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1 Abstract

This report summarizes the achievements and final results of this program. The objective
of this program is to develop a comprehensive systems approach to integrated design of
sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant,
using advanced model-based techniques. In particular, this program is focused on the
model-based sensing and control system design for the core gasification section of an
IGCC plant. The overall approach consists of (i) developing a first-principles physics-
based dynamic model of the gasification section, (ii) performing model-reduction where
needed to derive low-order models suitable for controls analysis and design, (iii)
developing a sensing system solution combining online sensors with model-based
estimation for important process variables not measured directly, and (iv) optimizing the
steady-state and transient operation of the plant for normal operation as well as for startup
using model predictive controls (MPC). Initially, available process unit models were
implemented in a common platform using Matlab/Simulink®, and appropriate model
reduction and model updates were performed to obtain the overall gasification section
dynamic model. Also, a set of sensor packages were developed through extensive lab
testing and implemented in the Tampa Electric Company IGCC plant at Polk power station
in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant
operation data was also used to validate the overall gasification section model. The overall
dynamic model was then used to develop a sensing solution including a set of online
sensors coupled with model-based estimation using nonlinear extended Kalman filter
(EKF). Its performance in terms of estimating key unmeasured variables like gasifier
temperature, carbon conversion, etc., was studied through extensive simulations in the
presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier
kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal
sensing to optimize the plant operation during startup pre-heating as well as steady state
and transient operation under normal high-pressure conditions, e.g. part-load, base-load,
load transition and fuel changes. The MPC simulation studies showed significant
improvements both for startup pre-heating and for normal operation. Finally, the EKF and
MPC solutions were coupled to achieve the integrated sensing and control solution and its
performance was studied through extensive steady state and transient simulations in the
presence of sensor and modeling errors. The results of each task in the program and
overall conclusions are summarized in this final report.

2 Executive Summary

This section briefly summarizes the key accomplishments of the program. They are
described in more detail for each key task in the subsequent sections.

2.1 Task 1 - Modeling for gasification section

The objective in Task 1 was to (i) develop a detailed transient model of the gasification
section to be used for simulation studies and sensing & control system design in Tasks 2
& 3, and (ii) implement sensors in RSC in the TECO IGCC plant to obtain data for model
validation. In particular, a dynamic model was developed for nominal, high-pressure



operation of the gasification section for both steady state as well as transient operation like
turndown (i.e., load/throughput changes) and fuel changes (coal or coal+petcoke blends).
This model was then extended to encompass the post-ignition, pressure ramp-up portion
of the startup process as well, where both the syngas pressure and the steam pressure
are raised gradually to nominal operating pressures. In parallel, another set of models was
developed for the pre-heating phase of the startup, wherein the thermal transients in the
gasifier refractory and the RSC and the corresponding thermal stresses are modeled
during the pre-heating operation. All the models were implemented in Matlab/Simulink®
except for the gasifier preheating where a dynamic thermal model in Matlab/Simulink®
was coupled with a stress calculation model in ANSYS®. For the gasifier model, a
systematic model-reduction was also performed to enable fast real-time computation for
simulation and controls design. The implemented models were used for all sensing and
control simulation studies in this program.

2.2 Task 1 - Sensor Implementation in RSC at TECO Plant

In this subtask, the objective was to install sensors in the RSC in the TECO IGCC plant
and obtain plant operation data that could be used for model validation. Initially, three
sensor candidates were identified: (i) radial temperature profiles at levels 7 & 10, (ii) axial
temperature profile between levels 7 &10, and (iii) strain measurement in the RSC dome
outside the hot syngas path. Initial lab tests for the axial temperature profile indicated high
risks in packaging survivability and thus, it was not pursued for implementation. Extensive
lab tests were performed in 2007 and 2008 to study and improve the performance of the
optical Fiber Bragg Grating (FBG) sensors under expected thermal and strain conditions.
Finally, packaging design and fabrication for the radial temperature sensor probes with
integrated Type B thermocouples and optical fiber FBGs was completed in 2008, and
installed in the RSC on levels 7 and 10 in the TECO IGCC plant in February/March 2009.
The probe on level 10 worked very well and survived for more than the thirty days aimed
for. The probe at level 7 also provided valuable temperature profile data for five days of
operation after plant startup. However, on the fifth day of operation, the ceramic packaging
broke off abruptly — it is suspected that the hot gas and/or slag impinged directly onto the
probe causing the abrupt breakage. A set of fiber optic FBG strain sensors was also
installed in the RSC dome outside the hot syngas path to monitor strain evolution over
time due to gradual fouling buildup on the heat transfer area. A key challenge for this
sensor was for the optical fibers to survive a large thermal strain (~6000 pe) due to the
temperature rise at startup, and thereafter accurately measure a very small mechanical
strain (~50 pe) due to fouling buildup over few weeks of operation. This sensor also
worked very well for more than six weeks, matching very well with estimated mechanical
strain due to gradual fouling buildup.

2.3 Task 2 - Sensing System Design

The objective of this task was to design a model-based sensing/estimation system that
provides online measurement/estimate of process variables in the gasification section that
are important for monitoring and control, e.g., gasifier temperature, carbon conversion,
gasification efficiency, slag viscosity and syngas properties. To this end, initially, a linear
model-based Kalman filter analysis was performed at baseload operating condition to
study the performance of model-based estimation in the presence of sensing and



modeling errors. Also, a sensitivity study was performed to identify key sensor biases and
model parameter errors that contribute to the uncertainty in overall estimation accuracy.
This analysis was then followed by a full nonlinear model-based estimation using an
Extended Kalman Filter (EKF) to verify the performance of nonlinear estimator in the
presence of errors in model parameters and sensor noise/bias. One problem with the
standard EKF is that it does not enforce any constraints on the estimated state or
parameter variables (e.g. mole fractions that should be between 0 and 1). To address this,
the EKF implementation was extended to include constraints on all estimated variables
and force them to be in the appropriate range. The performance of the constrained EKF
was tested through extensive simulation studies in the presence of unknown errors in the
model parameters, e.g. RSC fouling and gasifier kinetics, and random combinations of
sensor biases. The EKF simulations showed that the unknown model parameters were
correctly identified and updated to match simulated variations, thereby allowing accurate
estimation of key process variables that are not measured but are important for monitoring
and control, e.g. gasifier temperature, carbon conversion, slag viscosity and overall
efficiency. The EKF was then later coupled with the MPC designed in Task 3 to achieve
the integrated sensing & control system.

2.4 Task 3 — Control System Design

In this task, initially a nonlinear model predictive controller (MPC) was designed and
implemented to optimize the steady state and transient operation during nominal plant
operation (e.g. turndown and fuel changes) as well as during startup, specifically pre-
heating of gasifier and RSC during startup. The online real-time optimization in MPC
allows a flexible optimization (e.g. ramp rate, oxygen consumption, carbon conversion,
power output) depending on the operation mode. Initially in 2008 & 2009, the MPC
implementation assumed “ideal sensors” with knowledge of all important state and output
variables, to identify the entitlement in achievable performance improvements for nominal
operation and startup. In 2010, the EKF designed for estimation in Task 2, and MPC
designed in Task 3 were integrated to obtain the final integrated sensing & control system,
and extensive simulation studies were performed in the presence of sensing and modeling
errors for steady state and transient optimization.

MPC simulation studies were performed for achieving faster gasifier pre-heating subject to
constraints on the thermal stresses in the refractory bricks. The simulations showed more
than 20% reduction in total pre-heating time for the gasifier refractory. MPC simulations
were also performed to simultaneously reduce startup time and maximum thermal tensile
stresses to identify the design tradeoff between the two. Similarly, MPC simulation studies
on the RSC pre-heating, subject to thermal gradient and stress constraints showed
significantly faster pre-heating depending on the maximum steam flow available. Finally,
MPC simulation studies were performed for nominal operation including baseload
operation, turndown between baseload and 50% partload and fuel changes with up to
50% petcoke in coal-petcoke blend. Exploiting multivariable constrained optimization,
MPC vyielded up to 2% increased net power output at baseload and 7-10% reduction in
oxygen consumption at partload for coal operation. Similarly, MPC simulations for load
changes (turndown) between baseload and fifty percent load conditions indicated
potentially 20% faster turndown capabilities through coordinated manipulation of multiple
operating variables, while enforcing key operability constraints. These MPC studies were
repeated for operation with coal-petcoke blend with up to 50% petcoke, showing similar



improvements in turndown rates and slightly less oxygen reduction. For petcoke operation,
achieving high carbon conversion becomes a significant constraint.

The initial MPC simulations were performed assuming “ideal sensors”, i.e. perfect
knowledge of all state and output variables. In 2010, the MPC and EKF implementations
designed separately were coupled to achieve the overall integrated sensing & control
system. To this end, initially, the models used for the EKF were updated to match the
reduced-order models used for MPC — owing to the high simulation cost for repeated
future horizon prediction, the models for MPC were reduced to eliminate some fast
dynamics like syngas pressure-flow dynamics. Initial simulation studies with the integrated
EKF & MPC indicated a need for retuning of the EKF and MPC to achieve stable and
optimized operation. Final simulation results showed similar steady state and transient
performance improvements in spite of sensing and model parameter errors, with slight
degradation for some combinations of sensor biases. Also, the simulation studies
indicated that the unknown model parameters (gasifier kinetics and RSC fouling) were
more “observable” at baseload conditions, i.e. could be identified more accurately, as
opposed to partload conditions, which makes sense given the higher sensitivity with
respect to these parameters at higher throughput at baseload operation.

3 Introduction

Integrated Gasification Combined Cycle (IGCC) is emerging as a promising technology for
clean and efficient power generation from coal. Over the last decade or so, several
advancements have been made in coal gasification technology, through concerted efforts
by DOE and the industry. GE is currently commercializing this technology with the first full-
scale plant being built for Duke Energy at Edwardsport, Indiana. While IGCC holds
significant promise for clean and efficient power generation from coal, there is significant
opportunity to improve the plant operation for enhanced reliability, availability, efficiency
and flexibility through advanced sensing and controls. An IGCC plant essentially includes
a chemical plant with multiple integrated sections like the air separation unit (ASU),
gasification, and syngas processing and cleanup, coupled with a combined cycle power
generation plant. It is desirable to operate the IGCC plant with higher flexibility, including
different fuels and varying throughput and power generation, while maintaining or
improving efficiency and availability. Traditional controls and operation based on simple
approaches and relying on operator experience are conservative, and thus, do not achieve
the potential operation entitlement. In particular, the gasification section, which has a
particularly harsh environment with high temperatures and pressures and presence of slag
and corrosive elements, has limited online sensing available currently for monitoring and
controls. Consequently, the operation of this section, using a combination of simple
controls and operator judgment based on limited and/or infrequent measurements, is often
conservative, especially for transient operations. This program focused on developing an
advanced model-based integrated sensing and controls solution for improved operation of
the gasification section. The overall program scope and objective and the team is shown
in Figure 1. GE Global Research, in consultation with the GE Energy Gasification &
Controls teams, developed the models, and advanced model-based sensing and controls
solutions. Also, specific sensor packages were developed at GE Global Research and
implemented in the TECO Polk Power Station IGCC plant to obtain plant operation data.
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Figure 1: Program overview —team, scope and objectives.

In this three-year program, a systematic model-based approach was developed for the
design of a comprehensive sensing system combining online sensors along with online
model-based estimation, and a model-based multivariable controller that optimizes the
operation of the gasification section at steady-state as well as through key transients like
startup, turndown and fuel changes. The overall model-based sensing and controls design
is shown in Figure 2. Initially, available models for different units of the gasification section
(e.g. gasifier, radiant syngas cooler (RSC)) were combined in a common platform in
Matlab/Simulink® to obtain a comprehensive dynamic model of the gasification section.
Also, specific sensing technologies were implemented in the IGCC plant at TECO Polk
Power Station to obtain operation data to be used for the RSC model validation. The
dynamic model of the gasification section was used in a systematic model-based analysis
and design framework to design a comprehensive sensing and control system to improve
the robustness and flexibility and optimize the operation of the gasification section for
steady-state as well as transient operations, in particular, for startup, turndown and fuel
changes.
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Figure 2: Integrated advanced model-based sensing and controls system for gasification
section.

The overall three-year program had three main tasks:
1. Modeling, model reduction and model validation,
2. Sensing system design, and
3. Control system design.

In Task 1, available models for different units in the gasification section were combined in
a common platform in Matlab/Simulink® to obtain the dynamic model for the overall
gasification section, which was used for sensing and control system design in Tasks 2 and
3. Available component models for key process units were implemented in
Matlab/Simulink®. Some of the existing models had only been used at steady state
conditions and appropriates updates were made to allow transient simulation with these
models. Furthermore, some of the models, e.g. gasifier and RSC, were of high order, i.e.,
they had a large number of internal states since they model spatial variation along the
length of the gasifier and the RSC. Owing to the large dimension, these models are
computationally expensive and not amenable to real-time transient simulations and model-
based analysis and design of sensing and control systems. Thus, these high-order models
were simplified through model reduction techniques to obtain lower order models while
maintaining high accuracy for control. A separate set of models was also implemented for
startup pre-heating of the gasifier and RSC. These models are described in Section 4.1.
Also, in Task 1, temperature and strain sensors were implemented in the RSC in the
TECO Polk Power Station IGCC plant to obtain suitable operation data to be used for
validation of the RSC model. A key common challenge for all the sensors was developing
suitable packaging for the harsh environment in the RSC, and appropriate mechanical
design to facilitate easy installation given the limited access inside the RSC. These
sensors were installed in the TECO IGCC plant in the RSC in early 2009 and plant
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operation data was obtained successfully. The results from lab development and plant
implementation are discussed in Section 4.2.

As mentioned earlier, the gasification section has a very harsh operating environment and
as a result limited online sensors are available for monitoring and control, especially in the
gasifier and RSC. A key objective of this program was to develop a comprehensive
sensing solution, combining limited available online sensors with real-time online model-
based estimation, or “virtual” sensing for other key variables, e.g. gasifier temperature, and
carbon conversion. Motivated by this, in Task 2, the dynamic model of the gasification
section from Task 1 was initially used to perform a systematic “observability” analysis.
More specifically, a linear model-based Kalman filter analysis was performed to study the
performance of model-based estimation for key unmeasured variables and its sensitivity to
modeling and sensor errors. The sensitivity analysis allowed identifying the key sensor
errors (bias and noise) and modeling errors (unknown/varying parameters), which were
then included in an online nonlinear model-based estimation algorithm using an extended
Kalman filter (EKF). Simulation studies were performed in the presence of modeling errors
introduced through variations in model parameters, and noise and random biases in online
sensors to verify the performance of the nonlinear model-based estimation system at
steady-state as well as during transient operations. More details on this task are discussed
in Section 5.

In Task 3, a model-based advanced controller was designed for the gasification section to
coordinate the operation of the individual units in this section to optimize the overall
section performance. In particular, a nonlinear model predictive controller (MPC) was
implemented, initially assuming ideal measurement for all variables needed for feedback,
to optimize the performance of the gasification section at steady state and during key
transients like startup, turndown (i.e. load/throughput changes), and fuel changes.
Extensive MPC simulation studies were performed for startup, specifically gasifier and
RSC pre-heating, and normal operation modes including turndown and fuel changes.
These MPC simulations indicate opportunities for significant improvements in transient
operation, reducing pre-heating and turndown transient times, and optimizing steady-state
performance for minimized oxygen consumption. In the final Phase Il of the program the
EKF-based sensing system designed in Task 2 and MPC-based control system designed
in Task 3 were coupled to achieve the overall integrated sensing and control system. The
integrated system was updated and re-tuned to achieve stable and optimized operation,
and its performance was studied through simulations with modeling and sensor errors.
The results from this task are described in Section 6.

Finally, conclusions from the overall program and potential directions for application of the
developed technology in an IGCC plant in a staged manner are summarized in Section 7.

4 Task 1 - Modeling & Sensor Implementation

First-principles physics-based models allow capturing the process knowledge through
rigorous mass and energy balances, and utilizing it systematically for improved online
model-based sensing and controls. In the face of limited online sensors, first-principles
models allow relating process variables across the entire system, and can thus be used as
the basis for online model-based estimation or “virtual” sensing of key unmeasured
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process variables. Similarly, first-principles models capture the interaction between
multiple control inputs and allow exploiting this multivariable interaction to optimize the
process operation at steady state as well as during transients. With this motivation, the
key objective of Task 1 was to obtain a suitable dynamic model of the gasification section
in Matlab/Simulink® that can be used for real-time transient simulations and the design of
advanced model-based sensing and control systems in Tasks 2 and 3. To this end,
available component models for the individual process units in the gasification section
were translated and implemented in Matlab/Simulink® to obtain the overall gasification
section model for nominal operation. In the case of high-order models, specifically the
gasifier model, model reduction was performed to obtain a low-order accurate model that
allowed real-time simulation. In other cases, additional details were included to include key
process dynamics. A separate set of models was also implemented for the startup pre-
heating operation, specifically for RSC and gasifier pre-heating. These models are
described in Section 4.1. Also, fiber optic temperature and strain sensors and
thermocouple temperature sensors were installed in the radiant syngas cooler (RSC) in
the IGCC plant at TECO Polk Power Station and plant operation data was obtained
successfully. Details on the lab testing and design of the sensor packages, and the sensor
implementation and the data collection are given in Section 4.2. Finally, Section 4.3 shows
some validation results of the gasification section model modified to match plant operation
data from the TECO IGCC plant at Polk power station.

4.1 Modeling
Oxygen
Coal Rec. CO2
Slurry
Gasifier HP Steam
eGasifier
Slag Water
eRefractory HP Steam
stress Drum e Level, P control
1 \'
RSC Scrubbed
*Syngas eSteam Drum Syngas
eWater/Steam|] eWater/steam flow
eTube stress Water
Raw
Quench| - o Scrubber
Grey Level, P control
Lock Hopper Level control Water

Recirculation

Blowdown

Figure 3: Gasification section.
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Figure 3 shows the overall scope of the gasification section considered in this program,
starting from the coal slurry, recycle CO, and oxygen feed to the gasifier, to the scrubbed
syngas output and the high-pressure (HP) steam output. It should be mentioned, that the
above process configuration is a general IGCC plant gasification section configuration,
and is not specific to the TECO Polk Power Station IGCC plant. Also, to protect proprietary
information, the model simulation and plant measurement data are presented in
normalized units throughout the report. The key process units included in the gasification
section are:

o Gasifier
Radiant syngas cooler (RSC)
Syngas quench and RSC sump
Syngas scrubber
RSC high pressure (HP) Steam Drum

The gasification section models have been developed for different phases of operation as
shown in Figure 4. In particular, a model of the above units was implemented for nominal
operation at high pressure, e.g. turndown between 50-100% load and fuel changes. This
model was also extended to operate at lower pressures to cover the post-ignition pressure
ramp-up phase of the startup, wherein the syngas and steam pressure are raised from
pre-heating/ignition conditions to nominal operating conditions. Finally, another set of
models was implemented for the pre-heating phase of the startup. In particular, the model
for RSC and HP steam drum was modified to perform heat transfer in reverse direction,
i.e. from the steam feed to HP steam drum and through heated water circulation to the
RSC to pre-heat all the water tubes. This thermal model was coupled with a thermo-
mechanical stress calculation model to calculate transient stress profiles that depend on
the transient heating profile. In parallel, a similar model was implemented in
Matlab®+ANSYS® for the pre-heating of the gasifier refractory, to describe the transient
thermal profile in the refractory lining and the corresponding thermal stresses, which limit
the pre-heating operation. These pre-heating and stress models were used in Task 3 to
optimize the pre-heating sequence for faster startup.

StartUp Nominal
Pre-heating | Ignition | Pressure | Operation
Ramp-Up (hi P)

*NG burners Coal Gasifier P eTurndown
for gasifier slurry+02 | ramp to (50-100%)
refractory (~50% >600 psi eFuel changes
eSteam flowrate) | ¢Drum P (coal + PC
(<1000psi) for ramp to blend)

RSC ~2000psi

Figure 4: Operation modes for gasification section and dynamic model.

For the nominal and pressure ramp-up portion of startup, all the above component models
were implemented in Matlab/Simulink® and integrated to obtain the overall gasification
section model. This model can be simulated transiently for nominal operation modes, e.g.
load changes, coal/petcoke blend changes, as well as pressure changes during the
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pressure ramp-up phase of startup. Details on the component models and the overall
gasification section nominal operation model are provided in the next few sections. The
gasifier and RSC pre-heating models are described in the subsequent sections.

4.1.1 Gasifier

A 1-D (axial) gasifier model was available that had been validated against the TECO IGCC
plant operation. This 1-D model was translated into Matlab/Simulink® and verified at
baseload steady-state conditions against the original model. The model parameters were
then updated to be consistent with the reference plant operating conditions. The model
describes steady-state axial composition and temperature profiles along the length of the
gasifier. Some of the key outputs of this model are the outlet syngas composition and
temperature, ash flow and carbon conversion. Since the dynamics in the gasifier are quite
fast compared to the transients like turndown and fuel changes, a steady-state model of
the gasifier is adequate. However, due to the distributed model (PDE) and the high spatial
resolution in the axial direction, the model was computationally expensive and not suited
for real-time simulation or controls analysis/design. This necessitated a model reduction to
obtain a lower-order model that could be used for real-time simulation and sensing &
control design, while preserving high accuracy.

The gasifier model reduction was pursued using the technique of Proper Orthogonal
Decomposition (POD). To this end, initially the full-order model was simulated for a wide
range of operating condition variations to encompass the desired operating envelope:

e throughput changes between 50-100%,
oxygen feed ratio changes between —5% to +7%,
coal slurry water content variation from nominal between —10% to +10%, and
recycle CO, feed changes between 0-100%,
percent petcoke in coal-petcoke fuel blend between 0-50%.

The results from these simulations (more than 400) were then used for the model
reduction as highlighted in Figure 5. The original 1-D gasifier model describes the axial
variation of ten gas-phase species flow rates along with three solid-phase components
(ash, carbon and volatiles in coal) and liquid water (from slurry) arising from water boiling
and devolatization of coal volatiles in the initial section and a set of thirteen heterogeneous
(solid carbon + gas constituent) and homogeneous (gas-phase) reactions. The original
model had altogether N=15 gas/liquid/solid components, with corresponding flow rate
profiles along the gasifier length for each simulation run. However, in the reduced model,
only a reduced set of components was modeled through the dominant spatial modes. In
particular, components like liquid water, coal volatiles and oxygen that are
consumed/transformed in the immediate boundary layer at the gasifier inlet and have
essentially zero flow rate through most of the gasifier are eliminated from the model.
Similarly, ash, which doesn’t participate in any reactions and is preserved (except for mass
flux to the slag layer), is also modeled separately. Finally, the fact that there are reaction
invariants, in particular the total elemental flow rates for C, H, N, O and S are constant
along the gasifier length was used to further eliminate the number of species to be
modeled directly through the dominant spatial modes. In particular, a Q-R factorization of
the reaction stoichiometric matrix was used to identify (C=6) gas-phase components that
are most aligned with orthogonal directions to the reaction invariants (i.e. total C, H, N, O,
S element flow rates) — this ensures that the C=6 components are independent and can
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then be used to reconstruct the remaining 5 components from the total element balance

without any ill-conditioning, i.e. the C=6 components and the five elements C, H, N, O, S,
together comprise a well-conditioned coordinate change. This way, instead of identifying

dominant spatial modes for N=15 components, a lower number of species C=6 are used
to identify the dominant spatial modes.

* Original Model

Material Balance: 6aF, =MWVaS,R(F,T) (foreachspecies i)
X

Energy Balance: 0=(E 4 EoitJEes» E=T(FT)

ﬂ Ry Simulations for varying operating conditions

FlRl . FlRN
F=| ¢ :

FCRl . FCRN

ﬂ Identify M dominant modes using SVD
% O=[U,-U,]
o
szl"'UM UpaUy M Oy k"'VRN] E> Y=[U,, U] (@¥=0)
o, F=®dc,+¥Yc, (c,~0)
ﬂ Project material balance residuals on M dominant modes
¢ Reduced Model

Material Balance: 0=®" $dc, - MWVaSR(®DC, T) }
Energy Balance : O = (Efeed_Eexit )/Efeed’ E= f ((I)leT)

Figure 5: Model reduction approach for 1-D gasifier model.

For the C=6 species, the flow rate profile from each of the Ry simulation runs were
stacked in columns of a matrix and a SVD performed to identify the desired number of
dominant spatial modes. To improve the performance of the SVD and dominant mode
identification, two key transformations on the raw flow rate data were employed. First, for
the species with very small flow rates (e.g. COS, NH3) the flow rates were transformed
using a log transform. This does two things (i) it converts small values to significant values
that are then captured with appropriate weights in the identified dominant modes, and (ii) it
provides a natural barrier in the reduced model from calculating negative flow rates due to
small numerical errors — any negative flow rates would be physically meaningless and
render the reaction kinetics expressions unusable. Second, the flow rates (or log of flow
rates for species with low concentrations) were obtained in terms of deviations from the
nominal (baseload) operating condition, and normalized using constant scale factors. The

17



SVD analysis was used to identify M=15 dominant modes, which are shown in Figure 6 for
the C=6 species modeled directly as combinations of the dominant spatial modes. The
number of modes to retain was identified by projecting the full-order model simulation
results along these modes and evaluating the residual error. Thus, finally a low-order
(M+1) model was derived by projecting the original PDE model equations along these
dominant modes.

"0 50 100 ) 50 100

Figure 6: Dominant spatial modes (first 15) for the C=6 species modeled as combinations of
these spatial modes in the reduced-order model.
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Figure 7: Comparison of full-order (blue x) and reduced-order (red circles) simulation
results for gasifier exit temperature and unconverted carbon flow rate, and corresponding
errors between full- and reduced-order models.
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The reduced-order model runs more than 1000x faster than the original full-order model
while maintaining very high accuracy — the faster simulation of the reduced-order model
was critical for subsequent real-time simulation and sensing & controls design. The
reduced-order model results were compared against the original model for a wide range of
variations in operating conditions listed above and the error between the two models was
approximately 2 K for syngas temperature and less than 0.2-0.4% in syngas composition.
The comparison between the full- and reduced-order models for gasifier exit temperature,
unconverted carbon flow rate and some syngas component compositions at gasifier exit
are shown in Figure 7 and Figure 8. The original model took a few minutes (ranging from
10-30 minutes) to converge at a steady state, which is too slow for a real-time transient
simulation of the transients like turndown and fuel changes. The reduced-order model
converges to steady state within a fraction of a second and allowed simulating transiently
for changes in operating conditions, e.g., throughput changes, oxygen feed changes, coal
blend changes, and could be used for sensing and controls design.
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Figure 8: Comparison of full-order (blue x) and reduced-order (red circles) simulation
results for some syngas component compositions at gasifier exit, and corresponding
errors between full- and reduced-order models.
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The performance of the reduced order model was also compared against the original full-
order model for low-pressure conditions during startup post-ignition, pressure ramp-up
phase using the same dominant spatial modes obtained for nominal operation. As
expected, the error increased slightly. For instance, the errors in exit temperatures
increased from ~2K to ~8-10K, and errors in exit unconverted carbon flow rate increased
from ~0.02 kg/s to about 0.25 kg/s, which are still quite small compared to desired model
accuracy, especially for the relatively short post-ignition pressure ramp-up phase of startup
operation. So the reduced-order gasifier model was also used for simulation and controls
design for the pressure ramp-up phase.

4.1.1.1 Slag Flow Model
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Figure 9: Gasifier slag flow model structure.

In addition to the gasifier model, a model for slag flow on the gasifier refractory wall was
also implemented as depicted in Figure 9. The model for slag flow takes as inputs, the ash
and heat flux from the gasifier along its length and calculates the temperature profile as
well as profiles for mass holdups (and thus thickness) of a solid and liquid slag layer along
the gasifier length based on slag viscosity and resulting flow rate obtained as a function of
ash composition and local temperature. The original slag flow model was very detailed
with high spatial resolution in the axial as well as the radial direction and modeled only
steady-state conditions. This model was translated to Matlab/Simulink®, using a coarser
spatial resolution and adding dynamics to the material and energy balances. This model
was then interfaced with the reduced-order gasifier model to provide transient evolution of
the liquid and solid slag thickness along the gasifier length based on transient variations in
the gasifier operation.
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4.1.2 Radiant Syngas Cooler (RSC) and High Pressure (HP) Steam Drum

Water
+Steam Wall Gas

Water

Figure 10: 1-D (axial) RSC heat transfer model for counter-current flow of hot syngas and
water/steam and heat exchange.

A 1-D (axial) RSC transient model describing the transient energy balances between the
hot syngas and water/steam mixture flowing in counter-current direction was available.
This model was converted into Matlab/Simulink®. This model takes as input the exit
streams from the gasifier and calculates the convective and radiative heat flux along the
length of the RSC into the riser tubes and the water flowing inside in counter-current
direction to generate steam, as shown in Figure 10. The translated model included
dynamic energy balances for the syngas, tube metal and the water/steam mixture in the
tubes to obtain the transient variation in the hot syngas temperature, the tube metal
temperature and the steam fraction in the water stream along the length of the RSC. This
model in Matlab/Simulink® was verified against the original model. However, this model
had quite stiff dynamics with the metal temperature states having much faster dynamics,
which necessitated the use of a variable step-size stiff solver in Simulink. While this is
adequate for a pure simulation environment, it is desirable to use a fixed step-size solver
when coupling with discrete-time controls as needed in Tasks 2 & 3. To this end, a quasi-
steady-state approximation of the fast metal temperature states was employed to
eliminate stiffness and enable fast simulations with a fixed step-size solver, while still
preserving very high accuracy. This 1-D (axial) RSC model was also compared with a
more detailed 3-D CFD model to derive detailed profiles for heat transfer calculations
along the length and obtain a good match between the 1-D and 3-D models for the
average axial temperature profile and heat flux profile along the RSC length. Typical
steady-state profiles for steam mass fraction (void fraction), water temperature and syngas
temperature along the RSC length are shown in Figure 11 for clean RSC at baseload and
half load conditions as well as for fully fouled RSC at baseload conditions.
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Figure 11: Steady-state profiles for steam mass fraction, water and syngas temperature in
RSC for base-load and half-load conditions in clean RSC and base-load conditions with
fully fouled RSC.

In addition to the transient heat balance in the RSC, the RSC model was updated to
calculate updated syngas composition profiles along the RSC length due to gas phase
reactions varying with changes in the syngas temperature. In particular, the water gas shift
reaction and methane steam reforming (or methanation reaction in reverse direction) were
included to capture the variation in syngas composition along the RSC length. While
ideally, the energy balance and the composition changes due to these reactions should be
coupled, they are run in a sequential manner since the net heat of reaction for these
reactions with small composition changes along the RSC length are very small and can be
ignored compared to overall RSC heat duty.

The RSC model was coupled with a high-pressure (HP) steam drum model and a flow
model for calculating the water/steam circulation flow rate between the drum and the
riser/downcomer in the RSC. The HP steam drum model was translated from another
modeling platform to Matlab/Simulink® and it describes the dynamic behavior of liquid and
steam holdups and enthalpy as well as drum metal temperature. While this model is
sufficient for nominal operating conditions after startup, i.e. at high steam pressure in the
drum, additional features had to be added to describe important transients during the
pressure ramp-up phase in startup. In particular, modifications to incorporate steam
holdup under the water level in the drum as shown in Figure 12, and dynamic material
balances in the RSC riser water/steam holdups were added — these features are important
to describe the transient “swell” characteristics in the liquid level that are very significant at
low pressures during startup.
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Figure 12: RSC HP steam drum model structure with steam holdup under the water level.

Figure 13 shows an example simulation run for the update RSC, HP drum model for a 5%
drop in drum pressure starting from steady-state conditions at nominal operating pressure.
The right middle and bottom plots show the variation in the water flow rate along the RSC
tube length as well as the variation in the volume fraction of steam holdup below water
level in the drum during the transient. These characteristics result in a transient “surge” in
the level as shown in the plots in bottom left despite using a PI level controller. Changes in
drum level during pressure transients, especially at lower pressure during startup, are
important to capture since the drum level has fairly tight operability constraint limits.
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Figure 13: Simulation run with 5% drop in HP steam drum pressure showing transient drum
level surge due to flow rate variation in RSC tubes and variation in steam volume fraction
under water level during the transient.
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4.1.3 RSC Quench/Sump and Scrubber

A model of the RSC syngas quench and the water/slag flow through the sump was
translated into Matlab/Simulink®. This model takes as input the syngas and ash/slag
streams from the RSC outlet, and calculates the outlet syngas stream flow rate,
composition and enthalpy, especially for change in water vapor content and temperature
using a 1-stage flash non-ideal vapor liquid equilibrium (VLE). This model was also
validated against the original Aspen dynamics model. Similarly, a model of the scrubber
was translated into Matlab/Simulink®. This model takes the syngas output from the
guench as input and calculates the outlet syngas composition and temperature.

The above sections described the individual component models used for the nominal &
pressure ramp-up phase of the gasification section operation. The next two sections
describe the models for RSC and gasifier refractory pre-heating during plant startup.

4.1.4 RSC Pre-heating
HP Steam

AirIn

HP DRUM
\No Feedwater

Blowdown Water

RSC PUMP

Figure 14: RSC pre-heating with steam.

Figure 14 shows the schematic representation of the RSC and HP steam drum operation
for startup pre-heating. Starting from ambient temperature and pressure conditions, steam
is supplied into the HP drum and gradually the pressure in the HP drum and the
recirculating water temperature is raised, thereby heating the tubes and the shell in the
RSC. The water level in the HP drum is maintained through blowdown of condensate.

A transient thermal model for the pre-heating of the RSC was implemented in
Matlab/Simulink®. Figure 15 shows an example set of transient temperature profiles from
RSC pre-heating in the TECO IGCC plant for the RSC tubes and the shell (solid red/green
plots), and the corresponding plots obtained from the transient thermal model (dashed
red/green plots). The dashed black plot shows the saturation temperature of the water
corresponding to the drum pressure. The tubes are directly heated by the circulating hot
water and heat up faster. On the other hand, the shell is indirectly heated through heat
transfer from the tubes, and also has high thermal capacity, causing it to heat up slower,
thereby creating thermal differences and stresses. These thermal differences and stresses
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impose a limitation on the pre-heating operation of the RSC. Clearly, the model outputs for
the transient temperature profiles of the tubes and the shell match very well with the
measured temperatures during RSC pre-heating. The temperatures for the tubes and the
vessel shell are used to calculate the different thermal expansions and corresponding
changes in the stresses in the RSC piping structure. This model is used in Task 3 to
optimize the pre-heating transient in order to minimize the total pre-heating time needed to
reach the final desired temperature while ensuring that the transient temperature and
stresses are always within acceptable limits.
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Figure 15: Pre-heating temperature profiles in RSC — comparison of model outputs and
TECO IGCC plant startup operation data.

4.1.5 Gasifier Pre-heating

Analogous to the RSC pre-heating, the gasifier refractory lining is also pre-heated by using
auxiliary burners in the gasifier. The direct pre-heating of the inside of the refractory lining,
and the corresponding heat transfer through the refractory lining and the outside metal
shell leads to a temperature gradient in the refractory lining, and thus, buildup of tensile
and compressive stresses. The transient thermal model is obtained as 1-D (radial
direction) conductive heat transfer from the inner surface of the innermost refractory layer,
through the multiple refractory layers and the metal shell and subsequent convective heat
loss to the ambient environment outside. The temperature is symmetric in the azimuth
direction, while the variation in the axial direction is small and ignored. More specifically,
the transient radial heat transfer equation

o0°T 6T _ pC, oT

+
Eq 1 or® ror K ot

is discretized using finite difference with a specified set of boundary conditions — inner
surface temperature (at r=rp) and outside ambient air temperature for heat loss through
convective heat transfer from the metal shell. Also, temperature dependent material
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properties (e.g. thermal conductivity and specific heat capacity) are used for respective
refractory layers and the metal shell.
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Figure 16: Transient temperature profiles in the gasifier refractory layers and metal shell
during pre-heating obtained by transient thermal model.

Figure 16 shows the relative transient temperature profiles across the multiple refractory
layers and the outside shell for the baseline pre-heating temperature profile on the inner
(hot) surface of the innermost refractory layer. The radial temperature gradient in the
refractory layers, is a function of the pre-heating temperature profile, and leads to
corresponding tensile and compressive stresses. The thermal model is implemented in
Matlab/Simulink® to calculate the transient thermal profile across the refractory layers and
the metal shell. Owing to the complicated geometry of the refractory layers, an ANSYS®
model was implemented to calculate the tensile and compressive stresses in the
innermost refractory layer (with the maximum temperature gradients and thus with
maximum stresses) for a given temperature profile. This ANSYS® model was coupled to
the Matlab/Simulink® thermal model to obtain the overall transient thermal and stress
model for the gasifier pre-heating. Figure 17 shows the transient tensile and compressive
stresses in the innermost refractory layer for the baseline pre-heating sequence for a
design that allows contact between the refractory bricks and compressive hoop stresses to
build up during pre-heating. In particular, initially the hoop stresses are very small due to
gaps between the refractory bricks at low temperatures. However, with heating and
expansion these gaps close and thereafter the compressive hoop stress builds up while
the tensile stress decreases. This simulation run shows that the compressive stress
reaches approximately 70% of the compressive strength and the tensile stress reaches a
peak value of approximately 40% of tensile strength at the point when the gaps between
the refractory bricks close up. Clearly, the temperature profile across the refractory layers
and the corresponding thermal growths and tensile/compressive stresses are a function of
the pre-heating temperature profile followed for the inner (hot) surface. This pre-heating
profile is optimized under Task 3 to minimize the total pre-heating time needed to reach
the final desired refractory temperature while not exceeding the peak compressive and
tensile stresses observed for the baseline pre-heating profile.
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Gasifier Refractory Stress Responses During Startup
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Figure 17: Transient profiles for tensile and compressive stresses as fraction of respective
strengths in the innermost refractory layer obtained by the ANSYS® model.

4.2 Sensor Implementation in TECO IGCC Plant

In this sub-task (Task 1.5), the objective was to design and implement sensors in the RSC
in the TECO Polk Power Station IGCC plant to obtain plant operation data that could be
used to validate the models for RSC. Initially, three potential candidates for sensor
implementation were identified for installation in the RSC:

e Radial temperature profile measurement inside RSC at levels 7 and 10 using a
combination of thermocouples and fiber optic sensors. The key challenge for this
option was survivability of the sensor and packaging for the harsh environment —
temperatures up to 2000 or more was expected.

e Axial temperature profile measurement inside RSC between levels 7 and 10 and
using fiber optic sensors and thermocouples. In addition to harsh environment and
survivability challenges, an additional challenge was the mechanical design and
installation of the sensing package due to the very limited access inside the RSC.

e Strain measurement outside the hot gas path using fiber optic strain sensors. Key
challenges for this were sensor bonding to the strain surface and sensor
survivability at temperatures up to 700F and corresponding large thermal strains
(~5000-7000yng), while accurately measuring a small amount of slowly varying
mechanical strain due to slow fouling buildup, estimated to be approximately 50ue
over two weeks.

Based on extensive lab testing of the fiber sensors, as well as the Inconel tube for
packaging for the axial temperature measurement, it was decided that axial temperature
measurement had too high risks in terms of packaging and sensor failure and potentially
adversely impacting plant operation, and was thus dropped from the sensors being
pursued. Extensive lab testing for FBG temperature measurement for radial temperature
profile, as well as strain measurement outside the hot gas path using fiber optic sensors
showed promising results. These lab-testing results are summarized in Section 4.2.1.
These two sensing options were pursued for final package fabrication and installation in
TECO IGCC plant in February-March 2009. The package design, installation and data
collection is summarized in Section 4.2.2.
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4.2.1 Lab Testing for Temperature and Strain Sensing using Fiber Optic Sensors

For the two sensing options (i) radial temperature profile measurement in the RSC at
levels 7 and 10 using a combination of thermocouples and fiber optic sensors, and (ii)
strain measurement in top section of the RSC outside the hot gas path, extensive lab tests
were performed with fiber optic sensors and packaging options to refine the options and
validate the performance before fabricating the final sensor packages for installation in the
plant. This section provides a brief summary of these lab-testing results.

4.2.1.1 Lab Tests for Fiber Optic Temperature Sensing

The objective of the radial temperature sensor probe was to obtain a radial temperature
profile at two different levels in the RSC (levels 7 & 10) over a period of roughly 30 days of
operation after startup, survive at estimated operation temperatures of ~2000F, and
withstand thermal shocks from intermittent shutdown/startup cycles over this period. To
meet these objectives, a lab oven setup was put together to systematically test multiple
fiber optic FBG sensors and down-select the final option to be implemented in the plant.
Lab tests were performed with the FBG sensors in a temperature controlled oven at
temperatures up to 1100 C (~2000F) to characterize both the short-term and longer-term
performances. These tests demonstrated the short-term measurement accuracy and
repeatability in the range of 10-25F (comparable to type-K and type-S TCs being used as
reference) and excellent survivability with temperature variations up to 2000F for more
than two weeks for one of the FBG sensor prototypes. Figure 18 shows the lab setup used
for short-term and long-term testing of the fiber sensor for temperature measurement.

Figure 18: Lab setup for fiber optic temperature sensor short-term & long-term testing.

Given the high risk and emphasis on survivability of the fiber sensor at these high
temperatures two separate FBG sensor prototypes were studied in parallel (i) Prototype |
using a fused silica, doped fiber with thermal pre-treatment/annealing, and (ii) Prototype Il
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using a femto-second laser generated FBG on a non-doped quartz fiber. Initial lab tests
focused on characterizing the signal behavior from both prototypes. As shown in Figure
19, both prototypes had pretty good peak signal across the desired operating temperature
range, with prototype | showing slightly better signal to noise ratio.
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Figure 19: Signal characteristics from two prototype FBG temperature sensors
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Figure 20: Short term temperature measurement errors for two FBG sensor prototypes.
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Figure 20 shows the lab test results from runs for short-term performance, where the
signals from the two sensor prototypes were calibrated over the entire temperature range
against a type K TC in the oven. The corresponding calibration errors are shown in the
bottom plot, which shows error in the range of 20-25F. Figure 21 shows the performance
of the two sensor prototypes, where the oven temperature was cycled eight times in the
range 1000-2000F. A key challenge was to understand if the sensor would first survive this
kind of temperature cycling, and second how repeatable the temperature measurements
are across the multiple cycles. Both sensors survived the cycles well. While prototype |
has smaller variation (the plot at the bottom shows 1-sigma variation of ~7F), prototype Il
has smaller variation at the low temperature end and higher variation at the high
temperature end.
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Figure 21: Short-term performance for repeatability of temperature measurement for two
FBG sensor prototypes.

A critical challenge for the FBG sensor is the longer-term survivability of the sensor and
stability of temperature measurement, especially at the high temperature end — for this
particular application it was desired to have operation data for 30 days after startup. In
particular, lab tests showed limited life of the prototype Il sensor where the sensor signal
was lost gradually in 2-5 days at 2000F. This is likely because the entire fiber becomes
crystalline and the FBG grating that relies on alternate crystalline & amorphous layers is
eventually lost. Prototype I, in contrast, showed good longer-term performance. Figure 22
shows the performance of the prototype 1 FBG sensor when left at 2000F for 5 days
continuously. The top set of plots show the first run with these sensors. In particular, the
top right plot shows a zoom-in of the FBG sensor at 2000F for more than 5 days from
t=120hr to t=250hr. The FBG sensor shows some transient lag taking about 30hrs to rise
from t=120hr to t=150hr from 1980F to 2000F. After that lag, the temperature reading
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looks quite stable. The bottom set of plots show a similar test zooming in at 2000F for 24hr
using the same sensor after repeated cycles. Again, the bottom right plot shows a stable
measurement from the sensor for 24hrs at 2000F. However, this time, there is no
significant lag in the sensor response. The lag in the first run indicates a possible slow
phase change in the fused silica fiber during the first time at 2000F, and subsequent runs
at 2000F show a faster transient response since there is no additional phase change.
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Figure 22: Longer term testing for survivability and stability of temperature measurement
using FBG sensor prototype |

In summary, both prototypes | and Il worked well in lab tests for short-term performances
in terms of accuracy and repeatability. However, prototype Il showed limited life at high
temperatures (2000F) — with the sensor signal being lost over 2-5 days. On the other
hand, prototype | was very promising with stable temperature measurement in lab tests for
one week at a time. Moreover, repeated testing continued to show good performance over
more than two weeks of accumulated testing. Based on these results, prototype | was
pursued for radial temperature measurement.

4.2.1.2 Lab Tests for Fiber Optic Strain Sensing

For the strain sensing application in the RSC dome, the aim was to monitor the slow
variation in the mechanical strain in the structure corresponding to gradual buildup of
fouling and increasing weight of the heat transfer tubes. The key challenges were in terms
of working at fairly high temperatures (nominally 600-700F but potentially up to 800F),
withstanding the resulting large thermal strain (estimated to be up to ~ 6000-7000 pe from
thermal expansion), and measuring a very small amount of mechanical strain (estimated
to be less than 50 ue) over several weeks of operation as the fouling built up. To address
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these challenges, a fiber optic strain testing setup was used in the lab, as shown in Figure
23. The setup includes an Inconel rod heated in a temperature-controlled oven, with fiber
sensors installed on the rod in the hot zone inside the oven and a commercial resistive
strain gauge installed on the cold end of the rod outside the oven. The resistive sensor
would not survive the desired high temperature conditions, but was used as a reference
for strain measurement on the same rod. At one end the rod was fixed to a mechanical
structure, while at the other end a pulley mechanism was used to implement a desired
amount of mechanical strain through applied force and vary it in a desired manner.

For strain measurement with the fiber sensor, initially two options were explored in
parallel, as shown in Figure 24. In particular, a big risk was the survivability of the fiber at
temperatures up to 800F and corresponding large thermal strain (from thermal expansion
of the rod, estimated to be about 7000 pe). Motivated by this, the first option shown on the
left used a bi-metallic tube package designed to compensate for the thermal expansion of
the rod and thus reduce the thermal strain seen by the fiber, while on other hand
maintaining good contact and high sensitivity for mechanical strain. The fibers (one for
strain measurement and one for temperature measurement to be used for temperature
compensation) were mounted inside the tube package. Another key challenge was the
bonding material to attach the fibers to the packaging for good strength and performance
at these high temperatures. Three different bonding options were tested (i) high
temperature solder glass, (ii) glass capillary, and (iii) high temperature ceramic adhesive.
Lab tests on bonding strength and creep showed only the ceramic adhesive worked very
well up to 500C without any significant creep and failure.

The second sensor option used a metalized fiber sensor directly mounted on the rod using
the ceramic adhesive, as shown on the right side of Figure 24. While this direct mount
option was a much simpler option, it had high risks for survivability of the fiber under high
thermal strains expected.

Figure 23: Lab setup for high-temperature fiber-optic strain sensor.

Initial lab tests with the bi-metallic package option showed very low signal-to-noise ratio,
perhaps due to incomplete curing of the ceramic adhesive inside a confined tubular

32



package. Also, repeated testing with applied mechanical strain at various operating
temperatures showed inconsistent results, perhaps due to nonlinear behavior of the bi-
metallic package due to varying CTEs of the two metals used. Given these initial
performance limitations, this option was discarded and only the direct mounted sensor
option was pursued.

For the direct mounted fiber sensor, survivability of the fiber itself under the expected high
thermal strain (~6000-7000 pe) as the rod was heated up to 800F was a key risk.
Motivated by this, a vendor supplying a copper-coated fiber FBG sensor was identified.
Another challenge was the method of ceramic adhesive based bonding of the fiber sensor
to the substrate rod. In one option, it was desired to use only spot bonding using the
ceramic adhesive on either side of the FBG sensor. While this option seems intuitively
more reasonable to get clean strain measurements, it always led to a broken fiber during
curing of the ceramic adhesive and was thus deemed risky. The other option was to
encapsulate the entire FBG sensor inside the ceramic adhesive attached to the substrate
rod. This method proved to be successful in lab tests for strain measurement at high
temperatures.

FBG strain sensor

(pre-strained)

| T

«‘

S
e

Cu-metalized fiber  Ceramic bonding material

Figure 24: FBG strain sensor options (a) metalized fibers inside a bi-metallic tube
packaging, and (b) metalized fiber directly mounted to substrate (rod).

Figure 25 shows strain measurement results using the metalized (copper coated) fiber
FBG sensor mounted directly on the Inconel rod in the oven at different temperatures up
to 700F, compared to the resistive strain gauge mounted on the cold end. In each case, at
temperatures of 100, 300, 500 and 700F, the mechanical strain was increased/decreased
incrementally in steps of 15u¢, as well as large changes of ~130ue. The calibrated FBG
sensor strain measurements are compared against the resistive strain gauge on the cold
end, showing excellent match across these temperature conditions with a 1-c error of
~2.2-2.8ue, which is quite small compared to the desired mechanical strain measurement
range (up to 50ue) and the accuracy of the lab setup. Similar tests were performed at
higher temperatures up to 1000F, to understand the limitations of this FBG strain sensing
technique. The results shown in Figure 26 indicate performance deterioration, especially
at 900 & 1000F, with increased mismatch from the resistive sensor as well as increased
variability in the FBG strain measurement. This is likely due to degradation in the ceramic
adhesive performance due to CTE mismatch with the Inconel rod. Given that the actual
temperatures in the plant were expected to be in the 600-700F range and potentially up to
800F for short durations, the copper-coated FBG sensor directly mounted onto the rod
proved to be a good solution. However, the vendor supplying the copper-coated fiber went
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out of business, necessitating the search for an alternative solution. It was decided to

develop a solution in-house.
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Figure 25: Performance of metalized fiber FBG strain sensor directly mounted on the rod in
the hot section at temperatures up to 700F, compared to a resistive strain sensor mounted

on the cold end of the rod.
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Figure 26: Performance of metalized fiber FBG strain sensor directly mounted on the rod in
the hot section at temperatures between 800F & 1000F, compared to a resistive strain

sensor mounted on the cold end of the rod.
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Through successive iterations, the final solution involved electroplating a thin layer of
Nickel (~10um) on a regular FBG sensor, encapsulating this Ni-plated sensor within a thin
stainless steel tubing, bonding both ends of the fiber to this tubing using a ceramic
adhesive, and then bonding this sensor package to the rod using the ceramic adhesive.

The stainless steel tubing provided added mechanical protection as well as mitigated the
interference from the curing process of the ceramic adhesive — in tests without the steel
tubing, the ceramic adhesive curing led to deterioration in the FBG sensor peak signal.
This final package yielded a clean FBG peak signal across the temperature range from
ambient to 800F. This package was mounted on the same Inconel rod in the lab test setup
and tested against the resistive strain gauge at temperatures up to 800F. Figure 27 shows
the results from the lab experiments for measuring mechanical strain at 800F and 600F.
The data from 800F (shown in top plot in (a)) was used to calibrate the fiber strain sensor
and the same calibration was used at 600F to verify its performance against the resistive
strain gauge mounted on the cold end of the rod. The comparison at 600F was excellent
showing consistency in fiber sensor performance at these two different temperatures.

800F 8-22-2008
using FSS Il calibration
120
100 i
'g 80 M'""’ —F55 1 {us)
E B0 —— FS= Il (us)
E [P —Strain Gage
20 M |
0 kBT ' ' '
1] 200 400 go0 =Ruji] 1000
Time (sec)
(a)
600F 8-29-2008
Using B00F calibration
a0
70
. RO
g SD —FSS lnzhg test 238-
.g 40 262008 calb@tin
5 30 — Strah Gage
20 4
10
0 | i) b
0 1000 2000 3000
Time (sec)

Figure 27: Lab test results with Ni-plated fiber (including FBG area) in SS tubing.
Mechanical strain measurement at (a) 800F and (b) 600F using calibration obtained at 800F.
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4.2.2 Temperature & Strain Sensor Packaging and Installation

For the radial temperature profile, a sensor package was designed using Hexoloy (SiC)

packaging material and integrating two Type B thermocouples and a fiber optic cable with

ten FBG sensors distributed along the length of the probe. Figure 28 shows the overall

radial package in the top with the hexoloy probe containing the two Type B thermocouples

and a fiber optic cable with ten FBG sensors along the length of the probe. The hexoloy

probe, which was about 16” long, was integrated to the standard water-cooled soot blower
lance (SBL) used in the RSC at available ports on levels 7 and 10. There were altogether
four SBL ports available, two on each level (7 and 10) — the two ports on each level are on

diagonally opposite sides labeled as east and west side. The integrated TC and FBG
sensor probes were installed on the east side on levels 7 and 10. In order to verify the

symmetry of temperature profiles between east and west sides, another set of two hexoloy

probes with a single Type B thermocouple at the tip was installed on the west side on
levels 7 & 10.

6”

4>\ Hexoloy package
3. Quartz %" OD, 24" long
Fiber with 10 FBGs

TC#1

TC#2 Alumina + sleeve

Cable for TCs

Quartz Tube with FBG sensors
FBG1 FBG?2 FBG3 FBG4 (6.5" from tip) FBG10 (0.5”)

(each 1" apart)

Figure 28: Radial temperature sensor hexoloy package with integrated Type B
thermocouples and FBG sensors used at levels 7 and 10 in RSC.
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Figure 29: Four hexoloy radial temperature probes with integrated Type B TCs and FBG
sensors (two probes on right) and single Type B TCs (two probes on left).

Figure 29 shows the four radial temperature probes — two probes with single Type B TCs
at the tip and two probes with two Type B TCs and ten FBG sensors each. Figure 30
shows a picture of the completed sensor packages with TCs and fiber optic temperature
sensors installed in a soot blower lance.

Figure 30: Soot-blower lances with temperature sensor package installed in TECO IGCC
RSC.

In addition to the temperature sensing probes at levels 7 and 10 in the RSC, fiber optic
strain sensors were packaged and installed on the piping support structure in the RSC
dome. In particular, the final design with Ni-plated FBG sensors encapsulated in the
stainless steel tubing was used and bonded to the structure with ceramic adhesive. Since
the fiber FBG sensor responds to both variations in temperature as well as strain,
separate Type K thermocouples were also installed to independently measure
temperature to allow for correction of temperature variations.
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4.2.3 RSC Data Collection

This section presents the data collected from the temperature and strain sensors in the
RSC - the plots included in this section show the temperature and strain variables in
normalized units to protect proprietary information.
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Figure 31: Spectrum data from fiber optic sensors with 10 FBG sensors for each soot
blower lance installed in the TECO IGCC RSC.

Figure 31 shows the spectrum data from the 10 FBG sensors on the fiber optic cable in
each sensor package for SBLs at level 7 and level 10. The two fiber optic sensor cables
showed excellent signal-to-noise characteristics with a significant peak power in the range
between —15dB to —25dB compared to the baseline noise of —50dB, allowing for easy
peak tracking as these peaks from individual FBG sensors shifted due to temperature
changes. Figure 32 shows the transient profile for the 10 FBG sensors from the sensor
package installed in the SBL at level 7. The bottom plot shows the calculated (normalized)
temperature profile over a period of approximately five days after startup. The plots show
measured temperature profile over the length of the probe as the plant operation was
varied during this period. Unfortunately, on the 5" day, the sensor probe was lost abruptly
despite working very well until then — it is likely that the hot gas and slag flow from the
gasifier impinged directly on the probe leading to breakage of the ceramic packaging.
Temperature measurements on level 10 showed transient asymmetries between the east
and west sides (see Figure 34) indicating likely acentric flow of the hot gas, increasing the
likelihood of impingement on the probes at level 7, which is approximately half way down
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the length of the RSC. As seen from the plots on the top, the peak intensities from all ten
FBG sensors were very stable until the abrupt mechanical failure occurred, indicating that
all the FBG sensors were performing without any degradation. The FBG sensors labeled

with numbers 1 (at the probe base, i.e. the cold end) and 10 (at the probe tip, i.e. the hot

end), show a significant temperature gradient along the length of the probe.
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Figure 32: Peak intensity and normalized temperature from 10 FBG sensors at SBL level 7.

Figure 33 shows the peak intensity and calculated normalized temperature profiles from
the FBG sensors at level 10. At this level, during ignition at startup, the transient
temperatures experienced by the FBG sensors at the tip of the probe exceeded
significantly well beyond the FBG design targets of 2100F, as tested in lab ovens, leading
to failure of the FBG sensors 9 and 10, within 1.5 inches of the probe tip. FBG sensors 1-
8, where sensor 8 is 2.5 inches from the probe tip performed well and continued to
measure temperature data after multiple weeks of operation. The top plot shows the peak
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intensity of the FBG sensors 1-8. Note that for about two days between April 5 and April 7,
the data was lost due to a power failure in the desktop computers recording the data.
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Figure 33: Peak intensity and normalized temperatures from FBG Sensors at level 10.

Figure 34 shows the plot for measured (normalized) temperature by the TCs as well as the
FBGs in the SBLs at level 10. Note that the temperatures measured by the TCs at the tips
on both the east (probe with TC and FBG sensors) and west (probe with single TC at tip)
sides are quite close, especially towards the later period when the plant operation
stabilized. However, there were periods in the beginning of operation where the two sides
yielded temperature changes in opposite directions, e.g. around March 30, the TC on west
side showed a temperature increase while the TC (and FBG sensors) on east side
showed a temperature decrease, indicating a possible asymmetric flow of the hot syngas
in the RSC. Note also that the temperature profiles measured from the FBG sensors are
consistent with the TC temperatures on the east-side probe, except for right after startup
when the FBG sensors experienced higher temperatures than the TC at the probe tip.
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Figure 34: Normalized temperature from TCs and FBG sensors at level 10.
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Figure 35: Spectrum data from two fiber optic FBG sensors used for strain sensing.

In addition to the temperature sensor probes installed in the RSC, fiber optic strain
sensors were also installed outside the hot gas path to monitor slow evolution of small
mechanical strain on key components due to gradual fouling buildup. Figure 35 shows the
nominal frequency spectrum data from two fiber optic FBG sensors mounted at the same
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location. Since the peak wavelength shift from the FBG sensors corresponds to both
temperature variation as well as strain variation, type K thermocouples were also installed
to monitor the temperature in order to deduct the effect of temperature variation to
calculate mechanical strain. During the initial sharp temperature transients at startup, the
measured wavelength shift by the FBG is assumed to be due to temperature effects alone
(temperature + thermal strain) and is used to calibrate for temperature effect on the
measured strain from the FBG sensor. Thereafter, as the temperature stabilized over the
subsequent period, this calibration was used to compensate for small temperature
fluctuation and obtain the mechanical strain. Figure 36 shows the normalized temperature
measured by the Type K thermocouple for approximately six weeks of operation after
startup. There is a sharp rise in the temperature during initial startup, and thereafter the
temperature is fairly stable, except for three intermittent changes during temporary
shutdowns. Figure 37 shows the calculated mechanical strain evolution during the same
six-week period after March 29, when the temperature was relatively stable. There was a
short plant shutdown and loss of data collection in the middle of this period. The
calculated mechanical strain from the FBG measurement shows a gradual increase in
mechanical strain over the six-week operation to about 200ue. This is consistent with the
previously estimated 50ue from fouling over two weeks. Note that during the intermittent
shutdowns, the calculated mechanical strain is incorrect due to the sharp excursions in the
temperature, but the mechanical strain profile is fairly continuous across those shutdowns.
Also, the FBG sensor data collection was lost for two days around April 4, due to loss of
power to the data acquisition computers. Overall, the measured mechanical strain
provides a direct estimate of the fouling buildup on the heat transfer area, and is
consistent with previously estimated fouling and mechanical strain buildup.
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Figure 36: Measured (normalized) temperature in the RSC dome.
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Figure 37: Calculated mechanical strain from FBG sensor, during stable thermal operation.

4.3 Model Validation with TECO IGCC Plant Data for Nominal Operation

The RSC model had been validated using available startup preheating data from TECO
IGCC plant (see Figure 15) — the thermal profiles calculated by the RSC preheating model
match very well with the tube and shell temperature measurements in the plant. For
nominal plant operation at baseload, additional plant operation data, e.g. gasifier operation
conditions to enable simulating and comparing the RSC model output with measured data,
were obtained in 2009 Q3. In 2009 Q4, the developed gasification section model was
modified for simulation with the TECO IGCC plant configuration and operation conditions
to validate the model against available measurements on temperatures in the RSC as well
as syngas composition.

More specifically, in October 2009, TECO plant operation data and temperature measured
by the installed thermocouples and FBG temperature sensors for tests in March and April
2009 were obtained through GE Energy Gasification team. The plant operation data
included mainly the flow rates, temperatures, pressures, water levels and syngas
composition in the gasification section, i.e., gasifier, RSC, convective-syngas cooler (CSC)
and scrubber (a sampling data every 15 minutes). The recorded data for the installed
thermocouples at Level 10 is longer than those at Level 7, as mentioned in the earlier
section.

Table 1: Data from TECO Plant Tests in March and April 2009

Data type Location Start Time End time Data Frequency
Operation Gasification Section |8:00, 3/20 8:00, 4/30 Every 15 minutes

Installed TC |Level 10 and level 7 |16:01, 3/26  |1:53, 4/10 Every 10 seconds

Installed FBG |Level 10 and level 7 |14:49, 3/28 |14:27, 4/9 Every second

Based on data availability, process transition and the objective of steady state validation,
two time periods are picked on preliminary data analysis: April 1, 12:00~24:00, which has
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both Level 10 and Level 7 measurement data, and April 9, 2:00~8:00, where only Level 10
measurement was available. Due to the limitation in operation data, the feed water and
steam flow information for CSC is not available, only the total steam flow from the HP
drum, i.e. the combined steam generation from RSC and CSC is available. The CSC is
unique to the TECO plant configuration and is not included in the general gasification plant
configuration modeled, and hence is excluded from the model comparison. The two
identified steady-state operation periods mentioned above are similar in general. However,
the syngas composition information for April 1 time period were out of range, and thus, this
data was not picked for model validation purpose. Process condition on April 9 was
chosen for model validation purpose. For this period, the measured gas turbine power
output indicates operation at full baseload condition.

The gasification section model was modified to run the TECO configuration. More
specifically, for the gasifier inputs, the coal flow, water flow in slurry, oxygen flow and feed
temperature were specified based on measurements, and the CO, flow was eliminated
(no CO; recycle in TECO plant). Modifications on RSC model included specifying the RSC
diameter and length for TECO plant design. Main changes for RSC HP drum and the
scrubber models were their operation pressures, where the measured pressures were
used as the setpoints for PID controllers in the model. These PID controllers ensured that
the scrubber and HP drum pressures in the model matched the measured data from the
plant. Initially, the model operating conditions were ramped from high throughput and
pressure conditions used for a general larger scale reference plant to the baseload
conditions for TECO IGCC plant to obtain initial conditions for the model consistent with
TECO IGCC plant conditions. The preliminary results from the model showed a good
match for the gasifier temperature, about 70 °C lower RSC syngas exit temperature
compared to measurement, and the scrubber syngas compositions matching reasonably
well to the measured ones (dry basis), CO about 4.5% lower, H, about 1.8% higher, CO,
about 3% higher and CH,4 about 90 ppm lower.

These preliminary results indicated that the gasifier model matched well with the operation
data — this is not surprising since the original gasifier model from which the reduced-order
model was derived had been validated against previous TECO IGCC plant operation data.
On the other hand, the lower RSC exit temperature predicted by the model indicated a
higher heat transfer from the syngas to water/steam in the RSC model compared to the
plant. Finally, the extent of the WGS (water gas shift) reaction modeled in the RSC was
too high, leading to lower CO and higher CO,, while the methanation reaction rate (CO
and H, converts to CH,4 and water) was not enough. It should be mentioned that the TECO
plant configuration is unique and a little different from a general reference plant
gasification section. In particular, the TECO plant has no quench after the RSC; rather a
CSC is used to extract additional heat from syngas as HP steam. Thus, the temperature
and flow measurements downstream of the RSC are not directly comparable with the
model (the flow measurement includes moisture which depends on the temperature,
pressure and corresponding saturation conditions). On the other hand, the syngas
composition on dry basis for key components like CO, CO,, H, and CH,4 are unchanged
between the RSC and the scrubber exit, and these can be compared with the model.

To match the RSC exit temperature, the fouling factor in the model was increased
iteratively until the increased fouling led to sufficiently reduced heat extraction in the RSC
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and thereby a matched RSC exit temperature. Once the RSC exit temperature was
matched, i.e. the RSC temperature variation from inlet to outlet was matched, the scale
factors for the WGS and methanation reactions were adjusted to enable matching the
syngas composition measurement for CO, CO,, H, and CHy4 (on dry basis) very closely.
Table 2 shows a summary of the validation results, showing the percent error between the
model prediction and measurements at the baseload condition. From these validation
results, it is clear that the gasifier model matches pretty well with the TECO IGCC plant
operation data, and after a few parameter adjustments, the RSC and scrubber models
also match close to the TECO plant operation data.

Table 2: Validation Results

Difference
between model
and
measurement Comments
Gasifier
T(C) -1.09%
P (atm, abs) 5.79%
RSC
point mesurement vs.

T at level 10 average from 1-D
(C) model
T at exit (C) -0.51%
P at exit (atm,
abs) 1.65%
Scrubber
Syngas flow
(mol/sec, dry) -7.05%
Syngas
composition
(dry)

CO -0.61%

CO2 4.23%

H2 -0.72%

CH4 -5.05%

In addition to the RSC exit temperature, temperature in the RSC at level 10 was also
available from the installed thermocouple/FBG sensors. It should be pointed out that the
temperature data from level 10 couldn’t be directly compared with the model calculation
result since the model is a 1-D (axial variation) model that does not include any variations
in the radial direction. The 1-D model only provides an average (i.e. a mass weighted
cross-sectional average) temperature along the length of the RSC. A 3-D model that
describes flow and temperature variation in the RSC could be used to directly compare
with the measured temperature at level 10. However, this is outside the scope of this
program.
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Figure 38: Radial distribution for temperature (left) and syngas axial velocity (right)
assumed at Level 10.

To validate the 1-D model, the measured temperature at level 10 was used to approximate
the average temperature at level 10 and compared with model prediction. In particular, a
simplified linear radial profile for temperature and syngas flow velocity, as shown in Figure
38, was assumed. In particular, for the linear temperature profile, the core temperature T,
is the same as the gasifier exit temperature while the TC/FBG measurement provides T,
at the corresponding radial location rp,,. The assumed linear flow and temperature profiles
are used to estimate the corresponding mass-weighted average temperature at level 10.
The mismatch between the calculated average temperature and the 1-D model predicted
value was about 6%, which is acceptable given the measurement accuracies and
simplified estimate of average temperature from point measurements. In reality, the
velocity and temperature profiles are expected to be a bit different from the assumed
linear profiles.

5 Task 2 — Sensing System Design

In Task 2, the key objective was to design a comprehensive sensing system for the
gasification section to provide online, real-time information about key process variables for
controls relating to performance objectives as well has key operational constraints, e.g.
syngas composition, carbon conversion, slag viscosity, etc. It is very challenging and often
not practically feasible to measure all these variables directly for monitoring & control
purposes through online sensors, especially due to the very harsh environment in the
gasification section. Motivated by this, in this task, a systematic model-based analysis and
design approach was developed for a comprehensive sensing system as shown in Figure
39. More specifically, an optimal combination of critical online sensors is complemented by
online model-based estimation (or virtual sensing) to provide direct or inferred
measurements of all critical variables. A key initial step in this direction was to use
systematic model-based analysis, using the model from Task 1, to identify the optimal
combination of online sensors in this architecture.

In phase Il of the program, initially the nonlinear transient model of the gasification section
was used as the basis to analyze the sensing system design and performance. More
specifically, the nonlinear model was linearized at baseload nominal operating condition.
The linear model was then used in a Kalman filter analysis to study the performance of the
sensing system in terms of expected accuracy of estimation of key unmeasured process

46



variables, as function of key sources of errors/uncertainties in the model as well as the
online sensors. Kalman filter is an established model-based estimation technology that
provides the best estimate of unknown “state” variables in a dynamic system using online
measurements of system outputs, while systematically accounting for limitations on the
model accuracy and sensor measurement errors.

Model Inputs
State / Parameter Slurry, 02, Water
Online Estimation
. Sensors _
Plant 8 TP, ) | Dynamic Model

O

Estimated Health Parameters
for Trending/Diagnostics

(eg. U, ...)

Online Sensors Virtual Sensors (model outputs)
(e.g. T, P, flow,...) (e.g. gasifier T/comp., slag viscosity...)

Figure 39: Advanced sensing system for gasification section.

5.1 Model-based analysis for sensing and estimation

Consider the state-space model of the gasification section as an ODE system of the form:
Xx=f(x,u,p)

Eq 2 Y =Ny (X,U, P)
y =h(x,u, p)

where X is the vector of states, u is the vector of process inputs (control inputs and
disturbance inputs, e.qg. slurry flow rate and temperature), p is the vector of process model
parameters (e.g. gasifier kinetics, fouling factor), yn, is the vector of measured outputs
(online sensors), and y is the vector of outputs needed for monitoring and controlled
(including some that may be measured and some that are not). The corresponding
linearized model state-space representation is:

X=AXx+B,u+B,p
Eq 3 Yo =C"x+Dju+D;'p
y=Cx+D,u+D,p

Discretizing the above linear state-space model and including models for process
uncertainties, the linear discrete-time model for the system has the form:
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X = AX, +B,u, + Bp P, + W,

Ui = U + W,
P = P t W,
by,k+1 = by,k + Wby

bu,k+1 = bu,k + Wbu

_~m m m
Yok =C"% +D'u, +D;'p, +b,, +V,
um,k =U _bu,k +V,

y,=C xk+Duuk+Dppk

In the above discrete-time representation, with a slight abuse of notation, the state-space
matrices are denoted by the same matrices A, By, By as in continuous-time system to
keep notation simplicity, although strictly speaking, these are not the same matrices. Also,
the process inputs ux and model parameters pi are included in an extended state vector
with a random-walk model. The parameters px are unknown and constant or slowly
varying, while the true inputs ui are also not known perfectly due to measurement errors.
The variables wy, wy, Wy, denote the process noise (uncertainty in the model dynamics)
assumed to be stationary and white-noise with specified covariances Qy, Qu, Qp,
respectively. The online measurements for process outputs ymk and inputs um x have
unknown biases by and by as well as measurement noise vy and vy, respectively. The
measurement noise are assumed to be uncorrelated white noise with covariances Ry and
Ry, while the unknown constant/slowly varying measurement biases are modeled as
random walk with process noise covariances Qpy and Qy, respectively. The above
representation denotes a general description with modeling errors (uncertain parameters,
uncertain modeling dynamics or process noise) as well as measurement errors (unknown
biases and noise). The linear system in Eq 4 can be represented in a compact state-space
form with the extended state vector x° = [x; u; p; by; b,] and extended measurement vector

e _ .
Ym = [Ym; U]
e _ peye e
X = A°X, +W

Ea5 Yo =CoX +Vv;, where

Y =Cx¢
A By, B, 00 cm o pm o opm o1 oQ
0 I 0 00O Cr, = [ L ]
A€:OOIOO,m o 0 0~
0O 0 0 IO
00 0o01| ¢ =[CDuDpooO]

with corresponding extended process and measurement noise covariances Q° and R,
respectively.

Based on the linear extended system description in Eq 5, a Kalman filter analysis can be
performed for a given sensor set (ym, Um) With specified measurement errors to obtain the
accuracy in estimated outputs y that are important for monitoring and control. More
specifically, the covariances in the estimated outputs are used to quantify the expected
uncertainty in the estimated variables. Figure 40 shows the estimation error evolution over
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multiple samples of estimation for four key unmeasured variables that are critical for
gasification section monitoring and control. In particular, for each variable, the red plots
show the 1-c uncertainty in the estimated variable in the presence of process model errors
and measurement noise only, while the blue plots show the increased uncertainty due to
the added unknown measurement biases in all measurements (the 1-c uncertainty is

obtained as the square-root of the corresponding covariance, i.e. JCkalk (C)" for the i

output y%). Note that the inclusion of the sensor biases leads to a significant increase in
the estimation inaccuracy for the four variables, i.e., increased variances, implying the
importance of sensor biases in the overall sensing system performance. Moreover, a
significant increase in estimation inaccuracy due to sensor biases indicates that the overall
estimation performance can be improved by improving the accuracy of the online sensors
— either by using more accurate (which often means more expensive) sensors or using
multiple sensors and averaging to reduce the effect of unknown measurement biases.
Often, multiple online sensors are already used for increased redundancy/reliability for
critical variables.
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Figure 40: Estimation errors for important un-measured variables due to modeling error
and with/without sensor measurement errors.

Figure 41 shows the estimation errors in the same variables due to modeling errors and
sensor measurement errors in blue (same as in Figure 40), compared with estimation
errors in the presence of only sensor measurement errors with a perfect model in red.
Again, the difference between the red and blue plots shows the impact of modeling errors
on the estimation accuracy. Comparing the plots in Figure 40 and Figure 41, it is evident in
this case that sensor measurement errors — noise and bias are a more dominant source of

estimation error.
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Figure 41: Estimation errors for important un-measured variables due to sensor
measurement error and with/without modeling errors.

In 2009 Q1, the focus of the sensing design studies was identifying the most important
biases and parameters that were responsible for most of the depreciation of the estimation
performance. First, the sensitivity of estimation errors to sensor biases was analyzed by
eliminating sensor biases, one sensor at a time, and observing the improvement in the
estimation errors of slag viscosity, gasifier temperature, carbon conversion, and
gasification efficiency. This sensitivity analysis allowed identifying the critical sensor biases
to improve upon (either through improved technology or through sensor redundancy) for a
given set of sensors. Similarly, a sensitivity analysis with respect to process model
parameters was done by eliminating errors in one parameter at a time to identify key
process model parameters whose uncertainty contributes significantly to the estimation
inaccuracy of the key variables. In the following section, the results of the sensitivity
studies for gasifier temperature estimation are presented as an example of how the
analysis can be used to highlight the critical sensor biases and parameters in the model
that should be estimated online to improve overall estimation performance.
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Figure 42: The sensitivity of the estimation error of gasifier exit syngas temperature to the
biases of the baseline sensor set. The important biases are drum steam flow, oxygen flow,
CO; flow, throughput, O, flow and purity, and fuel composition.

Figure 42 shows the sensitivity of estimation error in gasifier temperature to the biases in
the IGCC baseline sensor set. The metric for sensitivity is the percent reduction of the
estimation error when a specific sensor bias is removed (i.e. the associated sensor is
improved to have zero bias). Clearly, the error in estimation of the syngas temperature at
the exit of the gasifier is very sensitive to the sensor-biases of the manipulated variables
that affect the O/C ratio in the gasifier, e.g., oxygen flow, CO, flow, slurry throughput,
oxygen purity, fuel composition. As O/C ratio has a direct effect on the gasifier
temperature, the high sensitivities to these biases are expected. However, the sensitivity
to the drum steam flow sensor-bias is not that apparent. The Kalman filter estimates the
temperature of the syngas from the gasifier by utilizing the mass and energy balances
around the syngas in RSC, quench, and the gasifier. The drum steam flow measurement
is clearly important for the energy balance, and thus, the bias on drum steam flow
measurement has a significant effect on the estimation error of the gasifier exit syngas
temperature.
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Figure 43: The sensitivity of the estimation error of gasifier exit syngas temperature to the
model parameters. The important parameters are drum feed water enthalpy, ash-to-slag
transfer rate, heterogeneous reaction time constant, quench and scrubber vapor-liquid
equilibrium temperature mismatches, and drum circulation pump’s head/flow
characteristics.

Figure 43 shows the observed percent improvements in the estimation of the gasifier
temperature when uncertainties in the model parameters are removed one at a time. It is
evident that when certain parameters are known perfectly (i.e. there is no associated
uncertainty for these parameters), the estimation error in the gasifier temperature (1-c
error) improves significantly. As discussed in the analysis of the bias sensitivity study, the
Kalman filter relies on the energy balance around the gasification section to infer the
gasifier temperature. For this energy balance, the steam production inside the drum is
important since it indicates the amount of heat removed from the syngas in the RSC. The
parameter, drum feed water enthalpy, is important for the same reason — one can
understand how much enthalpy was introduced to the drum with the feed water through
this parameter. The ash to slag transfer parameter determines how much ash is
transferred to the slag from the coal/syngas and therefore is an indicator of how much
heat is lost through the slag. The heterogeneous reaction time constant dictates the extent
of the endothermic/exothermic reactions inside the gasifier and therefore affects the
overall mass/energy balance and the resulting estimation error significantly. The baseline
guench and scrubber models assume that the vapor (syngas) and liquid (water) phases
are in thermodynamic equilibrium, which is described through a non-ideal vapor liquid
equilibrium (VLE). However, in the true plant the vapor and liquid phases may not
necessarily be in equilibrium and/or the non-ideal VLE model may be inaccurate. These
errors are incorporated in the model through deviation in the temperature used for VLE
calculations, both in the quench and the scrubber. The last two parameters, to which the
gasification temperature estimation is sensitive, are related to the pump characteristics
scale factors. These scale factors determine the circulation of water between the drum
and the RSC and consequently affect the energy balance of heat removal in RSC. Hence,
they play an important role in the estimation of gasifier temperature from downstream
measurements and the system model.
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The results of the above linear model-based Kalman filter analysis was used to design a
nonlinear model-based estimation using Extended Kalman Filter (EKF) incorporating
estimation of the key sensor biases and model parameters showing high sensitivity to
estimation accuracy.

5.2 Extended Kalman Filter Simulation Studies for Model-based

Estimation
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Figure 44: Open-loop implementation of the extended Kalman filter, where EKF is running
in parallel to the MPC with state feedback from the plant.

Following up on the linear model-based Kalman filter analysis for sensing system
performance in the presence of sensing and modeling errors, a nonlinear model-based
estimation algorithm was implemented in Matlab/Simulink® to complement the online
sensors and obtain the overall sensing system shown in Figure 39. More specifically, an
Extended Kalman Filter (EKF) was implemented to perform the nonlinear model-based
estimation. EKF is a standard model-based estimation algorithm that allows an “optimal
least-squares” model-based estimation of unknown process model states utilizing
available online measurements, while optimally trading off the errors in the dynamic model
and online sensor measurements. In Phase |l of the program, the EKF was initially
developed and tested in open-loop configuration as shown in Figure 44, i.e., it was run in
parallel to the MPC implementation. The developed EKF and MPC solutions were then
coupled in Phase lll of the program to derive the overall integrated sensing and control
solution. Initially, the EKF was simulated with no sensor or modeling errors to verify its
stability and performance. It should be mentioned that in all simulations, the full-order
detailed model was used to simulate the plant. However, this model is stiff and forces the
use of very small integration step size in a fixed step-size integration scheme. The EKF
uses a reduced-order model as the embedded model during the propagation step, which
is obtained by approximating fast dynamics related to pressure drop-flow relations for the
syngas with corresponding quasi-steady-state conditions. This is the akin to the use of the
reduced-order non-stiff model for the MPC, allowing the use of larger integration step-size,
and thus, reduced computational cost during MPC prediction. Note that the linear model-
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based analysis was performed using the full-order stiff model, which includes the fast
dynamics corresponding to syngas flow and pressure. Thus, the overall gasification
section efficiency showed high estimation inaccuracies (Figure 40, Figure 41) since the
efficiency depends on estimated syngas flow rate, which in turn, is very sensitive to small
measurement errors in gasifier, quench and scrubber pressures. The reduced-order model
in the EKF implementation overcomes this undue sensitivity and yields higher accuracy in
efficiency as shown later in this section.

The EKF implementation for the nonlinear system with extended state vector x° is:

y(liuk =f ()A(If|k)

ropagate, starting with X%, P
P = A Py AT +Qe} propag g op

Eq 6 )A(E+uk+1 = )A(liuk + Kk(y;},k _C;kkmk)
K, = PMkCr?]T (C;PM,(CQT +R%)™ measurement update
Pk+uk+1 = (I - KkC;)PkJr]Jk(I - KKC;)T + KkReKkT

The first step (propagate) is the simulation of the process model forward in time to update
the state estimates from one time sample k to the next sample k+1, and the corresponding
covariance update with the linearized model. The second step is the measurement
update, where the error between the measured outputs y°,x and the predicted output

values ¥, =C%¢,,, is used to correct the state estimate through the Kalman filter gain

Kk. The gain Ky is calculated recursively at each time step k, as the solution to the least-
squares estimation in the presence of the variances Q° for the process model uncertainty
and R°® for the measurement errors. One issue with the standard EKF is that there is no
means to enforce physical limits/constraints on estimated state variables. For instance, the

state vector X, includes mole fractions that should be in the range 0-1 to be meaningful.

Similarly, model parameters being estimated include RSC fouling that should also be in
the range 0-1 (0 being new RSC and 1 being fully fouled RSC). The standard EKF can
violate these constraints, especially during the measurement update step if the estimator
gain K is high. A violation of these constraints leads to failure in exercising the physics-
based model.

To address this issue, the standard EKF implementation was modified to include provision
for verifying any constraints that would be violated during a standard measurement update
step, and thus should be made “active” or enforced at an active boundary. More
specifically, considering a set of constraints on the extended state variables of the form

Eq 7 C°x° < D",

the measurement update step is extended to detect for any “active” constraints and modify
the state and covariance update. This was done by first identifying the set of “active”
constraints that must be enforced as equality constraints, through a simple quadratic
programming (QP) formulation:

H e ;€ T e o€
MmN (X g1 = Reaaen) W K aren = Reagon)
Eq 8 X+1lk+1
cye C
C Xk+]4k+l <D
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In the above QP problem, W is a weighting matrix that was chosen to be the Identity
matrix. Essentially, the QP problem was formulated to identify a corrected state estimate
that is least distance away from the unconstrained state estimate, and enforces all the
inequality constraints. In particular, the QP solution identifies the subset of the constraints
that are active and should be enforced as equality constraints:

Eq 9 C;ikeﬂlkﬂ = DaC

Once the set of active constraints is identified, a corrected state estimate is identified
consistent with these constraints, and the corresponding state covariance is also updated:

vi _ c [ cye
Xk+]1k+l - Kk (Da - Ca Xk+uk+1)

Eq 10 KIS = I:)kﬁ—iukﬁ-lcac (CacPk+]Jk+1C; )_l
Pk+JJk+1 = (I - KIEC;)PK+JJk+1(I - KkCC;)T

Note that the above correction step to enforce active constraints essentially is equivalent

to performing a secondary measurement update with respect to the active constraints as

‘dummy” measured outputs, with a zero measurement noise. The updated state estimate

X, €nforces the active constraints and is used as the starting point at next sample for

the propagate step. Having a zero measurement noise on these “dummy” measurement
outputs yields high gain K, which in turn, can often lead to issues with the estimation

performance. To alleviate this, a small “dummy” measurement noise is added to soften the
constraint a little. The inclusion of the state constraints on the standard EKF allows
enforcing desired physical limits on the estimated state variables (including states, inputs,
parameters and measurement biases). This updated EKF with constraints was
implemented in Matlab/Simulink® and simulated for steady state and transient operation
in the presence of parametric errors in the model. The process and measurement noise
covariances were fine-tuned to obtain good transient estimation performance.

The constrained EKF implementation in Simulink was initially tested for its performance in
terms of estimation of key important unmeasured variables, in the presence of modeling
errors but no sensor biases. The modeling errors were introduced through unknown
changes in model parameters like RSC fouling and gasifier reaction kinetics. More
specifically, the gasifier kinetics scale factor was changed from nominal value of 1.0 to 0.7
(i.e. make the gasification reactions 30% slower) and the RSC fouling scale factor was
changed from nominal value of 0 (hew RSC) to 0.3 (30% fouling). The model used for the
EKF was initialized with the nominal value of these parameters, and the EKF was
configured to simultaneously estimate all the unknown parameters and sensor biases
while tracking the measurements from the online sensors. In these simulation runs, the
sensors did not have any measurement noise or bias — nevertheless the EKF was still
configured to estimate the biases since they are not known to be zero.

Figure 45 shows the comparison of four performance/constraint variables important for
control that are not measured online, during a transient with changes in load between
baseload and 50% load. The red plots show the true values from the plant simulation (with
the modified parameters), the dashed black plots show the predicted outputs from the
embedded model used in EKF with nominal values of the parameters (i.e., an open-loop
model with no corrections), while the blue plots show the updated estimates as the EKF
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adapts the values of the unknown model parameters. Note that after an initial transient,
the EKF provides an accurate estimate of all the variables matching the true plant values
throughout the load transients. These four variables are only some of the key unmeasured
variables that are important for monitoring and control. The EKF provides similarly
accurate estimate for other important variables as well, e.g., syngas properties like LHV
and modified Wobbe index (MWI) and oxygen-to-carbon ratio — plots for those are omitted
for brevity.

Figure 46 shows a comparison of the true values (red) of the model parameters and EKF
estimated values (blue) of these parameters during the load transient. Note that starting
from the nominal values of the parameters, the EKF estimation correctly estimates the
changed values of the RSC fouling and gasifier kinetics scale factor quite accurately. On
the other hand, other parameters like water gas shift (WGS) reaction kinetics scale factor
in the RSC are correctly maintained close to the nominal values — note that the WGS
kinetics scale factor has a max limit at 1.0, which is maintained by the constrained EKF
estimation at all times. This ability to track unknown or varying parameters in the process
(e.g. RSC fouling) allows continuously adapting the model to match the online
measurements, and thus, providing an accurate estimate of unmeasured variables. Also,
the ability to track varying parameters like RSC fouling provides a direct means of online
monitoring for equipment health degradation.
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Figure 46: Estimation of unknown model parameters during load changes.

The performance of the EKF estimation was tested for the same unknown changes in
RSC fouling and gasifier reaction kinetics, in the presence of varying oxygen feed, or
equivalently oxygen-to-carbon ratio, a key parameter adjusted by the operator for plant
operation. Figure 47 and Figure 48 show the similar comparison of EKF estimated
unmeasured key process variables and unknown model parameters. Again, the EKF
correctly updates the estimate for the RSC fouling and gasifier kinetics, and thus, provides
an accurate estimate of the unmeasured important process variables.
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The above studies were performed in the absence of any sensor biases, to establish the
performance of the EKF under these conditions. However, in reality, all sensors have
unknown measurement accuracy errors or bias typically characterized by either an
absolute bound or a 1-c value for expected distribution across multiple sensors of the
same type. These biases may be constant or drift slowly over long periods of operation.
After the initial studies with EKF simulation in the absence of sensor bias, subsequent
studies were performed in the presence of random combinations of sensor biases based
on expected 1-c variations for each sensed variable. The EKF implementation was further
tuned for a robust performance in the presence of random sensor biases and a small
Monte Carlo study was performed with unknown random sensor biases to analyze the
performance of the EKF in terms of variation in the estimation accuracy of key
unmeasured variables important for monitoring & control.

During these Monte Carlo runs, limitations were observed in the performance of the EKF
in the presence of the inequality constraints on the states being estimated. Specifically,
when a parameter/state constraint became active, the corresponding state covariance was
collapsed along the directionality of the active parameter/state constraint, which led to
parameter/states getting stuck at their respective constraints. This deficiency was
alleviated to some extent through a small noise added to the “dummy” measurements
used to implement the active constraints, but its performance was still not satisfactory. To
address this, a new methodology for implementing inequality constraints, that borrowed
ideas from unscented Kalman filtering (UKF), was developed. The methodology relies on
the UKF approach to identify the sigma points consistent with the current state
covariances. The sigma points that violate any state inequality constraints are then moved
to the constraint boundaries and the new state covariance is re-computed with the
updated sigma points. In contrast with the post-measurement-update constraint correction
used previously, this methodology imposes the state constraints by changing the
covariances before the standard measurement update step, i.e., a preemptive constraint
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correction. The development of this algorithm presented an addition to the variety of
options for implementing the state constraints in the state-estimation problem: clamping
the state estimates, using the post-measurement-updated constrained EKF (CEKF)
formulation, the UKF-based pre-emptive constrained formulation, or a combination of
these methods. These different approaches were compared in 2009 Q4 by testing their
average performances over a benchmark set of Monte Carlo runs. This set of test runs
consisted of 62 different simulations with random biases on measurements of manipulated
variables, outputs, and disturbances. The methods that were compared included cEKF
(with no noise for dummy measurements), cEKF with the small noise added for the
dummy measurements for the active constraints (CEKF w. R), clamping the EKF state
estimates (clamped EKF), and the UKF-based approach (Preempt. EKF). The
performances of the various algorithms are summarized in Table 3.

Table 3: Mean estimation errors of estimation algorithms for benchmark test cases.

Clamped Preempt

Variable Open | exp [CEKF [Clamped | o7 0 [Preempt o o g
Loop w.R  [EKF ! EKF !

bias est. bias est.
Slag Visc. 324 |-218 |-107 |-6.05 127 6.63 |}12.7
Gasifier 16.4 100 |53 |25 6.1 2.7 6.1
Temp.
Carb. Conv. |-0.67 2080 [0.18 |011  [0.20 011 |0.20
Efficiency  |-0.70 037 |0.os |01 L0.15 0.1 .0.15
Slag

: 1.6e-4 |1.1e-4 |-3.1e-4 |7.9e-5 |52e-4 |1.1e-4 |5.2e-4

Thickness
g;tci’ocarb' 0.0058 |0.0045 |0.0058|0.0058 [0.0064 |0.0058 |0.0064
LHV 176 | -198 | -1.21|-077 053 .0.75 |-0.54
MW 008 |-009 |-005 |-003 |0.02 .0.03 }0.02

As can be seen from Table 3, the most successful constrained estimation methods are the
clamped EKF and the preemptive constrained EKF. The benefit of estimation of the biases
was also analyzed by disabling the bias estimation in the two estimation methods, seen in
the columns of Table 3 denoted by “no bias est.”. Clearly, when the biases were not
estimated the performances of these methods degraded, justifying the estimation of the
biases for improved performance. The performance of the preemptive constrained EKF
over the benchmark test cases and comparisons with open-loop estimation is presented in
Figure 49 for the four critical unmeasured variables: slag viscosity, gasifier temperature,
carbon conversion, and efficiency.
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Figure 49: Performance of the preemptive constrained EKF compared with the open-loop
estimation for the four critical unmeasured variables. EKF estimate shows close to zero-
mean while open-loop estimates have significant non-zero mean.

From Figure 49, it is clear that the open-loop estimation of the critical unmeasured
variables shows a strong bias (non-zero mean error), while the preemptive constrained
EKF shows a significantly superior performance with close to zero average error — the
comparison of these estimate mean errors is quantified in Table 3. Note however, that
even though the overall and average performance of the preemptive EKF is superior to
open-loop estimation, the estimation error distribution for instance for the gasifier
temperature shows a long tail corresponding to cases in the Monte Carlo run where the
EKF significantly under- or over-predicts the gasifier temperature. This “non-normal” error
distribution with long tails prompted further analysis to understand the cause. In particular,
the aim was to identify the specific combination of sensor biases that lead to poor
estimation performance — the estimator is unable to distinguish individual sensor biases in
the case of this combination and thus performs poorly. Picking gasifier temperature as a
candidate since the correct estimation of this variable affects estimation of the other
variables profoundly (e.g. slag viscosity), the simulations in the benchmark test-case set
were identified that had large estimation errors, as presented in Figure 50.

60



40 T T

30~
#:19

Err.: 32.01
20

MWa e 1Ml o
ST

20 i

40 # 27 # 31 43 Err.:-41.28
Err.: -47.61 . Bir.: -45.57 Err.:-48

_50 r r r . r r

.
10 20 30 40 50 60
Simulation Number

Estimation Error in Gasifier Temperature [deg C]

Figure 50: Determination of the outliers in the estimation of the gasifier temperature in the
test runs. Each point represents the steady state estimation error of the gasifier
temperature in that specific run. Simulation runs 19, 27, 31, 37, 43, and 53 were the outliers.

As shown in Figure 50, the combination of random biases that were implemented in the
simulation runs 19, 27, 31, 37, 43, and 53 were found to be causing issues for the
accurate estimation of the gasifier temperature. A closer first-look at these outlier cases
revealed that the biases on the measurements of gasifier pressure and O, feed flow rate
were particularly high in these runs and the signs of the biases on these cases were
correlated with the signs of the estimation errors. A more structured analysis to
understand which combination of biases was challenging the estimator was carried by
utilizing Partial Least Squares (PLS) regression.

PLS is a technique to identify dominant modes of independent (X — in this case the sensor
biases) and dependent (Y — in this case the gasifier temperature estimation error) data so
as to maximize the covariance between the dominant modes of X and the dominant
modes of Y, i.e. identify the relationship between the variations in X and Y. A successful
PLS regression often leads to a few modes in X, often much lower than the number of
variables in X, explaining more than 90% of the variation observed in a given Y-data.
Using the biases on the measured outputs, disturbances, and manipulated variables over
the set of test runs as the predictor data (X) and the estimation error observed in gasifier
temperature in these runs as the dependent data (Y), a PLS regression was carried out to
find the dominant combinations of the biases that were affecting the estimation error of the
gasifier temperature. Figure 51 shows the performance of the PLS regression model that
correlated the biases during each run in the test cases and the gasifier temperature
estimation error in those test cases. As it is clear from the agreement between the PLS
predictions and the actual estimation errors, the regression model captured the variance
observed in the estimation error data very well. Only 3 dominant modes of X data (biases)
were used in the PLS regression model that explained 96% of the variance observed in
the Y data (estimation error).
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Figure 51: Performance of the PLS regression explaining the relationship between the
biases and the gasifier temperature estimation error. The PLS regression model explains
more than 95% of the variance observed in the estimation error data.

Having built a successful correlation between the biases (X) and the gasifier temperature
estimation errors (Y), the 3 modes were analyzed to find out which biases contributed
most to these modes. Figure 52 shows the cumulative loading of each bias on these
dominant modes. The first conclusion that can be drawn from the loadings plot is that the
estimation performance of the gasifier temperature is heavily affected by a combination of
the biases rather than a single bias. However, it is also apparent that the biases on the
gasifier pressure and the O, flow rate have a more significant impact on the estimation
error than the other biases, which was also observed by the unstructured first-look at the
outlier cases in the estimation of the gasifier temperature. This analysis indicated that for
the specific runs in the Monte Carlo simulation where the O, flow rate measurement and
gasifier pressure measurement, and to a lesser extent other sensor biases like
water/steam recirculation flow rate, were large simultaneously, led to estimation
performance deterioration. In the presence of simultaneous biases in these sensors, the
EKF is unable to distinguish between them and leads to degraded gasifier temperature
estimation. To test this conclusion, the Monte Carlo run with the same set of random
biases, but with O, flow rate bias set to zero, was repeated. Figure 53 shows the
performance of the preemptive EKF for estimating the gasifier temperature, before and
after the elimination of the O, flow rate bias. It is clear that when the O, flow rate bias is
eliminated, the estimation of the gasifier temperature is improved significantly, as depicted
by the disappearance of the tails of the error distribution. Therefore it can be concluded
that the elimination or drastic reduction of the measurement bias in the O, flow rate either
through better or redundant instrumentation will be very beneficial for the correct
estimation of the temperature inside the gasifier, a critical yet unmeasured process
variable.
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Figure 53: The comparison of the estimation of gasifier temperature in the test cases before
and after the elimination of the O, flow rate bias.

The sensing system combining available online sensors together with a model-based
online estimation provides an online real-time feedback of the critical performance and
operability variables that are not measured online. This capability is, in itself, very valuable
to the plant operator to enable monitoring the actual state of the system continuously and
allow more informed decision-making. Integrating this sensing system to a model-based
control/optimization solution will enable increased robustness, flexibility and optimized
performance by reducing conservatism in operation while maintaining all operability
constraints. In Phase Il of the program, under Task 3, the developed sensing system
solution utilizing a combination of available online sensors and “virtual” sensing through
online model-based estimation using EKF, was coupled with the developed MPC solution.
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6 Task 3 - Control System Design

The objective of this task was to develop an advanced controls solution that enhances the
level of automation and optimizes the operation of the gasification section in an IGCC
plant, for both steady state and transient operation in startup as well as nominal power
generation operation modes. Current operation/controls of the gasification section involves
a combination of (i) lower-level simple single-input single-output (SISO) controls for
variables like level, pressure, flow and temperature in key process units where they are
measured online, and (ii) higher-level operator supervision and operation based on
experience and simple guidelines. There is an opportunity to improve the overall
gasification section operation performance through more advanced controls. Motivated by
this, a model predictive controller (MPC) was designed to achieve the higher-level
controls/operation objectives for the overall gasification section. MPC is a model-based
controls solution that couples real-time transient model simulations and predictions with
online real-time dynamic system optimization subject to all operability, safety or hardware
constraints. This combination of dynamic model-based predictions and online constrained
optimization provides a significant value in using MPC for improved steady state and
transient operation at a section or plant level, with the flexibility to optimize for any desired
objective that can be updated as the operation mode varies. It should be mentioned that
MPC is used as an “optimizing supervisory control” at the section and/or the plant level,
integrated with the lower-level SISO controls for each process unit, i.e., it does not replace
the lower level controls. This also is practically valuable since an MPC solution can be
implemented as an addition to existing lower-level controls in an operating plant without
having to take the risk of completely replacing the existing controls.

For this task, initially in Phase | of the program, high-level controls requirements were
identified for the gasification section for the key transient operations — startup (pre-heating
and post-ignition pressure ramp up), turndown and fuel changes. The controls
requirements were identified in terms of key performance objective (output tracking and
minimization/maximization of some performance metric), sources of variations or
disturbances, available control input variables for performance optimization and magnitude
and rate constraints on all control inputs and magnitude and rate constraints on process
outputs for operability. There are three distinct phases during startup in the gasification
section: (i) pre-heating, (ii) ignition, and (iii) ramp up and pressurization from ignition to
high-pressure steady-state operation. In particular, the pre-heating phase takes a long
time, wherein the gasifier refractory and the RSC are heated following a prescribed
temperature profile, which is designed to be conservative to avoid critical thermal stress
limits. A model-based control strategy where the critical stresses are monitored online and
the transient heating profile is optimized to maintain these stresses below acceptable
limits is expected to provide significant reduction in the total pre-heat time. MPC simulation
studies with pre-heating of gasifier and RSC indeed indicated significant reduction in pre-
heat time, while maintaining all thermal and stress constraints. On the other hand for
nominal operation (i.e. after startup and at design pressure conditions), a key control input
is the oxygen-to-carbon ratio, which is decided based on prior experience and operator
knowledge. In the absence of online real-time feedback for key constraint and
performance variables (e.g. carbon conversion, efficiency, slag viscosity), this is often set
for a conservative operation to stay away from operation boundaries. A model-based
control strategy that allows continuously monitoring the constraint and performance
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variables, and also coordinates other control inputs along with the oxygen-to-carbon ratio,
is expected to yield improved steady-state performance (e.g. minimize oxygen
consumption, or maximize overall efficiency) as well as transient operation (e.g. achieve
faster throughput/load changes) with coal as well as coal-petcoke blended fuels.

In Phase Il of the program, in parallel with the sensing system design in Task 2, initially a
full “state feedback” MPC was designed, i.e., assuming ideal or perfect sensors for all
needed state and output variables. The state feedback MPC was implemented on the
gasification section model and systematic transient simulations were performed to
evaluate the process operation entitlement, i.e., the best performance improvements
achievable at steady state as well as during transients subject to all operation constraints
for startup and nominal operation modes. In Phase Il of the program, the state feedback
MPC was subsequently coupled with the sensing system from Task 2 to obtain the overall
integrated sensing and control system. Figure 54 shows a schematic representation of the
overall sensing and control system. In particular, at any time sample, the measurement
from the online sensors is used to update the state (and parameter) estimates for the
model using the EKF described in the previous section. Then the updated dynamic model
is used to predict the transient response of the process over a desired future prediction
horizon for a specific control input sequence, which is coupled with online constrained
optimization to achieve the optimal solution enforcing all constraints and achieving desired
tracking or optimization performance. The first step of the calculated optimal control
sequence is implemented and the whole sequence is repeated at the next time step.
Owing to repeated online model-based prediction over a long future horizon, it is
imperative that the model used for prediction can be simulated much faster than real-time.

Implement Optimized
Plant Control Action
| | | Time
Current Next Time Time H
Prediction Over
Finite Future .= b
i ati der Herizan -
State Estimation R Red uce.d Order | ______nrerzon >
(EKF) Dynamic Model ( Performance & __-—'—/—_——+——
1 ConstraintOutputsy | = *
On-line Optimization A
_ _ * minimize objective function \ »
Optimum Control Profile + Syngas quality, carbenconv.,...| > : »
Over Future Horizon + subject to constraints +
+ actuator magnitude/rate —/T/_..-
+ T/P limits, ... . i
uses linear model at each sample/
over prediction horizon

Figure 54: Schematic representation of the Integrated Sensing & Control Solution using
EKF & MPC.
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Figure 55: MPC implementation.

After completing the gasification section model in Matlab/Simulink® from Task 1, a model
predictive controller (MPC) was implemented in Simulink to optimize the gasification
section operation at steady state and during transients. Figure 55 shows the MPC
implementation framework in Simulink, with different components including (i) a target
reference and constraint generation block based on the control requirements — it provides
the output reference trajectories to be tracked, performance outputs to be minimized and
the constraint limits on all control inputs and process outputs, (ii) a prediction block to
simulate the nonlinear dynamic model over a desired prediction horizon with a specified
control input sequence, (iii) a linear model generation block to linearize the model online at
desired intervals for specified state and input conditions, and (iv) a quadratic programming
(QP) formulation and solution block to calculate the optimized control action over the
future horizon.

The MPC implementation was tested through comprehensive simulation studies for
startup pre-heating of gasifier and RSC as well as for nominal operation at steady state or
turndown with nominal coal and coal-petcoke blended fuels. The simulation results are
summarized in the next section.

6.1 MPC for Startup Pre-heating Optimization

One of the key transients to be improved during plant startup is for the gasifier refractory
pre-heating. Currently, a prescribed temperature profile is used during pre-heating in an
“open-loop” strategy, and it takes a significant amount of time to complete the pre-heating.
In order to optimize the startup pre-heating profile subject to constraints on the thermal
stresses in the refractory bricks, a model predictive controller (MPC) was developed based
on the refractory thermal and stress models, process constraints and control targets.
Compared to the current open loop schedule where the heating process follows a pre-
determined hot surface temperature profile, MPC can achieve the preheating
requirements in a minimum time span while obeying all the constraints and process
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requirements. The optimized pre-heating from MPC allows saving several hours in the
gasifier preheating process.

In late 2008, the dynamic thermal model of gasifier refractory layers (in Matlab/Simulink®
platform) and the mechanical model of stress responses with a temperature distribution
across the layers (using ANSYS® software package) were built and checked with some
results from other design tools. These models were first used to calculate the open loop
thermal and stress responses for the current “open-loop” pre-heating strategy. In order to
have a consistent comparison between the open-loop strategy and the MPC optimized
operation, the maximum values of the tensile and compressive stresses observed during
open loop operation were used as the constraint limits for MPC optimization. In other
words, the optimized MPC pre-heating strategy was forced to obey the same maximum
tensile and compressive stresses as obtained following the current (open-loop) pre-
heating strategy.

As in the open loop operation, the MPC control uses the inner surface temperature of the
gasifier as the manipulated variable to preheat the refractory via heat conduction through
the layers of refractory. The goal of the process is to raise the overall temperature level of
the refractory from startup ambient conditions to a desired final value; therefore MPC uses
a weighted average temperature of the innermost refractory layer as the control target,
which should be raised to the final value following a reference trajectory. The reference
trajectory is set to be significantly faster than the baseline so that while tracking this
reference, operability constraints become active and are the limiting factor for fast pre-
heating. The constraints come from two aspects: the maximum heating capacity of the
burner as the process input (manipulated variable), and the tensile/compressive stress
limits of the refractory material developed during the heating process (output variables).
The heating capacity limit used in MPC was implemented as the maximum ramp rate
achievable for the inner surface temperature used in the open loop operation — same as
the max ramp rate used in the baseline open-loop strategy for consistency. The stress
constraints are the tensile and compressive stress limits, which were determined from the
maximum stress levels in the open loop operation. Thus, the MPC optimization is
performed to minimize the startup pre-heating time with the same operability constraints
as observed in the baseline open-loop pre-heating schedule.

MPC optimization was studied through transient simulation of the gasifier pre-heating.
Clearly, the critical constraints for pre-heating are the tensile and compressive stresses in
the refractory bricks. The observed stresses are a function of the gasifier geometry. In
particular, there are two distinct design options wherein (i) the design geometry is such
that during the pre-heating, the gaps between the refractory bricks close due to thermal
expansion, and thus lead to significant compressive hoop stress buildup, or (ii) the design
geometry is such that the gaps between the refractory bricks do not close up even at the
target pre-heating temperature, and thus compressive stresses in the refractory bricks
remain low — rather the tensile stresses become the limiting constraint. MPC optimization
studies were performed for both design cases.

The simulation results in Figure 56 show the comparison of the MPC optimized

performance (in green) against the baseline open-loop operation (in red) for the case
when the gaps between the refractory bricks are designed to close down. The top figure
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shows that the MPC optimized pre-heating is completed approximately 22% faster than
the baseline strategy. Also, note that the optimized pre-heating hot surface temperature
profile has a very different transient compared to the open-loop one. The open-loop
strategy starts with a slow temperature rise initially and gradually increases the rate of
temperature increase. In contrast, the MPC operation starts with the maximum rate of
temperature increase initially and then slows down during intermediate periods when the
compressive or tensile stresses are active. The bottom figure shows a comparison of the
tensile (positive) and compressive (negative) stresses compared to the max limits
(obtained from the peak values in open-loop strategy at 41% for tensile and 72% for
compressive stresses). Note that the faster pre-heating implies an earlier time when the
tensile stress rises to the max limit and then rides this limit for a while causing the pre-
heating temperature profile to slow down. Thereafter, the gaps between the refractory
bricks close down, causing sharp buildup in compressive hoop stress (and
correspondingly a reduction in tensile stresses) to the max compressive stress limit.
Ultimately, as the pre-heating temperature is achieved, the thermal gradients reduce and
the tensile and compressive stresses also reduce towards the end of the simulation run.

Figure 57 shows a similar comparison of the open-loop operation (red) and MPC
optimized (green) operation for the design case when the gaps between the refractory
bricks do not close and thus tensile stresses build up monotonically to the end of the pre-
heating to a slightly higher value, while the compressive stresses are far from constraint
boundaries. Running to the same tensile stress limits as in the open-loop operation
(slightly higher limit at 53% compared to previous design case), the MPC optimized
operation achieves approximately 25% faster pre-heating. The MPC optimized operation
in this case is simpler, following the maximum heating rate until eventually the tensile
stress is active at the max limit, causing a slight slowdown of the heating rate.
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Figure 56: Gasifier startup preheating and thermal stresses - Open-loop schedule and MPC
optimized profile. Design case with contact between refractory bricks.
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Figure 57: Gasifier startup preheating and thermal stresses - Open-loop schedule and MPC
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While the above simulation runs show significant improvement in startup preheating time
for the gasifier refractory using MPC, another set of simulations were also performed to
simultaneously reduce startup preheating time as well as the maximum tensile and
compressive stresses on the refractory bricks. These simulations showed that both could
be achieved at the same time with a trade-off between the two depending on the
design/operation needs.

Similar to the gasifier pre-heating, MPC optimization was studied for the RSC pre-heating

as well. For the RSC, medium pressure steam is fed to the HP drum and the resulting hot
water is circulated through the RSC tubes to pre-heat them gradually to the desired
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temperature. The pre-heating leads to transient temperature differences between the
tubes that heat faster and the outer shell that heats slower, causing an increase in thermal
stresses. The current operation limits the temperature difference between the tube and the
shell to a desired value as an indirect means to limiting the thermal stresses. Figure 58
shows the MPC optimized pre-heating of the RSC. The plot on the top left shows the
target tube temperature reference (red dashed), which is set to be aggressively fast. The
actual tube temperature profile is shown in blue, which reaches the desired final value in
approximately ten hours. The other figures in the top half show the optimized profiles for
the drum pressure (rising gradually due to steam injection) and the steam flow rate
(negative values imply feed into the drum as opposed to positive values during normal
operation when steam is withdrawn from the drum). The figures in the bottom half show
the difference between the tube and shell temperatures (blue), running against the
maximum allowed limit (red dashed) — the last figure shows the comparison of the tube
and shell temperatures, with the shell temperature lagging behind the tube temperature.
Also, the stresses in the critical component in the RSC are shown in blue compared to the
max strength limits in red. For the allowed temperature difference between the tube and
shell, there is still a significant margin available for the stresses, indicating available
opportunity to speed up the pre-heating more if running to the stress limits instead of the
temperature difference limit.
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Figure 58: MPC optimized pre-heating of RSC.
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6.2 MPC for Nominal Operation Optimization with Ideal Sensors

This section summarizes the results of simulation studies with MPC using ideal sensors
(i.e., state feedback). The simulations were performed with a mix of bituminous coals, as
well as with a 50-50 blend of bituminous coal and petcoke, and show the improvement in
both steady state and transient operation.

6.2.1 MPC for Nominal Operation Optimization with Coal

This section presents results on MPC optimized operation for nominal operation with coal
fuel at part-load (50%) and baseload steady state conditions as well as during load
changes (turndown) between baseload and part-load conditions. More specifically, at
steady-state conditions, the gasification section operation is optimized to minimize the
oxygen consumption subject to operability constraints, which in turn reduces the internal
electricity consumption in the air separation unit (ASU). On the other hand, MPC is used to
optimize the load transients (turndown) between partload and baseload to allow faster
turndown subject to limiting constraints. The varying optimization objectives within the
MPC framework during steady state and transient operation allow a flexible and optimized
overall plant operation to achieve desired objectives based on operation mode. For
instance, at steady-state conditions MPC can be used to optimize for minimum oxygen
consumption, maximum carbon conversion, maximum efficiency or maximum net electrical
power output as desired. On the other hand, during load transients, MPC can be used to
maximize the ramp rates to get to desired final power output in the least time.

MPC can be used at the gasification section level to optimize the operation through
coordinated use of multiple control inputs including coal slurry feed, recycle CO feed,
oxygen feed, as well as setpoints for lower level controllers like HP steam drum and
syngas pressure. While optimizing the performance by MPC, it is still important to track
key plant outputs (e.g. net electricity output, syngas pressure) at desired values. The
gasification section operation allows a range of operation conditions with varying
combination of inputs like oxygen feed, slurry feed, recycle CO, feed, HP drum pressure
etc., that yield the same desired net electricity output, thereby allowing degrees of freedom
in operation that can be exploited to optimize for additional performance objectives (e.g.
minimize oxygen consumption).

Steady State Operation Transient Operation
0, saving Load Rate
) Ramp Up Ramp Down
Manipulated Inputs 50% Load Full Load
50% -> 100% | 100% -> 50%
Baseline (Fixed Recycle CO,, ' :
Water, RSC Drum Pressure] = = Ll i b
Recycle CO, 7.9% 4.89% 09X minutes | 0.8Y minutes
Recycle CO, + RSC Drum c o : :
Pressure 8.0 % 493 % 0.8X minutes | 0.75Y minutes
Recycle CO, + RSC Drum o o . .
Pressure + Slurry Water 8.0 % 50% 0.8X minutes | 0.75Y minutes

Figure 59: Summary of steady state and transient optimization with MPC using different
control inputs
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In the initial MPC simulation studies, various control inputs including the slurry feed rate
and oxygen feed rate, recycle CO; flow rate, HP steam drum pressure setpoint, and the
water content in the slurry feed were used to explore the optimization of the gasification
section at steady state and during load transients. In the existing operation of the
gasification section, the water content in the slurry is maintained at a fixed value owing to
limitations on slurry flowability. While it is possible to vary the water content slowly and to a
small extent, it is not desirable. The use of these control inputs for potential improvement
in operation was explored to identify the relative advantage of each input. More
specifically, the gasification section operation was optimized at partload and baseload
conditions for minimized oxygen consumption, and during load transients for faster ramp
rates. The results are summarized in Figure 59. Clearly, slurry throughput and oxygen flow
rate have to be used as control inputs, to track desired net electric power output at
different load conditions. A key question was to identify the benefit of using the additional
inputs like recycle CO,, HP steam drum pressure and slurry water content in terms of
improving steady-state and transient performance. From the results, it is clear that recycle
CO; and HP steam drum pressure are the primary control inputs, allowing up to 8%
reduction in oxygen usage at steady state, and 20-25% improvement in ramp rates during
transient load changes (turndown). The additional advantage of using the slurry water
content was minimal, so it can be discarded from the control inputs in MPC.

Figure 60 shows the MPC simulation results at partload (50%) steady-state operation,
where it is configured to minimize the oxygen consumption. A key challenge in the MPC
formulation was that optimization for performance objectives would trade-off against the
tracking performance. This is not desirable, since tracking objectives (e.g. net electricity
output) have a high priority and performance optimization should not be done at the
expense of tracking performance. To address this, the MPC formulation was updated to
distinguish between tracking and performance optimization objectives, and only allow
performance optimization subject to meeting the tracking objectives. The plots on the top
show the setpoint (red-dashed lines) for the tracking outputs, i.e. net electricity output, and
syngas pressure), and the actual outputs (blue) which indeed track the control setpoint.
The plots below show the variation in syngas and steam flow rates as MPC optimizes the
operation for minimized oxygen consumption while still tracking the control outputs. The
plots on the right show the variation of various control knobs (blue) compared to the
maximum (red) and minimum (light blue) limits. The variable G_Totalflow_sf denotes the
variation in slurry feed rate, while G_slurrywater_sf denotes the variation in slurry water
content (held constant at baseline value), G_CO2_sf denotes variation in recycle CO flow
rate, and G_PetCk_sf denotes the change in petcoke fraction in the fuel (held constant at
zero for coal operations). Note that the oxygen use is reduced by roughly 8% and this
minimum is achieved at minimum recycle CO, feed flow rate. The plots at the bottom
show additional important process variables (e.g. carbon conversion, syngas LHV and
MWI1) in blue compared to their minimum (light blue) and maximum limits (red). Clearly,
MPC maintains these outputs within desired limits while achieving the minimum oxygen
consumption.
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Figure 60: MPC performance for oxygen use minimization at 50% load operation with coal.

Figure 61 shows similar plots for transient operation optimization during a load ramp from
partload (50%) to baseload (100%). In the baseline operation strategy, the load transients
are limited by the oxygen supply rate of change from the ASU. In this simulation run, the
ramp rate target (red) for the electric power output was set to be about 20% faster than the
baseline rate. MPC is clearly able to follow this faster ramp rate. Note that during this load
transient, MPC uses multiple control inputs like the slurry feed, oxygen flow rate, recycle
CO;, flow rate and the HP drum pressure setpoint in a coordinated manner to enable
following the faster ramp rate. This is a critical multivariable feature of MPC, which
optimally coordinates multiple control inputs based on model predictions to achieve the
desired control objective. Note that for this load transient, MPC increases the oxygen
supply at the maximum allowed rate of change (limited by the ASU rate of change), while
also transiently modifying the recycle CO, and HP steam drum pressure.
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Figure 61: MPC performance for faster ramp up during load transients between 50% and
100% load for operation with coal.

Finally, Figure 62 shows an example long simulation run for about 10 hours showing
different modes of operation and flexible optimization for each mode of operation. More
specifically, initially, starting at partload (50%) condition, MPC is used to minimize oxygen
consumption, then maximize the ramp rate during the load change to baseload (100%),
followed by minimization of oxygen use at baseload steady-state, before following a fast
turndown to partload and minimizing again for oxygen use at the final partload condition.
Clearly, MPC uses the various control inputs in a coordinated manner to achieve each
control/optimization objective during the various steady state and transient phases of
operation, while maintaining all inputs and outputs within allowed limits. This illustrates the
flexibility of using MPC for varying performance optimization depending on the needs for
any operation mode. MPC was able to achieve 8% reduction in oxygen at partload,
approximately 5% reduction in oxygen use at baseload and 20-25% faster ramp rates
during the transients between partload and baseload, as summarized in Figure 59.

While oxygen minimization reduces the oxygen consumption at part-load, this has an
adverse impact on the plant operation during ramp-up when raising the plant output from
part-load to baseload. The ramp-up is limited by the capability of the ASU to ramp up its
production of oxygen — starting from the minimum oxygen point makes this even more
limiting a constraint during the ramp-up. This is addressed in the MPC formulation by
allowing for a preparation phase for ramp-up. A key advantage of MPC is the ability to
optimize for a future prediction horizon. This allows optimizing the operation of the plant in
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the preparation phase before the ramp-up is initiated. MPC optimizes the operation to
increase the oxygen feed, while maintaining the constant net electricity output at part-load
— this essentially provides a head start in the ASU ramp-up, a limiting factor, and thereby
allows a faster ramp-up. Similar simulation runs were also done for a plant with fully fouled
RSC, where MPC optimization modified the operation to address the slightly reduced
steam generation due to the RSC fouling.
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Figure 62: MPC optimization for nominal operation with coal during steady-state operation
at part-load and baseload, and during turndown.

6.2.2 MPC for Nominal Operation Optimization with Coal-Petcoke Blend

This section presents results in MPC optimized operation for nominal operation using
coal+petcoke blended fuel — considering blends with 0-50% petcoke. The MPC
optimization was similar to coal-based operation discussed in the previous section,
optimizing for minimum oxygen at steady-state conditions and faster ramp up/down during
turndown. A key difference in operation with coal-petcoke blend compared to coal
operation is the significant increase in the carbon content in petcoke with a corresponding
increase of the fuel heating value (HV). Initially, simulation studies were performed at
baseload and part-load comparing open-loop transition from coal to coal-petcoke blend,
changing the petcoke from 0-50% following a ramp and keeping other operating
parameters unchanged. In comparison, for the same ramp in petcoke fraction, MPC
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optimized operation maintained the required total net electricity output during the
transition, while maintaining all operability constraints within desired limits.

Figure 63 shows a comparison of transient operation at part-load condition as the fuel is
transitioned from 0% petcoke to 50% petcoke in (i) an open-loop manner (green), keeping
all other operation parameters constant, or (ii) using MPC (blue) to maintain same power
output and pressure conditions while maintaining all operability constraints within limits.
For operation with petcoke-coal blends the slurry water content was allowed vary slightly
by about 5%. Owing to the fact that petcoke is significantly richer in carbon, under same
operating conditions, the oxygen-to-carbon ratio drops and consequently the gasifier
temperature also drops, leading to reduced carbon conversion and higher slag viscosity.
On the other hand, despite the reduced carbon conversion, the syngas yield and quality
(LHV, MWI) increase significantly, while the steam production reduces (due to reduced
temperature). The overall net electricity production increases significantly. Due to the
differences in the fuel characteristics, the operation of the plant has to be modified to
maintain the same target electricity output, and maintain important operability constraints
like slag viscosity, carbon conversion, syngas LHV and MW!I within acceptable limits. The
MPC operation is designed to achieve this as can be seen in the plots — it maintains the
constant electricity power output by reducing the slurry feed and the oxygen feed while
slightly increasing the slurry water content and recycle CO,. The transition to 50% petcoke
blend operation leads to reduced temperature and thus, reaching the max limit on slag
viscosity constraint. Note also that owing to the higher carbon content and fuel heating
value, the syngas LHV is also high at the max limit.
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Figure 63: Comparison of open-loop operation (green) with change in petcoke fraction with
MPC operation (blue).
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Similar to coal-based operation, MPC was configured to optimize for oxygen use at steady
state operation while maintaining tracking outputs like net electrical power output and
syngas pressure at nominal setpoint. In the absence of a reference baseline operation
condition for comparison, this was studied by configuring MPC to operate at extreme
conditions, i.e. minimize oxygen consumption and maximize oxygen consumption to
identify the entitlement opportunity for oxygen use minimization. Figure 64 shows a
comparison of the results for maximum oxygen use (green) and minimum oxygen use
(blue), showing a potential to vary oxygen use by up to 5.8%. Note that some of the critical
operation constraints with petcoke include carbon conversion (due to the significantly
higher carbon in petcoke) and syngas LHV. Also, unlike operation with coal, the optimum
operation with petcoke is achieved with significant recycle CO,, again due to the high
carbon content and carbon conversion constraint.
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Figure 64: MPC optimized operation at part-load with 50% coal-petcoke blend showing up
to 5.8% variation in oxygen use between operation with maximum (green) and minimum
(blue) oxygen consumption while maintaining the power output at 50%.

Figure 65 shows the performance of the MPC optimized operation with 50% petcoke blend
over a long simulation run showing multiple operation modes including steady-state
conditions at part-load and baseload conditions as well as transient turndown between
these conditions. Similar to the simulation studies with coal in the previous section,
starting at part-load, (i) initially the operation is optimized to minimize the oxygen
consumption, followed by (ii) optimization for ramp-up to base load, (iii) oxygen
minimization at baseload, (iv) optimization for ramp-down to part-load, and finally (v)
optimize again for oxygen minimization at part-load. As evident in Figure 64, the optimized
operation with petcoke blend at partload runs against the min carbon conversion and max
syngas LHV constraint limits — the higher fuel quality (richer in carbon) of petcoke blend
leads to higher quality syngas. The constraint on the syngas LHV can be relaxed, in which
case the optimized operation runs to the max syngas MWI limit instead. The opportunity
for oxygen consumption reduction is lower for petcoke operation compared to coal
operation due to the more constrained operation range with the higher carbon content. On
the other hand, the turndown transients during ramp-up and ramp-down were able to
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successfully follow a 20-25% faster ramp rate compared to the ASU ramp rate that limits
the rate of change of oxygen feed. Note that during the faster turndown transients, the
oxygen feed, slurry water content, HP steam drum pressure and recycle CO, feed are
changed significantly in a coordinated manner to maintain the gasifier temperature needed
for carbon conversion and slag viscosity constraints. Note also that unlike operation with
coal, during operation with petcoke-coal blend, the recycle CO, flow rate is never reduced
to zero, again to achieve the high (and limiting) carbon conversion in the presence of
significantly higher carbon content in petcoke.
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Figure 65: MPC optimized operation at 50% part-load and 100% baseload and during
turndown with 50% petcoke-coal blend.

This section presented MPC simulation results using ideal sensors or state feedback, both
for coal and coal-petcoke blends. The simulation runs show significant opportunities to
optimize the plant operation at steady state as well as during transients. Also, MPC allows
an increased flexibility in operation, with the ability to optimize for different optimization
objectives (e.g. oxygen use minimization, carbon conversion maximization, efficiency or
power output maximization at steady state, or faster transients during load changes) as
desired during different operation modes.
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6.3 Integrated MPC and EKF for Nominal Operation Optimization

Figure 44 shows the architecture used in Phase II, wherein the MPC with ideal sensors,
i.e. perfect knowledge of all state and output variables from the plant, and the EKF-based
sensing system using a combination of online sensors and model-based estimation were
developed and tested in parallel in an open-loop configuration. In Phase lll, the separate
designs for MPC with ideal sensors and the EKF-based sensing system were coupled to
obtain the overall integrated sensing and control system, as shown in Figure 66.
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Figure 66: Schematic of Integrated EKF and MPC. The EKF uses sensor measurements to
update the states and parameters for reduced order model used in MPC.

In a phased approach to this task, first the separate implementations of MPC and EKF
were unified in a combined implementation, using the latest reduced-order model common
to both and a common linear model generation routine to achieve high computational
efficiency. Thereafter, the integrated control and sensing system was retuned for stability
and performance robustness to random combinations of sensor noise, bias and modeling
error. The final retuned system was studied using Monte-Carlo simulations with random
sensor bias for both coal slurry feed and coal-petcoke blend. For all these simulations, the
system is initially simulated in open loop with only the EKF enabled (without engaging
MPC controller) for about 60 minutes. This initialization period is required for initial
transients in estimated states and parameters in the EKF to settle down. Thereafter the
MPC controller is engaged to study the performance of the integrated EKF-MPC system
for steady state and transient operation. The simulation results for coal slurry feed based
on a number of Monte-Carlo simulations with random combinations of sensor bias and
modeling error (RSC fouling and gasifier kinetics) are presented next.

6.3.1 Nominal Operation Optimization with Coal

Simulations studies conducted with the integrated control and sensing system using coal
slurry feed show good tracking performance during steady state as well as transient
operations. Figure 67 and Figure 68 show one such result for a long simulation run with
multiple steady state and transient operation phases. Figure 67 shows various phases of
the simulation run. The simulation is initiated (point ‘A’) at base load condition with only the
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EKF enabled. The simulation runs for almost 60 minutes without any external control input
(open loop). After that the MPC is enabled at point ‘B’. The MPC quickly tracks the net
electrical output and scrubber syngas pressure to the respective reference set points. At a
steady state point ‘C’ the MPC is configured for net electrical output maximization mode
while respecting all the operational constraints (e.g., maximum slurry feed, ASU limit etc).
Clearly, MPC is able to achieve about 2% higher net electricity output in this mode. At a
later steady state operation point ‘D’ the net electrical output maximization mode is
suspended in preparation for the net electrical output turndown. Operation phase ‘E’ to ‘F’
represents 25% faster ramp tracking in net MW as well as scrubber syngas pressure
compared to the nominal operation to 50% part load. Since, it is normally not desirable for
the IGCC plant to turn down all the way to zero load due to startup complexities, the end
of this turndown transient may represent the parking of the plant during the low power
demand period. During this period, one objective would be to minimize the oxygen
consumption while maintaining certain minimum load (net electrical output as well as
scrubber syngas pressure) — this in turn reduces the internal power consumption in the
ASU and achieves higher plant operation efficiency. The point ‘G’ represents the starting
point of such a phase. At point ‘G’ the MPC is engaged in the minimization of the oxygen
consumption mode while maintaining 50% load. In this phase, MPC is able to reduce
oxygen consumption by about 10%. Phase ‘I’-'J’ of the simulation represents the ramp up
transient tracking of net electrical output from 50% load to base load condition at 20%
faster rate compared to the nominal rate. Once at the base load, the MPC is again
engaged in the maximization of net electrical output mode at a steady state operation
point ‘K’. As mentioned, all through this simulation the scrubber pressure is also tracked to
a given reference trajectory as shown in the bottom graph of Figure 67.
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Figure 67: Integrated sensing and control system closed loop response to load change
from 100% -50%-100% with sensor and parameter errors with coal. The MW output and
scrubber pressure (blue) track the reference profile (red) with 25% (ramp down) to 20%
(ramp up) faster ramp rate compared to nominal.

Figure 68 shows the overall plant response with the integrated sensing and control system
to change in load from base load to 50% part load and then back to base load in the
manner as described earlier (Figure 67), in the presence of sensor (one random
combination of sensor noise and bias) and modeling error (RSC fouling and Gasifier
kinetics). For this simulation, the plant RSC is 30% fouled and the gasifier kinetics is 70%
of the nominal value. The EKF is initialized to nominal values of these parameters (RSC
fouling=0 and gasifier kinetics scale factor =1). The simulation response shows that
despite the presence of sensor noise and parameter error, the integrated sensing and
control system has a good net electrical output set point tracking performance for both, at
the steady state as well as the transient operation. This is similar to what was observed
with state feedback MPC with ideal sensing. Further the integrated system is able to
maximize the net electrical output for this combination of sensor noise and bias and model
parameter error by more than 2% at the base load and cut down the oxygen consumption
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at partload by about 10%. Figure 68 also shows that the EKF estimates of gasifier kinetics
scale factor (Etasr) and the RSC fouling factor (Foulings) at base load condition are quite
good. However, at part-load conditions due to limited “observability” of the parameters in
the system, the parameter estimation is less accurate. More specifically, since EKF
estimates all the states, parameters and biases such that combinations of all these result
in minimum variance estimate to match the sensor measurements, the individual
parameters are not guaranteed to track the actual parameters. However, the overall
closed-loop response shows that even in the presence of sensor and modeling errors and
despite the limited “observability” of the parameters in the system, the integrated sensing
and control system is able to track the load and syngas pressure references well: tracking
20-25% faster turndown ramp rates. In the figure, the blue graph in Elec_ MW _Net and
SG_P represent the actual response whereas the setpoints are shown as red graph.
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Figure 68: Integrated sensing and control system closed loop response to load change with

coal from 100% -50%-100% with one combination of random sensor biases and parameter

error.

As mentioned earlier, the designed integrated sensing and control closed-loop system was
studied using Monte-Carlo simulations using random combinations of the sensor biases
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for each run. These results are summarized in Figure 69 and Figure 70. For all these
simulations the plant RSC is 30% fouled and gasifier dynamics is 70% of the nominal
value whereas, the estimator is initialized with nominal gasifier kinetics (etas=1) and no
fouling in the RSC (fouling=0). Histograms of the maximum sustained net electrical power
output gain at base load condition and maximum sustained saving in oxygen consumption
at 50% part load observed in Monte-Carlo simulation are presented in Figure 69. The
simulation shows that the gain in net electrical power output could be as much as 2-2.5%,
however, this gain is uneven and depends upon the sensor noise and bias combination.
This is due to non-perfect observability in the system. Due to non-perfect observability
some performance constraint parameters like carbon conversion, slag viscosity and
Wobbe index cannot be estimated very accurately. This results in more conservative
optimized performance due to constraints posed on these signals. The Monte Carlo
simulation also shows that 7-10% sustained saving in oxygen consumption over the
nominal consumption for 50% load can be achieved by judicious manipulation of control
inputs. For consistency purpose, the saving in oxygen consumption is normalized with
respect to the net electrical power output to account for any slight changes in electrical
power output during the optimization of oxygen consumption phase. This gain is similar to
what was observed with state feedback MPC with ideal sensors.

Finally, Figure 70 shows the time traces and histograms of the estimated values of gasifier
kinetics parameter (etas;) and RSC fouling for the same Monte-Carlo simulations. As
mentioned earlier, each simulation starts in open loop with model-based estimator (EKF)
engaged for an hour before the controller (MPC) is activated. This is required for the
estimates of “unknown” parameters in model (used both for EKF and MPC) and sensor
biases to settle to its steady state values as seen in subplots in Figure 70. Without this
open loop operation, it was observed in multiple simulations that the interaction between
the estimator and the controller might lead to closed loop system instability. The time
traces of the parameters also show that these parameters are estimated more accurately
at the base load steady state condition as compared with the part load steady state
condition or during the transient operations, due to poor observability at part load
conditions. Since the parameter observability is better at the base load condition, starting
the simulation at these conditions also helps in more accurate estimation of these
parameters. Starting at baseload condition, once the estimation has converged close to
the “correct” value, it does not change significantly again on account of poor observability.
The histograms at the bottom of Figure 70 correspond to the average value of
corresponding parameters for each Monte-Carlo simulation. The figures show that the
average parameter values over each simulation are close to actual values.
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Figure 69: Monte Carlo simulation results for Net Electrical output gain at the base load
condition and oxygen saving at 50% part load condition for various random combination of
sensor error (noise and bias) and model parameter error (gasifier kinetics and RSC fouling)
using the integrated sensing and control system for load changes from 100%-50%-100%.
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Figure 70: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various
random combination of sensor bias and model parameter errors for the integrated sensing
and control system closed loop system to load change from 100%-50%-100%.
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6.3.2 Nominal Operation Optimization with Coal-Petcoke Blend

Similar simulation studies were carried out for coal-petcoke fuel blend. These results are
presented next. Figure 71 shows various phases of simulation with coal-petcoke fuel
blend. The simulation is initiated (point ‘A’) at base load condition with EKF engaged. The
simulation runs for almost 60 minutes without any external control input (open loop). After
that the MPC is engaged at point ‘B’, and it quickly tracks the net electrical output and
scrubber syngas pressure to the respective reference set points. Operation phase ‘C’ to
‘D’ represents 25% faster ramp tracking in net MW as well as scrubber syngas pressure
compared to the nominal operation to 50% part load. Again, since it is normally not
desirable for the IGCC plant to turn down all the way to zero load due to startup
complexities, the end of this turn down transient may represent the parking of the plant
during the low demand period. During this period one objective would be to minimize the
oxygen consumption while maintaining certain minimum load. The point ‘E’ represents
starting of such a phase. At point ‘E’ the MPC is engaged in the minimization of the
oxygen consumption mode while maintaining 50% load. At point ‘F’ the MPC disengages
the oxygen minimization mode in preparation for transient operation. Phase ‘G’-‘H’ of the
simulation represents the ramp up transient tracking of net electrical output from 50% load
to base load condition at 20% faster rate compared to the nominal rate. Once at base
load, the MPC again engages tracking of net electrical output as well as scrubber syngas
pressure mode and maintains the steady state operation. As mentioned, all through this
simulation, the scrubber pressure is also tracked to a given reference trajectory as shown
in the bottom graph of Figure 71.
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Figure 71: Integrated sensing and control system closed loop response to load changes
from 100%-50%-100% with sensor and parameter errors for coal-petcoke blend. The MW
output (blue) track the MW reference (red) with 25% (ramp down)-20% (ramp up) faster
ramp rate compared to nominal.

Figure 72 shows the overall plant response to the integrated sensing and control system to
changes in load from base load to 50% part load and then back to base load in the
manner as described earlier (Figure 71), in the presence of one random combination of
sensor error (noise and bias) and modeling error (RSC fouling and gasifier kinetics).
Similar to the coal case, for this study the plant RSC is 30% fouled and the gasifier
kinetics is 70% of the nominal value, while EKF is initialized to nominal values of these
parameters (RSC fouling=0 and gasifier kinetics scale factor =1). The simulation response
shows that despite the presence of sensor bias and parameter error the integrated
sensing and control system has a good steady state as well as the transient operation
tracking performance for both, the net electrical output as well as scrubber syngas
pressure. This is similar to what was observed with state feedback MPC with ideal
sensing. Further the integrated system is able to cut down the oxygen consumption by
about 6% at partload. Figure 72 also shows the EKF estimates of gasifier kinetics scale
factor (Etass) and the RSC fouling factor (Foulings) over the duration of the simulation. The
figure shows that plant parameters namely gasifier kinetics scale factor and RSC fouling
factor estimates are slightly less accurate: at base load condition, the EKF estimates
slightly faster gasifier kinetics whereas at the partload condition it estimates slightly slower
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kinetics. Further, at baseload condition the RSC fouling is accurately estimated close to
the actual value of 30%, while the estimation deteriorates at part load condition. This is
due to limited “observability” of the parameters in the system, especially for small
throughput at partload operation. Similar to coal case, since EKF estimates all the states,
parameters and biases such that combinations of all these result in minimum variance
estimate to match the sensor measurements, the individual parameters are not
guaranteed to track the actual parameters. Nevertheless, the overall closed-loop response
shows that even in the presence of sensor and modeling errors and despite the limited
“‘observability” of the parameters in the system, the integrated sensing and control system
is able to track the load and syngas pressure references well: tracking 20-25% faster
turndown ramp rates. In the figure the blue graph in Elec_ MW _Net and SG_P represent
the actual response whereas the setpoints are shown as red graph.
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Figure 72: Integrated sensing and control system closed loop response to load changes
from 100%-50%-100% for coal-petcoke blend with one combination of random sensor bias
and parameter errors.
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Figure 73: Monte Carlo simulation results for normalized oxygen saving at 50% part load
condition with various random combination of sensors error (noise and bias) and model
parameters error (gasifier kinetics and RSC fouling) for the integrated sensing and control
system to load changes from 100%-50%-100%.

As mentioned earlier, similar to coal fuel, the designed integrated sensing and control
closed-loop system was studied using Monte-Carlo simulations using random
combinations of the sensor biases for each run. These results are presented in Figure 73
and Figure 74. For all these simulations, the plant RSC is 30% fouled and gasifier kinetics
is 70% of the nominal value whereas the estimator is initialized with nominal gasifier
kinetics (etag=1) and no RSC fouling (fouling=0). Histogram of the maximum sustained
saving in oxygen consumption at 50% part load observed in Monte-Carlo simulation is
presented in Figure 73. The Monte Carlo simulation shows that 3-6% sustained saving in
oxygen consumption over the nominal consumption for 50% load can be achieved by
judicious manipulation of control inputs for most cases of sensor bias combination. For
some combinations of sensor bias, this gain may be quite small. This is due to non-perfect
observability in the system. Due to non-perfect observability some performance constraint
parameters like carbon conversion, slag viscosity and Wobbe index cannot be estimated
very accurately. This results in more conservative optimized performance due to
constraints posed on these signals. For consistency purpose, the saving in oxygen
consumption is normalized with respect to the net electrical power output to account for
any slight changes in electrical power output during the optimization of oxygen
consumption phase. This gain is similar to what was observed with state feedback MPC
with ideal sensors.
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Figure 74: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various
random combination of sensor noise and model parameters error for the Integrated
sensing and control system closed loop system to load changes from 100%-50%-100%.

Finally, Figure 74 shows the time traces and histograms of the estimated values of gasifier
kinetics parameter (etas;) and RSC fouling for the same Monte-Carlo simulations. As
mentioned earlier, each simulation starts in open loop with model-based estimator (EKF)
engaged for an hour before the controller (MPC) is activated. This is required for the
estimates of “unknown” parameters in model (used both for EKF and MPC) and sensor
biases to settle to its steady state values as seen in subplots in Figure 74. Similar to coal
fuel cases, without this open loop operation, it has been observed in multiple simulations
that the interaction between the estimator and the controller may lead to closed loop
system instability. The time traces of the parameters also show that these parameters are
estimated more accurately at the base load steady state condition as compared with the
part load steady state condition or during the transient operations, due to poor
observability at part load conditions. Since the parameters observability is better at the
base load condition, starting the simulation at these conditions also helps in more accurate
estimation of these parameters. Starting at baseload condition, once the estimation has
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converged to the “correct” value, it does not change significantly again on account of poor
observability. The histograms at the bottom of Figure 74 correspond to the average value
of corresponding parameters for each Monte-Carlo simulation. The figures show that
unlike the coal case, in coal-petcoke cases, the average parameter values over each
simulation are less accurate. The performance of the EKF parameter estimation could
possibly be improved by further retuning of the EKF. Despite this, as shown in Figure 72,
the integrated sensing and control system shows good steady state as well as transient
tracking performance and is able to optimize the operational cost within the operational
constraints.

7 Conclusions

An IGCC plant is a large chemical plant, traditionally designed to operate mainly at steady
state conditions, coupled to a power generation plant intended to operate in a robust,
optimized and flexible manner to meet varying power generation demand. It is highly
desired to achieve high degree of reliability and increasingly flexible operation in terms of
turndown or load-following capability and fuel changes while achieving optimum overall
plant efficiency. This in turn, implies a need for increasing automation for coordinated and
optimized operation of the various sections of the plant to meet fluctuating power
generation objectives. This program focused on developing advanced integrated sensing
and control systems to achieve the objectives of higher reliability and flexible operation
with optimized efficiency. In particular, this program focused on the gasification section,
which is the core section of the plant, yet most limited in terms of automated operation,
due in large part to a very harsh environment and corresponding limitations on online
sensing. On the other hand, first-principles physics-based models have been developed
for key process units, which are nominally used for offline analysis and design purposes.
These physics-based models allow capturing the process operation knowledge in a
rigorous manner and can be used online as the basis for design of an advanced sensing
and control solution. Motivated by this, a systematic model-based approach for analysis
and design of sensing and control systems has been developed in this program, and
extensive simulation studies have been performed to identify the application and benefits
of such an advanced sensing and control solution for online monitoring and control in an
IGCC plant. The results and conclusions from each key element of the program are
summarized in the next sections.

7.1 Dynamic modeling for sensing and controls design

It is clear that a good dynamic model based on first-principles is the foundation for design
of advanced sensing and controls solution. However, the model has to be developed with
the intended end-use for online sensing and control in mind. Important aspects for
consideration include the level of details and time-scale of dynamics to be included, the
computational efficiency and suitability for real-time simulation and estimation/controls, the
flexibility and ability to adapt with adequate model parameters to address site-to-site
design/operation variations as well as variations in a given plant over time. In particular,
the model has to be adequately low-order to enable fast simulations as well as robust use
in online sensing and controls. Similarly, instead of attempting to capture all minute details
in the process and still have inaccuracies — there is always an approximation in any model
— it is often better to parameterize some aspects and allow room for online adaptation to
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changing process characteristics and keeping the updated model accurate. These aspects
invariably lead to a trade-off in the model complexity and suitability for online monitoring
and control.

With these considerations, in Phase | of the program, a unified dynamic model of the
gasification section was implemented in Matlab/Simulink® to be used for simulation
studies as well as design of model-based sensing and control solutions. The models were
implemented to describe both the nominal operation mode, as well as the phases of
startup including pre-heating and post-ignition pressure ramp-up. In particular, a separate
set of models was implemented for the gasifier refractory and RSC pre-heating, capturing
the thermo-mechanical stress dynamics that limit the transient heating operation. The
gasifier pre-heating model was implemented in Matlab/Simulink® and ANSYS®. The
available models for individual process units were leveraged to build the overall model.
Where necessary, additional details were included, e.g. some models had only steady-
state equations which were generalized to include dynamics, or in the case of the drum
level model, additional details were included to better capture the “swell” effect during
transients. On the other hand, the gasifier model was a high-order model that took up to
twenty minutes or more to converge to a steady state — obviously not suitable for online
sensing and control. This motivated the use of model-reduction to derive a low-order
model of the gasifier that could be simulated within a fraction of a second while
maintaining high accuracy with respect to the original high-order model over a wide
operating envelope.

Often, once individual unit models are put together to describe the overall subsection or
plant dynamics, invariably the overall model ends up being stiff, i.e. it has dynamics over a
range of time-scales spanning fractions of seconds to minutes or hours. It is important only
to keep the dynamics relevant for the characteristic time scale of the intended monitoring
and control application. For instance, for the overall gasification section operation, which
typically evolves overall several minutes, the gasifier dynamics occur over few seconds,
which is too fast and can be ignored. Similarly, while in the full-order model used to
simulate the “plant” detailed syngas flow and pressure dynamics were retained, these
dynamics also occur over seconds and lead to stiffness. In order to enable fast simulation
of the reduced-order model, especially for repeated future predictions for MPC, these
pressure-flow dynamics were also approximated with quasi-steady-state approximations
without sacrificing much accuracy.

Finally, in order to provide flexibility to the model and address uncertainties due to
unknown (or un-modeled) aspects, parameters were defined in each process unit to allow
for adapting the model and matching with real plant data. For instance, in the gasifier, the
heterogeneous reactions are the rate-limiting reactions governing carbon conversion, and
there is some uncertainty in the reaction kinetics — a kinetics scale factor was used to
allow adjusting the kinetics in the presence of uncertainty. Similarly, in the RSC model the
heat transfer varies with the degree of fouling which is introduced as a parameter to allow
online adaptation based on available measurements. In the quench and the scrubber, a
non-ideal VLE is used to capture the phase equilibrium between the syngas and the water
holdup. To account for inaccuracies in the VLE relationship and potential limitations on
gas-liquid equilibrium assumption, especially during transients, a temperature parameter
was included to capture deviation from the modeled VLE relationship. These parameters
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are adapted online to match online sensor measurements, and keep the model matched
to plant data.

In parallel to the model development, Phase | of the program also focused on
implementation of sensors in the RSC in TECO Polk Power Station IGCC plant. Extensive
lab tests were performed for fiber optic sensor design and packaging for temperature and
strain sensing to meet the requirements for installation. In the second year of the program
(Phase II), the sensor testing and packaging design and fabrication were completed.
Finally, a set of radial temperature probes using Type B thermocouples and fiber optic
FBG sensors, and fiber optic static strain sensors were installed in the RSC in TECO
IGCC plant in 2009 Q1. The sensor packages worked very well, especially the
temperature probes at level 10 in the RSC and the strain sensor in the RSC dome. The
temperature probes at level 10 performed well, withstanding temperatures around 2000 F,
and multiple startup/shutdown transients. The sensors at level 7 also performed very well
until the ceramic packaging broke abruptly on the fifth day of operation due to likely
impingement of hot gas and/or slag. The strain sensor in the RSC probe worked very well,
meeting all expectations and successfully measuring over approximately six weeks, a
slowly increasing and small mechanical strain due to gradual fouling buildup, while
withstanding very high thermal stresses (~5000-7000 pe) due to high temperature
conditions during startup. The FBG sensors performed very well for the intended short
duration to collect data for model validation, despite the high level of challenges due to the
extremely harsh operating conditions. Nevertheless, there is room for further
improvement, especially in packaging design and installation, to enable robust sensors
that can be used for long duration for monitoring and control.

7.2 Advanced model-based sensing

A key challenge in the monitoring and control of the core gasification section in an IGCC
plant is the limited availability/survivability of sensors due to the extremely harsh
environment. Owing to the limitations on available online sensors, a general model-based
sensing approach wherein existing online sensors are coupled with online real-time model-
based estimation (or virtual sensing) provides an effective solution. Such an approach was
developed in Phase Il of the program under Task 2. The dynamic model for the
gasification section was used in an EKF together with available online sensors, to estimate
important unmeasured process variables important for monitoring and control, e.g. gasifier
temperature, carbon conversion and slag viscosity.

A key concern in any sensing system is the accuracy of the sensor, whether it is real or
virtual. In particular, the accuracy of the virtual sensor or model-based estimate depends
on the accuracy of online (real) sensors and the model used for estimation. Initially, a
linear model-based analysis was performed using Kalman filter design to identify key
modeling errors (unknown/varying model parameters like gasifier kinetics, RSC fouling
etc.) and sensor errors (unknown biases in sensors) that adversely impact the estimation
accuracy. The ones with high sensitivity were included in the nonlinear model-based
estimation using an EKF. A limitation of standard EKF is the inability to enforce
inequality/bound constraints on the estimated “state” variables, e.g. mole fractions, fouling
factor, which are expected to be in the range 0 to 1. To address this, two different
constraint handling technigues were implemented, one using post-update active constraint
identification and correction, and another using preemptive correction for constraints
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before the measurement update. Through simulation studies, the latter approach was
found to be more effective. However, there is room for improvement. In particular, the
presence of constraints limits the effectiveness of underlying assumption of Gaussian
variances assumed in an EKF, and techniques that relax this assumption would likely
perform better. The performance of the constrained EKF was studied through extensive
Monte Carlo simulations with random combinations of sensor biases, in the presence of
modeling errors (errors in gasifier kinetics and RSC fouling) to show the estimation
performance in the presence of these errors. Subsequently, in Phase Il of the program
this EKF was integrated with the MPC solution to obtain the overall integrated sensing and
control solution. The simulation studies with the integrated sensing and control solution
showed that in the presence of sensor errors, the unknown model parameters like gasifier
kinetics and RSC fouling are more “observable”, i.e. can be identified with higher
accuracy, at baseload conditions as opposed to partload condition. This is consistent with
the fact that at baseload conditions and corresponding high throughput, these parameters
have higher sensitivity to the online sensors.

The ability to have a comprehensive online sensing/monitoring solution using a
combination of limited online sensors complemented with model-based estimates is an
important capability in itself. It allows real-time monitoring of process performance (e.g.
gasifier temperature, carbon conversion), which can be used by plant operators for
improved operation. When coupled with an advanced control solution, as done under Task
3 of the program, the integrated sensing and control solution achieves higher automation,
robustness, flexibility and efficiency of plant operation.

7.3 Advanced model-based control

Finally, under Task 3, MPC controllers were designed for startup pre-heating of the
gasifier refractory and RSC, as well as nominal operation with coal and coal-petcoke
blends. MPC, through systematic online model-based future prediction and constrained
optimization, allows achieving optimized plant operation while enforcing all safety,
hardware and operability constraints. Also, MPC provides the ability to change the
optimization objective (e.g. carbon conversion, oxygen use, efficiency, ramp rates)
depending on the operation mode, thereby providing enhanced operation flexibility.

Initially, in Phase Il, MPC was designed and tested through simulations for optimized
startup pre-heating as well as nominal operation at steady state and through fuel and
throughput/load transients. These MPC studies were performed assuming state feedback,
or full knowledge of plant model states and outputs. During startup, gasifier and RSC
preheating take significant time, consuming significant fuel as well as impacting plant
availability. Faster preheating would benefit both. The MPC simulation studies with gasifier
refractory preheating, subject to tensile and compressive thermal stress limits in the bricks,
showed potential for 20% faster preheating compared to baseline open-loop schedule.
Also, MPC studies were used to identify design tradeoff between desired faster preheating
and reduction in thermal stresses. Similarly, MPC optimized operation for RSC pre-heating
indicates a fast completion of pre-heating in less than ten hours, depending on the steam
availability for pre-heating. MPC was used to perform extensive simulation studies for
nominal operation at part-load and baseload conditions and for turndown between part-
load and baseload conditions. For coal-based operation, in one optimization mode at
steady-state conditions, MPC yielded potential reduction of oxygen consumption by up to
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8% at partload conditions. In another optimization mode for transient operation during
turndown, MPC simulations yielded faster ramp-up and ramp-down capabilities by 20-25%
faster than baseline capability due to the rate-limited ASU. Similarly, MPC simulations
were used to study the transition from coal to coal-petcoke blends, and optimization for
nominal operation at part-load and baseload conditions and turndown, yielding similar
faster ramp rates during turndown and slightly reduced oxygen savings — the operation
with coal-petcoke blend is more constrained compared to coal operation, partly due to the
high carbon content in petcoke while still desiring a high carbon conversion. These
improvements are achieved by MPC through coordinated use of multiple control inputs like
slurry feed, oxygen feed, recycle CO, feed and HP steam drum pressure, and controlled
operation to constraint boundaries. These improvements in steady state and transient
operation are significant.

In Phase Il of the program, the EKF developed in Task 2 and MPC with state feedback
from Task 3 were coupled to achieve the overall integrated sensing and control solution.
In this effort, first the underlying physics-based models were updated to a common
version, and then the EKF and MPC were coupled and re-tuned iteratively for good
closed-loop performance of the integrated sensing and control solution. The physical
model has many “unknown” parameters, e.g., gasifier kinetics, RSC fouling etc. The EKF
provides estimates of these parameters, all model states as well as of outputs used by
MPC and important for efficient and safe operation like the gasifier temperature, carbon
conversion, slag viscosity etc. in the presence of random sensor noise and bias. This
integrated solution was tested through Monte-Carlo simulations with random combinations
of sensor biases in the presence of model parameter errors. The simulations were
designed to test performance of the integrated sensing and control system for net
electrical output and syngas pressure setpoint tracking at steady state and faster
transients, as well as minimizing the oxygen use or maximizing electric power output at
steady state, with coal as well as coal-petcoke fuel blend while respecting all the operating
constraints.

The simulation studies showed that the steady state as well as the transient tracking
performance of integrated system is good and comparable to the “ideal” MPC with state
feedback in Phase II, despite the presence of sensor and modeling errors. Further, the
integrated system provides the capabilities to the turn down 20% (ramp up) or 25% (ramp
down) faster than the nominal operation while maintaining all the operational constraints.
The integrated system also enables the optimization of various objective functions
depending upon the current operation mode, thus providing operational flexibility. More
specifically, for example, in the current setting, MPC was configured to maximize the net
electric power output at base load condition, while minimizing the oxygen usage at the part
load condition. The performance of the integrated sensing and control solution was
studied through the Monte Carlo simulations. These simulations showed that the system
net electrical output could be increased by up to 2-2.5% of the nominal value at the base
load condition with coal slurry. Conversely, at partload operation, the oxygen consumption
could be reduced by 7-10% for coal slurry. With coal-petcoke blend fuel, the oxygen
saving at partload was a bit less at around 3-6% - this is in part due to the more
constrained operation with petcoke owing to the higher carbon content. The EKF also
estimated the unknown model parameters like gasifier kinetics and RSC fouling. The
estimates were good at baseload conditions, and deteriorated a bit during transients or at
partload conditions. This is due to the fact that the parameters are more observable due to
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the higher sensitivity at baseload operation with higher throughput. The parameter
observability is reduced at partload operation. Due to limited observability it is not always
possible to estimate the unknown model parameters and compensate for sensor noise
and bias accurately. Nevertheless, the integrated sensing and control system using EKF
and MPC works very well for steady state and transient tracking as well as optimization.

The simulation studies have shown very promising results for the EKF and MPC
implementations individually as well as for the final integrated EKF & MPC solution. These
results can be used as the basis for pursuing a future implementation of the developed
sensing and controls solution in an IGCC plant, in a staged manner. One option is to first
implement the EKF by itself using available online sensors in the gasification section and
mature its performance in plant application — validating both the underlying model and the
model-based estimation solution. As mentioned earlier, the EKF solution in itself is
valuable for real-time online monitoring of the plant performance that can be used by plant
operators for improved operation. Once the performance of the model and the EKF-based
sensing solution is established, MPC can be implemented and integrated with EKF to
achieve the advanced sensing and control solution. Again, MPC could initially be used in
an “advisory” mode to aid operators improve the plant operation. Subsequently, as its
performance is established, it could be implemented in a closed-loop mode to enable
automated operation and achieve the performance improvement entitlement. In a
separate direction, the developed advanced sensing and control solution for the
gasification section could be expanded or integrated with sensing and controls for the
other sections, including the ASU, syngas cleanup and power generation towards an
overall plant-level control system for optimizing the overall IGCC plant operation.

8 Abbreviation

This section lists the abbreviations used in this report.

ASU Air Separation Unit

CSC Convective Syngas Cooler

EKF Extended Kalman Filter

FBG Fiber Bragg Grating

IGCC Integrated Gasification Combined Cycle
KF Kalman Filter

LHV Lower Heating Value

MPC Model Predictive Control

MWI Modified Wobbe Index

POD Proper Orthogonal Decomposition
RSC Radiant Syngas Cooler

SBL Soot Blower Lance

UKF Unscented Kalman Filter
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