal sensors” with knowledge of all important state and output 
variables, to identify the entitlement in achievable performance improvements for nominal 
operation and startup. In 2010, the EKF designed for estimation in Task 2, and MPC 
designed in Task 3 were integrated to obtain the final integrated sensing & control system, 
and extensive simulation studies were performed in the presence of sensing and modeling 
errors for steady state and transient optimization. 
 
MPC simulation studies were performed for achieving faster gasifier pre-heating subject to 
constraints on the thermal stresses in the refractory bricks. The simulations showed more 
than 20% reduction in total pre-heating time for the gasifier refractory. MPC simulations 
were also performed to simultaneously reduce startup time and maximum thermal tensile 
stresses to identify the design tradeoff between the two. Similarly, MPC simulation studies 
on the RSC pre-heating, subject to thermal gradient and stress constraints showed 
significantly faster pre-heating depending on the maximum steam flow available. Finally, 
MPC simulation studies were performed for nominal operation including baseload 
operation, turndown between baseload and 50% partload and fuel changes with up to 
50% petcoke in coal-petcoke blend. Exploiting multivariable constrained optimization, 
MPC yielded up to 2% increased net power output at baseload and 7-10% reduction in 
oxygen consumption at partload for coal operation. Similarly, MPC simulations for load 
changes (turndown) between baseload and fifty percent load conditions indicated 
potentially 20% faster turndown capabilities through coordinated manipulation of multiple 
operating variables, while enforcing key operability constraints. These MPC studies were 
repeated for operation with coal-petcoke blend with up to 50% petcoke, showing similar 
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improvements in turndown rates and slightly less oxygen reduction. For petcoke operation, 
achieving high carbon conversion becomes a significant constraint.  
 
The initial MPC simulations were performed assuming “ideal sensors”, i.e. perfect 
knowledge of all state and output variables. In 2010, the MPC and EKF implementations 
designed separately were coupled to achieve the overall integrated sensing & control 
system. To this end, initially, the models used for the EKF were updated to match the 
reduced-order models used for MPC – owing to the high simulation cost for repeated 
future horizon prediction, the models for MPC were reduced to eliminate some fast 
dynamics like syngas pressure-flow dynamics. Initial simulation studies with the integrated 
EKF & MPC indicated a need for retuning of the EKF and MPC to achieve stable and 
optimized operation. Final simulation results showed similar steady state and transient 
performance improvements in spite of sensing and model parameter errors, with slight 
degradation for some combinations of sensor biases. Also, the simulation studies 
indicated that the unknown model parameters (gasifier kinetics and RSC fouling) were 
more “observable” at baseload conditions, i.e. could be identified more accurately, as 
opposed to partload conditions, which makes sense given the higher sensitivity with 
respect to these parameters at higher throughput at baseload operation. 

3  Introduction 

Integrated Gasification Combined Cycle (IGCC) is emerging as a promising technology for 
clean and efficient power generation from coal. Over the last decade or so, several 
advancements have been made in coal gasification technology, through concerted efforts 
by DOE and the industry. GE is currently commercializing this technology with the first full-
scale plant being built for Duke Energy at Edwardsport, Indiana. While IGCC holds 
significant promise for clean and efficient power generation from coal, there is significant 
opportunity to improve the plant operation for enhanced reliability, availability, efficiency 
and flexibility through advanced sensing and controls. An IGCC plant essentially includes 
a chemical plant with multiple integrated sections like the air separation unit (ASU), 
gasification, and syngas processing and cleanup, coupled with a combined cycle power 
generation plant. It is desirable to operate the IGCC plant with higher flexibility, including 
different fuels and varying throughput and power generation, while maintaining or 
improving efficiency and availability. Traditional controls and operation based on simple 
approaches and relying on operator experience are conservative, and thus, do not achieve 
the potential operation entitlement. In particular, the gasification section, which has a 
particularly harsh environment with high temperatures and pressures and presence of slag 
and corrosive elements, has limited online sensing available currently for monitoring and 
controls. Consequently, the operation of this section, using a combination of simple 
controls and operator judgment based on limited and/or infrequent measurements, is often 
conservative, especially for transient operations. This program focused on developing an 
advanced model-based integrated sensing and controls solution for improved operation of 
the gasification section. The overall program scope and objective and the team is shown 
in Figure 1. GE Global Research, in consultation with the GE Energy Gasification & 
Controls teams, developed the models, and advanced model-based sensing and controls 
solutions. Also, specific sensor packages were developed at GE Global Research and 
implemented in the TECO Polk Power Station IGCC plant to obtain plant operation data. 
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Figure 1: Program overview – team, scope and objectives. 

 
In this three-year program, a systematic model-based approach was developed for the 
design of a comprehensive sensing system combining online sensors along with online 
model-based estimation, and a model-based multivariable controller that optimizes the 
operation of the gasification section at steady-state as well as through key transients like 
startup, turndown and fuel changes. The overall model-based sensing and controls design 
is shown in Figure 2. Initially, available models for different units of the gasification section 
(e.g. gasifier, radiant syngas cooler (RSC)) were combined in a common platform in 
Matlab/Simulink® to obtain a comprehensive dynamic model of the gasification section. 
Also, specific sensing technologies were implemented in the IGCC plant at TECO Polk 
Power Station to obtain operation data to be used for the RSC model validation. The 
dynamic model of the gasification section was used in a systematic model-based analysis 
and design framework to design a comprehensive sensing and control system to improve 
the robustness and flexibility and optimize the operation of the gasification section for 
steady-state as well as transient operations, in particular, for startup, turndown and fuel 
changes. 
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Figure 2: Integrated advanced model-based sensing and controls system for gasification 

section. 

 
The overall three-year program had three main tasks: 

1. Modeling, model reduction and model validation, 
2. Sensing system design, and 
3. Control system design. 

In Task 1, available models for different units in the gasification section were combined in 
a common platform in Matlab/Simulink® to obtain the dynamic model for the overall 
gasification section, which was used for sensing and control system design in Tasks 2 and 
3. Available component models for key process units were implemented in 
Matlab/Simulink®. Some of the existing models had only been used at steady state 
conditions and appropriates updates were made to allow transient simulation with these 
models. Furthermore, some of the models, e.g. gasifier and RSC, were of high order, i.e., 
they had a large number of internal states since they model spatial variation along the 
length of the gasifier and the RSC. Owing to the large dimension, these models are 
computationally expensive and not amenable to real-time transient simulations and model-
based analysis and design of sensing and control systems. Thus, these high-order models 
were simplified through model reduction techniques to obtain lower order models while 
maintaining high accuracy for control. A separate set of models was also implemented for 
startup pre-heating of the gasifier and RSC. These models are described in Section 4.1. 
Also, in Task 1, temperature and strain sensors were implemented in the RSC in the 
TECO Polk Power Station IGCC plant to obtain suitable operation data to be used for 
validation of the RSC model. A key common challenge for all the sensors was developing 
suitable packaging for the harsh environment in the RSC, and appropriate mechanical 
design to facilitate easy installation given the limited access inside the RSC. These 
sensors were installed in the TECO IGCC plant in the RSC in early 2009 and plant 
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operation data was obtained successfully. The results from lab development and plant 
implementation are discussed in Section 4.2. 
 
As mentioned earlier, the gasification section has a very harsh operating environment and 
as a result limited online sensors are available for monitoring and control, especially in the 
gasifier and RSC. A key objective of this program was to develop a comprehensive 
sensing solution, combining limited available online sensors with real-time online model-
based estimation, or “virtual” sensing for other key variables, e.g. gasifier temperature, and 
carbon conversion. Motivated by this, in Task 2, the dynamic model of the gasification 
section from Task 1 was initially used to perform a systematic “observability” analysis. 
More specifically, a linear model-based Kalman filter analysis was performed to study the 
performance of model-based estimation for key unmeasured variables and its sensitivity to 
modeling and sensor errors. The sensitivity analysis allowed identifying the key sensor 
errors (bias and noise) and modeling errors (unknown/varying parameters), which were 
then included in an online nonlinear model-based estimation algorithm using an extended 
Kalman filter (EKF). Simulation studies were performed in the presence of modeling errors 
introduced through variations in model parameters, and noise and random biases in online 
sensors to verify the performance of the nonlinear model-based estimation system at 
steady-state as well as during transient operations. More details on this task are discussed 
in Section 5. 
 
In Task 3, a model-based advanced controller was designed for the gasification section to 
coordinate the operation of the individual units in this section to optimize the overall 
section performance. In particular, a nonlinear model predictive controller (MPC) was 
implemented, initially assuming ideal measurement for all variables needed for feedback, 
to optimize the performance of the gasification section at steady state and during key 
transients like startup, turndown (i.e. load/throughput changes), and fuel changes. 
Extensive MPC simulation studies were performed for startup, specifically gasifier and 
RSC pre-heating, and normal operation modes including turndown and fuel changes. 
These MPC simulations indicate opportunities for significant improvements in transient 
operation, reducing pre-heating and turndown transient times, and optimizing steady-state 
performance for minimized oxygen consumption. In the final Phase III of the program the 
EKF-based sensing system designed in Task 2 and MPC-based control system designed 
in Task 3 were coupled to achieve the overall integrated sensing and control system. The 
integrated system was updated and re-tuned to achieve stable and optimized operation, 
and its performance was studied through simulations with modeling and sensor errors. 
The results from this task are described in Section 6. 
 
Finally, conclusions from the overall program and potential directions for application of the 
developed technology in an IGCC plant in a staged manner are summarized in Section 7. 

4 Task 1 – Modeling & Sensor Implementation 

First-principles physics-based models allow capturing the process knowledge through 
rigorous mass and energy balances, and utilizing it systematically for improved online 
model-based sensing and controls. In the face of limited online sensors, first-principles 
models allow relating process variables across the entire system, and can thus be used as 
the basis for online model-based estimation or “virtual” sensing of key unmeasured 
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process variables. Similarly, first-principles models capture the interaction between 
multiple control inputs and allow exploiting this multivariable interaction to optimize the 
process operation at steady state as well as during transients. With this motivation, the 
key objective of Task 1 was to obtain a suitable dynamic model of the gasification section 
in Matlab/Simulink® that can be used for real-time transient simulations and the design of 
advanced model-based sensing and control systems in Tasks 2 and 3. To this end, 
available component models for the individual process units in the gasification section 
were translated and implemented in Matlab/Simulink® to obtain the overall gasification 
section model for nominal operation. In the case of high-order models, specifically the 
gasifier model, model reduction was performed to obtain a low-order accurate model that 
allowed real-time simulation. In other cases, additional details were included to include key 
process dynamics. A separate set of models was also implemented for the startup pre-
heating operation, specifically for RSC and gasifier pre-heating. These models are 
described in Section 4.1. Also, fiber optic temperature and strain sensors and 
thermocouple temperature sensors were installed in the radiant syngas cooler (RSC) in 
the IGCC plant at TECO Polk Power Station and plant operation data was obtained 
successfully. Details on the lab testing and design of the sensor packages, and the sensor 
implementation and the data collection are given in Section 4.2. Finally, Section 4.3 shows 
some validation results of the gasification section model modified to match plant operation 
data from the TECO IGCC plant at Polk power station. 

4.1 Modeling 
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Figure 3: Gasification section. 

 



 15 

Figure 3 shows the overall scope of the gasification section considered in this program, 
starting from the coal slurry, recycle CO2 and oxygen feed to the gasifier, to the scrubbed 
syngas output and the high-pressure (HP) steam output. It should be mentioned, that the 
above process configuration is a general IGCC plant gasification section configuration, 
and is not specific to the TECO Polk Power Station IGCC plant. Also, to protect proprietary 
information, the model simulation and plant measurement data are presented in 
normalized units throughout the report. The key process units included in the gasification 
section are: 

 Gasifier 

 Radiant syngas cooler (RSC) 

 Syngas quench and RSC sump 

 Syngas scrubber 

 RSC high pressure (HP) Steam Drum 
 
The gasification section models have been developed for different phases of operation as 
shown in Figure 4. In particular, a model of the above units was implemented for nominal 
operation at high pressure, e.g. turndown between 50-100% load and fuel changes. This 
model was also extended to operate at lower pressures to cover the post-ignition pressure 
ramp-up phase of the startup, wherein the syngas and steam pressure are raised from 
pre-heating/ignition conditions to nominal operating conditions. Finally, another set of 
models was implemented for the pre-heating phase of the startup. In particular, the model 
for RSC and HP steam drum was modified to perform heat transfer in reverse direction, 
i.e. from the steam feed to HP steam drum and through heated water circulation to the 
RSC to pre-heat all the water tubes. This thermal model was coupled with a thermo-
mechanical stress calculation model to calculate transient stress profiles that depend on 
the transient heating profile. In parallel, a similar model was implemented in 
Matlab®+ANSYS® for the pre-heating of the gasifier refractory, to describe the transient 
thermal profile in the refractory lining and the corresponding thermal stresses, which limit 
the pre-heating operation. These pre-heating and stress models were used in Task 3 to 
optimize the pre-heating sequence for faster startup. 
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Figure 4: Operation modes for gasification section and dynamic model. 

 
For the nominal and pressure ramp-up portion of startup, all the above component models 
were implemented in Matlab/Simulink® and integrated to obtain the overall gasification 
section model. This model can be simulated transiently for nominal operation modes, e.g. 
load changes, coal/petcoke blend changes, as well as pressure changes during the 
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pressure ramp-up phase of startup. Details on the component models and the overall 
gasification section nominal operation model are provided in the next few sections. The 
gasifier and RSC pre-heating models are described in the subsequent sections. 

4.1.1 Gasifier 

A 1-D (axial) gasifier model was available that had been validated against the TECO IGCC 
plant operation. This 1-D model was translated into Matlab/Simulink® and verified at 
baseload steady-state conditions against the original model. The model parameters were 
then updated to be consistent with the reference plant operating conditions. The model 
describes steady-state axial composition and temperature profiles along the length of the 
gasifier. Some of the key outputs of this model are the outlet syngas composition and 
temperature, ash flow and carbon conversion. Since the dynamics in the gasifier are quite 
fast compared to the transients like turndown and fuel changes, a steady-state model of 
the gasifier is adequate. However, due to the distributed model (PDE) and the high spatial 
resolution in the axial direction, the model was computationally expensive and not suited 
for real-time simulation or controls analysis/design. This necessitated a model reduction to 
obtain a lower-order model that could be used for real-time simulation and sensing & 
control design, while preserving high accuracy.  
 
The gasifier model reduction was pursued using the technique of Proper Orthogonal 
Decomposition (POD). To this end, initially the full-order model was simulated for a wide 
range of operating condition variations to encompass the desired operating envelope: 

 throughput changes between 50-100%,  

 oxygen feed ratio changes between –5% to +7%, 

 coal slurry water content variation from nominal between –10% to +10%, and  

 recycle CO2 feed changes between 0-100%, 

 percent petcoke in coal-petcoke fuel blend between 0-50%. 
 

The results from these simulations (more than 400) were then used for the model 
reduction as highlighted in Figure 5. The original 1-D gasifier model describes the axial 
variation of ten gas-phase species flow rates along with three solid-phase components 
(ash, carbon and volatiles in coal) and liquid water (from slurry) arising from water boiling 
and devolatization of coal volatiles in the initial section and a set of thirteen heterogeneous 
(solid carbon + gas constituent) and homogeneous (gas-phase) reactions. The original 
model had altogether N=15 gas/liquid/solid components, with corresponding flow rate 
profiles along the gasifier length for each simulation run. However, in the reduced model, 
only a reduced set of components was modeled through the dominant spatial modes. In 
particular, components like liquid water, coal volatiles and oxygen that are 
consumed/transformed in the immediate boundary layer at the gasifier inlet and have 
essentially zero flow rate through most of the gasifier are eliminated from the model. 
Similarly, ash, which doesn‟t participate in any reactions and is preserved (except for mass 
flux to the slag layer), is also modeled separately. Finally, the fact that there are reaction 
invariants, in particular the total elemental flow rates for C, H, N, O and S are constant 
along the gasifier length was used to further eliminate the number of species to be 
modeled directly through the dominant spatial modes. In particular, a Q-R factorization of 
the reaction stoichiometric matrix was used to identify (C=6) gas-phase components that 
are most aligned with orthogonal directions to the reaction invariants (i.e. total C, H, N, O, 
S element flow rates) – this ensures that the C=6 components are independent and can 
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then be used to reconstruct the remaining 5 components from the total element balance 
without any ill-conditioning, i.e. the C=6 components and the five elements C, H, N, O, S, 
together comprise a well-conditioned coordinate change. This way, instead of identifying 
dominant spatial modes for N=15 components, a lower number of species C=6 are used 
to identify the dominant spatial modes.  
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Figure 5: Model reduction approach for 1-D gasifier model. 

 
For the C=6 species, the flow rate profile from each of the RN simulation runs were 
stacked in columns of a matrix and a SVD performed to identify the desired number of 
dominant spatial modes. To improve the performance of the SVD and dominant mode 
identification, two key transformations on the raw flow rate data were employed. First, for 
the species with very small flow rates (e.g. COS, NH3) the flow rates were transformed 
using a log transform. This does two things (i) it converts small values to significant values 
that are then captured with appropriate weights in the identified dominant modes, and (ii) it 
provides a natural barrier in the reduced model from calculating negative flow rates due to 
small numerical errors – any negative flow rates would be physically meaningless and 
render the reaction kinetics expressions unusable. Second, the flow rates (or log of flow 
rates for species with low concentrations) were obtained in terms of deviations from the 
nominal (baseload) operating condition, and normalized using constant scale factors. The 
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SVD analysis was used to identify M=15 dominant modes, which are shown in Figure 6 for 
the C=6 species modeled directly as combinations of the dominant spatial modes. The 
number of modes to retain was identified by projecting the full-order model simulation 
results along these modes and evaluating the residual error. Thus, finally a low-order 
(M+1) model was derived by projecting the original PDE model equations along these 
dominant modes.  

 

Figure 6: Dominant spatial modes (first 15) for the C=6 species modeled as combinations of 

these spatial modes in the reduced-order model. 

 

 

Figure 7: Comparison of full-order (blue x) and reduced-order (red circles) simulation 

results for gasifier exit temperature and unconverted carbon flow rate, and corresponding 

errors between full- and reduced-order models. 
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The reduced-order model runs more than 1000x faster than the original full-order model 
while maintaining very high accuracy – the faster simulation of the reduced-order model 
was critical for subsequent real-time simulation and sensing & controls design. The 
reduced-order model results were compared against the original model for a wide range of 
variations in operating conditions listed above and the error between the two models was 
approximately 2 K for syngas temperature and less than 0.2-0.4% in syngas composition. 
The comparison between the full- and reduced-order models for gasifier exit temperature, 
unconverted carbon flow rate and some syngas component compositions at gasifier exit 
are shown in Figure 7 and Figure 8. The original model took a few minutes (ranging from 
10-30 minutes) to converge at a steady state, which is too slow for a real-time transient 
simulation of the transients like turndown and fuel changes. The reduced-order model 
converges to steady state within a fraction of a second and allowed simulating transiently 
for changes in operating conditions, e.g., throughput changes, oxygen feed changes, coal 
blend changes, and could be used for sensing and controls design. 

 

Figure 8: Comparison of full-order (blue x) and reduced-order (red circles) simulation 

results for some syngas component compositions at gasifier exit, and corresponding 

errors between full- and reduced-order models. 
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The performance of the reduced order model was also compared against the original full-
order model for low-pressure conditions during startup post-ignition, pressure ramp-up 
phase using the same dominant spatial modes obtained for nominal operation. As 
expected, the error increased slightly. For instance, the errors in exit temperatures 
increased from ~2K to ~8-10K, and errors in exit unconverted carbon flow rate increased 
from ~0.02 kg/s to about 0.25 kg/s, which are still quite small compared to desired model 
accuracy, especially for the relatively short post-ignition pressure ramp-up phase of startup 
operation. So the reduced-order gasifier model was also used for simulation and controls 
design for the pressure ramp-up phase. 
 

4.1.1.1 Slag Flow Model 
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Figure 9: Gasifier slag flow model structure. 

 
In addition to the gasifier model, a model for slag flow on the gasifier refractory wall was 
also implemented as depicted in Figure 9. The model for slag flow takes as inputs, the ash 
and heat flux from the gasifier along its length and calculates the temperature profile as 
well as profiles for mass holdups (and thus thickness) of a solid and liquid slag layer along 
the gasifier length based on slag viscosity and resulting flow rate obtained as a function of 
ash composition and local temperature. The original slag flow model was very detailed 
with high spatial resolution in the axial as well as the radial direction and modeled only 
steady-state conditions. This model was translated to Matlab/Simulink®, using a coarser 
spatial resolution and adding dynamics to the material and energy balances. This model 
was then interfaced with the reduced-order gasifier model to provide transient evolution of 
the liquid and solid slag thickness along the gasifier length based on transient variations in 
the gasifier operation.  
 
 
 
 
 
 



 21 

4.1.2 Radiant Syngas Cooler (RSC) and High Pressure (HP) Steam Drum 
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Figure 10: 1-D (axial) RSC heat transfer model for counter-current flow of hot syngas and 

water/steam and heat exchange. 

 
A 1-D (axial) RSC transient model describing the transient energy balances between the 
hot syngas and water/steam mixture flowing in counter-current direction was available. 
This model was converted into Matlab/Simulink®. This model takes as input the exit 
streams from the gasifier and calculates the convective and radiative heat flux along the 
length of the RSC into the riser tubes and the water flowing inside in counter-current 
direction to generate steam, as shown in Figure 10. The translated model included 
dynamic energy balances for the syngas, tube metal and the water/steam mixture in the 
tubes to obtain the transient variation in the hot syngas temperature, the tube metal 
temperature and the steam fraction in the water stream along the length of the RSC. This 
model in Matlab/Simulink® was verified against the original model. However, this model 
had quite stiff dynamics with the metal temperature states having much faster dynamics, 
which necessitated the use of a variable step-size stiff solver in Simulink. While this is 
adequate for a pure simulation environment, it is desirable to use a fixed step-size solver 
when coupling with discrete-time controls as needed in Tasks 2 & 3. To this end, a quasi-
steady-state approximation of the fast metal temperature states was employed to 
eliminate stiffness and enable fast simulations with a fixed step-size solver, while still 
preserving very high accuracy. This 1-D (axial) RSC model was also compared with a 
more detailed 3-D CFD model to derive detailed profiles for heat transfer calculations 
along the length and obtain a good match between the 1-D and 3-D models for the 
average axial temperature profile and heat flux profile along the RSC length.  Typical 
steady-state profiles for steam mass fraction (void fraction), water temperature and syngas 
temperature along the RSC length are shown in Figure 11 for clean RSC at baseload and 
half load conditions as well as for fully fouled RSC at baseload conditions. 
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Figure 11: Steady-state profiles for steam mass fraction, water and syngas temperature in 

RSC for base-load and half-load conditions in clean RSC and base-load conditions with 

fully fouled RSC. 

In addition to the transient heat balance in the RSC, the RSC model was updated to 
calculate updated syngas composition profiles along the RSC length due to gas phase 
reactions varying with changes in the syngas temperature. In particular, the water gas shift 
reaction and methane steam reforming (or methanation reaction in reverse direction) were 
included to capture the variation in syngas composition along the RSC length. While 
ideally, the energy balance and the composition changes due to these reactions should be 
coupled, they are run in a sequential manner since the net heat of reaction for these 
reactions with small composition changes along the RSC length are very small and can be 
ignored compared to overall RSC heat duty. 
  
The RSC model was coupled with a high-pressure (HP) steam drum model and a flow 
model for calculating the water/steam circulation flow rate between the drum and the 
riser/downcomer in the RSC.  The HP steam drum model was translated from another 
modeling platform to Matlab/Simulink® and it describes the dynamic behavior of liquid and 
steam holdups and enthalpy as well as drum metal temperature. While this model is 
sufficient for nominal operating conditions after startup, i.e. at high steam pressure in the 
drum, additional features had to be added to describe important transients during the 
pressure ramp-up phase in startup. In particular, modifications to incorporate steam 
holdup under the water level in the drum as shown in Figure 12, and dynamic material 
balances in the RSC riser water/steam holdups were added – these features are important 
to describe the transient “swell” characteristics in the liquid level that are very significant at 
low pressures during startup.  
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Figure 12: RSC HP steam drum model structure with steam holdup under the water level. 

 
Figure 13 shows an example simulation run for the update RSC, HP drum model for a 5% 
drop in drum pressure starting from steady-state conditions at nominal operating pressure. 
The right middle and bottom plots show the variation in the water flow rate along the RSC 
tube length as well as the variation in the volume fraction of steam holdup below water 
level in the drum during the transient. These characteristics result in a transient “surge” in 
the level as shown in the plots in bottom left despite using a PI level controller. Changes in 
drum level during pressure transients, especially at lower pressure during startup, are 
important to capture since the drum level has fairly tight operability constraint limits. 
 

 

Figure 13: Simulation run with 5% drop in HP steam drum pressure showing transient drum 

level surge due to flow rate variation in RSC tubes and variation in steam volume fraction 

under water level during the transient. 
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4.1.3 RSC Quench/Sump and Scrubber 

A model of the RSC syngas quench and the water/slag flow through the sump was 
translated into Matlab/Simulink®. This model takes as input the syngas and ash/slag 
streams from the RSC outlet, and calculates the outlet syngas stream flow rate, 
composition and enthalpy, especially for change in water vapor content and temperature 
using a 1-stage flash non-ideal vapor liquid equilibrium (VLE). This model was also 
validated against the original Aspen dynamics model. Similarly, a model of the scrubber 
was translated into Matlab/Simulink®. This model takes the syngas output from the 
quench as input and calculates the outlet syngas composition and temperature.  

 

The above sections described the individual component models used for the nominal & 
pressure ramp-up phase of the gasification section operation. The next two sections 
describe the models for RSC and gasifier refractory pre-heating during plant startup. 

4.1.4 RSC Pre-heating 

 

Figure 14: RSC pre-heating with steam. 

 
Figure 14 shows the schematic representation of the RSC and HP steam drum operation 
for startup pre-heating. Starting from ambient temperature and pressure conditions, steam 
is supplied into the HP drum and gradually the pressure in the HP drum and the 
recirculating water temperature is raised, thereby heating the tubes and the shell in the 
RSC.  The water level in the HP drum is maintained through blowdown of condensate. 
A transient thermal model for the pre-heating of the RSC was implemented in 
Matlab/Simulink®. Figure 15 shows an example set of transient temperature profiles from 
RSC pre-heating in the TECO IGCC plant for the RSC tubes and the shell (solid red/green 
plots), and the corresponding plots obtained from the transient thermal model (dashed 
red/green plots). The dashed black plot shows the saturation temperature of the water 
corresponding to the drum pressure. The tubes are directly heated by the circulating hot 
water and heat up faster. On the other hand, the shell is indirectly heated through heat 
transfer from the tubes, and also has high thermal capacity, causing it to heat up slower, 
thereby creating thermal differences and stresses. These thermal differences and stresses 
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impose a limitation on the pre-heating operation of the RSC. Clearly, the model outputs for 
the transient temperature profiles of the tubes and the shell match very well with the 
measured temperatures during RSC pre-heating. The temperatures for the tubes and the 
vessel shell are used to calculate the different thermal expansions and corresponding 
changes in the stresses in the RSC piping structure. This model is used in Task 3 to 
optimize the pre-heating transient in order to minimize the total pre-heating time needed to 
reach the final desired temperature while ensuring that the transient temperature and 
stresses are always within acceptable limits. 
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Figure 15: Pre-heating temperature profiles in RSC – comparison of model outputs and 

TECO IGCC plant startup operation data. 

 

4.1.5 Gasifier Pre-heating 

Analogous to the RSC pre-heating, the gasifier refractory lining is also pre-heated by using 
auxiliary burners in the gasifier. The direct pre-heating of the inside of the refractory lining, 
and the corresponding heat transfer through the refractory lining and the outside metal 
shell leads to a temperature gradient in the refractory lining, and thus, buildup of tensile 
and compressive stresses. The transient thermal model is obtained as 1-D (radial 
direction) conductive heat transfer from the inner surface of the innermost refractory layer, 
through the multiple refractory layers and the metal shell and subsequent convective heat 
loss to the ambient environment outside. The temperature is symmetric in the azimuth 
direction, while the variation in the axial direction is small and ignored. More specifically, 
the transient radial heat transfer equation 

Eq 1  t

T

K

c

rr

T

r

T p

2

2

 

is discretized using finite difference with a specified set of boundary conditions – inner 
surface temperature (at r=r0) and outside ambient air temperature for heat loss through 
convective heat transfer from the metal shell. Also, temperature dependent material 
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properties (e.g. thermal conductivity and specific heat capacity) are used for respective 
refractory layers and the metal shell. 
 

 

Figure 16: Transient temperature profiles in the gasifier refractory layers and metal shell 

during pre-heating obtained by transient thermal model. 

 
Figure 16 shows the relative transient temperature profiles across the multiple refractory 
layers and the outside shell for the baseline pre-heating temperature profile on the inner 
(hot) surface of the innermost refractory layer. The radial temperature gradient in the 
refractory layers, is a function of the pre-heating temperature profile, and leads to 
corresponding tensile and compressive stresses. The thermal model is implemented in 
Matlab/Simulink® to calculate the transient thermal profile across the refractory layers and 
the metal shell. Owing to the complicated geometry of the refractory layers, an ANSYS® 
model was implemented to calculate the tensile and compressive stresses in the 
innermost refractory layer (with the maximum temperature gradients and thus with 
maximum stresses) for a given temperature profile. This ANSYS® model was coupled to 
the Matlab/Simulink® thermal model to obtain the overall transient thermal and stress 
model for the gasifier pre-heating. Figure 17 shows the transient tensile and compressive 
stresses in the innermost refractory layer for the baseline pre-heating sequence for a 
design that allows contact between the refractory bricks and compressive hoop stresses to 
build up during pre-heating. In particular, initially the hoop stresses are very small due to 
gaps between the refractory bricks at low temperatures. However, with heating and 
expansion these gaps close and thereafter the compressive hoop stress builds up while 
the tensile stress decreases. This simulation run shows that the compressive stress 
reaches approximately 70% of the compressive strength and the tensile stress reaches a 
peak value of approximately 40% of tensile strength at the point when the gaps between 
the refractory bricks close up. Clearly, the temperature profile across the refractory layers 
and the corresponding thermal growths and tensile/compressive stresses are a function of 
the pre-heating temperature profile followed for the inner (hot) surface. This pre-heating 
profile is optimized under Task 3 to minimize the total pre-heating time needed to reach 
the final desired refractory temperature while not exceeding the peak compressive and 
tensile stresses observed for the baseline pre-heating profile. 
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Figure 17: Transient profiles for tensile and compressive stresses as fraction of respective 

strengths in the innermost refractory layer obtained by the ANSYS® model. 

4.2 Sensor Implementation in TECO IGCC Plant  

In this sub-task (Task 1.5), the objective was to design and implement sensors in the RSC 
in the TECO Polk Power Station IGCC plant to obtain plant operation data that could be 
used to validate the models for RSC. Initially, three potential candidates for sensor 
implementation were identified for installation in the RSC: 

 Radial temperature profile measurement inside RSC at levels 7 and 10 using a 
combination of thermocouples and fiber optic sensors. The key challenge for this 
option was survivability of the sensor and packaging for the harsh environment – 
temperatures up to 2000 or more was expected. 

 Axial temperature profile measurement inside RSC between levels 7 and 10 and 
using fiber optic sensors and thermocouples. In addition to harsh environment and 
survivability challenges, an additional challenge was the mechanical design and 
installation of the sensing package due to the very limited access inside the RSC. 

 Strain measurement outside the hot gas path using fiber optic strain sensors. Key 
challenges for this were sensor bonding to the strain surface and sensor 
survivability at temperatures up to 700F and corresponding large thermal strains 

(~5000-7000 ), while accurately measuring a small amount of slowly varying 

mechanical strain due to slow fouling buildup, estimated to be approximately 50  
over two weeks. 

 
Based on extensive lab testing of the fiber sensors, as well as the Inconel tube for 
packaging for the axial temperature measurement, it was decided that axial temperature 
measurement had too high risks in terms of packaging and sensor failure and potentially 
adversely impacting plant operation, and was thus dropped from the sensors being 
pursued. Extensive lab testing for FBG temperature measurement for radial temperature 
profile, as well as strain measurement outside the hot gas path using fiber optic sensors 
showed promising results. These lab-testing results are summarized in Section 4.2.1. 
These two sensing options were pursued for final package fabrication and installation in 
TECO IGCC plant in February-March 2009. The package design, installation and data 
collection is summarized in Section 4.2.2. 
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4.2.1 Lab Testing for Temperature and Strain Sensing using Fiber Optic Sensors 

For the two sensing options (i) radial temperature profile measurement in the RSC at 
levels 7 and 10 using a combination of thermocouples and fiber optic sensors, and (ii) 
strain measurement in top section of the RSC outside the hot gas path, extensive lab tests 
were performed with fiber optic sensors and packaging options to refine the options and 
validate the performance before fabricating the final sensor packages for installation in the 
plant. This section provides a brief summary of these lab-testing results. 
 

4.2.1.1 Lab Tests for Fiber Optic Temperature Sensing 

 
The objective of the radial temperature sensor probe was to obtain a radial temperature 
profile at two different levels in the RSC (levels 7 & 10) over a period of roughly 30 days of 
operation after startup, survive at estimated operation temperatures of ~2000F, and 
withstand thermal shocks from intermittent shutdown/startup cycles over this period. To 
meet these objectives, a lab oven setup was put together to systematically test multiple 
fiber optic FBG sensors and down-select the final option to be implemented in the plant. 
Lab tests were performed with the FBG sensors in a temperature controlled oven at 
temperatures up to 1100 C (~2000F) to characterize both the short-term and longer-term 
performances. These tests demonstrated the short-term measurement accuracy and 
repeatability in the range of 10-25F (comparable to type-K and type-S TCs being used as 
reference) and excellent survivability with temperature variations up to 2000F for more 
than two weeks for one of the FBG sensor prototypes. Figure 18 shows the lab setup used 
for short-term and long-term testing of the fiber sensor for temperature measurement. 
 

 

Figure 18: Lab setup for fiber optic temperature sensor short-term & long-term testing. 

 
Given the high risk and emphasis on survivability of the fiber sensor at these high 
temperatures two separate FBG sensor prototypes were studied in parallel (i) Prototype I 
using a fused silica, doped fiber with thermal pre-treatment/annealing, and (ii) Prototype II 
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using a femto-second laser generated FBG on a non-doped quartz fiber. Initial lab tests 
focused on characterizing the signal behavior from both prototypes. As shown in Figure 
19, both prototypes had pretty good peak signal across the desired operating temperature 
range, with prototype I showing slightly better signal to noise ratio. 

• Prototype I - Cheaper, fabricated at 

GRC with doped silica fiber

• Prototype II - More expensive, femto-

second laser fabrication at vendor, 

non-doped quartz fiber

• Prototype I - Cheaper, fabricated at 

GRC with doped silica fiber

• Prototype II - More expensive, femto-

second laser fabrication at vendor, 

non-doped quartz fiber

 

Figure 19: Signal characteristics from two prototype FBG temperature sensors 

 

 

Figure 20: Short term temperature measurement errors for two FBG sensor prototypes. 
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Figure 20 shows the lab test results from runs for short-term performance, where the 
signals from the two sensor prototypes were calibrated over the entire temperature range 
against a type K TC in the oven. The corresponding calibration errors are shown in the 
bottom plot, which shows error in the range of 20-25F. Figure 21 shows the performance 
of the two sensor prototypes, where the oven temperature was cycled eight times in the 
range 1000-2000F. A key challenge was to understand if the sensor would first survive this 
kind of temperature cycling, and second how repeatable the temperature measurements 
are across the multiple cycles. Both sensors survived the cycles well. While prototype I 
has smaller variation (the plot at the bottom shows 1-sigma variation of ~7F), prototype II 
has smaller variation at the low temperature end and higher variation at the high 
temperature end. 

 

Figure 21: Short-term performance for repeatability of temperature measurement for two 

FBG sensor prototypes. 

 
A critical challenge for the FBG sensor is the longer-term survivability of the sensor and 
stability of temperature measurement, especially at the high temperature end – for this 
particular application it was desired to have operation data for 30 days after startup. In 
particular, lab tests showed limited life of the prototype II sensor where the sensor signal 
was lost gradually in 2-5 days at 2000F. This is likely because the entire fiber becomes 
crystalline and the FBG grating that relies on alternate crystalline & amorphous layers is 
eventually lost. Prototype I, in contrast, showed good longer-term performance. Figure 22 
shows the performance of the prototype 1 FBG sensor when left at 2000F for 5 days 
continuously. The top set of plots show the first run with these sensors. In particular, the 
top right plot shows a zoom-in of the FBG sensor at 2000F for more than 5 days from 
t=120hr to t=250hr. The FBG sensor shows some transient lag taking about 30hrs to rise 
from t=120hr to t=150hr from 1980F to 2000F. After that lag, the temperature reading 
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looks quite stable. The bottom set of plots show a similar test zooming in at 2000F for 24hr 
using the same sensor after repeated cycles. Again, the bottom right plot shows a stable 
measurement from the sensor for 24hrs at 2000F. However, this time, there is no 
significant lag in the sensor response. The lag in the first run indicates a possible slow 
phase change in the fused silica fiber during the first time at 2000F, and subsequent runs 
at 2000F show a faster transient response since there is no additional phase change. 

 

Figure 22: Longer term testing for survivability and stability of temperature measurement 

using FBG sensor prototype I 

In summary, both prototypes I and II worked well in lab tests for short-term performances 
in terms of accuracy and repeatability. However, prototype II showed limited life at high 
temperatures (2000F) – with the sensor signal being lost over 2-5 days. On the other 
hand, prototype I was very promising with stable temperature measurement in lab tests for 
one week at a time. Moreover, repeated testing continued to show good performance over 
more than two weeks of accumulated testing. Based on these results, prototype I was 
pursued for radial temperature measurement. 
 

4.2.1.2 Lab Tests for Fiber Optic Strain Sensing 

For the strain sensing application in the RSC dome, the aim was to monitor the slow 
variation in the mechanical strain in the structure corresponding to gradual buildup of 
fouling and increasing weight of the heat transfer tubes. The key challenges were in terms 
of working at fairly high temperatures (nominally 600-700F but potentially up to 800F), 

withstanding the resulting large thermal strain (estimated to be up to ~ 6000-7000  from 
thermal expansion), and measuring a very small amount of mechanical strain (estimated 

to be less than 50 ) over several weeks of operation as the fouling built up. To address 
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these challenges, a fiber optic strain testing setup was used in the lab, as shown in Figure 
23. The setup includes an Inconel rod heated in a temperature-controlled oven, with fiber 
sensors installed on the rod in the hot zone inside the oven and a commercial resistive 
strain gauge installed on the cold end of the rod outside the oven. The resistive sensor 
would not survive the desired high temperature conditions, but was used as a reference 
for strain measurement on the same rod. At one end the rod was fixed to a mechanical 
structure, while at the other end a pulley mechanism was used to implement a desired 
amount of mechanical strain through applied force and vary it in a desired manner.  
 
For strain measurement with the fiber sensor, initially two options were explored in 
parallel, as shown in Figure 24. In particular, a big risk was the survivability of the fiber at 
temperatures up to 800F and corresponding large thermal strain (from thermal expansion 

of the rod, estimated to be about 7000 ). Motivated by this, the first option shown on the 
left used a bi-metallic tube package designed to compensate for the thermal expansion of 
the rod and thus reduce the thermal strain seen by the fiber, while on other hand 
maintaining good contact and high sensitivity for mechanical strain. The fibers (one for 
strain measurement and one for temperature measurement to be used for temperature 
compensation) were mounted inside the tube package. Another key challenge was the 
bonding material to attach the fibers to the packaging for good strength and performance 
at these high temperatures. Three different bonding options were tested (i) high 
temperature solder glass, (ii) glass capillary, and (iii) high temperature ceramic adhesive. 
Lab tests on bonding strength and creep showed only the ceramic adhesive worked very 
well up to 500C without any significant creep and failure.  
 
The second sensor option used a metalized fiber sensor directly mounted on the rod using 
the ceramic adhesive, as shown on the right side of Figure 24. While this direct mount 
option was a much simpler option, it had high risks for survivability of the fiber under high 
thermal strains expected. 
 
 

 

Figure 23: Lab setup for high-temperature fiber-optic strain sensor. 

Initial lab tests with the bi-metallic package option showed very low signal-to-noise ratio, 
perhaps due to incomplete curing of the ceramic adhesive inside a confined tubular 
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package. Also, repeated testing with applied mechanical strain at various operating 
temperatures showed inconsistent results, perhaps due to nonlinear behavior of the bi-
metallic package due to varying CTEs of the two metals used. Given these initial 
performance limitations, this option was discarded and only the direct mounted sensor 
option was pursued. 
 
For the direct mounted fiber sensor, survivability of the fiber itself under the expected high 

thermal strain (~6000-7000 ) as the rod was heated up to 800F was a key risk. 
Motivated by this, a vendor supplying a copper-coated fiber FBG sensor was identified. 
Another challenge was the method of ceramic adhesive based bonding of the fiber sensor 
to the substrate rod. In one option, it was desired to use only spot bonding using the 
ceramic adhesive on either side of the FBG sensor. While this option seems intuitively 
more reasonable to get clean strain measurements, it always led to a broken fiber during 
curing of the ceramic adhesive and was thus deemed risky. The other option was to 
encapsulate the entire FBG sensor inside the ceramic adhesive attached to the substrate 
rod. This method proved to be successful in lab tests for strain measurement at high 
temperatures. 
 

Cu-metalized fiber Ceramic bonding material

FBG strain sensor
(pre-strained)

FBG temperature
sensor

Cu-metalized fiber Ceramic bonding materialCu-metalized fiber Ceramic bonding material

FBG strain sensor
(pre-strained)

FBG temperature
sensor

FBG strain sensor
(pre-strained)

FBG temperature
sensor

 

Figure 24: FBG strain sensor options (a) metalized fibers inside a bi-metallic tube 

packaging, and (b) metalized fiber directly mounted to substrate (rod). 

 
Figure 25 shows strain measurement results using the metalized (copper coated) fiber 
FBG sensor mounted directly on the Inconel rod in the oven at different temperatures up 
to 700F, compared to the resistive strain gauge mounted on the cold end. In each case, at 
temperatures of 100, 300, 500 and 700F, the mechanical strain was increased/decreased 

incrementally in steps of 15 , as well as large changes of ~130 . The calibrated FBG 
sensor strain measurements are compared against the resistive strain gauge on the cold 

end, showing excellent match across these temperature conditions with a 1-  error of 

~2.2-2.8 , which is quite small compared to the desired mechanical strain measurement 

range (up to 50 ) and the accuracy of the lab setup. Similar tests were performed at 
higher temperatures up to 1000F, to understand the limitations of this FBG strain sensing 
technique. The results shown in Figure 26 indicate performance deterioration, especially 
at 900 & 1000F, with increased mismatch from the resistive sensor as well as increased 
variability in the FBG strain measurement. This is likely due to degradation in the ceramic 
adhesive performance due to CTE mismatch with the Inconel rod.  Given that the actual 
temperatures in the plant were expected to be in the 600-700F range and potentially up to 
800F for short durations, the copper-coated FBG sensor directly mounted onto the rod 
proved to be a good solution. However, the vendor supplying the copper-coated fiber went 
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out of business, necessitating the search for an alternative solution. It was decided to 
develop a solution in-house.  

 

Figure 25: Performance of metalized fiber FBG strain sensor directly mounted on the rod in 

the hot section at temperatures up to 700F, compared to a resistive strain sensor mounted 

on the cold end of the rod. 

 

Figure 26: Performance of metalized fiber FBG strain sensor directly mounted on the rod in 

the hot section at temperatures between 800F & 1000F, compared to a resistive strain 

sensor mounted on the cold end of the rod. 
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Through successive iterations, the final solution involved electroplating a thin layer of 

Nickel (~10 m) on a regular FBG sensor, encapsulating this Ni-plated sensor within a thin 
stainless steel tubing, bonding both ends of the fiber to this tubing using a ceramic 
adhesive, and then bonding this sensor package to the rod using the ceramic adhesive.  
 
The stainless steel tubing provided added mechanical protection as well as mitigated the 
interference from the curing process of the ceramic adhesive – in tests without the steel 
tubing, the ceramic adhesive curing led to deterioration in the FBG sensor peak signal. 
This final package yielded a clean FBG peak signal across the temperature range from 
ambient to 800F. This package was mounted on the same Inconel rod in the lab test setup 
and tested against the resistive strain gauge at temperatures up to 800F. Figure 27 shows 
the results from the lab experiments for measuring mechanical strain at 800F and 600F. 
The data from 800F (shown in top plot in (a)) was used to calibrate the fiber strain sensor 
and the same calibration was used at 600F to verify its performance against the resistive 
strain gauge mounted on the cold end of the rod. The comparison at 600F was excellent 
showing consistency in fiber sensor performance at these two different temperatures.  
 

 

Figure 27: Lab test results with Ni-plated fiber (including FBG area) in SS tubing. 

Mechanical strain measurement at (a) 800F and (b) 600F using calibration obtained at 800F. 
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4.2.2 Temperature & Strain Sensor Packaging and Installation 

 
For the radial temperature profile, a sensor package was designed using Hexoloy (SiC) 
packaging material and integrating two Type B thermocouples and a fiber optic cable with 
ten FBG sensors distributed along the length of the probe. Figure 28 shows the overall 
radial package in the top with the hexoloy probe containing the two Type B thermocouples 
and a fiber optic cable with ten FBG sensors along the length of the probe. The hexoloy 
probe, which was about 16” long, was integrated to the standard water-cooled soot blower 
lance (SBL) used in the RSC at available ports on levels 7 and 10. There were altogether 
four SBL ports available, two on each level (7 and 10) – the two ports on each level are on 
diagonally opposite sides labeled as east and west side. The integrated TC and FBG 
sensor probes were installed on the east side on levels 7 and 10. In order to verify the 
symmetry of temperature profiles between east and west sides, another set of two hexoloy 
probes with a single Type B thermocouple at the tip was installed on the west side on 
levels 7 & 10. 
 

TC #1

Quartz ¼” OD, 24” long

Hexoloy package

Alumina + sleeve

6”
3”

TC #2

Fiber with 10 FBGs

Cable for TCs

FBG10 (0.5”)FBG1 FBG2 FBG3

2” apart 7”
(each 1” apart)

0.5” 

FBG4 (6.5” from tip)

SBL

Quartz Tube with FBG sensors

TC #1

Quartz ¼” OD, 24” long

Hexoloy package

Alumina + sleeve

6”
3”

TC #2

Fiber with 10 FBGs

Cable for TCs

FBG10 (0.5”)FBG1 FBG2 FBG3

2” apart 7”
(each 1” apart)

0.5” 

FBG4 (6.5” from tip) FBG10 (0.5”)FBG1 FBG2 FBG3

2” apart 7”
(each 1” apart)

0.5” 

FBG4 (6.5” from tip)

SBL

Quartz Tube with FBG sensors

 

Figure 28: Radial temperature sensor hexoloy package with integrated Type B 

thermocouples and FBG sensors used at levels 7 and 10 in RSC. 

 



 37 

 

Figure 29: Four hexoloy radial temperature probes with integrated Type B TCs and FBG 

sensors (two probes on right) and single Type B TCs (two probes on left). 

 
Figure 29 shows the four radial temperature probes – two probes with single Type B TCs 
at the tip and two probes with two Type B TCs and ten FBG sensors each. Figure 30 
shows a picture of the completed sensor packages with TCs and fiber optic temperature 
sensors installed in a soot blower lance.  
 

 

Figure 30: Soot-blower lances with temperature sensor package installed in TECO IGCC 

RSC. 

 
In addition to the temperature sensing probes at levels 7 and 10 in the RSC, fiber optic 
strain sensors were packaged and installed on the piping support structure in the RSC 
dome. In particular, the final design with Ni-plated FBG sensors encapsulated in the 
stainless steel tubing was used and bonded to the structure with ceramic adhesive. Since 
the fiber FBG sensor responds to both variations in temperature as well as strain, 
separate Type K thermocouples were also installed to independently measure 
temperature to allow for correction of temperature variations. 
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4.2.3 RSC Data Collection 

This section presents the data collected from the temperature and strain sensors in the 
RSC – the plots included in this section show the temperature and strain variables in 
normalized units to protect proprietary information.  
 

 

Figure 31: Spectrum data from fiber optic sensors with 10 FBG sensors for each soot 

blower lance installed in the TECO IGCC RSC. 

Figure 31 shows the spectrum data from the 10 FBG sensors on the fiber optic cable in 
each sensor package for SBLs at level 7 and level 10. The two fiber optic sensor cables 
showed excellent signal-to-noise characteristics with a significant peak power in the range 
between –15dB to –25dB compared to the baseline noise of –50dB, allowing for easy 
peak tracking as these peaks from individual FBG sensors shifted due to temperature 
changes. Figure 32 shows the transient profile for the 10 FBG sensors from the sensor 
package installed in the SBL at level 7. The bottom plot shows the calculated (normalized) 
temperature profile over a period of approximately five days after startup. The plots show 
measured temperature profile over the length of the probe as the plant operation was 
varied during this period. Unfortunately, on the 5

th
 day, the sensor probe was lost abruptly 

despite working very well until then – it is likely that the hot gas and slag flow from the 
gasifier impinged directly on the probe leading to breakage of the ceramic packaging. 
Temperature measurements on level 10 showed transient asymmetries between the east 
and west sides (see Figure 34) indicating likely acentric flow of the hot gas, increasing the 
likelihood of impingement on the probes at level 7, which is approximately half way down 
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the length of the RSC. As seen from the plots on the top, the peak intensities from all ten 
FBG sensors were very stable until the abrupt mechanical failure occurred, indicating that 
all the FBG sensors were performing without any degradation. The FBG sensors labeled 
with numbers 1 (at the probe base, i.e. the cold end) and 10 (at the probe tip, i.e. the hot 
end), show a significant temperature gradient along the length of the probe. 

 

Figure 32: Peak intensity and normalized temperature from 10 FBG sensors at SBL level 7. 

 
Figure 33 shows the peak intensity and calculated normalized temperature profiles from 
the FBG sensors at level 10. At this level, during ignition at startup, the transient 
temperatures experienced by the FBG sensors at the tip of the probe exceeded 
significantly well beyond the FBG design targets of 2100F, as tested in lab ovens, leading 
to failure of the FBG sensors 9 and 10, within 1.5 inches of the probe tip. FBG sensors 1-
8, where sensor 8 is 2.5 inches from the probe tip performed well and continued to 
measure temperature data after multiple weeks of operation. The top plot shows the peak 
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intensity of the FBG sensors 1-8. Note that for about two days between April 5 and April 7, 
the data was lost due to a power failure in the desktop computers recording the data. 
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Figure 33: Peak intensity and normalized temperatures from FBG Sensors at level 10. 

 
Figure 34 shows the plot for measured (normalized) temperature by the TCs as well as the 
FBGs in the SBLs at level 10. Note that the temperatures measured by the TCs at the tips 
on both the east (probe with TC and FBG sensors) and west (probe with single TC at tip) 
sides are quite close, especially towards the later period when the plant operation 
stabilized. However, there were periods in the beginning of operation where the two sides 
yielded temperature changes in opposite directions, e.g. around March 30, the TC on west 
side showed a temperature increase while the TC (and FBG sensors) on east side 
showed a temperature decrease, indicating a possible asymmetric flow of the hot syngas 
in the RSC. Note also that the temperature profiles measured from the FBG sensors are 
consistent with the TC temperatures on the east-side probe, except for right after startup 
when the FBG sensors experienced higher temperatures than the TC at the probe tip. 
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Figure 34: Normalized temperature from TCs and FBG sensors at level 10. 

 

 

Figure 35: Spectrum data from two fiber optic FBG sensors used for strain sensing. 

In addition to the temperature sensor probes installed in the RSC, fiber optic strain 
sensors were also installed outside the hot gas path to monitor slow evolution of small 
mechanical strain on key components due to gradual fouling buildup. Figure 35 shows the 
nominal frequency spectrum data from two fiber optic FBG sensors mounted at the same 
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location. Since the peak wavelength shift from the FBG sensors corresponds to both 
temperature variation as well as strain variation, type K thermocouples were also installed 
to monitor the temperature in order to deduct the effect of temperature variation to 
calculate mechanical strain. During the initial sharp temperature transients at startup, the 
measured wavelength shift by the FBG is assumed to be due to temperature effects alone 
(temperature + thermal strain) and is used to calibrate for temperature effect on the 
measured strain from the FBG sensor. Thereafter, as the temperature stabilized over the 
subsequent period, this calibration was used to compensate for small temperature 
fluctuation and obtain the mechanical strain. Figure 36 shows the normalized temperature 
measured by the Type K thermocouple for approximately six weeks of operation after 
startup. There is a sharp rise in the temperature during initial startup, and thereafter the 
temperature is fairly stable, except for three intermittent changes during temporary 
shutdowns. Figure 37 shows the calculated mechanical strain evolution during the same 
six-week period after March 29, when the temperature was relatively stable. There was a 
short plant shutdown and loss of data collection in the middle of this period. The 
calculated mechanical strain from the FBG measurement shows a gradual increase in 

mechanical strain over the six-week operation to about 200 . This is consistent with the 

previously estimated 50  from fouling over two weeks. Note that during the intermittent 
shutdowns, the calculated mechanical strain is incorrect due to the sharp excursions in the 
temperature, but the mechanical strain profile is fairly continuous across those shutdowns. 
Also, the FBG sensor data collection was lost for two days around April 4, due to loss of 
power to the data acquisition computers. Overall, the measured mechanical strain 
provides a direct estimate of the fouling buildup on the heat transfer area, and is 
consistent with previously estimated fouling and mechanical strain buildup.  
 

 

Figure 36: Measured (normalized) temperature in the RSC dome. 
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Figure 37: Calculated mechanical strain from FBG sensor, during stable thermal operation. 

 

4.3 Model Validation with TECO IGCC Plant Data for Nominal Operation 

The RSC model had been validated using available startup preheating data from TECO 
IGCC plant (see Figure 15) – the thermal profiles calculated by the RSC preheating model 
match very well with the tube and shell temperature measurements in the plant. For 
nominal plant operation at baseload, additional plant operation data, e.g. gasifier operation 
conditions to enable simulating and comparing the RSC model output with measured data, 
were obtained in 2009 Q3. In 2009 Q4, the developed gasification section model was 
modified for simulation with the TECO IGCC plant configuration and operation conditions 
to validate the model against available measurements on temperatures in the RSC as well 
as syngas composition. 
 
More specifically, in October 2009, TECO plant operation data and temperature measured 
by the installed thermocouples and FBG temperature sensors for tests in March and April 
2009 were obtained through GE Energy Gasification team. The plant operation data 
included mainly the flow rates, temperatures, pressures, water levels and syngas 
composition in the gasification section, i.e., gasifier, RSC, convective-syngas cooler (CSC) 
and scrubber (a sampling data every 15 minutes). The recorded data for the installed 
thermocouples at Level 10 is longer than those at Level 7, as mentioned in the earlier 
section.  

Table 1:  Data from TECO Plant Tests in March and April 2009 

Data type Location Start Time End time Data Frequency  

Operation Gasification Section 8:00, 3/20  8:00, 4/30 Every 15 minutes 

Installed TC Level 10 and level 7 16:01, 3/26  1:53, 4/10 Every 10 seconds 

Installed FBG Level 10 and level 7 14:49, 3/28 14:27, 4/9 Every second 

 
Based on data availability, process transition and the objective of steady state validation, 
two time periods are picked on preliminary data analysis: April 1, 12:00~24:00, which has 
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both Level 10 and Level 7 measurement data, and April 9, 2:00~8:00, where only Level 10 
measurement was available. Due to the limitation in operation data, the feed water and 
steam flow information for CSC is not available, only the total steam flow from the HP 
drum, i.e. the combined steam generation from RSC and CSC is available. The CSC is 
unique to the TECO plant configuration and is not included in the general gasification plant 
configuration modeled, and hence is excluded from the model comparison. The two 
identified steady-state operation periods mentioned above are similar in general. However, 
the syngas composition information for April 1 time period were out of range, and thus, this 
data was not picked for model validation purpose. Process condition on April 9 was 
chosen for model validation purpose. For this period, the measured gas turbine power 
output indicates operation at full baseload condition.  
 
The gasification section model was modified to run the TECO configuration. More 
specifically, for the gasifier inputs, the coal flow, water flow in slurry, oxygen flow and feed 
temperature were specified based on measurements, and the CO2 flow was eliminated 
(no CO2 recycle in TECO plant). Modifications on RSC model included specifying the RSC 
diameter and length for TECO plant design. Main changes for RSC HP drum and the 
scrubber models were their operation pressures, where the measured pressures were 
used as the setpoints for PID controllers in the model. These PID controllers ensured that 
the scrubber and HP drum pressures in the model matched the measured data from the 
plant. Initially, the model operating conditions were ramped from high throughput and 
pressure conditions used for a general larger scale reference plant to the baseload 
conditions for TECO IGCC plant to obtain initial conditions for the model consistent with 
TECO IGCC plant conditions. The preliminary results from the model showed a good 

match for the gasifier temperature, about 70 C lower RSC syngas exit temperature 
compared to measurement, and the scrubber syngas compositions matching reasonably 
well to the measured ones (dry basis), CO about 4.5% lower, H2 about 1.8% higher, CO2 
about 3% higher and CH4 about 90 ppm lower.  
 
These preliminary results indicated that the gasifier model matched well with the operation 
data – this is not surprising since the original gasifier model from which the reduced-order  
model was derived had been validated against previous TECO IGCC plant operation data. 
On the other hand, the lower RSC exit temperature predicted by the model indicated a 
higher heat transfer from the syngas to water/steam in the RSC model compared to the 
plant. Finally, the extent of the WGS (water gas shift) reaction modeled in the RSC was 
too high, leading to lower CO and higher CO2, while the methanation reaction rate (CO 
and H2 converts to CH4 and water) was not enough. It should be mentioned that the TECO 
plant configuration is unique and a little different from a general reference plant 
gasification section. In particular, the TECO plant has no quench after the RSC; rather a 
CSC is used to extract additional heat from syngas as HP steam. Thus, the temperature 
and flow measurements downstream of the RSC are not directly comparable with the 
model (the flow measurement includes moisture which depends on the temperature, 
pressure and corresponding saturation conditions). On the other hand, the syngas 
composition on dry basis for key components like CO, CO2, H2 and CH4 are unchanged 
between the RSC and the scrubber exit, and these can be compared with the model. 
 
To match the RSC exit temperature, the fouling factor in the model was increased 
iteratively until the increased fouling led to sufficiently reduced heat extraction in the RSC 
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and thereby a matched RSC exit temperature. Once the RSC exit temperature was 
matched, i.e. the RSC temperature variation from inlet to outlet was matched, the scale 
factors for the WGS and methanation reactions were adjusted to enable matching the 
syngas composition measurement for CO, CO2, H2 and CH4 (on dry basis) very closely. 
Table 2 shows a summary of the validation results, showing the percent error between the 
model prediction and measurements at the baseload condition. From these validation 
results, it is clear that the gasifier model matches pretty well with the TECO IGCC plant 
operation data, and after a few parameter adjustments, the RSC and scrubber models 
also match close to the TECO plant operation data. 
 

Table 2: Validation Results 

Difference 

between model 

and 

measurement Comments

Gasifier

T ( C) -1.09%

P (atm, abs) 5.79%

RSC

T at level 10 

(C)

point mesurement vs. 

average from 1-D 

model

T at exit ( C) -0.51%

P at exit (atm, 

abs) 1.65%

Scrubber 

Syngas flow 

(mol/sec, dry) -7.05%

Syngas 

composition 

(dry)

CO -0.61%

CO2 4.23%

H2 -0.72%
CH4 -5.05%  

 
In addition to the RSC exit temperature, temperature in the RSC at level 10 was also 
available from the installed thermocouple/FBG sensors. It should be pointed out that the 
temperature data from level 10 couldn‟t be directly compared with the model calculation 
result since the model is a 1-D (axial variation) model that does not include any variations 
in the radial direction. The 1-D model only provides an average (i.e. a mass weighted 
cross-sectional average) temperature along the length of the RSC. A 3-D model that 
describes flow and temperature variation in the RSC could be used to directly compare 
with the measured temperature at level 10. However, this is outside the scope of this 
program.  
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Figure 38: Radial distribution for temperature (left) and syngas axial velocity (right) 

assumed at Level 10. 

To validate the 1-D model, the measured temperature at level 10 was used to approximate 
the average temperature at level 10 and compared with model prediction. In particular, a 
simplified linear radial profile for temperature and syngas flow velocity, as shown in Figure 
38, was assumed. In particular, for the linear temperature profile, the core temperature To 
is the same as the gasifier exit temperature while the TC/FBG measurement provides Tm 
at the corresponding radial location rm. The assumed linear flow and temperature profiles 
are used to estimate the corresponding mass-weighted average temperature at level 10. 
The mismatch between the calculated average temperature and the 1-D model predicted 
value was about 6%, which is acceptable given the measurement accuracies and 
simplified estimate of average temperature from point measurements. In reality, the 
velocity and temperature profiles are expected to be a bit different from the assumed 
linear profiles.  

5 Task 2 – Sensing System Design 

In Task 2, the key objective was to design a comprehensive sensing system for the 
gasification section to provide online, real-time information about key process variables for 
controls relating to performance objectives as well has key operational constraints, e.g. 
syngas composition, carbon conversion, slag viscosity, etc. It is very challenging and often 
not practically feasible to measure all these variables directly for monitoring & control 
purposes through online sensors, especially due to the very harsh environment in the 
gasification section. Motivated by this, in this task, a systematic model-based analysis and 
design approach was developed for a comprehensive sensing system as shown in Figure 
39. More specifically, an optimal combination of critical online sensors is complemented by 
online model-based estimation (or virtual sensing) to provide direct or inferred 
measurements of all critical variables. A key initial step in this direction was to use 
systematic model-based analysis, using the model from Task 1, to identify the optimal 
combination of online sensors in this architecture.  
 
In phase II of the program, initially the nonlinear transient model of the gasification section 
was used as the basis to analyze the sensing system design and performance. More 
specifically, the nonlinear model was linearized at baseload nominal operating condition. 
The linear model was then used in a Kalman filter analysis to study the performance of the 
sensing system in terms of expected accuracy of estimation of key unmeasured process 
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variables, as function of key sources of errors/uncertainties in the model as well as the 
online sensors. Kalman filter is an established model-based estimation technology that 
provides the best estimate of unknown “state” variables in a dynamic system using online 
measurements of system outputs, while systematically accounting for limitations on the 
model accuracy and sensor measurement errors. 
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Online
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(T, P,, …)

State / Parameter
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Dynamic ModelPlant

Online Sensors
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Figure 39: Advanced sensing system for gasification section. 

 

5.1 Model-based analysis for sensing and estimation 

Consider the state-space model of the gasification section as an ODE system of the form: 

Eq 2  
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puxhy

puxhy

puxfx
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where x is the vector of states, u is the vector of process inputs (control inputs and 
disturbance inputs, e.g. slurry flow rate and temperature), p is the vector of process model 
parameters (e.g. gasifier kinetics, fouling factor), ym is the vector of measured outputs 
(online sensors), and y is the vector of outputs needed for monitoring and controlled 
(including some that may be measured and some that are not). The corresponding 
linearized model state-space representation is: 

Eq 3  
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Discretizing the above linear state-space model and including models for process 
uncertainties, the linear discrete-time model for the system has the form: 
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Eq 4  
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In the above discrete-time representation, with a slight abuse of notation, the state-space 
matrices are denoted by the same matrices A, Bu, Bp as in continuous-time system to 
keep notation simplicity, although strictly speaking, these are not the same matrices. Also, 
the process inputs uk and model parameters pk are included in an extended state vector 
with a random-walk model. The parameters pk are unknown and constant or slowly 
varying, while the true inputs uk are also not known perfectly due to measurement errors. 
The variables wx, wu, wp denote the process noise (uncertainty in the model dynamics) 
assumed to be stationary and white-noise with specified covariances Qx, Qu, Qp, 
respectively. The online measurements for process outputs ym,k and inputs um,k have 
unknown biases by,k and bu,k as well as measurement noise vy and vu, respectively. The 
measurement noise are assumed to be uncorrelated white noise with covariances Ry and 
Ru, while the unknown constant/slowly varying measurement biases are modeled as 
random walk with process noise covariances Qby and Qbu, respectively. The above 
representation denotes a general description with modeling errors (uncertain parameters, 
uncertain modeling dynamics or process noise) as well as measurement errors (unknown 
biases and noise). The linear system in Eq 4 can be represented in a compact state-space 
form with the extended state vector x

e
 = [x; u; p; by; bu] and extended measurement vector 

ym
e
 = [ym; um] 

Eq 5 
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with corresponding extended process and measurement noise covariances Q
e
 and R

e
, 

respectively. 
 
Based on the linear extended system description in Eq 5, a Kalman filter analysis can be 
performed for a given sensor set (ym, um) with specified measurement errors to obtain the 
accuracy in estimated outputs y that are important for monitoring and control. More 
specifically, the covariances in the estimated outputs are used to quantify the expected 
uncertainty in the estimated variables. Figure 40 shows the estimation error evolution over 
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multiple samples of estimation for four key unmeasured variables that are critical for 
gasification section monitoring and control. In particular, for each variable, the red plots 

show the 1-  uncertainty in the estimated variable in the presence of process model errors 
and measurement noise only, while the blue plots show the increased uncertainty due to 

the added unknown measurement biases in all measurements (the 1-  uncertainty is 

obtained as the square-root of the corresponding covariance, i.e. Te

ikk

e

i CPC )(|
 for the i

th
 

output y
e
i ). Note that the inclusion of the sensor biases leads to a significant increase in 

the estimation inaccuracy for the four variables, i.e., increased variances, implying the 
importance of sensor biases in the overall sensing system performance. Moreover, a 
significant increase in estimation inaccuracy due to sensor biases indicates that the overall 
estimation performance can be improved by improving the accuracy of the online sensors 
– either by using more accurate (which often means more expensive) sensors or using 
multiple sensors and averaging to reduce the effect of unknown measurement biases. 
Often, multiple online sensors are already used for increased redundancy/reliability for 
critical variables. 
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Figure 40: Estimation errors for important un-measured variables due to modeling error 

and with/without sensor measurement errors. 

Figure 41 shows the estimation errors in the same variables due to modeling errors and 
sensor measurement errors in blue (same as in Figure 40), compared with estimation 
errors in the presence of only sensor measurement errors with a perfect model in red. 
Again, the difference between the red and blue plots shows the impact of modeling errors 
on the estimation accuracy. Comparing the plots in Figure 40 and Figure 41, it is evident in 
this case that sensor measurement errors – noise and bias are a more dominant source of 
estimation error. 
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Figure 41: Estimation errors for important un-measured variables due to sensor 

measurement error and with/without modeling errors. 

 
In 2009 Q1, the focus of the sensing design studies was identifying the most important 
biases and parameters that were responsible for most of the depreciation of the estimation 
performance. First, the sensitivity of estimation errors to sensor biases was analyzed by 
eliminating sensor biases, one sensor at a time, and observing the improvement in the 
estimation errors of slag viscosity, gasifier temperature, carbon conversion, and 
gasification efficiency. This sensitivity analysis allowed identifying the critical sensor biases 
to improve upon (either through improved technology or through sensor redundancy) for a 
given set of sensors. Similarly, a sensitivity analysis with respect to process model 
parameters was done by eliminating errors in one parameter at a time to identify key 
process model parameters whose uncertainty contributes significantly to the estimation 
inaccuracy of the key variables. In the following section, the results of the sensitivity 
studies for gasifier temperature estimation are presented as an example of how the 
analysis can be used to highlight the critical sensor biases and parameters in the model 
that should be estimated online to improve overall estimation performance. 
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Figure 42: The sensitivity of the estimation error of gasifier exit syngas temperature to the 

biases of the baseline sensor set. The important biases are drum steam flow, oxygen flow, 

CO2 flow, throughput, O2 flow and purity, and fuel composition. 

 
Figure 42 shows the sensitivity of estimation error in gasifier temperature to the biases in 
the IGCC baseline sensor set. The metric for sensitivity is the percent reduction of the 
estimation error when a specific sensor bias is removed (i.e. the associated sensor is 
improved to have zero bias). Clearly, the error in estimation of the syngas temperature at 
the exit of the gasifier is very sensitive to the sensor-biases of the manipulated variables 
that affect the O/C ratio in the gasifier, e.g., oxygen flow, CO2 flow, slurry throughput, 
oxygen purity, fuel composition. As O/C ratio has a direct effect on the gasifier 
temperature, the high sensitivities to these biases are expected. However, the sensitivity 
to the drum steam flow sensor-bias is not that apparent. The Kalman filter estimates the 
temperature of the syngas from the gasifier by utilizing the mass and energy balances 
around the syngas in RSC, quench, and the gasifier. The drum steam flow measurement 
is clearly important for the energy balance, and thus, the bias on drum steam flow 
measurement has a significant effect on the estimation error of the gasifier exit syngas 
temperature.  
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Figure 43: The sensitivity of the estimation error of gasifier exit syngas temperature to the 

model parameters. The important parameters are drum feed water enthalpy, ash-to-slag 

transfer rate, heterogeneous reaction time constant, quench and scrubber vapor-liquid 

equilibrium temperature mismatches, and drum circulation pump’s head/flow 

characteristics. 

 
Figure 43 shows the observed percent improvements in the estimation of the gasifier 
temperature when uncertainties in the model parameters are removed one at a time. It is 
evident that when certain parameters are known perfectly (i.e. there is no associated 

uncertainty for these parameters), the estimation error in the gasifier temperature (1-  
error) improves significantly. As discussed in the analysis of the bias sensitivity study, the 
Kalman filter relies on the energy balance around the gasification section to infer the 
gasifier temperature. For this energy balance, the steam production inside the drum is 
important since it indicates the amount of heat removed from the syngas in the RSC. The 
parameter, drum feed water enthalpy, is important for the same reason – one can 
understand how much enthalpy was introduced to the drum with the feed water through 
this parameter. The ash to slag transfer parameter determines how much ash is 
transferred to the slag from the coal/syngas and therefore is an indicator of how much 
heat is lost through the slag. The heterogeneous reaction time constant dictates the extent 
of the endothermic/exothermic reactions inside the gasifier and therefore affects the 
overall mass/energy balance and the resulting estimation error significantly. The baseline 
quench and scrubber models assume that the vapor (syngas) and liquid (water) phases 
are in thermodynamic equilibrium, which is described through a non-ideal vapor liquid 
equilibrium (VLE). However, in the true plant the vapor and liquid phases may not 
necessarily be in equilibrium and/or the non-ideal VLE model may be inaccurate. These 
errors are incorporated in the model through deviation in the temperature used for VLE 
calculations, both in the quench and the scrubber. The last two parameters, to which the 
gasification temperature estimation is sensitive, are related to the pump characteristics 
scale factors. These scale factors determine the circulation of water between the drum 
and the RSC and consequently affect the energy balance of heat removal in RSC. Hence, 
they play an important role in the estimation of gasifier temperature from downstream 
measurements and the system model.  
 



 53 

The results of the above linear model-based Kalman filter analysis was used to design a 
nonlinear model-based estimation using Extended Kalman Filter (EKF) incorporating 
estimation of the key sensor biases and model parameters showing high sensitivity to 
estimation accuracy. 
 

5.2 Extended Kalman Filter Simulation Studies for Model-based 

Estimation 
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Figure 44: Open-loop implementation of the extended Kalman filter, where EKF is running 

in parallel to the MPC with state feedback from the plant. 

 
Following up on the linear model-based Kalman filter analysis for sensing system 
performance in the presence of sensing and modeling errors, a nonlinear model-based 
estimation algorithm was implemented in Matlab/Simulink® to complement the online 
sensors and obtain the overall sensing system shown in Figure 39. More specifically, an 
Extended Kalman Filter (EKF) was implemented to perform the nonlinear model-based 
estimation. EKF is a standard model-based estimation algorithm that allows an “optimal 
least-squares” model-based estimation of unknown process model states utilizing 
available online measurements, while optimally trading off the errors in the dynamic model 
and online sensor measurements. In Phase II of the program, the EKF was initially 
developed and tested in open-loop configuration as shown in Figure 44, i.e., it was run in 
parallel to the MPC implementation. The developed EKF and MPC solutions were then 
coupled in Phase III of the program to derive the overall integrated sensing and control 
solution. Initially, the EKF was simulated with no sensor or modeling errors to verify its 
stability and performance. It should be mentioned that in all simulations, the full-order 
detailed model was used to simulate the plant. However, this model is stiff and forces the 
use of very small integration step size in a fixed step-size integration scheme. The EKF 
uses a reduced-order model as the embedded model during the propagation step, which 
is obtained by approximating fast dynamics related to pressure drop-flow relations for the 
syngas with corresponding quasi-steady-state conditions. This is the akin to the use of the 
reduced-order non-stiff model for the MPC, allowing the use of larger integration step-size, 
and thus, reduced computational cost during MPC prediction. Note that the linear model-
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based analysis was performed using the full-order stiff model, which includes the fast 
dynamics corresponding to syngas flow and pressure. Thus, the overall gasification 
section efficiency showed high estimation inaccuracies (Figure 40, Figure 41) since the 
efficiency depends on estimated syngas flow rate, which in turn, is very sensitive to small 
measurement errors in gasifier, quench and scrubber pressures. The reduced-order model 
in the EKF implementation overcomes this undue sensitivity and yields higher accuracy in 
efficiency as shown later in this section. 
 
The EKF implementation for the nonlinear system with extended state vector x

e
 is: 

Eq 6 
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The first step (propagate) is the simulation of the process model forward in time to update 
the state estimates from one time sample k to the next sample k+1, and the corresponding 
covariance update with the linearized model. The second step is the measurement 
update, where the error between the measured outputs y

e
m,k and the predicted output 

values e

kk

e

m

e

km xCy |1,
ˆˆ  is used to correct the state estimate through the Kalman filter gain 

Kk. The gain Kk is calculated recursively at each time step k, as the solution to the least-
squares estimation in the presence of the variances Q

e
 for the process model uncertainty 

and R
e
 for the measurement errors. One issue with the standard EKF is that there is no 

means to enforce physical limits/constraints on estimated state variables. For instance, the 

state vector e

kkx |
ˆ includes mole fractions that should be in the range 0-1 to be meaningful. 

Similarly, model parameters being estimated include RSC fouling that should also be in 
the range 0-1 (0 being new RSC and 1 being fully fouled RSC). The standard EKF can 
violate these constraints, especially during the measurement update step if the estimator 
gain Kk is high. A violation of these constraints leads to failure in exercising the physics-
based model.  
 
To address this issue, the standard EKF implementation was modified to include provision 
for verifying any constraints that would be violated during a standard measurement update 
step, and thus should be made “active” or enforced at an active boundary. More 
specifically, considering a set of constraints on the extended state variables of the form 

Eq 7     
cec DxC , 

the measurement update step is extended to detect for any “active” constraints and modify 
the state and covariance update. This was done by first identifying the set of “active” 
constraints that must be enforced as equality constraints, through a simple quadratic 
programming (QP) formulation: 

Eq 8  
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In the above QP problem, W is a weighting matrix that was chosen to be the Identity 
matrix. Essentially, the QP problem was formulated to identify a corrected state estimate 
that is least distance away from the unconstrained state estimate, and enforces all the 
inequality constraints. In particular, the QP solution identifies the subset of the constraints 
that are active and should be enforced as equality constraints: 

Eq 9  
c

a

e

kk

c

a DxC 1|1
~  

Once the set of active constraints is identified, a corrected state estimate is identified 
consistent with these constraints, and the corresponding state covariance is also updated: 

Eq 10        
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Note that the above correction step to enforce active constraints essentially is equivalent 
to performing a secondary measurement update with respect to the active constraints as 
“dummy” measured outputs, with a zero measurement noise. The updated state estimate 

1|1
~

kkx enforces the active constraints and is used as the starting point at next sample for 

the propagate step. Having a zero measurement noise on these “dummy” measurement 

outputs yields high gain c

kK , which in turn, can often lead to issues with the estimation 

performance. To alleviate this, a small “dummy” measurement noise is added to soften the 
constraint a little. The inclusion of the state constraints on the standard EKF allows 
enforcing desired physical limits on the estimated state variables (including states, inputs, 
parameters and measurement biases). This updated EKF with constraints was 
implemented in Matlab/Simulink® and simulated for steady state and transient operation 
in the presence of parametric errors in the model. The process and measurement noise 
covariances were fine-tuned to obtain good transient estimation performance.  
 
The constrained EKF implementation in Simulink was initially tested for its performance in 
terms of estimation of key important unmeasured variables, in the presence of modeling 
errors but no sensor biases. The modeling errors were introduced through unknown 
changes in model parameters like RSC fouling and gasifier reaction kinetics. More 
specifically, the gasifier kinetics scale factor was changed from nominal value of 1.0 to 0.7 
(i.e. make the gasification reactions 30% slower) and the RSC fouling scale factor was 
changed from nominal value of 0 (new RSC) to 0.3 (30% fouling). The model used for the 
EKF was initialized with the nominal value of these parameters, and the EKF was 
configured to simultaneously estimate all the unknown parameters and sensor biases 
while tracking the measurements from the online sensors. In these simulation runs, the 
sensors did not have any measurement noise or bias – nevertheless the EKF was still 
configured to estimate the biases since they are not known to be zero.  
 
Figure 45 shows the comparison of four performance/constraint variables important for 
control that are not measured online, during a transient with changes in load between 
baseload and 50% load. The red plots show the true values from the plant simulation (with 
the modified parameters), the dashed black plots show the predicted outputs from the 
embedded model used in EKF with nominal values of the parameters (i.e., an open-loop 
model with no corrections), while the blue plots show the updated estimates as the EKF 
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adapts the values of the unknown model parameters. Note that after an initial transient, 
the EKF provides an accurate estimate of all the variables matching the true plant values 
throughout the load transients. These four variables are only some of the key unmeasured 
variables that are important for monitoring and control. The EKF provides similarly 
accurate estimate for other important variables as well, e.g., syngas properties like LHV 
and modified Wobbe index (MWI) and oxygen-to-carbon ratio – plots for those are omitted 
for brevity.  

 
Figure 46 shows a comparison of the true values (red) of the model parameters and EKF 
estimated values (blue) of these parameters during the load transient. Note that starting 
from the nominal values of the parameters, the EKF estimation correctly estimates the 
changed values of the RSC fouling and gasifier kinetics scale factor quite accurately. On 
the other hand, other parameters like water gas shift (WGS) reaction kinetics scale factor 
in the RSC are correctly maintained close to the nominal values – note that the WGS 
kinetics scale factor has a max limit at 1.0, which is maintained by the constrained EKF 
estimation at all times. This ability to track unknown or varying parameters in the process 
(e.g. RSC fouling) allows continuously adapting the model to match the online 
measurements, and thus, providing an accurate estimate of unmeasured variables. Also, 
the ability to track varying parameters like RSC fouling provides a direct means of online 
monitoring for equipment health degradation. 
 

0 200 400 600 800 1000 1200

0.7

0.8

0.9

1

1.1

1.2

1.3

Time  [min]

S
c

a
le

d
 V

is
c

o
s

it
y

S lag Vis cos ity

 

 

Plant

Ope n-loop

EKF

0 200 400 600 800 1000 1200
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

Time  [min]

S
c

a
le

d
 G

a
s

if
ie

r 
T

e
m

p
e

ra
tu

re

Gas ifie r Te mpe rature

0 200 400 600 800 1000 1200
0.985

0.99

0.995

1

1.005

1.01

1.015

Time  [min]

S
c

a
le

d
 C

a
rb

o
n

 C
o

n
v

e
rs

io
n

Carbon Conve rs ion

0 200 400 600 800 1000 1200
0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

Time  [min]

S
c

a
le

d
 E

ff
ic

ie
n

c
y

Gas ification Efficie ncy

 

Figure 45: Estimation of key unmeasured process variables during load changes. 
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Figure 46: Estimation of unknown model parameters during load changes. 

The performance of the EKF estimation was tested for the same unknown changes in 
RSC fouling and gasifier reaction kinetics, in the presence of varying oxygen feed, or 
equivalently oxygen-to-carbon ratio, a key parameter adjusted by the operator for plant 
operation. Figure 47 and Figure 48 show the similar comparison of EKF estimated 
unmeasured key process variables and unknown model parameters. Again, the EKF 
correctly updates the estimate for the RSC fouling and gasifier kinetics, and thus, provides 
an accurate estimate of the unmeasured important process variables. 

0 200 400 600 800 1000 1200

0.8

1

1.2

1.4

1.6

1.8

2

Time  [min]

S
c

a
le

d
 V

is
c

o
s

it
y

S lag Vis cos ity

 

 

Plant

Ope n-loop

EKF

0 200 400 600 800 1000 1200
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Time  [min]

S
c

a
le

d
 G

a
s

if
ie

r 
T

e
m

p
e

ra
tu

re

Gas ifie r Te mpe rature

0 200 400 600 800 1000 1200
0.985

0.99

0.995

1

1.005

1.01

1.015

Time  [min]

S
c

a
le

d
 C

a
rb

o
n

 C
o

n
v

e
rs

io
n

Carbon Conve rs ion

0 200 400 600 800 1000 1200
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

Time  [min]

S
c

a
le

d
 E

ff
ic

ie
n

c
y

Gas ification Efficie ncy

 

Figure 47: Estimation of key unmeasured process variables during oxygen feed changes. 
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Figure 48: Estimation of unknown model parameters during changes in oxygen feed. 

 
The above studies were performed in the absence of any sensor biases, to establish the 
performance of the EKF under these conditions. However, in reality, all sensors have 
unknown measurement accuracy errors or bias typically characterized by either an 

absolute bound or a 1-  value for expected distribution across multiple sensors of the 
same type. These biases may be constant or drift slowly over long periods of operation.  
After the initial studies with EKF simulation in the absence of sensor bias, subsequent 
studies were performed in the presence of random combinations of sensor biases based 

on expected 1-  variations for each sensed variable. The EKF implementation was further 
tuned for a robust performance in the presence of random sensor biases and a small 
Monte Carlo study was performed with unknown random sensor biases to analyze the 
performance of the EKF in terms of variation in the estimation accuracy of key 
unmeasured variables important for monitoring & control.  
 
During these Monte Carlo runs, limitations were observed in the performance of the EKF 
in the presence of the inequality constraints on the states being estimated. Specifically, 
when a parameter/state constraint became active, the corresponding state covariance was 
collapsed along the directionality of the active parameter/state constraint, which led to 
parameter/states getting stuck at their respective constraints. This deficiency was 
alleviated to some extent through a small noise added to the “dummy” measurements 
used to implement the active constraints, but its performance was still not satisfactory. To 
address this, a new methodology for implementing inequality constraints, that borrowed 
ideas from unscented Kalman filtering (UKF), was developed. The methodology relies on 
the UKF approach to identify the sigma points consistent with the current state 
covariances. The sigma points that violate any state inequality constraints are then moved 
to the constraint boundaries and the new state covariance is re-computed with the 
updated sigma points. In contrast with the post-measurement-update constraint correction 
used previously, this methodology imposes the state constraints by changing the 
covariances before the standard measurement update step, i.e., a preemptive constraint 
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correction. The development of this algorithm presented an addition to the variety of 
options for implementing the state constraints in the state-estimation problem: clamping 
the state estimates, using the post-measurement-updated constrained EKF (cEKF) 
formulation, the UKF-based pre-emptive constrained formulation, or a combination of 
these methods. These different approaches were compared in 2009 Q4 by testing their 
average performances over a benchmark set of Monte Carlo runs. This set of test runs 
consisted of 62 different simulations with random biases on measurements of manipulated 
variables, outputs, and disturbances. The methods that were compared included cEKF 
(with no noise for dummy measurements), cEKF with the small noise added for the 
dummy measurements for the active constraints (cEKF w. R), clamping the EKF state 
estimates (clamped EKF), and the UKF-based approach (Preempt. EKF). The 
performances of the various algorithms are summarized in Table 3. 

Table 3: Mean estimation errors of estimation algorithms for benchmark test cases.  

 

Variable 
Open 
Loop 

cEKF 
cEKF 
w. R 

Clamped 
EKF 

Clamped 
EKF - no 
bias est. 

Preempt 
EKF  

Preempt 
EKF - no 
bias est. 

Slag Visc.  -32.4  -21.8  -10.7  -6.05 -12.7  -6.63 -12.7 

Gasifier 
Temp. 

16.4  10.0  5.3  2.5 6.1 2.7 6.1 

Carb. Conv. -0.67  -0.80 -0.18  0.11 0.20  0.11 0.20 

Efficiency -0.70  -0.37 0.05  0.1 -0.15 0.1 -0.15 

Slag 
Thickness 

-1.6e-4 -1.1e-4 -3.1e-4 -7.9e-5 -5.2e-4 -1.1e-4 -5.2e-4 

O to Carb. 
Ratio 

 0.0058  0.0045  0.0058   0.0058   0.0064  0.0058  0.0064 

LHV    -1.76    -1.98    -1.21    -0.77   -0.53   -0.75  -0.54 

MWI  -0.08  -0.09  -0.05   -0.03   -0.02  -0.03  -0.02 

 
As can be seen from Table 3, the most successful constrained estimation methods are the 
clamped EKF and the preemptive constrained EKF. The benefit of estimation of the biases 
was also analyzed by disabling the bias estimation in the two estimation methods, seen in 
the columns of Table 3 denoted by “no bias est.”. Clearly, when the biases were not 
estimated the performances of these methods degraded, justifying the estimation of the 
biases for improved performance. The performance of the preemptive constrained EKF 
over the benchmark test cases and comparisons with open-loop estimation is presented in 
Figure 49 for the four critical unmeasured variables: slag viscosity, gasifier temperature, 
carbon conversion, and efficiency. 
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Figure 49: Performance of the preemptive constrained EKF compared with the open-loop 

estimation for the four critical unmeasured variables. EKF estimate shows close to zero-

mean while open-loop estimates have significant non-zero mean. 

From Figure 49, it is clear that the open-loop estimation of the critical unmeasured 
variables shows a strong bias (non-zero mean error), while the preemptive constrained 
EKF shows a significantly superior performance with close to zero average error – the 
comparison of these estimate mean errors is quantified in Table 3. Note however, that 
even though the overall and average performance of the preemptive EKF is superior to 
open-loop estimation, the estimation error distribution for instance for the gasifier 
temperature shows a long tail corresponding to cases in the Monte Carlo run where the 
EKF significantly under- or over-predicts the gasifier temperature. This “non-normal” error 
distribution with long tails prompted further analysis to understand the cause. In particular, 
the aim was to identify the specific combination of sensor biases that lead to poor 
estimation performance – the estimator is unable to distinguish individual sensor biases in 
the case of this combination and thus performs poorly. Picking gasifier temperature as a 
candidate since the correct estimation of this variable affects estimation of the other 
variables profoundly (e.g. slag viscosity), the simulations in the benchmark test-case set 
were identified that had large estimation errors, as presented in Figure 50. 
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Figure 50: Determination of the outliers in the estimation of the gasifier temperature in the 

test runs. Each point represents the steady state estimation error of the gasifier 

temperature in that specific run. Simulation runs 19, 27, 31, 37, 43, and 53 were the outliers. 

As shown in Figure 50, the combination of random biases that were implemented in the 
simulation runs 19, 27, 31, 37, 43, and 53 were found to be causing issues for the 
accurate estimation of the gasifier temperature. A closer first-look at these outlier cases 
revealed that the biases on the measurements of gasifier pressure and O2 feed flow rate 
were particularly high in these runs and the signs of the biases on these cases were 
correlated with the signs of the estimation errors. A more structured analysis to 
understand which combination of biases was challenging the estimator was carried by 
utilizing Partial Least Squares (PLS) regression.  
 
PLS is a technique to identify dominant modes of independent (X – in this case the sensor 
biases) and dependent (Y – in this case the gasifier temperature estimation error) data so 
as to maximize the covariance between the dominant modes of X and the dominant 
modes of Y, i.e. identify the relationship between the variations in X and Y. A successful 
PLS regression often leads to a few modes in X, often much lower than the number of 
variables in X, explaining more than 90% of the variation observed in a given Y-data. 
Using the biases on the measured outputs, disturbances, and manipulated variables over 
the set of test runs as the predictor data (X) and the estimation error observed in gasifier 
temperature in these runs as the dependent data (Y), a PLS regression was carried out to 
find the dominant combinations of the biases that were affecting the estimation error of the 
gasifier temperature. Figure 51 shows the performance of the PLS regression model that 
correlated the biases during each run in the test cases and the gasifier temperature 
estimation error in those test cases. As it is clear from the agreement between the PLS 
predictions and the actual estimation errors, the regression model captured the variance 
observed in the estimation error data very well. Only 3 dominant modes of X data (biases) 
were used in the PLS regression model that explained 96% of the variance observed in 
the Y data (estimation error).  
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Figure 51: Performance of the PLS regression explaining the relationship between the 

biases and the gasifier temperature estimation error. The PLS regression model explains 

more than 95% of the variance observed in the estimation error data. 

Having built a successful correlation between the biases (X) and the gasifier temperature 
estimation errors (Y), the 3 modes were analyzed to find out which biases contributed 
most to these modes. Figure 52 shows the cumulative loading of each bias on these 
dominant modes. The first conclusion that can be drawn from the loadings plot is that the 
estimation performance of the gasifier temperature is heavily affected by a combination of 
the biases rather than a single bias. However, it is also apparent that the biases on the 
gasifier pressure and the O2 flow rate have a more significant impact on the estimation 
error than the other biases, which was also observed by the unstructured first-look at the 
outlier cases in the estimation of the gasifier temperature. This analysis indicated that for 
the specific runs in the Monte Carlo simulation where the O2 flow rate measurement and 
gasifier pressure measurement, and to a lesser extent other sensor biases like 
water/steam recirculation flow rate, were large simultaneously, led to estimation 
performance deterioration. In the presence of simultaneous biases in these sensors, the 
EKF is unable to distinguish between them and leads to degraded gasifier temperature 
estimation. To test this conclusion, the Monte Carlo run with the same set of random 
biases, but with O2 flow rate bias set to zero, was repeated. Figure 53 shows the 
performance of the preemptive EKF for estimating the gasifier temperature, before and 
after the elimination of the O2 flow rate bias. It is clear that when the O2 flow rate bias is 
eliminated, the estimation of the gasifier temperature is improved significantly, as depicted 
by the disappearance of the tails of the error distribution. Therefore it can be concluded 
that the elimination or drastic reduction of the measurement bias in the O2 flow rate either 
through better or redundant instrumentation will be very beneficial for the correct 
estimation of the temperature inside the gasifier, a critical yet unmeasured process 
variable.  
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Figure 52: The cumulative loadings of the biases on the first three modes of the PLS 

regression. 

Estimation of Gasifier Temperature

Estimation of Gasifier Temperature with No O2 Flowrate Bias

Estimation of Gasifier Temperature

Estimation of Gasifier Temperature with No O2 Flowrate Bias

 

Figure 53: The comparison of the estimation of gasifier temperature in the test cases before 

and after the elimination of the O2 flow rate bias. 

 
The sensing system combining available online sensors together with a model-based 
online estimation provides an online real-time feedback of the critical performance and 
operability variables that are not measured online. This capability is, in itself, very valuable 
to the plant operator to enable monitoring the actual state of the system continuously and 
allow more informed decision-making. Integrating this sensing system to a model-based 
control/optimization solution will enable increased robustness, flexibility and optimized 
performance by reducing conservatism in operation while maintaining all operability 
constraints. In Phase III of the program, under Task 3, the developed sensing system 
solution utilizing a combination of available online sensors and “virtual” sensing through 
online model-based estimation using EKF, was coupled with the developed MPC solution. 
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6 Task 3 – Control System Design 

The objective of this task was to develop an advanced controls solution that enhances the 
level of automation and optimizes the operation of the gasification section in an IGCC 
plant, for both steady state and transient operation in startup as well as nominal power 
generation operation modes. Current operation/controls of the gasification section involves 
a combination of (i) lower-level simple single-input single-output (SISO) controls for 
variables like level, pressure, flow and temperature in key process units where they are 
measured online, and (ii) higher-level operator supervision and operation based on 
experience and simple guidelines. There is an opportunity to improve the overall 
gasification section operation performance through more advanced controls. Motivated by 
this, a model predictive controller (MPC) was designed to achieve the higher-level 
controls/operation objectives for the overall gasification section. MPC is a model-based 
controls solution that couples real-time transient model simulations and predictions with 
online real-time dynamic system optimization subject to all operability, safety or hardware 
constraints. This combination of dynamic model-based predictions and online constrained 
optimization provides a significant value in using MPC for improved steady state and 
transient operation at a section or plant level, with the flexibility to optimize for any desired 
objective that can be updated as the operation mode varies. It should be mentioned that 
MPC is used as an “optimizing supervisory control” at the section and/or the plant level, 
integrated with the lower-level SISO controls for each process unit, i.e., it does not replace 
the lower level controls. This also is practically valuable since an MPC solution can be 
implemented as an addition to existing lower-level controls in an operating plant without 
having to take the risk of completely replacing the existing controls. 
 
For this task, initially in Phase I of the program, high-level controls requirements were 
identified for the gasification section for the key transient operations – startup (pre-heating 
and post-ignition pressure ramp up), turndown and fuel changes. The controls 
requirements were identified in terms of key performance objective (output tracking and 
minimization/maximization of some performance metric), sources of variations or 
disturbances, available control input variables for performance optimization and magnitude 
and rate constraints on all control inputs and magnitude and rate constraints on process 
outputs for operability. There are three distinct phases during startup in the gasification 
section: (i) pre-heating, (ii) ignition, and (iii) ramp up and pressurization from ignition to 
high-pressure steady-state operation. In particular, the pre-heating phase takes a long 
time, wherein the gasifier refractory and the RSC are heated following a prescribed 
temperature profile, which is designed to be conservative to avoid critical thermal stress 
limits. A model-based control strategy where the critical stresses are monitored online and 
the transient heating profile is optimized to maintain these stresses below acceptable 
limits is expected to provide significant reduction in the total pre-heat time. MPC simulation 
studies with pre-heating of gasifier and RSC indeed indicated significant reduction in pre-
heat time, while maintaining all thermal and stress constraints. On the other hand for 
nominal operation (i.e. after startup and at design pressure conditions), a key control input 
is the oxygen-to-carbon ratio, which is decided based on prior experience and operator 
knowledge. In the absence of online real-time feedback for key constraint and 
performance variables (e.g. carbon conversion, efficiency, slag viscosity), this is often set 
for a conservative operation to stay away from operation boundaries. A model-based 
control strategy that allows continuously monitoring the constraint and performance 
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variables, and also coordinates other control inputs along with the oxygen-to-carbon ratio, 
is expected to yield improved steady-state performance (e.g. minimize oxygen 
consumption, or maximize overall efficiency) as well as transient operation (e.g. achieve 
faster throughput/load changes) with coal as well as coal-petcoke blended fuels. 
 
In Phase II of the program, in parallel with the sensing system design in Task 2, initially a 
full “state feedback” MPC was designed, i.e., assuming ideal or perfect sensors for all 
needed state and output variables. The state feedback MPC was implemented on the 
gasification section model and systematic transient simulations were performed to 
evaluate the process operation entitlement, i.e., the best performance improvements 
achievable at steady state as well as during transients subject to all operation constraints 
for startup and nominal operation modes. In Phase III of the program, the state feedback 
MPC was subsequently coupled with the sensing system from Task 2 to obtain the overall 
integrated sensing and control system. Figure 54 shows a schematic representation of the 
overall sensing and control system. In particular, at any time sample, the measurement 
from the online sensors is used to update the state (and parameter) estimates for the 
model using the EKF described in the previous section. Then the updated dynamic model 
is used to predict the transient response of the process over a desired future prediction 
horizon for a specific control input sequence, which is coupled with online constrained 
optimization to achieve the optimal solution enforcing all constraints and achieving desired 
tracking or optimization performance. The first step of the calculated optimal control 
sequence is implemented and the whole sequence is repeated at the next time step. 
Owing to repeated online model-based prediction over a long future horizon, it is 
imperative that the model used for prediction can be simulated much faster than real-time. 
  

 

Figure 54: Schematic representation of the Integrated Sensing & Control Solution using 

EKF & MPC. 
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Figure 55: MPC implementation. 

After completing the gasification section model in Matlab/Simulink® from Task 1, a model 
predictive controller (MPC) was implemented in Simulink to optimize the gasification 
section operation at steady state and during transients. Figure 55 shows the MPC 
implementation framework in Simulink, with different components including (i) a target 
reference and constraint generation block based on the control requirements – it provides 
the output reference trajectories to be tracked, performance outputs to be minimized and 
the constraint limits on all control inputs and process outputs, (ii) a prediction block to 
simulate the nonlinear dynamic model over a desired prediction horizon with a specified 
control input sequence, (iii) a linear model generation block to linearize the model online at 
desired intervals for specified state and input conditions, and (iv) a quadratic programming 
(QP) formulation and solution block to calculate the optimized control action over the 
future horizon. 
 
The MPC implementation was tested through comprehensive simulation studies for 
startup pre-heating of gasifier and RSC as well as for nominal operation at steady state or 
turndown with nominal coal and coal-petcoke blended fuels. The simulation results are 
summarized in the next section. 

6.1 MPC for Startup Pre-heating Optimization 

One of the key transients to be improved during plant startup is for the gasifier refractory 
pre-heating. Currently, a prescribed temperature profile is used during pre-heating in an 
“open-loop” strategy, and it takes a significant amount of time to complete the pre-heating. 
In order to optimize the startup pre-heating profile subject to constraints on the thermal 
stresses in the refractory bricks, a model predictive controller (MPC) was developed based 
on the refractory thermal and stress models, process constraints and control targets. 
Compared to the current open loop schedule where the heating process follows a pre-
determined hot surface temperature profile, MPC can achieve the preheating 
requirements in a minimum time span while obeying all the constraints and process 
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requirements. The optimized pre-heating from MPC allows saving several hours in the 
gasifier preheating process. 
 

In late 2008, the dynamic thermal model of gasifier refractory layers (in Matlab/Simulink® 
platform) and the mechanical model of stress responses with a temperature distribution 
across the layers (using ANSYS® software package) were built and checked with some 
results from other design tools. These models were first used to calculate the open loop 
thermal and stress responses for the current “open-loop” pre-heating strategy. In order to 
have a consistent comparison between the open-loop strategy and the MPC optimized 
operation, the maximum values of the tensile and compressive stresses observed during 
open loop operation were used as the constraint limits for MPC optimization. In other 
words, the optimized MPC pre-heating strategy was forced to obey the same maximum 
tensile and compressive stresses as obtained following the current (open-loop) pre-
heating strategy.  
 
As in the open loop operation, the MPC control uses the inner surface temperature of the 
gasifier as the manipulated variable to preheat the refractory via heat conduction through 
the layers of refractory. The goal of the process is to raise the overall temperature level of 
the refractory from startup ambient conditions to a desired final value; therefore MPC uses 
a weighted average temperature of the innermost refractory layer as the control target, 
which should be raised to the final value following a reference trajectory. The reference 
trajectory is set to be significantly faster than the baseline so that while tracking this 
reference, operability constraints become active and are the limiting factor for fast pre-
heating. The constraints come from two aspects: the maximum heating capacity of the 
burner as the process input (manipulated variable), and the tensile/compressive stress 
limits of the refractory material developed during the heating process (output variables). 
The heating capacity limit used in MPC was implemented as the maximum ramp rate 
achievable for the inner surface temperature used in the open loop operation – same as 
the max ramp rate used in the baseline open-loop strategy for consistency. The stress 
constraints are the tensile and compressive stress limits, which were determined from the 
maximum stress levels in the open loop operation. Thus, the MPC optimization is 
performed to minimize the startup pre-heating time with the same operability constraints 
as observed in the baseline open-loop pre-heating schedule.     
 
MPC optimization was studied through transient simulation of the gasifier pre-heating.  
Clearly, the critical constraints for pre-heating are the tensile and compressive stresses in 
the refractory bricks. The observed stresses are a function of the gasifier geometry. In 
particular, there are two distinct design options wherein (i) the design geometry is such 
that during the pre-heating, the gaps between the refractory bricks close due to thermal 
expansion, and thus lead to significant compressive hoop stress buildup, or (ii) the design 
geometry is such that the gaps between the refractory bricks do not close up even at the 
target pre-heating temperature, and thus compressive stresses in the refractory bricks 
remain low – rather the tensile stresses become the limiting constraint. MPC optimization 
studies were performed for both design cases. 
 
The simulation results in Figure 56 show the comparison of the MPC optimized 
performance (in green) against the baseline open-loop operation (in red) for the case 
when the gaps between the refractory bricks are designed to close down. The top figure 



 68 

shows that the MPC optimized pre-heating is completed approximately 22% faster than 
the baseline strategy. Also, note that the optimized pre-heating hot surface temperature 
profile has a very different transient compared to the open-loop one. The open-loop 
strategy starts with a slow temperature rise initially and gradually increases the rate of 
temperature increase. In contrast, the MPC operation starts with the maximum rate of 
temperature increase initially and then slows down during intermediate periods when the 
compressive or tensile stresses are active. The bottom figure shows a comparison of the 
tensile (positive) and compressive (negative) stresses compared to the max limits 
(obtained from the peak values in open-loop strategy at 41% for tensile and 72% for 
compressive stresses). Note that the faster pre-heating implies an earlier time when the 
tensile stress rises to the max limit and then rides this limit for a while causing the pre-
heating temperature profile to slow down. Thereafter, the gaps between the refractory 
bricks close down, causing sharp buildup in compressive hoop stress (and 
correspondingly a reduction in tensile stresses) to the max compressive stress limit. 
Ultimately, as the pre-heating temperature is achieved, the thermal gradients reduce and 
the tensile and compressive stresses also reduce towards the end of the simulation run. 
 
Figure 57 shows a similar comparison of the open-loop operation (red) and MPC 
optimized (green) operation for the design case when the gaps between the refractory 
bricks do not close and thus tensile stresses build up monotonically to the end of the pre-
heating to a slightly higher value, while the compressive stresses are far from constraint 
boundaries. Running to the same tensile stress limits as in the open-loop operation 
(slightly higher limit at 53% compared to previous design case), the MPC optimized 
operation achieves approximately 25% faster pre-heating. The MPC optimized operation 
in this case is simpler, following the maximum heating rate until eventually the tensile 
stress is active at the max limit, causing a slight slowdown of the heating rate. 
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Figure 56: Gasifier startup preheating and thermal stresses - Open-loop schedule and MPC 

optimized profile. Design case with contact between refractory bricks. 
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Figure 57: Gasifier startup preheating and thermal stresses - Open-loop schedule and MPC 

optimized profile. Design case with no contact between refractory bricks. 

 
While the above simulation runs show significant improvement in startup preheating time 
for the gasifier refractory using MPC, another set of simulations were also performed to 
simultaneously reduce startup preheating time as well as the maximum tensile and 
compressive stresses on the refractory bricks. These simulations showed that both could 
be achieved at the same time with a trade-off between the two depending on the 
design/operation needs. 
 
Similar to the gasifier pre-heating, MPC optimization was studied for the RSC pre-heating 
as well. For the RSC, medium pressure steam is fed to the HP drum and the resulting hot 
water is circulated through the RSC tubes to pre-heat them gradually to the desired 
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temperature. The pre-heating leads to transient temperature differences between the 
tubes that heat faster and the outer shell that heats slower, causing an increase in thermal 
stresses. The current operation limits the temperature difference between the tube and the 
shell to a desired value as an indirect means to limiting the thermal stresses. Figure 58 
shows the MPC optimized pre-heating of the RSC. The plot on the top left shows the 
target tube temperature reference (red dashed), which is set to be aggressively fast. The 
actual tube temperature profile is shown in blue, which reaches the desired final value in 
approximately ten hours. The other figures in the top half show the optimized profiles for 
the drum pressure (rising gradually due to steam injection) and the steam flow rate 
(negative values imply feed into the drum as opposed to positive values during normal 
operation when steam is withdrawn from the drum). The figures in the bottom half show 
the difference between the tube and shell temperatures (blue), running against the 
maximum allowed limit (red dashed) – the last figure shows the comparison of the tube 
and shell temperatures, with the shell temperature lagging behind the tube temperature. 
Also, the stresses in the critical component in the RSC are shown in blue compared to the 
max strength limits in red. For the allowed temperature difference between the tube and 
shell, there is still a significant margin available for the stresses, indicating available 
opportunity to speed up the pre-heating more if running to the stress limits instead of the 
temperature difference limit. 

 

Figure 58: MPC optimized pre-heating of RSC. 
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6.2 MPC for Nominal Operation Optimization with Ideal Sensors 

This section summarizes the results of simulation studies with MPC using ideal sensors 
(i.e., state feedback). The simulations were performed with a mix of bituminous coals, as 
well as with a 50-50 blend of bituminous coal and petcoke, and show the improvement in 
both steady state and transient operation. 
 

6.2.1 MPC for Nominal Operation Optimization with Coal 

This section presents results on MPC optimized operation for nominal operation with coal 
fuel at part-load (50%) and baseload steady state conditions as well as during load 
changes (turndown) between baseload and part-load conditions. More specifically, at 
steady-state conditions, the gasification section operation is optimized to minimize the 
oxygen consumption subject to operability constraints, which in turn reduces the internal 
electricity consumption in the air separation unit (ASU). On the other hand, MPC is used to 
optimize the load transients (turndown) between partload and baseload to allow faster 
turndown subject to limiting constraints. The varying optimization objectives within the 
MPC framework during steady state and transient operation allow a flexible and optimized 
overall plant operation to achieve desired objectives based on operation mode. For 
instance, at steady-state conditions MPC can be used to optimize for minimum oxygen 
consumption, maximum carbon conversion, maximum efficiency or maximum net electrical 
power output as desired. On the other hand, during load transients, MPC can be used to 
maximize the ramp rates to get to desired final power output in the least time.  
 
MPC can be used at the gasification section level to optimize the operation through 
coordinated use of multiple control inputs including coal slurry feed, recycle CO2 feed, 
oxygen feed, as well as setpoints for lower level controllers like HP steam drum and 
syngas pressure. While optimizing the performance by MPC, it is still important to track 
key plant outputs (e.g. net electricity output, syngas pressure) at desired values. The 
gasification section operation allows a range of operation conditions with varying 
combination of inputs like oxygen feed, slurry feed, recycle CO2 feed, HP drum pressure 
etc., that yield the same desired net electricity output, thereby allowing degrees of freedom 
in operation that can be exploited to optimize for additional performance objectives (e.g. 
minimize oxygen consumption).  

 

Figure 59: Summary of steady state and transient optimization with MPC using different 

control inputs 
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In the initial MPC simulation studies, various control inputs including the slurry feed rate 
and oxygen feed rate, recycle CO2 flow rate, HP steam drum pressure setpoint, and the 
water content in the slurry feed were used to explore the optimization of the gasification 
section at steady state and during load transients. In the existing operation of the 
gasification section, the water content in the slurry is maintained at a fixed value owing to 
limitations on slurry flowability. While it is possible to vary the water content slowly and to a 
small extent, it is not desirable. The use of these control inputs for potential improvement 
in operation was explored to identify the relative advantage of each input. More 
specifically, the gasification section operation was optimized at partload and baseload 
conditions for minimized oxygen consumption, and during load transients for faster ramp 
rates. The results are summarized in Figure 59. Clearly, slurry throughput and oxygen flow 
rate have to be used as control inputs, to track desired net electric power output at 
different load conditions. A key question was to identify the benefit of using the additional 
inputs like recycle CO2, HP steam drum pressure and slurry water content in terms of 
improving steady-state and transient performance. From the results, it is clear that recycle 
CO2 and HP steam drum pressure are the primary control inputs, allowing up to 8% 
reduction in oxygen usage at steady state, and 20-25% improvement in ramp rates during 
transient load changes (turndown). The additional advantage of using the slurry water 
content was minimal, so it can be discarded from the control inputs in MPC. 
 
Figure 60 shows the MPC simulation results at partload (50%) steady-state operation, 
where it is configured to minimize the oxygen consumption. A key challenge in the MPC 
formulation was that optimization for performance objectives would trade-off against the 
tracking performance. This is not desirable, since tracking objectives (e.g. net electricity 
output) have a high priority and performance optimization should not be done at the 
expense of tracking performance. To address this, the MPC formulation was updated to 
distinguish between tracking and performance optimization objectives, and only allow 
performance optimization subject to meeting the tracking objectives. The plots on the top 
show the setpoint (red-dashed lines) for the tracking outputs, i.e. net electricity output, and 
syngas pressure), and the actual outputs (blue) which indeed track the control setpoint. 
The plots below show the variation in syngas and steam flow rates as MPC optimizes the 
operation for minimized oxygen consumption while still tracking the control outputs. The 
plots on the right show the variation of various control knobs (blue) compared to the 
maximum (red) and minimum (light blue) limits. The variable G_Totalflow_sf denotes the 
variation in slurry feed rate, while G_slurrywater_sf denotes the variation in slurry water 
content (held constant at baseline value), G_CO2_sf denotes variation in recycle CO2 flow 
rate, and G_PetCk_sf denotes the change in petcoke fraction in the fuel (held constant at 
zero for coal operations). Note that the oxygen use is reduced by roughly 8% and this 
minimum is achieved at minimum recycle CO2 feed flow rate. The plots at the bottom 
show additional important process variables (e.g. carbon conversion, syngas LHV and 
MWI) in blue compared to their minimum (light blue) and maximum limits (red). Clearly, 
MPC maintains these outputs within desired limits while achieving the minimum oxygen 
consumption. 
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Figure 60: MPC performance for oxygen use minimization at 50% load operation with coal. 

 
Figure 61 shows similar plots for transient operation optimization during a load ramp from 
partload (50%) to baseload (100%). In the baseline operation strategy, the load transients 
are limited by the oxygen supply rate of change from the ASU. In this simulation run, the 
ramp rate target (red) for the electric power output was set to be about 20% faster than the 
baseline rate. MPC is clearly able to follow this faster ramp rate. Note that during this load 
transient, MPC uses multiple control inputs like the slurry feed, oxygen flow rate, recycle 
CO2 flow rate and the HP drum pressure setpoint in a coordinated manner to enable 
following the faster ramp rate. This is a critical multivariable feature of MPC, which 
optimally coordinates multiple control inputs based on model predictions to achieve the 
desired control objective. Note that for this load transient, MPC increases the oxygen 
supply at the maximum allowed rate of change (limited by the ASU rate of change), while 
also transiently modifying the recycle CO2 and HP steam drum pressure. 
 



 75 

 

Figure 61: MPC performance for faster ramp up during load transients between 50% and 

100% load for operation with coal. 

 
Finally, Figure 62 shows an example long simulation run for about 10 hours showing 
different modes of operation and flexible optimization for each mode of operation. More 
specifically, initially, starting at partload (50%) condition, MPC is used to minimize oxygen 
consumption, then maximize the ramp rate during the load change to baseload (100%), 
followed by minimization of oxygen use at baseload steady-state, before following a fast 
turndown to partload and minimizing again for oxygen use at the final partload condition. 
Clearly, MPC uses the various control inputs in a coordinated manner to achieve each 
control/optimization objective during the various steady state and transient phases of 
operation, while maintaining all inputs and outputs within allowed limits. This illustrates the 
flexibility of using MPC for varying performance optimization depending on the needs for 
any operation mode. MPC was able to achieve 8% reduction in oxygen at partload, 
approximately 5% reduction in oxygen use at baseload and 20-25% faster ramp rates 
during the transients between partload and baseload, as summarized in Figure 59.  
 
While oxygen minimization reduces the oxygen consumption at part-load, this has an 
adverse impact on the plant operation during ramp-up when raising the plant output from 
part-load to baseload. The ramp-up is limited by the capability of the ASU to ramp up its 
production of oxygen – starting from the minimum oxygen point makes this even more 
limiting a constraint during the ramp-up. This is addressed in the MPC formulation by 
allowing for a preparation phase for ramp-up. A key advantage of MPC is the ability to 
optimize for a future prediction horizon. This allows optimizing the operation of the plant in 
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the preparation phase before the ramp-up is initiated. MPC optimizes the operation to 
increase the oxygen feed, while maintaining the constant net electricity output at part-load 
– this essentially provides a head start in the ASU ramp-up, a limiting factor, and thereby 
allows a faster ramp-up. Similar simulation runs were also done for a plant with fully fouled 
RSC, where MPC optimization modified the operation to address the slightly reduced 
steam generation due to the RSC fouling.  
 

 

Figure 62: MPC optimization for nominal operation with coal during steady-state operation 

at part-load and baseload, and during turndown.  

6.2.2 MPC for Nominal Operation Optimization with Coal-Petcoke Blend 

This section presents results in MPC optimized operation for nominal operation using 
coal+petcoke blended fuel – considering blends with 0-50% petcoke. The MPC 
optimization was similar to coal-based operation discussed in the previous section, 
optimizing for minimum oxygen at steady-state conditions and faster ramp up/down during 
turndown. A key difference in operation with coal-petcoke blend compared to coal 
operation is the significant increase in the carbon content in petcoke with a corresponding 
increase of the fuel heating value (HV). Initially, simulation studies were performed at 
baseload and part-load comparing open-loop transition from coal to coal-petcoke blend, 
changing the petcoke from 0-50% following a ramp and keeping other operating 
parameters unchanged. In comparison, for the same ramp in petcoke fraction, MPC 
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optimized operation maintained the required total net electricity output during the 
transition, while maintaining all operability constraints within desired limits.  
 
Figure 63 shows a comparison of transient operation at part-load condition as the fuel is 
transitioned from 0% petcoke to 50% petcoke in (i) an open-loop manner (green), keeping 
all other operation parameters constant, or (ii) using MPC (blue) to maintain same power 
output and pressure conditions while maintaining all operability constraints within limits. 
For operation with petcoke-coal blends the slurry water content was allowed vary slightly 
by about 5%. Owing to the fact that petcoke is significantly richer in carbon, under same 
operating conditions, the oxygen-to-carbon ratio drops and consequently the gasifier 
temperature also drops, leading to reduced carbon conversion and higher slag viscosity. 
On the other hand, despite the reduced carbon conversion, the syngas yield and quality 
(LHV, MWI) increase significantly, while the steam production reduces (due to reduced 
temperature). The overall net electricity production increases significantly. Due to the 
differences in the fuel characteristics, the operation of the plant has to be modified to 
maintain the same target electricity output, and maintain important operability constraints 
like slag viscosity, carbon conversion, syngas LHV and MWI within acceptable limits. The 
MPC operation is designed to achieve this as can be seen in the plots – it maintains the 
constant electricity power output by reducing the slurry feed and the oxygen feed while 
slightly increasing the slurry water content and recycle CO2. The transition to 50% petcoke 
blend operation leads to reduced temperature and thus, reaching the max limit on slag 
viscosity constraint. Note also that owing to the higher carbon content and fuel heating 
value, the syngas LHV is also high at the max limit. 

 

Figure 63: Comparison of open-loop operation (green) with change in petcoke fraction with 

MPC operation (blue). 
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Similar to coal-based operation, MPC was configured to optimize for oxygen use at steady 
state operation while maintaining tracking outputs like net electrical power output and 
syngas pressure at nominal setpoint. In the absence of a reference baseline operation 
condition for comparison, this was studied by configuring MPC to operate at extreme 
conditions, i.e. minimize oxygen consumption and maximize oxygen consumption to 
identify the entitlement opportunity for oxygen use minimization. Figure 64 shows a 
comparison of the results for maximum oxygen use (green) and minimum oxygen use 
(blue), showing a potential to vary oxygen use by up to 5.8%. Note that some of the critical 
operation constraints with petcoke include carbon conversion (due to the significantly 
higher carbon in petcoke) and syngas LHV. Also, unlike operation with coal, the optimum 
operation with petcoke is achieved with significant recycle CO2, again due to the high 
carbon content and carbon conversion constraint. 

 

Figure 64: MPC optimized operation at part-load with 50% coal-petcoke blend showing up 

to 5.8% variation in oxygen use between operation with maximum (green) and minimum 

(blue) oxygen consumption while maintaining the power output at 50%. 

 
Figure 65 shows the performance of the MPC optimized operation with 50% petcoke blend 
over a long simulation run showing multiple operation modes including steady-state 
conditions at part-load and baseload conditions as well as transient turndown between 
these conditions. Similar to the simulation studies with coal in the previous section, 
starting at part-load, (i) initially the operation is optimized to minimize the oxygen 
consumption, followed by (ii) optimization for ramp-up to base load, (iii) oxygen 
minimization at baseload, (iv) optimization for ramp-down to part-load, and finally (v) 
optimize again for oxygen minimization at part-load. As evident in Figure 64, the optimized 
operation with petcoke blend at partload runs against the min carbon conversion and max 
syngas LHV constraint limits – the higher fuel quality (richer in carbon) of petcoke blend 
leads to higher quality syngas. The constraint on the syngas LHV can be relaxed, in which 
case the optimized operation runs to the max syngas MWI limit instead. The opportunity 
for oxygen consumption reduction is lower for petcoke operation compared to coal 
operation due to the more constrained operation range with the higher carbon content. On 
the other hand, the turndown transients during ramp-up and ramp-down were able to 
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successfully follow a 20-25% faster ramp rate compared to the ASU ramp rate that limits 
the rate of change of oxygen feed. Note that during the faster turndown transients, the 
oxygen feed, slurry water content, HP steam drum pressure and recycle CO2 feed are 
changed significantly in a coordinated manner to maintain the gasifier temperature needed 
for carbon conversion and slag viscosity constraints. Note also that unlike operation with 
coal, during operation with petcoke-coal blend, the recycle CO2 flow rate is never reduced 
to zero, again to achieve the high (and limiting) carbon conversion in the presence of 
significantly higher carbon content in petcoke. 

 

Figure 65: MPC optimized operation at 50% part-load and 100% baseload and during 

turndown with 50% petcoke-coal blend. 

 
This section presented MPC simulation results using ideal sensors or state feedback, both 
for coal and coal-petcoke blends. The simulation runs show significant opportunities to 
optimize the plant operation at steady state as well as during transients. Also, MPC allows 
an increased flexibility in operation, with the ability to optimize for different optimization 
objectives (e.g. oxygen use minimization, carbon conversion maximization, efficiency or 
power output maximization at steady state, or faster transients during load changes) as 
desired during different operation modes.  
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6.3 Integrated MPC and EKF for Nominal Operation Optimization 

Figure 44 shows the architecture used in Phase II, wherein the MPC with ideal sensors, 
i.e. perfect knowledge of all state and output variables from the plant, and the EKF-based 
sensing system using a combination of online sensors and model-based estimation were 
developed and tested in parallel in an open-loop configuration. In Phase III, the separate 
designs for MPC with ideal sensors and the EKF-based sensing system were coupled to 
obtain the overall integrated sensing and control system, as shown in Figure 66.  
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Figure 66: Schematic of Integrated EKF and MPC. The EKF uses sensor measurements to 

update the states and parameters for reduced order model used in MPC. 

 
In a phased approach to this task, first the separate implementations of MPC and EKF 
were unified in a combined implementation, using the latest reduced-order model common 
to both and a common linear model generation routine to achieve high computational 
efficiency. Thereafter, the integrated control and sensing system was retuned for stability 
and performance robustness to random combinations of sensor noise, bias and modeling 
error. The final retuned system was studied using Monte-Carlo simulations with random 
sensor bias for both coal slurry feed and coal-petcoke blend. For all these simulations, the 
system is initially simulated in open loop with only the EKF enabled (without engaging 
MPC controller) for about 60 minutes. This initialization period is required for initial 
transients in estimated states and parameters in the EKF to settle down. Thereafter the 
MPC controller is engaged to study the performance of the integrated EKF-MPC system 
for steady state and transient operation. The simulation results for coal slurry feed based 
on a number of Monte-Carlo simulations with random combinations of sensor bias and 
modeling error (RSC fouling and gasifier kinetics) are presented next.   
 

6.3.1 Nominal Operation Optimization with Coal 

Simulations studies conducted with the integrated control and sensing system using coal 
slurry feed show good tracking performance during steady state as well as transient 
operations. Figure 67 and Figure 68 show one such result for a long simulation run with 
multiple steady state and transient operation phases. Figure 67 shows various phases of 
the simulation run. The simulation is initiated (point „A‟) at base load condition with only the 
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EKF enabled. The simulation runs for almost 60 minutes without any external control input 
(open loop). After that the MPC is enabled at point „B‟. The MPC quickly tracks the net 
electrical output and scrubber syngas pressure to the respective reference set points.  At a 
steady state point „C‟ the MPC is configured for net electrical output maximization mode 
while respecting all the operational constraints (e.g., maximum slurry feed, ASU limit etc). 
Clearly, MPC is able to achieve about 2% higher net electricity output in this mode. At a 
later steady state operation point „D‟ the net electrical output maximization mode is 
suspended in preparation for the net electrical output turndown. Operation phase „E‟ to „F‟ 
represents 25% faster ramp tracking in net MW as well as scrubber syngas pressure 
compared to the nominal operation to 50% part load. Since, it is normally not desirable for 
the IGCC plant to turn down all the way to zero load due to startup complexities, the end 
of this turndown transient may represent the parking of the plant during the low power 
demand period. During this period, one objective would be to minimize the oxygen 
consumption while maintaining certain minimum load (net electrical output as well as 
scrubber syngas pressure) – this in turn reduces the internal power consumption in the 
ASU and achieves higher plant operation efficiency. The point „G‟ represents the starting 
point of such a phase. At point „G‟ the MPC is engaged in the minimization of the oxygen 
consumption mode while maintaining 50% load. In this phase, MPC is able to reduce 
oxygen consumption by about 10%. Phase „I‟-„J‟ of the simulation represents the ramp up 
transient tracking of net electrical output from 50% load to base load condition at 20% 
faster rate compared to the nominal rate. Once at the base load, the MPC is again 
engaged in the maximization of net electrical output mode at a steady state operation 
point „K‟. As mentioned, all through this simulation the scrubber pressure is also tracked to 
a given reference trajectory as shown in the bottom graph of Figure 67. 
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Figure 67: Integrated sensing and control system closed loop response to load change 

from 100% -50%-100% with sensor and parameter errors with coal. The MW output and 

scrubber pressure (blue) track the reference profile (red) with 25% (ramp down) to 20% 

(ramp up) faster ramp rate compared to nominal. 

 
Figure 68 shows the overall plant response with the integrated sensing and control system 
to change in load from base load to 50% part load and then back to base load in the 
manner as described earlier (Figure 67), in the presence of sensor (one random 
combination of sensor noise and bias) and modeling error (RSC fouling and Gasifier 
kinetics).  For this simulation, the plant RSC is 30% fouled and the gasifier kinetics is 70% 
of the nominal value. The EKF is initialized to nominal values of these parameters (RSC 
fouling=0 and gasifier kinetics scale factor =1). The simulation response shows that 
despite the presence of sensor noise and parameter error, the integrated sensing and 
control system has a good net electrical output set point tracking performance for both, at 
the steady state as well as the transient operation. This is similar to what was observed 
with state feedback MPC with ideal sensing. Further the integrated system is able to 
maximize the net electrical output for this combination of sensor noise and bias and model 
parameter error by more than 2% at the base load and cut down the oxygen consumption 
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at partload by about 10%. Figure 68 also shows that the EKF estimates of gasifier kinetics 
scale factor (Etasf) and the RSC fouling factor (Foulingsf) at base load condition are quite 
good. However, at part-load conditions due to limited “observability” of the parameters in 
the system, the parameter estimation is less accurate. More specifically, since EKF 
estimates all the states, parameters and biases such that combinations of all these result 
in minimum variance estimate to match the sensor measurements, the individual 
parameters are not guaranteed to track the actual parameters. However, the overall 
closed-loop response shows that even in the presence of sensor and modeling errors and 
despite the limited “observability” of the parameters in the system, the integrated sensing 
and control system is able to track the load and syngas pressure references well: tracking 
20-25% faster turndown ramp rates. In the figure, the blue graph in Elec_MW_Net and 
SG_P represent the actual response whereas the setpoints are shown as red graph.  

 
 

Figure 68: Integrated sensing and control system closed loop response to load change with 

coal from 100% -50%-100% with one combination of random sensor biases and parameter 

error. 

 
As mentioned earlier, the designed integrated sensing and control closed-loop system was 
studied using Monte-Carlo simulations using random combinations of the sensor biases 



 84 

for each run. These results are summarized in Figure 69 and Figure 70. For all these 
simulations the plant RSC is 30% fouled and gasifier dynamics is 70% of the nominal 
value whereas, the estimator is initialized with nominal gasifier kinetics (etasf=1) and no 
fouling in the RSC (fouling=0). Histograms of the maximum sustained net electrical power 
output gain at base load condition and maximum sustained saving in oxygen consumption 
at 50% part load observed in Monte-Carlo simulation are presented in Figure 69. The 
simulation shows that the gain in net electrical power output could be as much as 2-2.5%, 
however, this gain is uneven and depends upon the sensor noise and bias combination. 
This is due to non-perfect observability in the system. Due to non-perfect observability 
some performance constraint parameters like carbon conversion, slag viscosity and 
Wobbe index cannot be estimated very accurately. This results in more conservative 
optimized performance due to constraints posed on these signals.  The Monte Carlo 
simulation also shows that 7-10% sustained saving in oxygen consumption over the 
nominal consumption for 50% load can be achieved by judicious manipulation of control 
inputs. For consistency purpose, the saving in oxygen consumption is normalized with 
respect to the net electrical power output to account for any slight changes in electrical 
power output during the optimization of oxygen consumption phase. This gain is similar to 
what was observed with state feedback MPC with ideal sensors. 
 
Finally, Figure 70 shows the time traces and histograms of the estimated values of gasifier 
kinetics parameter (etasf) and RSC fouling for the same Monte-Carlo simulations. As 
mentioned earlier, each simulation starts in open loop with model-based estimator (EKF) 
engaged for an hour before the controller (MPC) is activated. This is required for the 
estimates of  “unknown” parameters in model (used both for EKF and MPC) and sensor 
biases to settle to its steady state values as seen in subplots in Figure 70. Without this 
open loop operation, it was observed in multiple simulations that the interaction between 
the estimator and the controller might lead to closed loop system instability. The time 
traces of the parameters also show that these parameters are estimated more accurately 
at the base load steady state condition as compared with the part load steady state 
condition or during the transient operations, due to poor observability at part load 
conditions. Since the parameter observability is better at the base load condition, starting 
the simulation at these conditions also helps in more accurate estimation of these 
parameters. Starting at baseload condition, once the estimation has converged close to 
the “correct” value, it does not change significantly again on account of poor observability. 
The histograms at the bottom of Figure 70 correspond to the average value of 
corresponding parameters for each Monte-Carlo simulation. The figures show that the 
average parameter values over each simulation are close to actual values.  
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Figure 69: Monte Carlo simulation results for Net Electrical output gain at the base load 

condition and oxygen saving at 50% part load condition for various random combination of 

sensor error (noise and bias) and model parameter error (gasifier kinetics and RSC fouling) 

using the integrated sensing and control system for load changes from 100%-50%-100%. 

 

Figure 70: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various 

random combination of sensor bias and model parameter errors for the integrated sensing 

and control system closed loop system to load change from 100%-50%-100%.  
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6.3.2 Nominal Operation Optimization with Coal-Petcoke Blend 

Similar simulation studies were carried out for coal-petcoke fuel blend. These results are 
presented next. Figure 71 shows various phases of simulation with coal-petcoke fuel 
blend. The simulation is initiated (point „A‟) at base load condition with EKF engaged. The 
simulation runs for almost 60 minutes without any external control input (open loop). After 
that the MPC is engaged at point „B‟, and it quickly tracks the net electrical output and 
scrubber syngas pressure to the respective reference set points. Operation phase „C‟ to 
„D‟ represents 25% faster ramp tracking in net MW as well as scrubber syngas pressure 
compared to the nominal operation to 50% part load. Again, since it is normally not 
desirable for the IGCC plant to turn down all the way to zero load due to startup 
complexities, the end of this turn down transient may represent the parking of the plant 
during the low demand period. During this period one objective would be to minimize the 
oxygen consumption while maintaining certain minimum load. The point „E‟ represents 
starting of such a phase. At point „E‟ the MPC is engaged in the minimization of the 
oxygen consumption mode while maintaining 50% load. At point „F‟ the MPC disengages 
the oxygen minimization mode in preparation for transient operation. Phase „G‟-„H‟ of the 
simulation represents the ramp up transient tracking of net electrical output from 50% load 
to base load condition at 20% faster rate compared to the nominal rate. Once at base 
load, the MPC again engages tracking of net electrical output as well as scrubber syngas 
pressure mode and maintains the steady state operation. As mentioned, all through this 
simulation, the scrubber pressure is also tracked to a given reference trajectory as shown 
in the bottom graph of Figure 71. 
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Figure 71: Integrated sensing and control system closed loop response to load changes 

from 100%-50%-100% with sensor and parameter errors for coal-petcoke blend. The MW 

output (blue) track the MW reference (red) with 25% (ramp down)-20% (ramp up) faster 

ramp rate compared to nominal. 

 
Figure 72 shows the overall plant response to the integrated sensing and control system to 
changes in load from base load to 50% part load and then back to base load in the 
manner as described earlier (Figure 71), in the presence of one random combination of 
sensor error (noise and bias) and modeling error (RSC fouling and gasifier kinetics).  
Similar to the coal case, for this study the plant RSC is 30% fouled and the gasifier 
kinetics is 70% of the nominal value, while EKF is initialized to nominal values of these 
parameters (RSC fouling=0 and gasifier kinetics scale factor =1). The simulation response 
shows that despite the presence of sensor bias and parameter error the integrated 
sensing and control system has a good steady state as well as the transient operation 
tracking performance for both, the net electrical output as well as scrubber syngas 
pressure. This is similar to what was observed with state feedback MPC with ideal 
sensing. Further the integrated system is able to cut down the oxygen consumption by 
about 6% at partload. Figure 72 also shows the EKF estimates of gasifier kinetics scale 
factor (Etasf) and the RSC fouling factor (Foulingsf) over the duration of the simulation. The 
figure shows that plant parameters namely gasifier kinetics scale factor and RSC fouling 
factor estimates are slightly less accurate: at base load condition, the EKF estimates 
slightly faster gasifier kinetics whereas at the partload condition it estimates slightly slower 
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kinetics. Further, at baseload condition the RSC fouling is accurately estimated close to 
the actual value of 30%, while the estimation deteriorates at part load condition. This is 
due to limited “observability” of the parameters in the system, especially for small 
throughput at partload operation. Similar to coal case, since EKF estimates all the states, 
parameters and biases such that combinations of all these result in minimum variance 
estimate to match the sensor measurements, the individual parameters are not 
guaranteed to track the actual parameters. Nevertheless, the overall closed-loop response 
shows that even in the presence of sensor and modeling errors and despite the limited 
“observability” of the parameters in the system, the integrated sensing and control system 
is able to track the load and syngas pressure references well: tracking 20-25% faster 
turndown ramp rates. In the figure the blue graph in Elec_MW_Net and SG_P represent 
the actual response whereas the setpoints are shown as red graph. 
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Figure 72: Integrated sensing and control system closed loop response to load changes 

from 100%-50%-100% for coal-petcoke blend with one combination of random sensor bias 

and parameter errors. 
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Figure 73: Monte Carlo simulation results for normalized oxygen saving at 50% part load 

condition with various random combination of sensors error (noise and bias) and model 

parameters error (gasifier kinetics and RSC fouling) for the integrated sensing and control 

system to load changes from 100%-50%-100%. 

 
As mentioned earlier, similar to coal fuel, the designed integrated sensing and control 
closed-loop system was studied using Monte-Carlo simulations using random 
combinations of the sensor biases for each run. These results are presented in Figure 73 
and Figure 74. For all these simulations, the plant RSC is 30% fouled and gasifier kinetics 
is 70% of the nominal value whereas the estimator is initialized with nominal gasifier 
kinetics (etasf=1) and no RSC fouling (fouling=0). Histogram of the maximum sustained 
saving in oxygen consumption at 50% part load observed in Monte-Carlo simulation is 
presented in Figure 73. The Monte Carlo simulation shows that 3-6% sustained saving in 
oxygen consumption over the nominal consumption for 50% load can be achieved by 
judicious manipulation of control inputs for most cases of sensor bias combination.  For 
some combinations of sensor bias, this gain may be quite small. This is due to non-perfect 
observability in the system. Due to non-perfect observability some performance constraint 
parameters like carbon conversion, slag viscosity and Wobbe index cannot be estimated 
very accurately. This results in more conservative optimized performance due to 
constraints posed on these signals.  For consistency purpose, the saving in oxygen 
consumption is normalized with respect to the net electrical power output to account for 
any slight changes in electrical power output during the optimization of oxygen 
consumption phase. This gain is similar to what was observed with state feedback MPC 
with ideal sensors. 
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Figure 74: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various 

random combination of sensor noise and model parameters error for the Integrated 

sensing and control system closed loop system to load changes from 100%-50%-100%. 

 
Finally, Figure 74 shows the time traces and histograms of the estimated values of gasifier 
kinetics parameter (etasf) and RSC fouling for the same Monte-Carlo simulations. As 
mentioned earlier, each simulation starts in open loop with model-based estimator (EKF) 
engaged for an hour before the controller (MPC) is activated. This is required for the 
estimates of  “unknown” parameters in model (used both for EKF and MPC) and sensor 
biases to settle to its steady state values as seen in subplots in Figure 74. Similar to coal 
fuel cases, without this open loop operation, it has been observed in multiple simulations 
that the interaction between the estimator and the controller may lead to closed loop 
system instability. The time traces of the parameters also show that these parameters are 
estimated more accurately at the base load steady state condition as compared with the 
part load steady state condition or during the transient operations, due to poor 
observability at part load conditions. Since the parameters observability is better at the 
base load condition, starting the simulation at these conditions also helps in more accurate 
estimation of these parameters. Starting at baseload condition, once the estimation has 



 91 

converged to the “correct” value, it does not change significantly again on account of poor 
observability. The histograms at the bottom of Figure 74 correspond to the average value 
of corresponding parameters for each Monte-Carlo simulation. The figures show that 
unlike the coal case, in coal-petcoke cases, the average parameter values over each 
simulation are less accurate. The performance of the EKF parameter estimation could 
possibly be improved by further retuning of the EKF. Despite this, as shown in Figure 72, 
the integrated sensing and control system shows good steady state as well as transient 
tracking performance and is able to optimize the operational cost within the operational 
constraints. 

7 Conclusions 

An IGCC plant is a large chemical plant, traditionally designed to operate mainly at steady 
state conditions, coupled to a power generation plant intended to operate in a robust, 
optimized and flexible manner to meet varying power generation demand. It is highly 
desired to achieve high degree of reliability and increasingly flexible operation in terms of 
turndown or load-following capability and fuel changes while achieving optimum overall 
plant efficiency. This in turn, implies a need for increasing automation for coordinated and 
optimized operation of the various sections of the plant to meet fluctuating power 
generation objectives. This program focused on developing advanced integrated sensing 
and control systems to achieve the objectives of higher reliability and flexible operation 
with optimized efficiency. In particular, this program focused on the gasification section, 
which is the core section of the plant, yet most limited in terms of automated operation, 
due in large part to a very harsh environment and corresponding limitations on online 
sensing. On the other hand, first-principles physics-based models have been developed 
for key process units, which are nominally used for offline analysis and design purposes. 
These physics-based models allow capturing the process operation knowledge in a 
rigorous manner and can be used online as the basis for design of an advanced sensing 
and control solution. Motivated by this, a systematic model-based approach for analysis 
and design of sensing and control systems has been developed in this program, and 
extensive simulation studies have been performed to identify the application and benefits 
of such an advanced sensing and control solution for online monitoring and control in an 
IGCC plant. The results and conclusions from each key element of the program are 
summarized in the next sections. 

7.1 Dynamic modeling for sensing and controls design 

It is clear that a good dynamic model based on first-principles is the foundation for design 
of advanced sensing and controls solution. However, the model has to be developed with 
the intended end-use for online sensing and control in mind. Important aspects for 
consideration include the level of details and time-scale of dynamics to be included, the 
computational efficiency and suitability for real-time simulation and estimation/controls, the 
flexibility and ability to adapt with adequate model parameters to address site-to-site 
design/operation variations as well as variations in a given plant over time. In particular, 
the model has to be adequately low-order to enable fast simulations as well as robust use 
in online sensing and controls. Similarly, instead of attempting to capture all minute details 
in the process and still have inaccuracies – there is always an approximation in any model 
– it is often better to parameterize some aspects and allow room for online adaptation to 
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changing process characteristics and keeping the updated model accurate. These aspects 
invariably lead to a trade-off in the model complexity and suitability for online monitoring 
and control.  
 
With these considerations, in Phase I of the program, a unified dynamic model of the 
gasification section was implemented in Matlab/Simulink® to be used for simulation 
studies as well as design of model-based sensing and control solutions. The models were 
implemented to describe both the nominal operation mode, as well as the phases of 
startup including pre-heating and post-ignition pressure ramp-up. In particular, a separate 
set of models was implemented for the gasifier refractory and RSC pre-heating, capturing 
the thermo-mechanical stress dynamics that limit the transient heating operation. The 
gasifier pre-heating model was implemented in Matlab/Simulink® and ANSYS®. The 
available models for individual process units were leveraged to build the overall model. 
Where necessary, additional details were included, e.g. some models had only steady-
state equations which were generalized to include dynamics, or in the case of the drum 
level model, additional details were included to better capture the “swell” effect during 
transients. On the other hand, the gasifier model was a high-order model that took up to 
twenty minutes or more to converge to a steady state – obviously not suitable for online 
sensing and control. This motivated the use of model-reduction to derive a low-order 
model of the gasifier that could be simulated within a fraction of a second while 
maintaining high accuracy with respect to the original high-order model over a wide 
operating envelope.  
 
Often, once individual unit models are put together to describe the overall subsection or 
plant dynamics, invariably the overall model ends up being stiff, i.e. it has dynamics over a 
range of time-scales spanning fractions of seconds to minutes or hours. It is important only 
to keep the dynamics relevant for the characteristic time scale of the intended monitoring 
and control application. For instance, for the overall gasification section operation, which 
typically evolves overall several minutes, the gasifier dynamics occur over few seconds, 
which is too fast and can be ignored. Similarly, while in the full-order model used to 
simulate the “plant” detailed syngas flow and pressure dynamics were retained, these 
dynamics also occur over seconds and lead to stiffness. In order to enable fast simulation 
of the reduced-order model, especially for repeated future predictions for MPC, these 
pressure-flow dynamics were also approximated with quasi-steady-state approximations 
without sacrificing much accuracy.  
 
Finally, in order to provide flexibility to the model and address uncertainties due to 
unknown (or un-modeled) aspects, parameters were defined in each process unit to allow 
for adapting the model and matching with real plant data. For instance, in the gasifier, the 
heterogeneous reactions are the rate-limiting reactions governing carbon conversion, and 
there is some uncertainty in the reaction kinetics – a kinetics scale factor was used to 
allow adjusting the kinetics in the presence of uncertainty. Similarly, in the RSC model the 
heat transfer varies with the degree of fouling which is introduced as a parameter to allow 
online adaptation based on available measurements. In the quench and the scrubber, a 
non-ideal VLE is used to capture the phase equilibrium between the syngas and the water 
holdup. To account for inaccuracies in the VLE relationship and potential limitations on 
gas-liquid equilibrium assumption, especially during transients, a temperature parameter 
was included to capture deviation from the modeled VLE relationship. These parameters 
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are adapted online to match online sensor measurements, and keep the model matched 
to plant data. 
 
In parallel to the model development, Phase I of the program also focused on 
implementation of sensors in the RSC in TECO Polk Power Station IGCC plant. Extensive 
lab tests were performed for fiber optic sensor design and packaging for temperature and 
strain sensing to meet the requirements for installation. In the second year of the program 
(Phase II), the sensor testing and packaging design and fabrication were completed. 
Finally, a set of radial temperature probes using Type B thermocouples and fiber optic 
FBG sensors, and fiber optic static strain sensors were installed in the RSC in TECO 
IGCC plant in 2009 Q1. The sensor packages worked very well, especially the 
temperature probes at level 10 in the RSC and the strain sensor in the RSC dome. The 
temperature probes at level 10 performed well, withstanding temperatures around 2000 F, 
and multiple startup/shutdown transients. The sensors at level 7 also performed very well 
until the ceramic packaging broke abruptly on the fifth day of operation due to likely 
impingement of hot gas and/or slag. The strain sensor in the RSC probe worked very well, 
meeting all expectations and successfully measuring over approximately six weeks, a 
slowly increasing and small mechanical strain due to gradual fouling buildup, while 

withstanding very high thermal stresses (~5000-7000 ) due to high temperature 
conditions during startup. The FBG sensors performed very well for the intended short 
duration to collect data for model validation, despite the high level of challenges due to the 
extremely harsh operating conditions. Nevertheless, there is room for further 
improvement, especially in packaging design and installation, to enable robust sensors 
that can be used for long duration for monitoring and control. 

7.2 Advanced model-based sensing 

A key challenge in the monitoring and control of the core gasification section in an IGCC 
plant is the limited availability/survivability of sensors due to the extremely harsh 
environment. Owing to the limitations on available online sensors, a general model-based 
sensing approach wherein existing online sensors are coupled with online real-time model-
based estimation (or virtual sensing) provides an effective solution. Such an approach was 
developed in Phase II of the program under Task 2. The dynamic model for the 
gasification section was used in an EKF together with available online sensors, to estimate 
important unmeasured process variables important for monitoring and control, e.g. gasifier 
temperature, carbon conversion and slag viscosity.  
 
A key concern in any sensing system is the accuracy of the sensor, whether it is real or 
virtual. In particular, the accuracy of the virtual sensor or model-based estimate depends 
on the accuracy of online (real) sensors and the model used for estimation. Initially, a 
linear model-based analysis was performed using Kalman filter design to identify key 
modeling errors (unknown/varying model parameters like gasifier kinetics, RSC fouling 
etc.) and sensor errors (unknown biases in sensors) that adversely impact the estimation 
accuracy. The ones with high sensitivity were included in the nonlinear model-based 
estimation using an EKF. A limitation of standard EKF is the inability to enforce 
inequality/bound constraints on the estimated “state” variables, e.g. mole fractions, fouling 
factor, which are expected to be in the range 0 to 1. To address this, two different 
constraint handling techniques were implemented, one using post-update active constraint 
identification and correction, and another using preemptive correction for constraints 
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before the measurement update. Through simulation studies, the latter approach was 
found to be more effective. However, there is room for improvement. In particular, the 
presence of constraints limits the effectiveness of underlying assumption of Gaussian 
variances assumed in an EKF, and techniques that relax this assumption would likely 
perform better. The performance of the constrained EKF was studied through extensive 
Monte Carlo simulations with random combinations of sensor biases, in the presence of 
modeling errors (errors in gasifier kinetics and RSC fouling) to show the estimation 
performance in the presence of these errors. Subsequently, in Phase III of the program 
this EKF was integrated with the MPC solution to obtain the overall integrated sensing and 
control solution. The simulation studies with the integrated sensing and control solution 
showed that in the presence of sensor errors, the unknown model parameters like gasifier 
kinetics and RSC fouling are more “observable”, i.e. can be identified with higher 
accuracy, at baseload conditions as opposed to partload condition. This is consistent with 
the fact that at baseload conditions and corresponding high throughput, these parameters 
have higher sensitivity to the online sensors. 
 
The ability to have a comprehensive online sensing/monitoring solution using a 
combination of limited online sensors complemented with model-based estimates is an 
important capability in itself. It allows real-time monitoring of process performance (e.g. 
gasifier temperature, carbon conversion), which can be used by plant operators for 
improved operation. When coupled with an advanced control solution, as done under Task 
3 of the program, the integrated sensing and control solution achieves higher automation, 
robustness, flexibility and efficiency of plant operation. 

7.3 Advanced model-based control 

Finally, under Task 3, MPC controllers were designed for startup pre-heating of the 
gasifier refractory and RSC, as well as nominal operation with coal and coal-petcoke 
blends. MPC, through systematic online model-based future prediction and constrained 
optimization, allows achieving optimized plant operation while enforcing all safety, 
hardware and operability constraints. Also, MPC provides the ability to change the 
optimization objective (e.g. carbon conversion, oxygen use, efficiency, ramp rates) 
depending on the operation mode, thereby providing enhanced operation flexibility.  
 
Initially, in Phase II, MPC was designed and tested through simulations for optimized 
startup pre-heating as well as nominal operation at steady state and through fuel and 
throughput/load transients. These MPC studies were performed assuming state feedback, 
or full knowledge of plant model states and outputs. During startup, gasifier and RSC 
preheating take significant time, consuming significant fuel as well as impacting plant 
availability. Faster preheating would benefit both. The MPC simulation studies with gasifier 
refractory preheating, subject to tensile and compressive thermal stress limits in the bricks, 
showed potential for 20% faster preheating compared to baseline open-loop schedule. 
Also, MPC studies were used to identify design tradeoff between desired faster preheating 
and reduction in thermal stresses. Similarly, MPC optimized operation for RSC pre-heating 
indicates a fast completion of pre-heating in less than ten hours, depending on the steam 
availability for pre-heating. MPC was used to perform extensive simulation studies for 
nominal operation at part-load and baseload conditions and for turndown between part-
load and baseload conditions. For coal-based operation, in one optimization mode at 
steady-state conditions, MPC yielded potential reduction of oxygen consumption by up to 
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8% at partload conditions. In another optimization mode for transient operation during 
turndown, MPC simulations yielded faster ramp-up and ramp-down capabilities by 20-25% 
faster than baseline capability due to the rate-limited ASU. Similarly, MPC simulations 
were used to study the transition from coal to coal-petcoke blends, and optimization for 
nominal operation at part-load and baseload conditions and turndown, yielding similar 
faster ramp rates during turndown and slightly reduced oxygen savings – the operation 
with coal-petcoke blend is more constrained compared to coal operation, partly due to the 
high carbon content in petcoke while still desiring a high carbon conversion. These 
improvements are achieved by MPC through coordinated use of multiple control inputs like 
slurry feed, oxygen feed, recycle CO2 feed and HP steam drum pressure, and controlled 
operation to constraint boundaries. These improvements in steady state and transient 
operation are significant. 
 
In Phase III of the program, the EKF developed in Task 2 and MPC with state feedback 
from Task 3 were coupled to achieve the overall integrated sensing and control solution.  
In this effort, first the underlying physics-based models were updated to a common 
version, and then the EKF and MPC were coupled and re-tuned iteratively for good 
closed-loop performance of the integrated sensing and control solution.  The physical 
model has many “unknown” parameters, e.g., gasifier kinetics, RSC fouling etc. The EKF 
provides estimates of these parameters, all model states as well as of outputs used by 
MPC and important for efficient and safe operation like the gasifier temperature, carbon 
conversion, slag viscosity etc. in the presence of random sensor noise and bias. This 
integrated solution was tested through Monte-Carlo simulations with random combinations 
of sensor biases in the presence of model parameter errors. The simulations were 
designed to test performance of the integrated sensing and control system for net 
electrical output and syngas pressure setpoint tracking at steady state and faster 
transients, as well as minimizing the oxygen use or maximizing electric power output at 
steady state, with coal as well as coal-petcoke fuel blend while respecting all the operating 
constraints.  
 
The simulation studies showed that the steady state as well as the transient tracking 
performance of integrated system is good and comparable to the “ideal” MPC with state 
feedback in Phase II, despite the presence of sensor and modeling errors. Further, the 
integrated system provides the capabilities to the turn down 20% (ramp up) or 25% (ramp 
down) faster than the nominal operation while maintaining all the operational constraints. 
The integrated system also enables the optimization of various objective functions 
depending upon the current operation mode, thus providing operational flexibility. More 
specifically, for example, in the current setting, MPC was configured to maximize the net 
electric power output at base load condition, while minimizing the oxygen usage at the part 
load condition. The performance of the integrated sensing and control solution was 
studied through the Monte Carlo simulations. These simulations showed that the system 
net electrical output could be increased by up to 2-2.5% of the nominal value at the base 
load condition with coal slurry. Conversely, at partload operation, the oxygen consumption 
could be reduced by 7-10% for coal slurry. With coal-petcoke blend fuel, the oxygen 
saving at partload was a bit less at around 3-6% - this is in part due to the more 
constrained operation with petcoke owing to the higher carbon content. The EKF also 
estimated the unknown model parameters like gasifier kinetics and RSC fouling. The 
estimates were good at baseload conditions, and deteriorated a bit during transients or at 
partload conditions. This is due to the fact that the parameters are more observable due to 
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the higher sensitivity at baseload operation with higher throughput. The parameter 
observability is reduced at partload operation. Due to limited observability it is not always 
possible to estimate the unknown model parameters and compensate for sensor noise 
and bias accurately. Nevertheless, the integrated sensing and control system using EKF 
and MPC works very well for steady state and transient tracking as well as optimization. 
 
The simulation studies have shown very promising results for the EKF and MPC 
implementations individually as well as for the final integrated EKF & MPC solution. These 
results can be used as the basis for pursuing a future implementation of the developed 
sensing and controls solution in an IGCC plant, in a staged manner. One option is to first 
implement the EKF by itself using available online sensors in the gasification section and 
mature its performance in plant application – validating both the underlying model and the 
model-based estimation solution. As mentioned earlier, the EKF solution in itself is 
valuable for real-time online monitoring of the plant performance that can be used by plant 
operators for improved operation. Once the performance of the model and the EKF-based 
sensing solution is established, MPC can be implemented and integrated with EKF to 
achieve the advanced sensing and control solution. Again, MPC could initially be used in 
an “advisory” mode to aid operators improve the plant operation. Subsequently, as its 
performance is established, it could be implemented in a closed-loop mode to enable 
automated operation and achieve the performance improvement entitlement. In a 
separate direction, the developed advanced sensing and control solution for the 
gasification section could be expanded or integrated with sensing and controls for the 
other sections, including the ASU, syngas cleanup and power generation towards an 
overall plant-level control system for optimizing the overall IGCC plant operation. 

8 Abbreviation 

This section lists the abbreviations used in this report. 
 
ASU  Air Separation Unit 
CSC  Convective Syngas Cooler 
EKF  Extended Kalman Filter 
FBG  Fiber Bragg Grating 
IGCC  Integrated Gasification Combined Cycle 
KF   Kalman Filter 
LHV  Lower Heating Value 
MPC  Model Predictive Control 
MWI  Modified Wobbe Index 
POD  Proper Orthogonal Decomposition 
RSC  Radiant Syngas Cooler 
SBL  Soot Blower Lance 
UKF  Unscented Kalman Filter 
 
 


