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Deflagration Wave Profiles

Ralph Menikoff

February 20, 2012

Abstract

Shock initiation in a plastic-bonded explosives (PBX) is due to hot
spots. Current reactive burn models are based, at least heuristically,
on the ignition and growth concept. The ignition phase occurs when
a small localized region of high temperature (or hot spot) burns on a
fast time scale. This is followed by a growth phase in which a reactive
front spreads out from the hot spot. Propagating reactive fronts are
deflagration waves. A key question is the deflagration speed in a PBX
compressed and heated by a shock wave that generated the hot spot.
Here, the ODEs for a steady deflagration wave profile in a compressible
fluid are derived, along with the needed thermodynamic quantities of
realistic equations of state corresponding to the reactants and products
of a PBX. The properties of the wave profile equations are analyzed
and an algorithm is derived for computing the deflagration speed.
As an illustrative example, the algorithm is applied to compute the
deflagration speed in shock compressed PBX 9501 as a function of
shock pressure. The calculated deflagration speed, even at the CJ
pressure, is low compared to the detonation speed. The implication
of this are briefly discussed.
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1 Background

Across a steady wave, the hydrodynamic variables must satisfy the Rankine-
Hugoniot jump relations. For reactive flow, a discussion of the detonation
and deflagration loci is given in Courant and Friedrichs [1976, Chpt. III E].
In contrast to a shock or detonation wave, both the ahead and behind states
of a deflagration wave are subsonic. Moreover, for a given ahead state, not
all points on the deflagration locus are physically admissible. A deflagration
waves must have a steady continuous wave profile. Unlike, shock and detona-
tion waves, the admissible deflagration waves depend on transport properties;
in particular, on thermal conduction.

1.1 Gaseous combustion

Most of the theory for deflagration waves has been developed in the context
of gaseous combustion in the high activation energy limit. This enables the
use of simplifying approximations; low wave speed compared to the sound
speed and nearly constant pressure across the wave. Consequently, the flow
model can be reduced to an equation for the conservation of energy and a rate
equation for the reaction progress variable. Furthermore, the energy equation
can be expressed in the form of a diffusion equation for the temperature. The
key material parameters for a deflagration wave are then the specific heat at
constant pressure and the coefficient of thermal diffusion.

In contrast, for a reactive solid in the high pressure regime that occurs
during a shock-to-detonation transition, the equation of states of the re-
actants and products are important and very non-ideal. As a result, the
simplifying assumptions used for gaseous deflagrations are not applicable.
Therefore, the full set of conservation laws (mass, momentum, energy) for
compressible reactive flow needs to be analyzed.

1.2 Deflagration wave profile

A study of deflagration waves by Friedrichs [1946], using the full set of re-
active flow equations with an Arrhenius reaction rate and an ideal explosive
equation of state, concluded that for a given initial state, a steady wave pro-
file with heat conduction and viscosity only exists for one point on the de-
flagration locus; see also, [Courant and Friedrichs, 1976, §91]. Subsequently,
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existence and uniqueness of detonation and deflagration wave profiles have
been studied in great detail, see for example Wagner [1989], Gasser and Sz-
molyan [1993] and references therein. These analyzes are highly dependent
on the use of a simplified ideal explosive equation of state (EOS); see App. A.
While many of the qualitative properties of deflagration waves are indepen-
dent of the EOS, there are significant differences between the deflagration
loci of a gaseous explosive with an ideal EOS and a solid explosive with a
realistic EOS; see App. B .

The purpose of this article is to review the theory and equations that
describe steady deflagration waves in one-dimension with an eye towards
calculating the deflagration speed for a specific explosive. The focus, in
particular, is on solid explosives described by realistic equations of state.

1.3 Solid high explosives

The main motivation for this work is to gain a better understanding of
shock initiation in a plastic-bonded explosive (PBX). Due to material hetero-
geneities, shock compression gives rise to hot spots or small localized regions
of high temperature. This leads to the ignition and growth concept used
in reactive burn models; see [Menikoff, 2009a] and references therein. The
ignition phase is the formation and burning of hot spots on a fast time scale.
This is followed by a growth phase in which a reactive front is triggered by
the high temperature of each burned hot spot. A propagating reactive front
is a deflagration wave. A key question is the deflagration speed in the shock
compressed PBX.

Briefly, the material covered is organize as follows. First, the ODEs for the
wave profile of a steady deflagration wave are derived. The ahead and behind
states of the wave profile are critical points. Second, the stable manifolds for
each critical point are determined. Third, the properties of the trajectories
of the ODEs are analyzed. This enables a numerical shooting algorithm
to be derived for computing the deflagration speed of an explosive with an
arbitrary EOS.

As an illustrative example, the shooting algorithm is applied to the high
explosive PBX 9501. The deflagration speed is computed as a function of
pressure for the ahead state on the principal Hugoniot locus. The deflagration
speed, even at high shock pressure, turns out to be low compared to the
detonation speed. The implication are briefly discussed in the final section.
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2 Reactive flow PDEs

The one-dimensional PDEs for reactive fluid flow with viscosity and heat
conduction in Lagrangian form are

d

dt
V − V

∂

∂x
u = 0 , (1a)

d

dt
u + V

∂

∂x
P = V

∂

∂x

(
ν

∂

∂x
u
)

, (1b)

d

dt
e + PV

∂

∂x
u = V ν

(
∂

∂x
u
)2

+ V
∂

∂x

(
κ

∂

∂x
T
)

, (1c)

d

dt
λ = R , (1d)

where d
dt

= ∂
∂t

+u ∂
∂x

is the convective time derivative, λ is a reaction progress
variable, R is the reaction rate, ν is the coefficient of dynamic viscosity,
and κ is the coefficient of thermal conduction. The usual hydrodynamic
and thermodynamic variables for particle velocity, specific volume, specific
internal energy, pressure and temperature are denoted by u, V , e, P and T ,
respectively. We take λ to be the mass fraction of the products. Moreover,
the chemical energy associated with the reaction is included in e. Hence,
there is no energy source term due to the reaction.

We assume a pressure-temperature equilibrium EOS for partly burned
explosive; i.e., P = P (V, e, λ) is based on reactants (λ = 0) and products
(λ = 1) equations of state, which we denote by subscripts ‘r’ and ‘p’, respec-
tively. The equilibrium EOS is defined by the Gibbs free energy

G(P, T, λ) = λ Gp(P, T ) + (1− λ) Gr(P, T ) . (2)

This leads to the fundamental thermodynamic identity

de = −P dV + T dS + (∆G) dλ , (3)

where ∆G = Gp − Gr, S = −(∂T G)P,λ is the specific entropy, and e =
G + T S − P V . From general thermodynamic relations, it follows that the
mixture quantities are given by

V = λVp + (1− λ)Vr ,

e = λep + (1− λ)er ,

S = λSp + (1− λ)Sr ,

(4)
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where Vp, ep and Sp are functions of P and T , and similarly for Vr, er and
Sr. This defines a mixture EOS for the pressure P̃ (V, T, λ), which can be
re-expressed as P (V, e, λ), provided that the EOS of the reactants and prod-
ucts are each thermodynamically consistent (derivable from a potential) and
thermodynamically stable (entropy jointly concave in e and V ).

Remarks:

(i) More precisely, the convective time derivative should be written
(

∂
∂t

)
m

where m is the Lagrangian mass variable defined by dm = ρ dx. However,
we later use m for mass flux.

(ii) We have assumed a Newtonian viscosity for which the viscous pressure
Q has a linear form; Q = −ν ∂

∂x
u. The coefficient of dynamic viscosity ν

has dimensions of pressure·time. Furthermore, we assume ν is constant.
For more detailed discussion of viscous stress, see for example, http://en.
wikipedia.org/wiki/Viscosity . Other forms for the viscous pressure are
possible. In particular, numerical shock capturing algorithms frequently use
a quadratic form for the artificial viscosity; Q = −

(
ν1 + ν2| ∂

∂x
u|
)

∂
∂x

u.

(iii) The heat flux, q = −κ ∂
∂x

T , has dimensions energy/(time·length2).
Hence κ has dimensions energy/(length·time·K). The coefficient of thermal
diffusion is k = κ/(ρ Cr), and has dimensions of length2/time. Here, Cr is a
reference value for the specific heat.

(iv) We assume that the reaction, reactants → products, is irreversible; i.e.,
R ≥ 0. Moreover, R = 0 when λ = 1, i.e., reactants are completely burned.

(v) Reaction contributes to the entropy production. From Eq. (3) and
Eq. (1c), one can derive an equation for the specific entropy;

d

dt
S − V

∂

∂x

(
κ

T

∂

∂x
T
)

= ν
V

T

(
∂

∂x
u
)2

+ κ
V

T 2

(
∂

∂x
T
)2

− ∆G

T
R . (5)

For an irreversible reaction, ∆G < 0 and R ≥ 0. Hence, the dissipation,
i.e., the right hand side of Eq. (5), is positive. We further assume that the
explosive is exothermic; i.e., ∆h < 0, where h = e + P V is the enthalpy.

(vi) Formulae for the equilibrium mixture thermodynamic quantities (spe-
cific heat CV , Grüneisen coefficient Γ and sound speed c), in terms of those
of the components, are derived in Appendix C. We note that the mixture
quantities are not constant. Moreover, for realistic reactants and products
EOS, the component specific heats are temperature dependent. In addition,
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for fixed λ, we assume that the EOS is convex, (∂2
V P )S > 0, and that the

Grüneisen coefficient is positive. Other mixture rules for P (V, e, λ) are possi-
ble. However, it is important that the EOS is thermodynamically consistent
(satisfy Eq. (3) with ∆G independent of λ) and thermodynamically stable
(mixture entropy is jointly concave in V , e for fixed λ). This enables our anal-
ysis to make use of various thermodynamic identities, such as those listed in
Appendix A of [Menikoff and Plohr, 1989].

(vii) For later use, we note variations of Eq. (3) for fixed λ and different pairs
of independent thermodynamic variables:

de = −
(
1− Γ CV T

P V

)
P dV + CV dT ,

Γ de = (γ − Γ)P dV + V dP ,

Γ CV dT = KT dV + V dP ,

(6)

where γ = c2/(P V ) is the adiabatic exponent, and KT is the isothermal bulk
modulus. Thermodynamic stability requires that KT > 0. Furthermore,
we assume that γ ≥ Γ + 1, which is a sufficient condition for stability of
shock waves. These inequalities determine the sign of some thermodynamic
derivatives that play an important role in the analysis.

(viii) Mass diffusion — additional terms V ∂
∂x

[
d ∂

∂x
λ
]

and V ∂
∂x

[
(ep−er) d ∂

∂x
λ
]

on the right hand sides of Eq. (1d) and Eq. (1c), respectively, where d is the
coefficient of mass diffusion with dimensions of mass/(length·time) — is often
included for gaseous combustion; see for example [Kassoy, 1985] and reference
therein. We have left these terms out since our aim is to describe deflagration
waves in reactive solids at high pressure; i.e., the close packing of molecules
at solid density severely restricts their ability to diffuse.

3 Steady-state ODEs

For a steady wave, all hydrodynamic and thermodynamic quantities are func-
tions of the variable

ξ = x−D t ,

where D is the wave speed. We assume a right facing wave, for which D > 0.
Substituting ∂

∂t
= −D d

dξ
and ∂

∂x
= d

dξ
, the PDEs reduce to ODEs:
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(D − u)
d

dξ
V = −V

d

dξ
u , (7a)

(D − u)
d

dξ
u = V

d

dξ

(
P + Q

)
, (7b)

(D − u)
d

dξ
e =

(
P + Q

)
V

d

dξ
u− V

d

dξ

(
κ

d

dξ
T
)

, (7c)

(D − u)
d

dξ
λ = −R , (7d)

where the steady-state viscous pressure is

Q = −ν
d

dξ
u . (7e)

Asymptotically the derivatives of all variables are assumed to vanish at
the end states; i.e., as ξ → ±∞. We denote the ahead and behind states,
corresponding to λ = 0 and 1, respectively, by the subscripts ‘0’ and ‘1’. For
a right facing wave, the ahead state is at ξ = ∞ and the behind state at
ξ = −∞. Moreover, D − u > 0.

The mass equation (7a) can be expressed as d
dξ

[
(D − u) ρ

]
= 0, where

ρ = 1/V is the density. The first integral is

(D − u)ρ = m = mass flux . (8a)

Alternatively,

∆V = −∆u/m , (8b)

where ∆f = f(ξ)− f(∞) is the change in the variable f relative to its value
at ξ = ∞, or ∆f = f(ξ) − f0. For a right facing wave, m > 0, and mass
flows from ξ = +∞ to −∞, i.e., right to left.

Remark: Since all derivatives vanish at ξ = ∞, for any f ′ = d
dξ

f , ∆f ′ = f ′(ξ).

The first integral of the momentum equation (7b) constrains the flow to
be along a modified ‘Rayleigh line’;

∆
(
P + Q

)
= m ∆u

= −m2∆V . (9a)
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Substituting Eq. (7e), we obtain

ν
d

dξ
u = ∆

[
P + m2 V

]
, (9b)

or by Eq. (8b) (
ν m

) d

dξ
V = −∆

[
P + m2 V

]
. (9c)

We note that the right hand side vanishes when V and P lie on the Rayleigh
line, PL(V ) = P0 −m2(V − V0).

The energy equation (7c) can be combined with Eqs. (7b) and (8a) as
follows:

− d

dξ

(
κ

d

dξ
T
)

= m
d

dξ
e− (P + Q)

d

dξ
u

= m
d

dξ
e +

d

dξ

[
(P + Q)(D − u)

]
− (D − u)

d

dξ

(
P + Q

)
= m

d

dξ

[
e + (P + Q) V + 1

2
(D − u)2

]
.

The first integral gives a modified ‘Bernoulli relation’;

κ
d

dξ
T = −m ∆

[
e + (P + Q) V + 1

2
(D − u)2

]
. (10a)

Substituting Eq. (9a) to eliminate P + Q and Eq. (8a) to eliminate the
velocity, yields

κ
d

dξ
T = −m

[
∆[e]−

[
P0 + 1

2
m2(V0 − V )

](
V0 − V

)]
. (10b)

We note that the factor P0 + 1
2
m2(V0−V ) can be expressed as 1

2
[P0 +PL(V )].

Collecting the results, equations (9c), (10b) and (7d), the ODEs for the
wave profile can be expressed as(

ν

m

)
d

dξ
V = − 1

m2
∆
[
P + m2 V

]
, (11a)

(
κ

mCV

)
d

dξ
T = − 1

CV

(
∆[e] +

[
P0 − 1

2
m2(V − V0)

]
·
[
V − V0

])
, (11b)

(
m V

)
d

dξ
λ = −R(V, T, λ) . (11c)
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The system of 3 ODEs is closed by using the equation of state for the pressure
and the specific internal energy; i.e., P=P̃ (V, T, λ) and e = e(V, T, λ).

Across a deflagration wave P decreases while V and T increase. More-
over, in the wave profile, these quantities typically vary monotonically. The
variations are related by the thermodynamic relation

dP = KT

[
− dV

V
+

Vp − Vr

V
dλ
]

+
Γ

V
CV T

dT

T
, (12)

where we have substituted Eq. (C.21) for (∂λP̃ )V,T . In order for P to de-
crease monotonically, the change from increasing V must be larger than the
combined change from increasing λ and increasing T . This can occur because
KT � Γ

V
CV T . An additional requirement is that −dV > (Vp− Vr)dλ. From

Eq. (11), this requirement can be expressed as

∆
(
P + m2V

)
>

Vp − Vr

V
νR . (13)

Typically, this inequality is satisfied because ν is sufficiently small. For the
special case of an ideal explosive EOS, Appendix A, the inequality follows
from the fact that Vp = Vr; i.e., the pressure depends on V and T , and is
independent of λ.

3.1 Scaled ODEs

Physically, reaction rates are temperature sensitive and heat conduction de-
termines the rate which drives a deflagration wave. It is natural to define a
length scale based on the thermal conduction;

` =
κ

m Cr

.

Here, Cr is a reference value for the specific heat. For a solid propellant or
explosive, CP & CV . Moreover, the specific heat is temperature dependent.
Reasonable estimates for Cr may vary by a factor of 2. Alternately, the length
scale may be expressed in terms of the viscosity and the Prandtl number

` =
ν

m Pr
and Pr =

Cr ν

κ
.
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Typically, for gaseous combustion Pr ≈ 1. For solid reactants, Pr � 1; see
for example § 8.2.1.

In terms of the dimensionless length ζ = ξ/`, Eq. (11) can be re-expressed
as

d

dζ
V = −Pr−1 1

m2
∆
[
P + m2 V

]
, (14a)

d

dζ
T = − 1

Cr

(
∆[e] +

[
P0 − 1

2
m2(V − V0)

]
·
[
V − V0

])
, (14b)

d

dζ
λ = − `

m V
R(V, T, λ) . (14c)

This scaling is advantageous for calculating deflagration profiles numerically.
Since the right hand side of Eq. (11b) is near zero, without the scaling it
would be multiplied by a large number (mCV /κ) and roundoff errors may
cause large errors in computing d

dξ
T . However, for a weak deflagration wave

(small m) and Pr ' 1, there is still a potential issue with roundoff errors
for Eq. (14a). Thus, length scaling can help with one equation but not
necessarily for both the energy and momentum equations.

We expect the reaction to occur on a comparable scale to that over which
the temperature changes; namely, `. Having used this as the length scale,
a distinguished solution of the wave profile ODEs should occur when the
maximum of the right hand side of Eq. (14c) (or the Damköler number)
is O (1).

In this case, the natural time scale, τ , for a deflagration is the inverse of

the peak of the rate; τ = 1/R(V1, T1, 0). Hence,

m V ∼ `

τ
=

κ

m Cr τ
.

Consequently, the deflagration speed and thermal length would be

D − u0 ∼
[
κV0

Cr τ

]1/2

and ` ∼ (D − u0) τ . (15)

We note that k = κV0/Cr is the coefficient of thermal diffusion. Hence,
D − u0 ∼ (k/τ)1/2 and ` ∼ (k τ)1/2.
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It may seem counter-intuitive, but the length scale and hence the defla-
gration wave width increases with the thermal conductivity. A shock profile
has the analogous property that its width increases with the coefficient of
viscosity.

Another distinguished type of deflagration profile occurs for a ZND deto-
nation wave, which can be thought of as a shock followed by a deflagration.
In this case, the deflagration profile is dominated by the reaction rate rather
than heat conduction. Consequently, the appropriate length scale is given
by ˜̀= mV0τ = D τ . Moreover, we expect ` � ˜̀, and the right hand side of
Eq. (14c) is less than `/˜̀ and would be very small.

In terms of the dimensionless length z = ξ/˜̀, Eq. (11) can be re-expressed
as (

ν

V0τ

)
∆

d

dz
V = −∆

[
P + m2 V

]
, (16a)

(
κ

m2V0τ

)
∆

d

dz
T = −

(
∆[e] +

[
P0 − 1

2
m2(V − V0)

]
·
[
V − V0

])
, (16b)

d

dz
λ = −τ

V0

V
R(V, T, λ) . (16c)

It is important to note that the derivatives behind the lead shock do not
vanish. This provides a degree of freedom needed for a deflagration profile
solution to exist when the wave speed or mass flux is determined by the
Hugoniot locus state rather than Eq. (15).

We note that right hand sides of Eqs. (16a) and (16b) correspond to shock
jump conditions. Their vanishing would contradict non-zero derivatives of V
and T behind the shock. However, these can be justified as follows. Phys-
ically, the shock jump conditions are a statement of the conservation laws;
the flux matches across a discontinuity or a steady wave. Viscosity gives rise
to a momentum flux and heat conduction to an energy flux. When ν and κ
are small, these fluxes would be a small perturbation on the Hugoniot locus.
Moreover, viscosity and heat conduction give rise to a smooth shock profile.
We will see later when trajectories of the ODEs are discussed that nearby
trajectories from the ahead state display a rapid variation of the slope in the
(V, T )-plane near the state behind the shock, as shown in Fig. 3. Typically,
the shock rise time is very short and a negligible amount of reaction occurs
in the shock profile.
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Remarks:

(i) Conventional analysis also scales the hydrodynamic variables. However,
in contrast to an ideal explosive EOS, realistic equations of state are not scale
invariant, and non-dimensional hydrodynamic variables are not so helpful.
Instead, for the critical point analysis in sec. 5, we use the relative change in
V and T , which are dimensionless variables.

(ii) Typically, the pressure change across a weak deflagration wave is small.
It is common in analysis of gas combustion to use a constant pressure ap-
proximation in place of the momentum equation. The justification is that
for Pr = O (1) and small m, Eq. (14a) is singular. Hence the right hand
side must vanish; i.e., P = P0 − m2 (V − V0). Small m then implies that
P is nearly constant. Numerical examples in sec. 8.2.2 show when κ is not
sufficiently small that m need not be small. Furthermore, when ν is not
sufficiently small, P need not be monotonic, let alone constant.

4 Preliminary considerations

Conditions are needed on the end points of a deflagration wave in order for the
wave profile ODEs to have a solution whose derivatives vanish asymptotically.

4.1 Deflagration locus

For a given ahead state, the possible behind states of a steady reactive wave
are determined by the Hugoniot equation;

e1 − e0 = 1
2

[
P (V1, e1, λ1) + P0

]
·
[
V0 − V1

]
, (17a)

where P0 = P (V0, e0, λ0), λ0 = 0 and λ1 = 1. The mass and momentum
jump conditions then determine the mass flux, the deflagration speed and
the particle velocity;

m2 = (P1 − P0)/(V0 − V1) , (17b)

ρ0 (D − u0) = m = ρ1 (D − u1) . (17c)

On the deflagration branch of the reactive Hugoniot locus, V1 > V0. As-
suming a convex EOS, for a given deflagration speed, the Hugoniot equation
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has at most two solutions. These are denoted as weak and strong deflagra-
tions with V0 < Vw < Vs and P0 > Pw > Ps. The weak and strong states
coincide for the CJ-wave speed. The other limit of a weak deflagration cor-
responds to constant pressure burn; P = P0 and D − u0 = 0. Typically,
the strong branch ends at a finite V and P ≥ 0. Thus, the weak and strong
branches of the deflagration locus lies within a finite interval in both P and V .

In contrast to the detonation branch (V1 < V0), the CJ-state on the
deflagration locus is an entropy maximum and the deflagration speed is a
maximum. Since

(SCJ)defl ≥ Sw > (SCJ)det > S0 ,

the entire weak branch of the deflagration locus is entropy increasing. This
is a consequence of ∆G < 0 and the associate entropy increase from reaction.
Thus reaction enables expansive waves to be physically possible. We note
that the CJ-state does not have the same significance for a deflagration that
it does for a detonation; i.e., there is no equivalent of an underdriven or
unsupported detonation wave. Moreover, we later prove, see Theorem 7.1,
that a wave profile can not end on the strong branch of the deflagration locus.
Hence, strong deflagration waves are inadmissible.

Without loss of generality, we may take the initial state to be at rest; i.e.,
u0 = 0. Then the deflagration speed is restricted to the interval 0 < D ≤ Dcj.
For a weak deflagration wave, V0 ≤ V1 < Vcj and u1 < 0. Moreover, for a

right facing wave d
dζ

λ < 0, and one might expect that d
dζ

V < 0. This implies

that d
dζ

u > 0 and the viscous pressure Q ≤ 0. By Eq. (11a) the deflagration

profile in the (V, P )-plane would lie above the Rayleigh line. We later prove
that V is indeed monotonic on a deflagration wave profile.

As with a shock wave, the behind state of a deflagration wave is sub-
sonic with respect to the isentropic sound speed, c2 = −V 2

(
∂P
∂V

)
S,λ

; i.e.,

D − u1 < c1. However, in contrast to a shock wave, the ahead state of a
weak deflagration is also subsonic; i.e., D < c0. With respect to the isother-
mal sound speed, c2

T = −V 2
(

∂P
∂V

)
T,λ

, the ahead state is typically subsonic

as well. At D = 0, the behind state is subsonic with respect to the isother-
mal sound speed, But at the other extreme, the CJ condition implies that
(D − u) = c > cT . Hence, the CJ state is supersonic with respect to the
isothermal sound speed. Therefore, with respect to the isothermal sound
speed (wrt cT ), the behind state can be either subsonic or supersonic. This
will play a role in some parts of our analysis.

12



The temperature of the behind state determines the reaction rate that
drives the deflagration wave. For an exothermic reaction, ∆h < 0, we
later show that the constant pressure deflagration state has a temperature
Tcp > T0. Typically, on the deflagration locus, the temperature decreases as
V increases. We assume the temperature at Tcp is sufficiently high that the
deflagration temperature on the entire weak branch is always much larger
than T0; i.e., the temperature increase from the heat release of the reaction
greatly exceeds the cooling due to expansion. As with V , one might ex-
pect that the temperature would be monotonically increasing with λ on a
deflagration profile. However, we later show that this is not necessarily true.

Remarks:

(i) A partly burned deflagration locus, with fixed λ ∈ (0, 1), is defined in
analogy to the deflagration locus by the equation

eλ − e0 = 1
2

[
P (Vλ, eλ, λ) + P0

]
·
[
V0 − Vλ

]
. (18)

Taking the derivative d/dV and using Eq. (6) we find

−
(

dP

dV

)
h

=
γ + Γ

2

(
P0−P

P

)
1 + Γ

2

(
V−V0

V

) · P

V
. (19)

On the deflagration locus P < P0 and V > V0. Since we are assuming Γ > 0,
it follows that (dP/dV )h < 0. Consequently, for fixed λ, the deflagration
locus is a single valued function of either P or V . Moreover, in Appendix C
we show that (∂e/∂λ)V,P < 0. Hence, in the (V, P )-plane, the partly burned
deflagration loci with different λ do not intersect. Typically, VCJ and PCJ

are monotonic function of λ and they converge to (V0, P0) as λ → 0. This
implies that DCJ(λ) → c0 as λ → 0.

(ii) If the rate is so large that the estimated deflagration speed from Eq. (15)
exceeds Dcj, then we anticipate that the reaction would generate a precur-
sor shock to precondition the fluid state for a subsequent deflagration wave.
Possibly this would lead to a detonation wave, which corresponds to a defla-
gration wave behind the lead shock to the CJ state; i.e., a ZND profile.

(iii) Since shock waves are compressive, some hydro codes that use artificial
viscosity to supply the numerical dissipation needed for shock capturing, set
Q = 0 in expansion; i.e., d

dζ
u > 0. This has the effect of turning off viscosity

in a deflagration wave profile.
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(iv) In the limit of zero viscosity, Eq. (11a) reduces to the equation for the
Rayleigh line

P̃ (V, T, λ) = P0 −m2(V − V0) . (20)

This determines V as function of T and λ. Alternatively, taking the derivative
of the Rayleigh line equation leads to[

(ρ cT )2 −m2
]

d

dξ
V = ρ Γ CV

d

dξ
T + (∂λP̃ )V,T

d

dξ
λ . (21)

This equation for d
dξ

V is singular at a sonic point wrt cT . Similar considera-
tion can be applied to the wave profile of a shock wave when heat conduction
is the only dissipative mechanism. The result (due to Rayleigh [1910]) is that
heat conduction is only sufficient to generate a smooth wave profile for weak
shocks. As a consequence, for a detonation wave, viscosity is necessary for
the lead shock profile that precedes the deflagration wave.

(v) It follows from the triple-shock rule (see [Menikoff and Plohr, 1989,
Prop. 5.5]) that for a given wave speed the weak and strong deflagration
states satisfy the Hugoniot jump conditions for the products EOS. More-
over, since we are assuming that the products EOS is convex and that the
Grüneisen coefficient is positive, it follows that Tw > Ts and Scj > Sw > Ss.
Furthermore, from the analysis of Gilbarg [1951], with Pr > 0 there is a
shock profile from the strong to the weak deflagration states.

4.2 Reaction rate

We shall assume an Arrhenius reaction rate

R(T, λ) = (1− λ) Z exp(−Ta/T ) , (22)

where Z is the frequency factor (dimensions inverse time) and Ta is the ac-
tivation temperature. To circumvent the ‘cold boundary’ problem (R > 0
at λ = 0 for all T > 0) we modify the rate by introducing a cutoff tempera-
ture, Tign; i.e.,

Ř(T, λ) =


(1− λ) Z

[
exp(−Ta/T )− exp(−Ta/Tign)

]
, for T > Tign;

0 , for T ≤ Tign.
(23)

The cutoff temperature, Tign, is often referred to as the ‘ignition’ temperature.
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A zero rate at the ahead state simplifies the boundary conditions for the
wave profile ODEs and allows a critical point analysis for the admissible
deflagration waves. Typically, T0 . Tign � T1 � Ta, and the rate at the
ahead state is very small compared to the peak value in a deflagration wave
profile, which occurs near the behind state. Consequently, the cutoff has a
negligible affect on a deflagration wave.

5 Critical points

The ODEs for the deflagration profile consist of a system of 3 equations linear
in the derivatives. For a steady wave, 3 condition are needed to specify the
ahead state and another 3 for the behind state. If the ODEs were regular,
only three initial conditions could be specified. With the modified rate, both
the ahead and behind states are critical points for which the right hand side
of Eq. (14) vanishes. Hence, a deflagration wave profile corresponds to a
heteroclinic orbit.

We show in the following sections that the ratio of the derivatives d
dξ

V :
d
dξ

T : d
dξ

λ at the critical points provides two independent extra conditions,
and the choice of the parameter m provides the third condition. Thus, the
existence of a heteroclinic orbit depends on the mass flux parameter m. For
a given ahead state, it determines the allowable steady state deflagration
speed D corresponding to a point on the deflagration locus. Physically, a
deflagration profile can only occur when the heat flux, which is directed from
the behind state to the ahead state, is compatible with the mass flux, which
is directed from the ahead state to the behind state. Consequently, the
deflagration speed depends on the coefficient of thermal conduction. More
precisely, the trajectories of Eq. (14) depend on κR, Pr and m. For a given
ahead state and fixed Pr, the deflagration wave speed will be invariant if κ
and R are scaled by inverse factors.

For a shock wave, the nature of the critical points has been analyzed by
Weyl [1949]. Next we extend the analysis to reactive flow. About a critical
point (Vc, Tc, λc), expanding the ODEs, Eq. (14), to first order leads to the
linear system

d

dζ


V̂

T̂

λ̂

 = −A


V̂

T̂

λ̂

 , (24)
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where V̂ = (V − Vc)/Vc, T̂ = (T − Tc)/Tc and λ̂ = λ − λc. The coefficient
matrix can be written as

A =

 Anr

a1

a2

r1 r2 r3

 . (25)

The non-reactive sub-matrix is

Anr =


1

Pr m2

[
m2 − ρ KT

]
1

Pr m2 Γ ρ2 CV T

1
Cr

Γ CV
1

Cr
CV

 , (26)

where KT = −V (∂V P̃ )T,λ = ρ c2
T is the isothermal bulk modulus and cT

the isothermal sound speed, Γ = V (∂eP )V,λ is the Grüneisen coefficient, and
CV = (∂T e)V,λ is the specific heat at constant volume.

The additional matrix coefficient for V and T are

a1 =
ρ

Pr m2

(
∂P̃

∂λ

)
V,T

, (27a)

a2 =
1

Cr T

(
∂e

∂λ

)
V,T

. (27b)

For an equilibrium mixture EOS, the partial derivatives, (∂λP̃ )V,T and (∂λe)V,T ,
are derived in App. C. We note that a1 > 0 and a2 < 0.

Based on the modified rate, Eq. (23), the matrix coefficients for λ are

r1 =
`

m
V

∂

∂V

(
Ř/V

)
T,λ

= − ` Z

m V
(1− λ)

[
exp(−Ta/T )− exp(−Ta/Tign)

]
, (28a)

r2 =
`

m V
T
(

∂

∂T
Ř
)

V,λ

=
` Z

m V
(1− λ)

Ta

T
exp(−Ta/T ) , (28b)
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r3 =
`

m V

(
∂

∂λ
Ř
)

V,T

= − ` Z

m V

[
exp(−Ta/T )− exp(−Ta/Tign)

]
, (28c)

for T ≥ Tign, and r1 = r2 = r3 = 0 for T < Tign. Clearly, for Tign > T0, ri = 0
at the ahead state. However, r2 > 0 at the ahead state when Tign = T0.

The eigenvalues of Anr play a key role in the critical point analysis. From
Eq. (26) and the thermodynamic identity, c2 = c2

T + Γ2 CV T , we obtain

detAnr =
1

Pr m2

CV

Cr

[
m2 − (ρ c)2

]
, (29)

where c is the isentropic sound speed. Moreover, the discriminant of the
eigenvalue equation,

det[Anr − αI] = α2 − [Tr Anr] α + detAnr = 0 , (30)

can be written as

[Tr Anr]
2 − 4 detAnr =

[
m2 − ρ KT

Pr m2
+

CV

Cr

]2
− 4

Pr m2

CV

Cr

[
m2 − (ρ c)2

]

=
[
m2 − ρ KT

Pr m2
− CV

Cr

]2
+

4

Pr m2

CV

Cr

[
(ρ c)2 − (ρ cT )2

]

=
[
m2 − ρ KT

Pr m2
− CV

Cr

]2
+

4

Pr m2

CV

Cr

(ρ Γ)2CV T

> 0 .

Consequently, the eigenvalues are real. Moreover, at a subsonic critical point
(D − u < c), the determinant is negative. Hence, one eigenvalue is positive
and the other is negative. This is the case for both the ahead and the behind
states of a weak deflagration wave.

For the reactive case, at the behind state (λ = 1), r1 and r2 are both 0.
Therefore, the matrix A has two eigenvalues corresponding to those of Anr,
and the third eigenvalue is r3 < 0. Hence, for −A, two eigenvalues are
positive and one is negative. Therefore, for Eq. (14), the critical point at
ζ = −∞ has a two-dimensional stable manifold and a one-dimensional un-
stable manifold. Moreover, for the estimated deflagration speed of Eq. (15),
|r3| = O (1).
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For now we assume that Tign is slightly greater than T0. Then at the
ahead state (λ = 0), r1 = r2 = r3 = 0. Consequently, the matrix A has one
positive eigenvalue, one negative eigenvalue, and the third is zero. In phase
space, the wave profile at the ahead state must have a slope dT

dV
determined

by the eigenfunction of Anr corresponding to the positive eigenvalue (which is
a negative eigenvalue of −A); i.e., the profile must lie on the stable manifold
of the critical point at ζ = ∞. As we will see in the example below, dT

dV
> 0.

With Tign = T0, we later show that the third eigenvalue of A is nearly zero
but positive. The simple counting argument would then suggest that there
are enough degrees of freedom for a heteroclinic orbit to exist for any m.
However, as later discussed in detail, due to the phase space constraint,
λ ≥ 0, the third eigenvalue does not provide the necessary degree of freedom.
Consequently, the behavior is as described for the case Tign > T0. There are
no degrees of freedom associated with the critical point at the ahead state,
and the parameter m provides the remaining degree of freedom needed to
obtain a heteroclinic orbit.

It is instructive to work out the eigenvalues and eigenvectors of Anr for
an ideal explosive EOS (see App. A);

P V = (γ − 1)(e + λQ) and T = CV (e + λQ) .

Assuming Pr = O (1), a weak deflagration wave (m � 1) and Cr = CV , it
can be shown that

Tr Anr ≈ −[MT
2Pr]−1 ,

where MT = D/cT � 1 is the isothermal Mach number, and

detAnr ≈ −[M2Pr]−1 ,

where M = D/c � 1 is the isentropic Mach number. For an ideal gas EOS,
c2 = γ P V and cT

2 = P V . Hence, detAnr ≈ γ Tr Anr. Moreover, both
Tr Anr and detAnr are negative and large in magnitude. It then follows that
the eigenvalues of Anr are α ≈ −Pr−1(cT /D)2 and γ. Consequently, the
negative eigenvalue is very large in magnitude and the positive eigenvalue is
order 1.

The eigenvectors can be expressed as (1, x) where x = V ∆T
T∆V

. Then it is
easy to show that x = Γ/(α − 1). Hence, the slope of the eigenvectors are
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given by

∆T/T

∆V/V
=


Γ

γ−1
for α = γ ,

− Γ Pr
1+(D/cT )2Pr

·
(

D
cT

)2
for α = −Pr−1(cT /D)2 .

Thus, the eigenvector for the positive eigenvalue has positive slope while the
negative eigenvector has a negative slope of small magnitude. In general,
for small m, the same formulae hold but with γ replaced by (c/cT )2. For a
solid EOS, c/cT & 1, and the largest affect is on the slope for the positive
eigenvalue which is then proportional to 1

1−(cT /c)2
and can be quite large.

Remarks:

(i) For a detonation wave, the ahead state is supersonic. Consequently,
there is one degree of freedom associated with the derivatives at the ahead
state, and the mass flux is not needed as an additional degree of freedom.
As a result, one expects that a wave profile would exist for any point on the
strong branch of the detonation locus.

(ii) The critical points imply that the wave profile has an exponential tail
leading to the ahead and behind states. The exponential tail at the behind
state is affected by the depletion factor of the reaction rate. For a heteroge-
neous reactive solid, such as a PBX, the rate is often taken as R ∝ (1− λ)n

with n < 1. (We note in this case that the λ factor accounts for the depen-
dence of the burn front area from hot spots and not to a chemical reaction
order.) One consequence of n < 1 is that the reaction length in the approach
to the behind state is finite; since

∆ζ =
∫ 1

λ

dλ

R(λ)
= 1− (1− λ)1−n

1− n
,

rather than ∆ζ = − ln(1 − λ) if n = 1. Another consequence is that a
component of the matrix A, r3 ∝ (1−λ)−(1−n), is singular at the behind state.
This requires the critical point analysis of the ODEs to be modified. The
result is that the reaction completes (λ = 1) before (V, T ) reaches the behind
state, and the wave profile ends with a non-reactive tail. The eigenvalues of
Anr still determines the behavior of the ODEs at the behind state. We also
note that with an ignition temperature above the initial temperature, the
exponential tail to the ahead state is non-reactive.
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(iii) In the more general context of non-steady reactive fluid flow, the expo-
nential tails of the wave profiles can be viewed as part of a matched asymp-
totic expansion for a transition layer; see for example Garbey [1994]. The
wave profile represent the inner solution in which flow gradients are large, and
consequently heat conduction and viscosity play a dominant role. The pro-
file is matched to an outer solution in which gradients are sufficiently small,
such that heat conduction and viscosity may be neglected. The matching
conditions for the inner and outer solution are the end states of the wave
profile. The matching is a good approximation provided that the wave pro-
file is quasi-steady; i.e., the end states vary slowly on the time scale for a
particle to transit through the wave profile.

6 Perturbative approach

If the thermal diffusion coefficient and deflagration speed are such that the
scaled rate in Eq. (14c) is small, `

m V
R� 1, then Eq. (16) applies. Moreover,

if ν and κ are small, then we anticipate that the right hand sides of Eq. (16a)
and Eq. (16b) would be small. This occurs for the deflagration profile follow-
ing the lead shock in a detonation wave when ˜̀� `, i.e., the reaction zone
width (Dτ) is much greater than the length scale for heat conduction (k/D).
The conditions may also apply to a quasi-steady deflagration wave gener-
ated by a hot spot or during a transient leading to a shock-to-detonation
transition.

In this case, the deflagration profile projected onto the (V, P )-plane will
lie close to the intersection of the Rayleigh line, Eq. (20), and the partly
burned Hugoniot locus, Eq. (18). This can lead to large round-off errors
when numerically integrating the ODEs, Eq. (16), with realistic equations of
state. Consequently, it is advantageous to employ a perturbative approach
based on the deflagration profile without viscosity and heat conduction.

6.1 Unperturbed wave profile

We take the unperturbed profile as the solution of the algebraic equations
for the partly burned Hugoniot locus and the Rayleigh line, Eq. (18) and
Eq. (20), corresponding to mass flux m, and the ODE for the reaction
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progress variable, Eq. (14c). The profile can be expressed as λh(ζ), Vh◦λh(ζ),
and Th ◦ λh(ζ). It is convenient to determine Vh(λ) and Th(λ) as the solu-
tion to a pair of ODEs rather than solving the algebraic equations for the
intersection of the partly burned Hugoniot locus and the Rayleigh line. After
determining Vh and Th, the right hand side of the rate equation (14c) is a
function of only λ. Hence, λh(ζ) is the solution of a single ODE.

The ODEs for Vh and Th can be derived as follows. Taking the derivative,
d
dλ

, of Eq. (20) and Eq. (18) leads to the equations

d

dλ
P =

(
∂V P̃

) d

dλ
V +

(
∂T P̃

) d

dλ
T + ∂λP̃

= −m2 d

dλ
V ,

d

dλ
e =

(
∂V e

) d

dλ
V +

(
∂T e

) d

dλ
T + ∂λe

= 1
2

(
V0 − V

) d

dλ
P − 1

2

(
P̃ + P0

) d

dλ
V

= −P̃
d

dλ
V .

This can be re-expressed as a system of 2 ODEsm2 − (ρ cT )2 Γ
V

CV

Γ
V

CV T CV




d
dλ

V

d
dλ

T

 = −

∂λP̃

∂λe

 . (31)

Equivalently, by scaling the equations, we obtain
1
V

d
dλ

V

1
T

d
dλ

T

 = −A−1
nr


ρ

Pr m2 ∂λP̃

1
Cr T

∂λe

 , (32)

where Anr is the same matrix as for a non-reactive critical point, Eq. (26).
In fact, this analysis provides a derivation of the matrix Anr. In addition,
we note that the vector on the right hand side of Eq. (32) is [a1, a2]

T , i.e.,
components of matrix A, Eq. (25).
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By Eq. (29), det Anr only vanishes at a sonic point; i.e., the CJ state.
Hence, the matrix Anr is invertible. The trajectory of the ODEs (32) starting
at the ahead state (λ = 0) determines the functions Vh(λ) and Th(λ). The
ODEs can be written explicitly as

d

dλ
V =

∂λP̃ − (Γ/V ) ∂λe

(ρ c)2 −m2
, (33a)

d

dλ
T =

−[(ρ cT )2 −m2] ∂λe/CV − (Γ/V ) T ∂λP̃

(ρ c)2 −m2
. (33b)

From Appendix C, ∂λP̃ > 0 and ∂λe < 0. Hence, for subsonic flow (m < ρ c),
Vh is a monotonically increasing function of λ, but Th may either increase or
decrease. If in addition the flow is supersonic wrt cT (ρ cT < m), as occurs
near the CJ state, then Th decreases with increasing λ.

Typically, m � ρ cT and the flow is subsonic wrt cT . Using the thermo-
dynamic relations in Appendix C, Eq. (33b) can be reduced for small m
to

d

dλ
T = −

(
cT

c

)2

· hp − hr

CV

+O
(
m2
)

.

For an exothermic reaction hp − hr < 0. In this case, Th is a monotonically
increasing function of λ. The average value can be used as a rough estimate
for the derivative, i.e., d

dλ
Th ≈ T1 − T0.

The reaction progress variable, λh(ζ), is then the solution to the ODE

d

dζ
λ = −

[
`Rh(λ)

m Vh(λ)

]
, (34)

where Rh(λ) = R(Vh(λ), Th(λ), λ). As previously noted, the unperturbed

wave profile is given by Ṽh(ζ) = Vh ◦λh(ζ) and T̃h(ζ) = Th ◦λh(ζ). Later, we

use R̃h(ζ) = Rh ◦ λh(ζ).

Remarks:

(i) Due to inaccuracies in calculating thermodynamic derivatives and the
divergence of ODE trajectories, the numerical solution of the ODEs (33) may
not give sufficiently accurate solutions to the equations for the Rayleigh line
and Hugoniot locus. One way to improve the accuracy is to add a relaxation
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term on the right hand side of Eq. (33). This can be done by substituting
for the derivatives

∂λP̃ → ∂λP̃ + f ∗∆P ,

∂λe → ∂λe + f ∗∆e ,

where f is a convergence factor (typically, 1 to 100 depending on step size
∆λ used for the numerical integration), and

∆P = P̃ (V, T, λ)− [P0 + m2 (V0 − V )] ,

∆e = e(V, T, λ)− [e0 + 1
2
(P̃ (V, T, λ)(V0 − V )] .

Alternatively, the numerical solution of the ODEs can be corrected after
the integration with a few Newton-Raphson iteration steps. The derivative
matrix needed for the Newton-Raphson iteration has the same components
as the coefficients of the derivatives (∂λP̃ and ∂λe) on the right hand side
of Eq. (33). Thus, in effect, the relaxation terms in the ODE represent a
continuous form of a Newton-Raphson iteration.

(ii) At the CJ state, m2 = (ρ c)2. The ODEs (33) for the CJ profile are
singular at λ = 1; both d

dλ
V and d

dλ
T blow up as (1 − λ)−1/2. This is a

consequence of the tangency condition in the (V, P )–plane for the deflagration
locus and the Rayleigh line at the CJ state. We note that the singularity is
integrable.

(iii) For an ideal explosive EOS (see Appendix A), ∂λP̃ = 0. Consequently, as
λ increases, Th is monotonically increasing on portions of the profile for which
the flow is subsonic wrt cT (ρ c > ρ cT > m) and monotonically decreasing
when the flow is supersonic wrt cT . This is an example of a simplification
for an ideal EOS that is not necessarily true for a realistic explosive EOS.

(iv) On the strong branch of the deflagration locus

m2 − (ρ cT )2 > m2 − (ρ c)2 > 0 .

Since ∂λP̃ > 0 and ∂λe < 0, it follows from Eq. (33) that d
dλ

V < 0 and
d
dλ

T > 0; i.e., T decreases as V increases. The typical case of the loci(
Vh(λ), Th(λ)

)
are shown in Fig. 2 as the dashed and dotted magenta curves

for the weak and strong branches, respectively.
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(v) On the profile, de = −PdV . It then follows from the thermodynamic
identity Eq. (3) that TdS = −(∆G)dλ. Since ∆G < 0, the entropy in-
creases as λ increases. Hence, on the weak branch, entropy is monotonically
increasing with V .

As an aside, we are now in a position to determine the eigenvalues of the
critical point matrix, Eq. (25), at the ahead state (λ = 0) when Tign = T0.
In this case

A =

Anr

a1

a2

0 r2 0

 . (35)

Evaluating the rate coefficient, Eq. (28), using Eq. (15) to estimate m, we
find that r2 ≈ (Ta/T0) exp[−Ta/T0+Ta/T1] is very small when T0 � T1 � Ta.
Let α1 and α2 be the eigenvalues of Anr. The eigenvalue equation for A can
be expressed as

α
[
(α− α1)(α− α2)− a2 r2

]
= [a1A21 − a2A11] r2 . (36)

To leading order in r2, the three roots are α1, α2 and

α3 =
a1A21 − a2A11

α1α2

r2 . (37)

This can be simplified as follows. Using Eqs. (26), (27) and (33b), we obtain
for the numerator

a1A21 − a2A11 =
1

Pr m2

[
∂P̃

∂λ
· Γ

V

CV

Cr

+
∂e

∂λ
· (ρcT )2 −m2

Cr T

]

= − (ρc)2 −m2

Pr m2
· CV

Th Cr

· d

dλ
Th .

The denominator is α1α2 = detAnr, which is given by Eq. (29). Combining
these results, the third eigenvalue is

α3 =
r2

Th

d

dλ
Th . (38)

Therefore, the sign of α3 is the same as the sign of d
dλ

Th. Typically, this is
positive. Consequently, the third eigenvalue of A is α3 > 0 and very small.
Also to leading order in r2, it follows from Eq. (35) and Eq. (32) that the

third eigenfunction is (V −1
h

d
dλ

Vh, T−1
h

d
dλ

Th, 1)T .
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6.2 Transformed variables

We define the parameter ε = `/˜̀ . The transformation

V (ζ) = Vh ◦ λh(ζ)
[
1 + ε V̂ (ζ)

]
, (39a)

T (ζ) = Th ◦ λh(ζ)
[
1 + ε T̂ (ζ)

]
, (39b)

λ(ζ) = λh(ζ) + ε λ̂(ζ) , (39c)

defines the dimensionless variables V̂ and T̂ and λ̂.

As noted previous, ε is small when the reaction zone width is much greater
than the length scale for heat conduction. In addition, for small coefficients
of heat conduction and viscosity, we expect that the transformed variables
V̂ , T̂ and λ̂ all to be O (1). Consequently, we can expand the ODEs for the
wave profile, Eq. (14), in ε to derive equations for the transformed variables.
The expansion is facilitated by the fact that (Vh, Th, λh) is a critical point for
the thermodynamic part of the wave profile ODEs, i.e., Eqs. (14a) and (14b).

In some respects, the expansion provides an alternative to the singular
perturbation approach of Gasser and Szmolyan [1993]. However, the focus
here is on providing a framework in which the deflagration speed can be
computed rather than on an existence proof of a wave profile.

6.3 Transformed equations

To derive the equations for the transformed variable, we evaluate the deriva-
tives in two ways. Taking d

dζ
of Eq. (39) we obtain

d

dζ
V =

[
1 + ε V̂ (ζ)

]
V ′

h ◦ λh(ζ)
d

dζ
λh + Vh ◦ λh(ζ) ε

d

dζ
V̂ ,

d

dζ
T =

[
1 + ε T̂ (ζ)

]
T ′

h ◦ λh(ζ)
d

dζ
λh + Th ◦ λh(ζ) ε

d

dζ
T̂ ,

d

dζ
λ =

d

dζ
λh + ε

d

dζ
λ̂ ,

where V ′
h(λ) = d

dλ
Vh, T ′

h(λ) = d
dλ

Th, and d
dζ

λh is given by Eq. (34). Expanding

the right hand side of Eq. (14) to first order in ε yields

V −1
h

d

dζ
V = −ε ~A1 · (V̂ , T̂ , λ̂)T ,
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T−1
h

d

dζ
T = −ε ~A2 · (V̂ , T̂ , λ̂)T ,

d

dζ
λ = − ` R̃h

m Ṽh

+ ε ~A3 · (V̂ , T̂ , λ̂)T ,

where ~Ai denotes the ith row of the matrix A, Eqs. (25–28).

Combining the two sets of equations, we obtain to leading order in ε the
ODEs for the transformed variables:

d

dζ


V̂

T̂

λ̂

 = −A(ζ)


V̂

T̂

λ̂

+
` R̃h

ε m Ṽh


V ′

h ◦ λh/Ṽh

T ′
h ◦ λh/T̃h

0

 , (40)

where the matrix A(ζ) is evaluated at (Ṽh, T̃h, λh). We note that V ′
h and

T ′
h are given explicitly by Eq. (33). Moreover, the singular looking factor
` R̃h

ε m Vh
= V0

Vh
τ R̃h is actually O (1) since τ is approximately the inverse of the

maximum rate.

The boundary conditions for a deflagration wave profile are that V̂ , T̂
and λ̂ vanish at both end states. The second term on the right hand side of
Eq. (40) or source term is proportional to the rate. When the rate vanishes
at the end states, they behave like critical points. This always occurs at the
behind state, but not at the ahead state for the deflagration portion of a
ZND detonation. Since the eigenvalues of A are both positive and negative,
Eq. (40) is not a system of relaxation type equations.

For a ZND detonation wave, a deflagration profile is possible because of
the degree of freedom to set the derivatives behind the lead shock. For the
standard case in which the derivative vanish at the ahead state, a solution
would only exist for a particular choice of the mass flux that enters into the
matrix A. However, when `/˜̀ is not small, numerical examples show that T
can exceed Th along a portion of the wave profile by a significant amount, and
the underlying assumption of the expansion breaks down. Consequently, this
perturbation approach is only useful for the deflagration portion of a ZND
detonation.

We note that d
dζ

= ε d
dz

. Thus on the reaction length scale, Eq. (40) is a
singular system of ODEs. If a solution exists then the right hand side must
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be small. Hence, 
V̂

T̂

λ̂

 =
V0

Vh

τ R̃h A−1(ζ)


V ′

h ◦ λh/Ṽh

T ′
h ◦ λh/T̃h

0

 ,

can be thought of as the first order term in an asymptotic series in ε. The
zeroth order term (Vh, Th, λh) implies that the appropriate boundary con-
ditions for Eq. (40) at the ahead state are simply the derivatives along the
Rayleigh line.

7 Phase-plane analysis

Determining an admissible deflagration wave requires finding the value of
the mass flux m such that a solution trajectory of the wave profile ODEs
exists between the ahead and behind states. To facilitate this, we analyze
the vector field, or right hand side of Eq. (14), in the (V, T, λ)-phase plane.
This allows us to characterize how the solution trajectories, for fixed m, vary
with different initial conditions. Topological considerations of the general
structure of the trajectories then will enable us to construct a numerical
algorithm for finding an admissible deflagration wave. This is tantamount to
an existence proof of an admissible deflagration wave.

We denote the ahead state with subscript 0, and the weak and strong
deflagration states with subscripts w and s, respectively. Three families of
curves in phase space play an important role in our analysis:

1. Let Hλ denote the zero level set of the Hugoniot function

hλ(V, T ) = e(V, T, λ)− e0 + 1
2

[
P̃ (V, T, λ) + P0

]
(V − V0) , (41)

i.e., Hλ is the partly burned Hugoniot locus based on the ahead state.

2. Let Lλ denote the image of the Rayleigh line, or locus of the equation

P̃ (V, T, λ) = PL(V ) ≡ P0 −m2(V − V0) . (42)

For fixed λ, d
dζ

V = 0 on Lλ.
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3. Let Tλ be the zero level set of the function

Tλ(V, T ) = e(V, T, λ)− e0 + 1
2
[PL(V ) + P0] · (V − V0) . (43)

For fixed λ, d
dζ

T = 0 on Tλ .

We note that the three curves are each single valued in V . Moreover, the
union over λ of each curve family corresponds to a non-intersecting surface
in the (V, T, λ)-phase plane.

We assume that a CJ state exists on the deflagration locus. Typically, it
will also exist on all partially burned loci. Let mCJ(λ) denote the CJ mass
flux. It is a decreasing function of λ, which implies the locus of partially
burned CJ states in the (V, P )-plane is a convex curve. The existence of the
CJ state implies that the full weak branch of the deflagration locus exists for
0 < λ ≤ 1. (For λ = 0, the CJ state is the same as the ahead state, and the
weak branch is degenerate.) The strong branch, however, terminates at a
phase boundary; either P = 0 or T = 0. Consequently, for sufficiently small
m there are no strong deflagrations. Hence, for some values of m there is a
weak but not a strong deflagration. Since in the (V, P )-plane the partially
burned deflagration loci are nested, if for a given m a strong deflagration
s(λ2) does not exist then a strong state does not exist for any λ1 < λ2.

The intersection of Hλ and Lλ corresponds to points on the partially
burned deflagration locus. There are at most two points for m < mCJ(λ);
states w and s. Points on the intersection can be parameterized by λ. We
define the functions Vh(λ) and Th(λ) as the specific volume and tempera-
ture on the intersection; see Eq. (33). There are distinct pairs of functions
corresponding to the weak and strong branches of Hλ . Let Hλ ∩ Lλ denote
the curve (Vh(λ), Th(λ), λ) in the phase-plane. It also plays a key role in the
analysis.

It is helpful to consider 2-D projections of phase space. In the (V, P )-
plane, Lλ is independent of λ and we denote the Rayleigh line simply by
L. Moreover, for fixed V and λ we can invert P and T since (∂P̃ /∂T )V,λ =
(Γ/V )CV > 0. We denote T̃λ(V, P ) = Tλ(V, T ) and h̃λ(V, P ) = hλ(V, T ),
where P = P̃ (V, T, λ). Next we derive geometric properties of the important
curves in the (V, P )-plane and (V, T )-plane.
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7.1 Geometry in the (V, P )-plane

The three curves L, Hλ and Tλ intersect at two points; the weak and strong
deflagration states. Moreover, L lies above Hλ for Vw < V < Vs; see Fig. 1.
On the deflagration locus, the CJ point is an entropy maximum. Conse-
quently, the weak branch is subsonic and satisfies

−
(

∂P

∂V

)
S,λ

> −
(

dP

dV

)
h

>
P − P0

V0 − V
= m2 ;

i.e., the isentrope has a steeper slope than the Hugoniot locus which has
a steeper slope than the Rayleigh line. With respect to the isothermal
sound speed, the weak branch goes from subsonic at P = P0 to super-
sonic at P = PCJ . On subsonic portions, either −(∂P

∂V
)
h

> −(∂P
∂V

)
T,λ

or

−(∂P
∂V

)
T,λ

> −(∂P
∂V

)
h
. In the former case T decreases as P decreases and in

the latter case T increases; see illustrative examples in Fig. 14.

In contrast, the strong branch is supersonic and the inequalities are re-
versed;

P − P0

V0 − V
> −

(
dP

dV

)
h

> −
(

∂P

∂V

)
S,λ

.

Figure 1: Loci in (V, P )-plane: L is the Rayleigh line; Hλ is the partly burned
Hugoniot locus; Tλ is locus on which d

dζ T = 0. Labels 0, w and s denote the initial,
weak and strong deflagration states, respectively.
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Since −(∂P
∂V

)S,λ > −(∂P
∂V

)T,λ, the strong branch is also supersonic wrt cT .
Hence, on the strong branch, the temperature always decreases with de-
creasing pressure.

The vector field of the wave profile ODEs, Eq. (14), has the property that
dV/dλ > 0 for points in the (V, P )-plane above L, and that dT/dλ > 0 for
points in the (V, P )-plane above Tλ . We note that L intersects the V -axis at
V∗ = V0 + P0/m

2. If a solution trajectory starting at the ahead state reaches
V = V∗, then V can never decrease, as it will hit the phase boundary at
P = 0 or T = 0 before d

dζ
V can reverse sign. Hence, the domain of interest

for deflagration wave profiles is restricted to V < V∗.

For solid reactants, the cold curve (T = 0 isotherm) may intersect P = 0
at a value of V > V∗. Thus, at sufficiently low pressure, a portion of the
Rayleigh line may not be in the physical domain. At V = 0, the pressure
on the Rayleigh line, P = P0 + m2V0 is finite. Therefore, the Rayleigh
line will intersect the cold curve for some V < V0. Hence, a portion of the
Rayleigh line for small V will not be in the physical domain. The point is
that some solution trajectories of the ODEs, Eq. (14), are of finite extent,
i.e., a trajectory terminates if it hits the EOS domain boundary. In the
2-D projections, (V, P )–plane and (V, T )–plane, the EOS domain boundary
depends on the value of λ.

The next two propositions characterize important properties of the curves
Hλ , Tλ and L.

Proposition 7.1. In the (V, P )-plane, Hλ lies between Tλ and L for V > V0;
see Fig. 1.

Proof. Let (V, Ph) be a point on Hλ . Suppose V0 < V < Vw. In this interval,
Hλ lies above L; i.e., Ph(V ) > PL(V ). Then

T̃λ(V, Ph(V )) = T̃λ(V, Ph(V ))− h̃λ(V, Ph(V ))

= 1
2
[PL(V )− Ph(V )] (V − V0) < 0 .

Since (∂T̃λ/∂P )V = (∂e/∂P )V,λ = V/Γ > 0, it follows that T̃λ(V, P ) can
only be 0 for some P > Ph(V ). Hence, Tλ lies above Hλ . Similar arguments
show that the order reverses whenever Hλ crosses L. Consequently, Hλ lies
between Tλ and L for V > V0. �
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The slope of Tλ can be obtained by taking the derivative of Eq. (43).
With thermodynamic derivatives implied by Eq. (6), the result is(

dP

dV

)
Tλ

= − Γ

V

[
PL + (γ/Γ− 1) P

]
. (44)

Since γ/Γ > 1, in the domain of interest, V0 < V < V∗, (dP/dV )Tλ
< 0. At

the weak and strong states,
(

dP
dV

)
Tλ

= −γP/V . Hence, Tλ is tangent to the

isentrope when it crosses L.

Proposition 7.2. In the (V, P )-plane, the curves Tλ with different λ do not
intersect. Moreover, Tλ2 lies above Tλ1 if λ2 > λ1.

Proof. Result follows from Eq. (43) and the thermodynamic inequalities
(∂λe)V,P < 0 and (∂P e)V,λ = V/Γ > 0. �

Remark: The states w and s satisfy the shock jump conditions. One can
define Hλ(s) as the Hugoniot locus based on the state s. Moreover, L and
Tλ are the same for initial states 0 and s. Using a similar argument to that
in the proof of proposition 7.1, we can show that for V < Vs, Tλ lies between
Hλ(s) and L. Consequently, Hλ(0) is not the same as Hλ(s), though they
both go through states w and s.

7.2 Geometry in the (V, T )-plane

For a given λ, the curves Hλ , Tλ and L can be projected onto the (V, T )-
plane. Since (∂T P̃ )V,λ = Γ

V
CV > 0, the curves have the same ordering in

the (V, T )-plane as given by proposition 7.1 for the (V, P )-plane. A sketch of
the these curves in the (V, T )-plane is shown in Fig. 2. For the sketch, it is
assumed that the weak branch of the deflagration locus is subsonic wrt cT and
the EOS is such that isotherms are convex. Consequently, there is a unique
temperature maximum on Lλ. The qualitative properties of the curves Hλ ,
Tλ and L shown in the sketch are consistent with the following propositions.

Proposition 7.3. Projected onto the (V, T )-plane, Lλ with different λ do
not intersect. Moreover, Lλ2 lies below Lλ1 if λ2 > λ1.

Proof. Follows from the thermodynamic inequalities for the derivatives of P̃ ;
(∂T P̃ )V,λ > 0 and (∂λP̃ )V,T > 0. �
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Figure 2: Loci in (V, T )-plane: cyan curves correspond to Lλ; blue curves to Tλ ;
dashed magenta curves to weak and strong branches of Hλ ∩Lλ. Labels 0, w and
s denote the initial, weak and strong states, respectively. Black arrows show the
direction of the vector field of the wave profile ODEs in the five regions formed by
the intersection of curves Lλ and Tλ .

The slope of L can be obtained by taking the derivative of Eq. (42). After
substituting thermodynamic identities, the result is(

dT

dV

)
L

=
V

Γ CV

[
(ρ cT )2 −m2

]
. (45)

Hence, the slope is positive iff the state is subsonic wrt cT . Since we are
assuming the weak branch is subsonic and the strong branch is always su-
personic, the temperature peak occurs at a point with V between Vw and Vs.
Moreover, as a consequence of proposition 7.3, the temperature peak de-
creases as λ increases.

From Eq. (33), the slope of Hλ ∩ Lλ is

(
dT

dV

)
Hλ∩Lλ

=
−[(ρ cT )2 −m2] ∂λe/CV − (Γ/V ) T ∂λP̃

∂λP̃ − (Γ/V ) ∂λe
. (46)

It is straightforward to show that the relative slopes depend on whether the

flow is subsonic or supersonic;
(

dT
dV

)
L

>
(

dT
dV

)
Hλ∩Lλ

on the weak branch,

and the opposite inequality on the strong branch.

Proposition 7.4. In the (V, T )-plane, the curves Tλ with different λ do not
intersect. Moreover, Tλ2 lies above Tλ1 if λ2 > λ1.
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Proof. Follows from the thermodynamic inequalities for the derivatives of e;
(∂λe)V,T < 0 and (∂T e)V,λ > 0. �

The slope of Tλ can be obtained by taking the derivative of Eq. (43).
After substituting thermodynamic identities, the result is(

dT

dV

)
Tλ

= − PL − P

CV

− Γ T

V
. (47)

Between the weak and strong states, Vw < V < Vs, (dT/dV )Tλ
< 0. One

consequence is that Tw > Ts.

7.3 Phase-plane topology

The curves Lλ and Tλ divide the (V, T )-plane into five sectors, which we
label as follows:

S1(λ): Above Lλ and above Tλ .

S2(λ): Above Lλ and below Tλ with V > Vs(λ).

S3(λ): Below Lλ and below Tλ .

S4(λ): Above Lλ and below Tλ with V < Vw(λ).

S5(λ): Below Lλ and above Tλ .

The direction of the vector field for the wave profile ODE, Eq. (14), depends
on the sector. These sectors and the directions are sketched in Fig. 2.

The sector boundaries depend on λ. Due to the variation of Lλ and Tλ

with λ, propositions 7.3 and 7.4, sector S5 is nested; i.e., S5(λ2) ⊂ S5(λ1) if
λ2 > λ1. Moreover, at the boundaries of S5, the vector field points outward,
except for the critical point w(λ). Consequently, any trajectory starting
outside S5 is appriori excluded from all of S5(1) =

⋂
λ S5(λ) except the be-

hind state w(1) which can be reached asymptotically since the rate R then
vanishes.

Two additional properties follow from the fact that in the (V, T )–plane
with increasing λ the curve Lλ moves down while the curve Tλ moves up.
First, the sectors S2 and S4 are strictly increasing, i.e., S2(λ2) ⊃ S2(λ1) if
λ2 > λ1 and similarly for S4(λ). Second, in the sectors S1 and S3, the vector
field rotates with increasing λ as follows.
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Proposition 7.5. For any (V, T ) point in sector S1, with increasing λ the
direction of the vector field in the (V, T )-plane rotates clockwise. Similarly,
for any point in sector S3, the vector field rotates counter-clockwise.

Proof. From the ODEs, Eq. (14), the direction of the vector field in the
(V, T )–plane is given by

∆V

∆T
=

dV/dζ

dT/dζ
=

Cr

m2 Pr
· P̃ (V, T )− PL(V )

e(V, T )− e0 − 1
2
(PL(V ) + P0)(V0 − V )

. (48)

For fixed V and T , the change in the direction of the vector field is

d

dλ

(
∆V

∆T

)
=

∆V

∆T
·
[
(∂λP̃ )V,T

∆V
− (∂λe)V,T

∆T

]
. (49)

From App. C, (∂λP̃ )V,T > 0 and (∂λe)V,T < 0. In sector S1, ∆V > 0 and
∆T > 0. Therefore, the right hand side of Eq. (49) is positive. Hence, with
increasing λ, the vector field rotates clockwise.

Similarly, in sector S3, ∆V < 0 and ∆T < 0. Therefore, the right hand
side of Eq. (49) is negative. Hence, with increasing λ, the vector field rotates
counter-clockwise. �

The excluded region S5 is topologically important. In effect, the (V, T )–
plane is not simply connected. Starting in a neighborhood of the initial
(ahead) state, we will show that some trajectories will go around the top of
S5, while others will go underneath it. A distinguished trajectory will end
at the critical point w. Moreover, though the vector field changes with the
mass flux, as a result of the excluded region, the general structure of the
trajectories is invariant.

7.4 Trajectories in the (V, T )-plane

It is instructive to consider first the solution trajectories of the non-reactive
wave profile ODEs, Eq. (14) with fixed λ and zero rate. These are sketched in
Fig. 3. The magenta trajectory from s to w corresponds to the shock profile
determined by the analysis of Gilbarg [1951]. We note that Fig. 3 covers
an extended domain in the (V, T )–plane compared to Fig. 2. Consequently,

34



T

V

w

s

Figure 3: Trajectories in (V, T )-plane for wave profile ODEs with fixed λ and
R = 0. Cyan and blue curves correspond to Lλ and Tλ , respectively. Labels w
and s denote the weak and strong states, respectively. Red curve is attractive
manifold to state w. The arrows are in direction of decreasing ζ; i.e., for a wave
profile starting at the ahead state.

the curve Tλ is not monotonic and terminates at T = 0 for small V . This
is due to the EOS domain (cold curve boundary) briefly discussed in the
previous subsection. Not shown is the P = 0 domain boundary which for
solid reactant (and hence partly burned HE in P-T equilibrium) would affect
some aspects of the curves at large V .

Several points are noteworthy. First, at the critical point w, the eigen-
vectors of the matrix Anr are in the direction between the curves Lλ and Tλ .
Moreover, for the stable manifold of the ahead state (the positive eigenvalue),
∆T/∆V > 0. Therefore, possible trajectories of interest for determining a
deflagration wave profile start at w(0) with both V and T increasing.

Second, if the mass flux m is too large then the effective rate, right hand
side of Eq. (14c), which is proportional to 1/m will be too small. The tra-
jectory starting at the ahead state along the stable manifold will be similar
to that of the non-reactive case and pass over the top of sector S5.

Third, trajectories only enter sector S5 from the critical point at state s.
Moreover, state s is a repeller, i.e., all trajectories go away from s. This
enables us to proof that strong deflagrations are inadmissible.
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Theorem 7.1. No solution trajectory of the wave profile ODEs, Eq. (14),
corresponds to a strong deflagration wave.

Proof. As shown in Fig. 2, sector S5(λ) shrinks as λ increases; i.e., S5(λ2) ⊂
S5(λ1) for λ2 > λ1. It follows that no trajectory starting at an initial state
outside sector S5(λ1) can end at the strong state for λ2 > λ1. For a deflgra-
tion wave, the ahead state w(λ = 0) lies outside S5(λ = 1). Therefore, no
trajectory can exist that connects the ahead state to a point on the strong
branch of the deflagration locus. �

Remarks:

(i) It is possible for a trajectory starting at a supersonic state V0 > Vs, i.e.,
s(0), to stay within sector S5; approach close to state s(1) and then continue
to terminate at state w(1). Such a profile has the appearance of a weak
detonation, followed by an inert shock to the strong detonation state. (The
states s and w for a strong and weak detonation are reversed compared to the
nomenclature used for a deflagration wave.) Profiles of this type have been
proved to exist for an ideal explosive EOS by Wagner [1989], and observed in
numerical simulations. Typically, these anomalous detonation waves occur
only when the numerical viscosity is sufficiently large that the shock width
is comparable to the reaction-zone width.

(ii) Previously, a ZND detonation was described as a lead shock followed by a
deflagration wave. The profile of the lead shock corresponds to the magenta
curve in Fig. 3 from state s(0) to state w(0). Since w(0) is a saddle type
critical point, there are nearby trajectory that closely approach w(0) and
then change direction abruptly; either increase or decrease of slope. In the
limit of small viscosity, when the shock profile is very narrow, this variation
in neighboring profiles provides the degree of freedom to set the derivate
dT/dV behind the shock front for the deflagration profile to exist.

Next we show that if a trajectory goes over top of sector S5 then it can
not end at a point on the deflagration locus. Hence, this class of trajectories
can be eliminated from consideration for a deflagration profile.

Proposition 7.6. A trajectory
(
V (λ), T (λ)

)
that reaches a point such that

T (λ) ≥ T1

(
V (λ)

)
, where T1 is the temperature on the curve Tλ for λ = 1,

will either continue to V → ∞ or terminate at an EOS domain boundary,
such as T = 0.
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Figure 4: Sketch of absorbing region, shown in gray, for trajectories in (V, T )–
plane. Cyan and blue lines correspond to curves Lλ and Tλ , respectively, and
numbers indicate sector. Arrows at region boundaries (dashed black line) are in
direction of vector field for the wave profile ODEs. Right plot is for a larger λ.

Proof. A trajectory reaching the point T (λ) ≥ T1

(
V (λ)

)
lies in the sector

S1(λ). It will continue in sector S1 and reach a point on the line V = Vs(λ1)

in sector S1(λ1) for some λ1 > λ. (If no such state s(λ1) exists then a sector
S5(λ1) would intersect the V -axis and the proposition would be trivially true
since V would always be increasing.)

Consider the region to the right (larger V ) of the curves (i) T > Ts(λ1)
and V = Vs(λ1), and (ii) a trajectory for the vector field of the non-reactive
ODEs with λ1 fixed that lies in sector S3 and start at the repeller s(λ1) and
goes to a point on the phase boundary at T = 0. This is the gray region
shown in Fig. 4. We show that this is an absorbing region for all λ > λ1.

Since the reaction rate is positive, λ can only increase. Consider any
λ2 > λ1. The strong deflagration point s(λ2) lies inside the sector S5(λ1).
As shown in the right plot of Fig. 4, the boundary curve is divided into
three sectors. By proposition 7.5, the vector field in sectors S1 and S3 rotate
into the gray region. The vector field for sector S2 is in the direction with
∆T/∆V < 0, and also points into the gray region. Hence a trajectory that
enters the gray region can never leave that region. �

The condition in the proposition that T (λ) ≥ T1

(
V (λ)

)
is important.

If the reaction causes Tλ to rise faster than the trajectory moves in the
(V, T )-plane then the trajectory could cross into sector S4. In this case the
trajectory may either approach w(1) with T decreasing or cross a bound-
ary of sector S4. One boundary is the Rayleigh line. As shown in the next
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proposition a trajectory crossing the Rayleigh line can not reach w(1). Oth-
erwise the trajectory can cross back into sector S1. Since V increases while
the trajectory is in either sectors S1 or S4, the trajectory either hits w(1) or
proposition 7.6 would apply when V reaches Vw(1).

A corollary to this proposition is that no trajectory of the wave profile
ODEs projects in the (V, T )–plane onto a loop around the excluded sector S5.

Next we show that the trajectory of a deflagration wave profile can not
cross the Rayleigh line for V < Vw(1).

Proposition 7.7. A trajectory
(
V (λ), T (λ)

)
that crosses the Rayleigh line

between sectors S3(λ1) and S4(λ1), for some λ1, can not reach the weak
deflagration point w(1).

Proof. On the segment of the Rayleigh line Lλ1 between sectors S3(λ1) and
S4(λ1), V ≤ Vw(λ1). For simplicity, we assume that the state w(λ1) is subsonic
wrt cT . Then on the segment of Lλ1 , dT/dV > 0. The idea of the proof is
to construct an absorbing region in the full (V, T, λ)-phase space with the
V ≤ Vw(λ1) segment of Lλ1 as part of the boundary and that does not contain
the point w(1).

Consider the cylinder with cross section in the (V, T )–plane for λ2 > λ1

bounded by the following curves: on the left by Lλ1 , the top by T = T (w(λ1)),
the top-right corner by Tλ2 and the right by V = V (s(1)). This is the gray
region shown in Fig. 5. Also shown are arrows at the boundaries for the
(V, T )-components of the vector field. It can be readily verified that the
vector field points into the cross section.

The cylinder is bounded by the planes λ = λ1 and λ = 1. With increasing
λ the cross section is strictly increasing. Therefore, the vector field points
into the cylinder in the full (V, T, λ)-phase space. Hence, it is an absorbing
region. Since it does not contain the state w(1), any trajectory reaching the
cylinder boundary can not be a valid wave profile. �

Since the remainder of the Rayleigh line bounds the excluded region S5,
a wave profile trajectory can not cross the Rayleigh line. Hence, V must
be monotonically increasing along a wave profile. It then follows that T0 is
a lower bound for the temperature along a wave profile. Previously, propo-
sition 7.6 gave an upper bound on the temperature. Combining all these
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Figure 5: Cross section in (V, T )–plane for λ = λ2 of absorbing region, shown in
gray, with boundary including the Rayleigh line between S3(λ1) and S4(λ1). Cyan
and blue lines correspond to curves Lλ and Tλ , respectively. Arrows at region
boundary are in direction of vector field for the wave profile ODEs.

observations, a deflagration wave profile trajectory in the (V, T )–plane must

lie in a region bounded by V0 ≤ V ≤ Vw(1) and T0 ≤ T ≤ T1

(
V (λ)

)
< T1(V0).

A model EOS only needs to be well defined in this limited region of phase
space.

The wave profile trajectory will lie mostly within sector S1(λ) for which
both V and T are increasing with λ. The final approach to the weak state is
governed by the eigenfunctions of the critical point matrix A for the stable
manifold. In particular, the eigenfunction corresponding to the eigenvalue
with the smaller magnitude will dominate. Typically, the coefficient of ther-
mal conduction is sufficiently small such that the eigenvalue from the rate is
the smaller, and the corresponding eigenfunction has ∆V/∆T > 0. In this
case, the temperature may be monotonically increasing along the entire wave
profile.

We note that the negative eigenvalue of Anr has an eigenfunction with
∆V/∆T < 0. If this eigenvalue is smaller in magnitude than that of the rate,
then the wave profile trajectory would have to cross Tλ into sector S4(λ) and
approaches w(1) with T decreasing. Also, if the state w(1) is supersonic wrt
cT (as occurs for the deflagration following the lead shock of a CJ detonation
wave) then it lies on the Rayleigh line with dT/dV < 0, and the wave profile
would have to approach w(1) with T decreasing.
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Based on the preceding analysis of the trajectories of the ODEs in the
(V, T )-plane, we can now give a qualitative description of the trade-offs that
determine the mass flux for which a wave profile exists. Without reaction
the trajectory from the ahead state would be in sector S1 and pass over the
top of the top of sector S5. Reaction causes the curves Tλ and Lλ to shift
and bends the vector field within sector S1 in the direction of w(1). The key
question is the rate at which the vector field changes.

The right hand side of Eq. (14c) is proportional to κR/m2. This controls
the rate at which the vector field changes. If m is too large then the vector
field changes too slowly and the trajectory will go over the top of sector S5

and miss the end state w(1). On the other hand, if m is too small then the
curve Tλ will move up too rapidly, and the trajectory will enter sector S4.
In this sector, the vector field changes direction. The temperature would
decrease causing the trajectory to pass through the Rayleigh line and go
below sector S5.

We know from the structure of the deflagration locus that the mass flux
lies in a bounded interval; 0 < m ≤ mCJ. If one checks the end points, i.e.,
for m = mCJ the trajectory goes over sector S5 and for m = 0 the trajectory
goes under sector S5, then by continuity a value of m would exist such that
the trajectory reaches a weak deflagration state on the deflagration locus. In
the limit m → 0, d

dζ
λ → ∞. A local analysis about the ahead state would

undoubtable show that the trajectory hits the Rayleigh line and hence goes
under sector S5. Then a general proof of the existence of a deflagration wave
profile would hinge on analyzing the behavior of the trajectory for m = mCJ.

Undoubtedly a condition will be required on the κR. If the rate is scaled
to be sufficiently large (e.g., increasing Z in Eq. (22) for the Arrhenius rate)
or κ is increased to be sufficiently large, then the trajectory for m = mCJ

can be expected to pass under the sector S5. For an initiation source, such
as a hot spot, physical intuition suggests that instead of a deflagration wave,
a transient due to rapid reaction will generate a shock that either would
precondition the ahead state such that a deflagration wave exists or would
lead to a shock-to-detonation transition. In addition, depending on boundary
conditions, rather than a steady wave, a chugging or pulsating reactive wave
could occur.
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Remarks:

(i) The rate on the right hand side of Eq. (14c) is proportional to the thermal
diffusion length ` divided by m. Moreover, the eigenvalue r3 of A at the
behind state is proportional to `/m. In a sense this sets the scale for how
the trajectory in the (V, T )-plane varies relative to how the curves Tλ and Lλ

vary. Possibly, this can provide a justification for deflagration speed estimate
of Eq. (15).

(ii) Typically, for a gaseous deflagration wave profile, m is very small com-
pared to mCJ. In this case, as the rate is varied (e.g., by changing the initial
temperature) the mass flux and hence the deflagration speed would scale lin-
early with the rate since the behind state would not change very much and
hence the key curves in the (V, T )-plane would be nearly invariant. However,
non-linear effects would become important if the scaled m becomes large,
and crucial if the scaled m exceeds mCJ.

(iii) A resonant-like behavior is possible in which the trajectory of a wave
profile crosses Tλ to sector S4 and then back to sector S1 for a larger λ.
In this case, the temperature would not be monotonic. This anomalous
behavior is unlikely for an Arrhenius like rate which increases very rapidly
with temperature.

7.5 Heat conduction only

The right hand side of Eq. (14a) for d
dζ

V is proportional to (m2Pr)−1. If

either m or the Prandtl number (i.e., viscosity) are sufficiently small, then
the ODE is nearly singular and numerical integration of the ODEs, Eq. (14),

is very sensitive to roundoff errors in evaluating ∆
[
P + m2 V

]
. Here, we

consider the case of zero viscosity, and replace Eq. (14a) with the algebraic
constraint that the flow lies on the Rayleigh line, Eq. (20).

Suppose that the points on the deflagration locus are subsonic wrt cT ;
i.e., m < ρ cT . Geometrically, in the (V, P )-plane at the intersection of
the partly burned Hugoniot loci and the Rayleigh line, the isotherm has a
greater slope than the Rayleigh line. This is the typical case for a gaseous
deflagration wave, which has a sufficiently low deflagration speed that the
change in pressure can be neglected.
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With this assumption on cT , we can apply the implicit value theorem to
obtain V as a function of T and λ; i.e., VL(T, λ). Consequently, the anal-
ysis of the remaining wave profile ODEs, Eqs. (14b) and (14c), is reduced
to the study of the two-dimensional phase plane (T, λ). Moreover, Hλ ∩ Lλ

projects onto the curve (Th(λ), λ). Typically, Th(λ) is a monotonically in-
creasing function of λ. Another consequence of the assumption on cT is that
∂VL
∂T

(Th(λ), λ) > 0. It then follows from proposition 7.1 that the T component

of the vector field of the ODEs points away from the curve Hλ ∩ Lλ.

The ahead and behind states remain critical points of the reduced model.
The linearized equations about the critical points,

d

dζ

(
T̂

λ̂

)
= −A2

(
T̂

λ̂

)
, (50)

can be obtained from Eqs. (24) and (25). Based on Eq. (21), for the purpose
of linearizing, we can substitute[

(ρ cT )2 −m2
]
V̂ = ρ2 Γ (CV T ) T̂ + ρ (∂λP̃ )V,T λ̂ . (51)

At the ahead state (λ = 0), with Tign = T0,

A2 =

 (ρ c)2−m2

(ρ cT )2−m2 · CV

Cr
− (ρ c)2−m2

(ρ cT )2−m2 · CV

Cr
· dTh/dλ

T

r2 0

 , (52)

and at the behind state (λ = 1),

A2 =

 (ρ c)2−m2

(ρ cT )2−m2 · CV

Cr
− (ρ c)2−m2

(ρ cT )2−m2 · CV

Cr
· dTh/dλ

T

0 r3

 . (53)

Moreover, r2 is small at the ahead state. In both cases, one eigenvalue is

α1 =
CV

Cr

· (ρ c)2 −m2

(ρ cT )2 −m2
> 0 . (54)

The second eigenvalue is

α2 =


1
T

d
dλ

Th · r2 > 0 , ahead state;

r3 < 0 , behind state.
(55)
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Hence, the critical points at the ahead and behind states correspond to a
repeller and a saddle, respectively. However, as shown in Appendix E, the
phase space boundary at either λ = 0 or T = Tign limits the degrees of
freedom associated with the repeller nature of the ahead state.

A deflagration profile only exists for a critical value of the mass flux, m∗.
With T0 < Tign, the phase portrait is sketched in Fig. 6 for three cases:
(i) m < m∗; (ii) m = m∗; (iii) m > m∗. It is important to note that the
vector field of the reduced system is compatible with the full system of ODEs,
Eq. (14), in the limit as ν → 0. That is to say that the vector field for a
point on the curve Lλ in sectors S1 or S4 points in the direction of Lλ1 with
λ1 = λ + dλ; see Fig. 2. Consequently, the constraint that the trajectory lies
on the Rayleigh line represents a stable manifold, at least for V < Vw.

Points on the segment of Hλ ∩ Lλ with T < Tign in the (T, λ)-plane are
degenerate critical points. Moreover, there is a limiting solution trajectory
starting on Hλ ∩Lλ with T = Tign and initial direction corresponding to the
eigenfunction of A2 with the larger eigenvalue, i.e., α1. The different cases
depend on whether the limiting trajectory ends to the left or right ofHλ∩Lλ.

We observe from Eq. (14c) that dλ
dT
∝ m−2. Consequently, when m is too

small the trajectory starting at the ahead state is too steep, crosses Hλ ∩Lλ

and continues to the left. Conversely, if m is too large, dλ
dT

is too small and the
trajectory continues to the right without ever crossingHλ∩Lλ. At the critical
mass flux the trajectory ends at a weak deflagration wave state. Moreover,
for this trajectory, the temperature increases monotonically from the ahead
state to the behind state. The value of the critical mass flux, m∗, depends
on the ahead state, the rate and the coefficient of thermal conduction κ.

For Tign = T0, the general structure is similar. There is a critical value of
the mass flux, m∗, for which the limiting solution trajectory from the critical
point at the ahead state ends at the behind state. One would expect to find
other heteroclinic orbits for m < m∗, since the initial slope of the trajectory
at the ahead state can be in sector between the solid black and red curves
shown in Fig. 16. As shown in Appendix E, the sector is very narrow when
dTh/dλ is large and r2 is very small. Due to the extreme sensitivity of the
trajectories in the vicinity of the ahead state, very likely only the limiting
solution trajectory would be stable. Then provided that Tign is only slightly
greater than T0, one would expect Tign to have a negligible affect on the
admissible deflagration wave.
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A. m < m∗

B. m = m∗

C. m > m∗

Figure 6: Phase portrait of wave profile ODEs with zero viscosity and ignition
temperature Ti > T0. Ahead and behind states are labeled 0 and 1, respectively.
Solid red curve is solution trajectory for a deflagration wave profile. Dashed red
curve is the separatrix.
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7.6 Zero heat conduction

For completeness, we consider the case of zero thermal conductivity; i.e.,
viscosity only. Then replacing Eq. (14b) with the algebraic constraint that
the flow lies on the curve Tλ , i.e., Eq. (43) with Tλ(V, T ) = 0, reduces the
system to the study of the two-dimensional phase plane (V, λ).

The phase portrait of the reduced ODEs in the (V, λ)-plane is shown in
Fig. 7. It would appear for Ti = T0 that a wave profile trajectory always
exists and that for Ti > T0 that no wave profile trajectory exists. However,
the vector field of the reduced system is not compatible with the full system

A. Ti = T0

B. Ti > T0

Figure 7: Phase portrait of wave profile ODEs with zero thermal conduction.
Ahead and behind states are labeled 0 and w, respectively. Cyan curve is the
projection of Rayleigh line. Solid red curve in plot A is a trajectory for a defla-
gration wave profile. Dashed black curve in plot B is the projection of the ignition
temperature.
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of ODEs, Eq. (14), in the limit as κ → 0. To see this, suppose that the
trajectory point lies on Tλ in Fig. 2. Then as λ increases Tλ moves up in the
(V, T )-plane. This puts the point in sector S4 for which the trajectory moves
away from Tλ . Hence, the constraint Tλ(V, T ) = 0 represents an unstable
manifold.

Therefore, in the limit as κ → 0, there are no admissible deflagration
waves. This implies that head conduction is necessary for the existence of
a deflagration wave. The exception is a deflagration wave behind the lead
shock of a ZND detonation because the ahead state of the deflagration is
way above the ignition temperature and the profile trajectory follows the
partially burned Hugoniot, i.e., Hλ ∩ Lλ; see Sec. 6.

8 Computation of deflagration speed

The deflagration speed for a solid explosive or propellant with realistic EOS
for reactants and products can not be determined analytically. It can, how-
ever, be computed numerically. The analysis of the wave profile trajectories
in the previous section provides the basis for an iterative shooting algorithm
that is described in the next subsection. As an illustrative example, the
shooting algorithm is applied to PBX 9501 in the following subsection. While
the algorithm works well numerically, the computed deflagration speeds do
not compare well with the available data. Aspects of the model contributing
to the discrepancy will be discussed.

8.1 Shooting algorithm

The shooting algorithm is a variation of the bisection algorithm used for find-
ing the zero of a function. The unknown variable is the detonation speed D.
Rather than evaluate a function, the trajectory of the wave profile ODEs is
computed, starting at the ahead state. The key points are: (i) to have a
criterion for stopping the integration, and (2) to determine whether D is too
large or too small based on where the trajectory terminates.

The algorithm starts with initial bounds or bracket for D. We note that
a constant pressure burn and the CJ state give a priori bounds on the de-
flagration speed; i.e., D ∈ [0, DCJ ]. The bracket is refined with a bisection
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iteration as follows. With D at the mid-point of the bracket, the wave profile
ODEs (14) are integrated until the trajectory meets a termination criterion
based on the analysis in the previous section:

1. The trajectory crosses the Rayleigh line Lλ; i.e., − d
dζ

V ≤ 0.
In this case D is too small, as the trajectory if continued would go
under sector S5.

2. The trajectory crosses the line V = Vw(1) with T > Tw(1).
In this case D is too large, as the trajectory if continued would go over
sector S5.

There is a potential issue with trajectories for which T (ζ) →∞ or hits
the domain boundary of the EOS, before reaching V = Vw(1). This
can be circumvented by stopping the trajectory if T ≥ Tmax for some
appropriate estimate for the maximum value of T . The exact value of
Tmax is not critical. It can be taken as a multiple of the deflagration
temperature; Tmax = 1.2 Tw(1) seems to be adequate.

3. The trajectory V = Vw(1) with T = Tw(1).
In this case D is the deflagration speed.

The termination criterion also determines whether D is too small or too
large. This allows D to replace one of the end points of the bracket. Thus,
the bracket is cut in half. The iteration is repeated until a tolerance is reached
on the size of the bracket. The effective tolerance is limited by the accuracy
to which the ODEs can be integrated.

Remarks:

(i) Since the ahead state is a critical point, the starting point of the tra-
jectory needs to be offset by a small amount in direction of eigenfunction
for stable manifold. Typically, for the eigenfunction ∆T/∆V is large and
∆V = 0.001(Vw − V0) is a reasonable choice for the offset.

(ii) For a realistic EOS, P-T equilibrium of reactants and products needs to
be calculated numerical with an iterative algorithm. Integrating the ODEs
for the trajectory can be significantly degraded unless the P-T equilibrium
computation is sufficiently accurate.

(iii) Even using the thermal length scale for the ODEs, Eq. (14a) is near
singular for either small m or small Prandtl number (ν � κ/Cr). In this
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case, roundoff error and inaccuracies in evaluating the pressure, P (V, T, λ),
can degrade the accuracy of computing the wave profile trajectory to such an
extent that the criterion for D being too large or too small is incorrect. This
would cause the shooting algorithm to break down. The signature of such
a failure is when the trajectory for the final value of D does not terminate
very close to the weak deflagration state.

8.2 Application to PBX 9501

For shock initiation of a PBX, a key issue is the deflagration speed in a
shock compressed explosive triggered by a hot spot; see e.g., [Menikoff, 2009a,
Menikoff and Shaw, 2010] and references therein. This can be studied by set-
ting the ahead state of a deflagration wave to be the state behind a lead shock
and computing the deflagration speed as a function of the shock pressure.

We use PBX 9501, which is 95wt% HMX (cyclo-tetramethylene-tetra-
nitromine), as an example to illustrate the use of the shooting algorithm.
First, we review the EOS model for PBX 9501 and the transport parameters
for HMX. Second, we present numerical results for the deflagration speed.
Third, we describe the available experimental data and discuss discrepancies
with the results for the model.

Remark: In this section we use a consistent set of high pressure units in
which length is in mm, time in µs, mass in mg and temperature in K. The
corresponding units for other quantities are then km/s for velocity, g/cm3

for density, GPa for pressure, J for energy and MJ/kg for specific energy.

8.2.1 Model parameters for PBX 9501 and HMX

The EOS of the reactants is based on shock data and quasi-static isothermal
compression data obtained with a diamond anvil cell. We use the EOS model
of Menikoff and Sewell [2003]; see [Menikoff, 2007, §4.3.4] and [Menikoff,
2009b] for detailed description of model. The EOS of the products is based
on overdriven detonation wave data and release isentrope data [Fritz et al.,
1996, Hixson et al., 2000]. We use a sesame table generated by M. Sam
Shaw [private communications, LANL 2005]. Properties of this HE model
are discussed in [Menikoff, 2008]. Parameters for the reactants and products
model EOS are provided in Appendix D.
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Figure 8: Arrhenius rate for PBX 9501. Inverse rate is on log scale and tempera-
ture is on reciprocal scale.

Henson et al. [2002] have shown that the initiation times for HMX over
a wide temperature range can be approximately fit with a single global Ar-
rhenius reaction rate. We use parameters slightly adjusted to fit the high
temperature regime [Menikoff, 2006] that occurs in the reaction zone of a
propagating CJ detonation wave; Ta = 17.9×103 K and Z = 2.79×105 µs−1.
The inverse rate as a function of temperature is shown in Fig. 8. Typical
deflagration temperatures are about T = 2500K; see Fig. 14. At this tem-
perature, the inverse rate is τ = 4.6 × 10−3 µs. The deflagration wave time
scale is short compared to the inverse rate at the shock temperatures for
our calculations; for the strongest shock Ps = 30GPa, Ts = 1360K and the
inverse rate is 1.85µs. Thus, a deflagration wave in the shock compressed
medium is expected to be quasi-steady; i.e., the deflagration speed will vary
slowly as the ahead state reacts.

Transport properties of explosives are difficult to measure at high pressure
and high temperature. Data for HMX from physical measurements are lim-
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ited to atmospheric pressure and temperature less than about 500K. Added
difficulties with temperature dependent measurements stem from a polymor-
phic phase transition (β to δ) at 438K and the fact that rapid reaction
begins soon after melting at 552K. Approximate values for some quantities
have been obtained through the use of molecular dynamics computations.
Representative values of key parameters are listed in the table 1. In general
the parameters are not constant but depend on the thermodynamic state;
i.e., (V, T ).

Table 1: Representative values of constitutive parameters for HMX; see
[Menikoff and Sewell, 2002] and references therein.

ρ . . . . . . . . . . . . . . . . . . . . . . . . density
1.90 g/cm3 solid at 293K and 1 atm

κ . . . . . . . . . . . . . . . . . . . . . . . . coef. of thermal conduction
2.6×10−10 J/(mmµsK) liquid at 700K and 1 atm

CV . . . . . . . . . . . . . . . . . . . . . . . . specific heat at constant V
1.5×10−3 (MJ/kg)/K solid at T = 1000K and 1 atm

ν . . . . . . . . . . . . . . . . . . . . . . . . coef. of dynamic viscosity
4.5×10−4 GPaµs liquid at 550K and 1 atm

Important quantities for deflagration waves can be derived from the pa-
rameters in table 1. The coefficient of thermal diffusion, k = κ

ρ CV
= 9.1 ×

10−8 mm2/µs, is very small. The Prandtl number, Pr = CV ν
κ

= 2.6 × 103,
is much larger than for gases. (In MKS units, k = 0.26W/(mK), κ =
9.1 × 10−8 m2/s and ν = 0.45Pa s.) The estimated deflagration speed from
Eq. (15) is D = (k/τ)1/2 = 4.5m/s. The thermal length scale would then be
` = D τ = 0.02 µm.

For comparison, the reaction zone length of a CJ detonation wave in
PBX 9501 is about 25µm, the reaction time is about 3 ns and the detonation
speed is 8.8 km/s; see [Menikoff, 2006]. We note the large disparity of the
wave speed and the wave width between a deflagration wave and a detona-
tion wave (about 3 orders of magnitude), even though the reaction time is
comparable.

The disparity in the reaction width is crucial for any burn model based on
hot spots. A hot spot needs to have enough energy to trigger a deflagration
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wave but too little energy for a single hot spot to initiate a detonation wave.
The energy needed to trigger a reactive wave is roughly proportional to the
wave width.

Remarks:

(i) EOS models for solids are developed for compression and breaks down
in expansion; that is, V greater than V0 by about 10% or less. Since a de-
flagration wave is expansive, a typical model is not suitable for calculating a
deflagration wave profile when the ahead state is at low pressure. In partic-
ular, KT of the reactants becomes negative and the EOS for a partly burned
mixture fails to have a pressure-temperature equilibrium solution. The EOS
model can be used when the ahead state is shock compressed to sufficiently
high density that the expansion of the deflagration wave stays within the
domain of the EOS.

(ii) The thermal conductivity is a key quantity for determining the deflagra-
tion speed. Bastea [2002] has calculated κ for the HMX products along the
CJ release isentrope using molecular dynamics and Enskog theory. He finds
that κ increases roughly linear with pressure. Extrapolated to 0 pressure,
the calculation is in agreement with the measured value listed in table 1,
and at the CJ pressure it is about 10 times larger. Since the deflagration
speed is proportional to the square root of κ, the variation in κ affects the
deflagration speed by only a factor of about 3.

(iii) The value of the coefficient of shear viscosity in table 1 was determined
from molecular dynamics simulations. For the liquid phase of HMX, the coef-
ficient decreases with temperature; by about 2 orders of magnitude between
550K and 800K [Bedrov et al., 2000]. Calculations for HMX products along
the CJ release isentrope by Bastea [2002] also give a low value for the vis-
cosity coefficient. These calculation also show that the coefficient increases
with pressure. For the solid phase, based on the shock rise time, estimates of
an effective viscosity coefficient are on the order of 0.1 GPaµs (1000 Poise).
The large value is due to a change in the mechanism for momentum transfer;
plasticity rather than diffusion.

(iv) For the HMX reactants (solid phase), CV varies by about a factor of 2
between room temperature and the temperature of the reaction products;
see [Menikoff and Sewell, 2003]. In contrast to a low density gas, the specific
heat of the solid at constant P is only a few per cent greater than that
at constant V . Moreover, shocked to a high pressure and then reacted, the
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products would be at a density comparable to the solid phase, and the specific
heat of the reaction products would be comparable to that of the reactants.

(v) To fit accurately thermal ignition data, a multi-step reaction model is
needed; see for example, McGuire and Tarver [1981], Henson et al. [2009].
Thermal ignition experiments are at relatively low pressure and low tem-
peratures; typically below 1 kb and below 500K. Ignition times are on the
order of tens of minutes. In contrast, a deflagration wave profile is driven by
the high temperature of the reaction products (∼ 2500K), which leads to a
very short reaction time, on the order of a few ns. In this regime, we expect
the reaction step with the lowest activation energy to be rate limiting and
dominate the decomposition. Thus, a single-step rate model, with appropri-
ate Arrhenius parameters, might be suitable for determining the deflagration
speed. Later we comment further on this point.

8.2.2 Numerical results

There is considerable uncertainty in the value of parameters in the reactants,
products and partly burned mixed phase. To show how deflagration waves are
affected, the parameters will be varied and deflagration profiles calculated for
shock pressures in the range 10 ≤ Ps ≤ 30GPa. The lower bound (10GPa)
is to avoid hot partly burned reactants expanding out of the domain of the
model EOS. The upper bound (30GPa) is to limit the shock temperature
and hence the reaction rate at the ahead state.

First, we fix the viscosity coefficient and vary κ over a wide range. For
ν = 6.6 × 10−4 GPaµs (which for κ = 1 × 10−8 J/(mmµsK) corresponds to
Pr ≈ 100), the deflagration speed and wave width as a function of κ for sev-
eral shock pressures are shown in Fig. 9. To avoid the tails in the wave profile,
we use the region 0.1 ≤ λ ≤ 0.9 as a measure of the wave width w. Several
points are worth noting: (i) In agreement with the estimate in Eq. (15), both
the speed and width are proportional to κ1/2. (ii) The variation of D with
Ps is fairly small. This is largely due to the products EOS, for which the
temperature on the deflagration locus is nearly constant; see Fig. 14. (iii) For
κ in the expected range, 1× 10−10 to 1× 10−8 J/(mmµsK), the deflagration
speed and wave width are small; D . 10m/s compared to the CJ detonation
speed of 8.8 km/s, and w . 0.3µm compared to the CJ detonation reaction
zone width of about 25µm. (iv) For κ & 1× 10−3 J/(mmµsK) no deflagra-
tion profile exists. The ODE trajectories alway hit the Rayleigh line and go
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Figure 9: Deflagration speed and wave width as a function of thermal conduction
for ν = 6.6 × 10−4 GPaµs. Each curve is labeled with the shock pressure to the
ahead state. The CJ deflagration speed is indicated by the arrows on the right
side for the minimum and maximum Ps. Wave width is from 10 % to 90 % burned.
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under section S5. Since DCJ depends on the shock pressure, the maximum κ
depends on Ps. The shooting algorithm succeeds in finding the deflagration
speed right up to nearly DCJ .

Spatial profiles of deflagration waves as Ps is varied are shown for the
case with κ = 1 × 10−8 J/(mmµsK) and ν = 6.6 × 10−4 GPaµs in Fig. 10.
The x-origin has been shifted to correspond to λ = 0.5. We observe that the
profiles λ(x) and R(x) are very similar for all Ps. The rate peaks near the
origin and hence λ ≈ 0.5. The profiles T (x) and V (x) show more variation
since the ahead and behind states of the deflagration waves depend on Ps.

The eigenvalues and eigenvectors of the critical point at the behind state
are listed in table 2. The negative eigenvalues correspond to the stable man-
ifold. The one with the smaller magnitudes dominates and sets the direction
dT/dV as the ODE trajectory approaches the behind state. For this case, the
eigenvalue corresponding to the rate dominates and dT/dV > 0. Moreover,
|r3| = O (1).
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Figure 10: Deflagration wave profiles for κ = 1 × 10−8 J/(mm µs K), ν = 6.6 ×
10−4 GPaµs and a series of shock pressures. The x-origin corresponds to λ = 0.5.
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Table 2: Critical point eigenvalues and eigenvector projected on (V, T )–
plane, Eqs. (24–28), at the behind state for κ = 1×10−8 J/(mmµsK) and ν =
6.6×10−4 GPaµs. The ahead state corresponds to state at shock pressure Ps.

Ps D λ1 dT/dV λ2 dT/dV r3 dT/dV
GPa mm/µs - K g/cm3 - K g/cm3 - K g/cm3

×10−3 ×103 ×103 ×103

10 11.10 1.76 36.7 -0.95 -3.30 -6.15 2.47

20 9.26 1.43 58.8 -1.88 -1.57 -3.96 3.32

30 12.70 1.26 97.1 -1.51 -2.05 -2.13 5.74

Plots of pairs of thermodynamic variables as κ is varied for fixed Ps =
20GPa and ν = 6.6 × 10−4 GPaµs are shown in Fig. 11. Several points are
noteworthy. Though the λ(x) profile spreads out with increasing κ, there is
only a small variation in T (λ) or T (V ). Moreover, the deflagration profiles
in the (V, P )–plane is close to the Rayleigh line. We later will see that this
property occurs when ν is sufficiently small. In addition, for small κ, less
than about 1 × 10−6 J/(mmµsK), the pressure is nearly constant. This is
due to the low deflagration speed (compared to DCJ) for small κ, and the
variation of the pressure on the deflagration locus versus wave speed shown
in Fig. 15.

The dashed curves in the T (V ) plot correspond to points on the partially
burned Hugoniot loci along the Rayleigh line; referred to in the phase-plane
analysis section 7 as Hλ ∩Lλ and determined by Eq. (33). The wave profiles
(solid curves) lies above the dashed curves because the deflagration wave is
driven by head conduction from the behind state. The temperature differ-
ence, Th(V ) − T (V ), is too large for the perturbative approach in section 6
to apply.

Next we examine the effect of varying ν. For fixed Ps = 20GPa and high
and low values of κ, deflagration profiles are shown in Fig. 12 for a series of ν.
We observe that there is a small variation of T (λ) but a significant variation
of V (λ) when ν is large. This can have a large affect on P (λ). For large ν,
the pressure is no longer monotonic. Moreover, the pressure can even exceed
the value at the ahead state. Despite the large variation in pressure, there is
only a small variation in the detonation speed; see table 3.
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Figure 11: Deflagration wave profiles for Ps = 20GPa, ν = 6.6 × 10−4 GPaµs,
and a series of κ. Dashed curves in T (V ) plot correspond to points on the partially
burned Hugoniot loci along the Rayleigh line, Eq. (33).

The large viscosity has another anomalous effect. The eigenvalues and
eigenvectors of the critical point of the behind state are listed in table 4
for κ = 1 × 10−8 J/(mmµsK) and ν = 6.6 × 10−1 GPaµs. We note that
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|λ2| < |r3|. Hence, the non-reactive eigenvalue dominates the approach to
the behind state. Moreover, for both eigenvalues of the stable manifold
dT/dV < 0. Hence, the temperature is not monotonic at the end of the
deflagration wave profile. The temperature decrease occurs in only a very
small neighborhood of the behind state.
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Figure 12: Deflagration wave profiles for Ps = 20GPa and a series of ν. Plots on
the left and right are for small κ and large κ, respectively.
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Table 3: Deflagration speed for cases shown in Fig. 12; Ps = 20GPa with
small and large κ of 1× 10−8 and 2× 10−4 J/(mmµsK), respectively. Units
for ν and D are GPaµs and mm/µs, respectively.

ν small κ large κ

6.6× 10−1 10.09× 10−3 1.46
6.6× 10−2 9.38× 10−3 1.33
6.6× 10−3 9.28× 10−3 1.31
6.6× 10−4 9.27× 10−3 1.31

Table 4: Critical point eigenvalues and eigenvector projected on (V, T )–
plane, Eqs. (24–28), at the behind state for κ = 1×10−8 J/(mmµsK) and ν =
6.6×10−1 GPaµs. The ahead state corresponds to state at shock pressure Ps.

Ps D λ1 dT/dV λ2 dT/dV r3 dT/dV
GPa mm/µs - K g/cm3 - K g/cm3 - K g/cm3

×10−3 ×103 ×103 ×103

15 10.6 1.53 109. -1.31 -1.07 -3.93 -8.21

20 10.1 1.41 111. -1.62 -0.99 -3.34 -5.35

25 10.9 1.32 138. -1.71 -1.01 -2.65 -3.85

For sufficiently small ν, less than 6.6 × 10−3 GPaµs for the values of κ
in Fig. 12, the variation of the profiles is negligible; i.e., the wave profiles
converge as ν → 0. Alternatively, the deflagration speed converges for small
Prandtl number. As previously noted, for fixed Prandtl number, the wave
profile ODEs (14) depend on κR/m2. Thus, for sufficiently small ν the
deflagration speed depends on (κR)1/2 and the wave width on κ/D. Hence,
the variation of a deflagration wave profile when the rate is multiplied by a
constant can be determined instead by scaling κ with R fixed.

For a typical deflagration wave, such as for PBX 9501, ν and κ are suffi-
ciently small for the deflagration speed to be small and the pressure nearly
constant. However, it is important to note that these standard properties de-
pend on parameter values, and are not general properties of the wave profile
ODEs.
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Remarks:

(i) An alternative approach for determining the deflagration speed has previ-
ously been used; see for example, [Reaugh, 2004] and [Handley, 2011, sec. 6.3].
A simulation is run using a reactive hydro code with heat conduction. It is
initialized with a hot spot or a temperature boundary condition and run until
a steady deflagration wave is propagating. The time-dependent simulation
is computationally intensive since the very narrow reaction zone must be re-
solved and the length of run needed to reach steady state is a large number of
reaction zone widths. Moreover, an explicit algorithm is not practical as the
heat conduction term in the PDEs is parabolic and the stable time step is
proportional to the square of the cell size rather than the linear dependence
(CFL condition) required by the hyperbolic fluid equations. Numerical algo-
rithms for ODEs with adaptive time steps are much more straight forward.
We postpone comments on how the two approaches compare till the next
subsection.

(ii) Many reactive-hydro codes use artificial viscosity for the numerical dis-
sipation needed to capture shock fronts. The viscous pressure has the form
Q = −ν̃ρc(∆x)∂xu, where ν̃ is a dimensionless coefficient on the order of 1.
The effective viscosity coefficient is ν ∼ ρc(∆x). For shocked PBX 9501,
ρc ∼ 10 (g/cm3)·(mm/µs). For a very fine mesh with ∆x = 0.1 µm, this
gives a viscous coefficient of ν ∼ 10−3 GPaµs, which is larger than the value
we have used for the wave profile ODEs. Fortunately, for reasonably small
values of the viscous coefficient, the trajectory is sufficiently close to the
Rayleigh line that the profile is insensitive to the exact value of the coeffi-
cient; see subsection 7.5.

8.2.3 High pressure data

A diamond anvil cell can be used to compress HMX powder up to a high
static pressure. A hot spot generated by a narrow laser beam can then be
used to initiate a deflagration wave. Using this technique Esposito et al.
[2003] and Zaug et al. [2009] have measured the deflagraion speed of HMX at
room temperature as a function of pressure up to the CJ detonation pressure
of PBX 9501; about 35GPa. The data shows that the deflagration speed
varies as D ∝ P n with n ≈ 0.8.

The numerical results for the deflagration speed in the previous subsec-
tion does not show a power-law pressure dependence. Nor is the estimated

59



deflagration speed for the model, Eq. (15), compatible with a P n behavior
since none of the parameters are strongly pressure dependent and the de-
flagration temperature, shown in Fig. 14, has a very weak dependence on
pressure.

At low pressures, the deflagration speed of propellants and HMX based
explosives have a similar power-law pressure dependence [Atwood et al., 1999,
Maienschein et al., 2004]. This can be explained by a simple model with a
two-step reaction; see for example, Ward et al. [1998]. The first step is va-
porization or pyrolysis which has a small heat release. The second step is a
gas-phase reaction with a large heat release. A key feature of the deflagra-
tion profile for the two-step model, is a flame standoff distance; convective-
diffusion zone between the solid reactants and the gas-phase reaction front.
In effect, the deflagration speed is controlled by the rate of vaporization which
is determined by the heat diffusion across the convective-diffusion zone. The
width of the diffusion zone is pressure dependent due to the compressibility
of the unreacted gas. Since the temperature at the ends of the diffusion zone
(reactant surface and flame front) are approximately constant, the heat flux
and hence the deflagration speed is pressure dependent.

The single-step reaction model used in the previous subsection neglects
the gas-phase diffusion zone. Considering the uncertainty in the model pa-
rameters, the deflagration speed predicted with the single-step rate is com-
parable with the maximum deflagration speed measured in the experiments.
Very likely the single-step rate model gives an upper bound on the deflagra-
tion speed. This bound on the deflagration speed is about a factor of 100
lower than the detonation speed.

Two previous calculations of the pressure dependence of the HMX de-
flagration speed are noteworthy. Reaugh [2004] used a hydro simulation
approach with the three-step McGuire and Tarver [1981] reaction model.
He found a power-law pressure dependence to the deflagration speed with
n = 0.38. At a high pressure of 30GPa, the deflagration speed of 10m/s is
comparable to the result in the previous section. Handley [2011, sec. 6.3] also
used a hydro simulation approach, but with a single-step Arrhenius reaction.
She found the deflagration speed decreased from 7m/s at 2GPa to 1m/s
at 20GPa. Again the deflagration speed is comparable to the results in the
previous section. The EOS and other model parameters are not exactly the
same for these studies. Consequently, one would not expect the computed
deflagration speeds to agree. Yet the deflagration speeds are all in the range
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of 1 to 10m/s. A key point is that the computed deflagration speeds and
the measured deflagration speed, while subject to uncertainties, are all much
lower than the detonation speed.

Remarks:

(i) There are anomalies in the HMX deflagration speed data [Esposito et al.,
2003, Zaug et al., 2009], such as a dependence on the grain size and a dis-
continuous jump in deflagration speed at a pressure of about 10GPa. The
former is not understood, and surprising since at pressures significantly over
the yield strength one does not expect any porosity or grain packing effects.
The latter is similar to a jump in deflagration speed that has been observed
in propellant. For propellants, the jump in deflagration speed is believed to
be due to de-consolidation [Fifer and Cole, 1981] which leads to an enhanced
heat transfer from convective flow; i.e., two-phase flow in the deflagration
zone in which hot products flow around the reactant grains.

(ii) Mechanisms for generating hot spots, such as void collapse by a shock
wave, also lead to high vorticity in the neighborhood of the hot spot. Pos-
sibly this leads to an enhance heat transfer, which may be modeled with an
increased ‘turbulent’ thermal diffusion coefficient; see [Karpenko et al., 2008].

(iii) There are differences in the measured deflagration speed between the two
experiments of [Esposito et al., 2003, Zaug et al., 2009]. These are believed
to be due to the use of different criterion for determining the position of
the deflagration front from the speckle pattern of light reflected from the
explosive surface; either first change in the speckle pattern or extinction of
the speckle pattern when the reaction completes. The latter criterion gives
a lower deflagration speed, and is believed to be more accurate.

9 Implication for shock initiation

The low deflagration speed, compared to the detonation speed, has implica-
tions for burn models based on the ignition and growth concept. The burn
rate due to deflagration waves triggered by hot spots (reactive wavelets) is
proportional to the number density of hot spots times the deflagration speed.
With a low deflagration speed, a large number density is needed to achieve
a sufficiently large rate to drive a shock-to-detonation transition.
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Shock initiation of a PBX is sensitive to its porosity. This leads to the
hypothesis that hot spots are formed when a shock passes over and collapses a
pore. The phenomenon of shock desensitization [Campbell and Travis, 1986],
in which the pressure behind a weak shock squeezes out pores, supports this
hypothesis. For a PBX with a given initial density, and hence porosity, the
number density of potential hot spots is limited by the pore size; i.e., small
pores are required for a large number density when the total pore volume is
fixed.

Pores that are too small, even if they generate hot spots, do not have
sufficient energy to trigger a reactive wavelet. Since hot spots are smaller
than the pores that generate them, the thermal length scale, Eq. (15), can
be used as an estimate for the minimum pore size that can give rise to a
reactive wavelet. The results of the previous subsection then imply that
the minimal pore size is on the order of 0.1µm. This is much smaller than
the average grain size for PBX 9501; about 100µm. Recent measurements
with ultra-small-angle neutron scattering by Mang et al. [2010] show that
there are a large number of pores of the necessary size. These are very likely
solvent inclusion or imperfections within an HMX grain, rather than within
the binder between grains.

We note that there is also an upper limit on the pore size. To get a high
volume fraction of explosive (i.e., small amount of binder), a PBX utilizes a
bimodal distribution of grains in order that the small grains fill in the inter-
granular pores between the large grains. For PBX 9501, the pores are less
than 10µm. This places an upper limit on the width of a deflagration wave,
which then gives rise to a limit on the coefficient of thermal conduction for
hot-spot models; κ < 10−6 J/(mmµsK). This in turn limits the deflagration
speed to be much less than the detonation speed.

Reactive burn modeling of PBXs has been held back by the inability to
measure experimentally the small spatial and temporal scales of hot spots
and the interactions of the deflagration wavelets they generate. With the ad-
vances in computing power, it is natural to consider using meso-scale simula-
tions of a PBX, which resolve grains and hot spots, as numerical experiments
to better understand the physical processes in a shock-to-detonation transi-
tion; in particular, the feedback between the energy released by deflagration
wavelets triggered by the hot spots and the lead shock strength. The small
hot-spot length scale and the slow deflagration speeds make such simulations
a very challenging computational problem. Very likely subgrid models will
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be needed to generate the hot spots and to propagate the deflagration fronts.

Successfully demonstrating a shock-to-detonation transition with meso-
scale simulations would place the ignition & growth concept on a firmer
foundation. It might even lead to the capability for predicting the behavior
of a PBX from properties of its components (explosive grains and binder)
plus a statistical description of grain sizes and pore distribution.
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Appendix A. Ideal explosive EOS

An ideal explosive EOS provides an illustrative example that has been widely
used to study qualitative properties of deflagration and detonation waves. As
a mixture EOS, it is defined by (see e.g., Fickett and Davis [1979, p. 18])

P (V, e, λ) = (γ − 1)(e + λ q)/V , (A.1a)

T (V, e, λ) = (e + λ q)/CV , (A.1b)

P̃ (V, T, λ) = (γ − 1)CV T/V , (A.1c)

where the parameters γ, q and CV represent the adiabatic exponent, the
chemical energy release per unit mass, and the specific heat, respectively.
This is equivalent to a P–T equilibrium mixture of an ideal gas reactants
EOS

Pr(V, e) = (γ − 1)e/V , (A.2a)

Tr(V, e) = e/CV , (A.2b)

P̃r(V, T ) = (γ − 1)CV T/V , (A.2c)

and an ideal gas products EOS

Pp(V, e) = (γ − 1)(e + q)/V , (A.3a)

Tp(V, e) = (e + q)/CV , (A.3b)

P̃p(V, T ) = (γ − 1)CV T/V . (A.3c)

The chemical energy or heat release q is the offset of the energy origin for
the products relative to the reactants. Moreover, the adiabatic index and
specific heat is the same for the reactants, the products and the mixture.
Furthermore, KT = P and Γ = γ − 1, for the reactants, the products and
the mixture.

In P–T equilibrium the reactant and products specific volumes are

V = Vr = Vp = (γ − 1)CV T/P , (A.4)

and the specific energies are

e = CV T − λ q = λ ep + (1− λ) er ,

ep = CV T − q = e− (1− λ) q ,

er = CV T = e + λ q .

(A.5)
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The key λ derivatives, for the partly burned Hugoniot loci and the wave
profile, are

(
∂P̃

∂λ

)
V,T

= 0 , (A.6a)(
∂e

∂λ

)
V,T

= −q . (A.6b)

Needless to say, the simplified relations for all the thermodynamic deriva-
tives greatly facilitates mathematical analysis of the ODEs for a deflagration
profile.

In particular, the analysis can take advantage of the special relation for
an ideal explosive that the enthalpy,

h = e + P V = γCV T − λ q , (A.7)

is linear in both T and λ, and independent of V . Consequently, hp−hr = −q
is constant. The isentropic sound speed can be expressed in terms of h and
q as

c2 = γPV = γ(γ − 1) CV T (A.8a)

= (γ − 1) · (h + λ q) . (A.8b)

Moreover, the isothermal sound speed can be expressed as

c2
T = P V =

γ − 1

γ
(h + λ q) . (A.9)

The Hugoniot equation can be expressed in terms of h as

h = h0 + 1
2
(V0 + V ) · (P − P0) . (A.10)

Consequently, for a constant pressure deflagration h = h0. Therefore, the
temperature and the sound speed are given by T = T0 + q/(γ CV ) and
c2 = c2

0 + (γ− 1) q, respectively. Moreover, for a convex EOS, h is monotoni-
cally decreasing on the deflagration locus as P decreases. Consequently, the
temperature and the sound speed also decrease.

The entropy for the mixture can be expressed as

S = CV ln
[
(Pref/P )γ−1(T/Tref)

γ
]
+ (∆Sref) λ + Sr,ref , (A.11a)
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where ∆Sref = Sp − Sr at the reference state (Pref, Tref). The reactant and
products entropy have the same form with a relative shift or offset;

Sr = CV ln
[
(Pref/P )γ−1(T/Tref)

γ
]
+ Sr,ref , (A.11b)

Sp = CV ln
[
(Pref/P )γ−1(T/Tref)

γ
]
+ Sp,ref . (A.11c)

It follows for the Gibbs free energy, G(P, T ) = h − T S, that the difference
between the reactants and products is given by

∆G = Gp −Gr = ∆h− T∆S = −
[
q + T (Sp,ref − Sr,ref)

]
. (A.12)

When Sp,ref ≥ Sr,ref, as physically expected, ∆G < 0. Hence, the products are
thermodynamically stable and the reactants only meta-stable. Moreover, it is
easily checked that the fundamental thermodynamic identity, de = −P dV +
T dS + (∆G) dλ, is satisfied.

As a result of Eq. (A.4), we find(
∂S

∂λ

)
V,T

= ∆Sref , (A.13a)(
∂S

∂λ

)
V,e

= ∆Sref + q/T , (A.13b)

which directly verify Eqs. (C.31) and (C.32). Also, the leading term in the
entropy equation for the reactants, products and mixture can be reexpressed
as

ln
[
(Pref/P )γ−1(T/Tref)

γ
]

= ln
[
(P/Pref)(V/Vref)

γ
]

, (A.14)

which determines an isentrope in the (P, T )-plane or (V, P )-plane.

Two extensions are analytically solvable for the mixture and somewhat
more realistic. First, by allowing different values of CV and γ for the reac-
tants and products, the mixture EOS can account for a chemical reaction
that increases the number of moles for the products compared to the reac-
tants. Moreover, Vp would not equal Vr, and (∂λP )V,T would be non-zero.
Second, by using a stiffened gas EOS (see e.g., [Menikoff, 2007, § 4.3.2]),
one can account for the high sound speed of solid reactants. Even so, the
thermal properties of these simplified EOS would not be accurate for solid
explosives. This is important since chemical reactions, such as exemplified by
the Arrhenius rate with high activation temperature, are very temperature
sensitive.
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Appendix B. Gaseous & solid deflagration loci

We use PBX 9501 to illustrate differences between an ideal explosive EOS
and a realistic solid EOS. The realistic EOS is described and compared with
experimental data in Menikoff [2006, 2008]; see Appendix D for model pa-
rameters. For the ideal explosive EOS, parameters were chosen to match
the CJ detonation state (PCJ = 35 GPa) and the CJ release isentrope. The
parameters are listed below.

Table 5: Ideal HE EOS parameters for PBX 9501

ρ0 1.83 g/cm3 initial density
γ 3.1 – adiabatic index
q 4.5 MJ/kg chemical energy released per unit mass
CV 0.002 MJ (kgK)−1 specific heat at constant volume

The CJ isentrope for both EOS are shown in Fig. 13. We note that they
agree well in the (V, P )–plane but not in the (P, T )–plane. This is because
the behavior of the high density products is well described by an adiabatic

Figure 13: CJ isentrope for PBX 9501. Red curves correspond to ideal explosive
EOS and black curves to realistic solid EOS.
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index of about 3. The temperature along the release isentrope is given by

T (V ) = TCJ · exp
[
−
∫ V

VCJ

dV
Γ(V )

V

]
.

For an ideal EOS, Γ = γ − 1. This is not a good approximation for a gas at
high density. To summarize, the ideal explosive products EOS does well on
the mechanical properties but poorly on the thermal properties. The reason
is that for a gas at low density CP /CV = γ whereas as at high density it is
more fluid like and Cp is only a few per cent higher than CV .

A key issue for shock initiation of a PBX, is the deflagration speed in the
shock compressed and heated reactants triggered by a hot spot. The deflagra-
tion loci from a shocked state at several pressures are shown in Fig. 14. There
are several important differences between a realistic and an ideal explosive.

First, we note that for the ideal EOS, the sound speed at the initial state
is very low. Consequently, at the high pressures of interest, the shock locus
is in the strong shock limit with compression ratio given by

Vs/V0 = (γ − 1)/(γ + 1) .

To make the locus in the (V, P )–plane appear continuous, the initial sound
speed, c0 = (γ P0 V0)

1/2, is increased by raising the initial pressure from
1 × 10−4 to 0.1GPa. For both EOS, the deflagration loci for the different
shock pressures nearly overlap. There is an offset in V for the deflagration
loci corresponding to each EOS due to the different shock compression ratio,
and hence ahead state for the deflagration loci.

The deflagration loci in the (P, T )–plane are notably different. For the
realistic EOS, there is very little temperature variation along a deflagration
locus and between loci corresponding to different shock pressures. In con-
trast, for the ideal EOS, along a deflagration locus the temperature decreases
monotonically with decreasing pressure. Furthermore, the temperature for
a constant pressure deflagration increases with shock pressure. This is due
to the shock temperature increasing with pressure, and the property of an
ideal EOS that the temperature change for a constant pressure deflagration
is given by

T (P0)− T0 = q/(γ CV ) ,

and is independent of the initial state.
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Figure 14: Deflagration loci from shocked state in PBX 9501. Left figures corre-
spond to realistic solid EOS, and right figures to ideal explosive EOS. Black curves
are shock loci of reactant and red curves are deflagration loci. Solid circle denotes
constant pressure point and open circle CJ deflagration state. Both symbols are
labeled with the shock pressure.

The difference in the variation of the temperature along the deflagration
locus can be understood from the thermodynamic relation

dT/T = −ΓdV/V + dS/CV .

On the weak branch, both V and S increase as P decreases. Therefore, the
terms on right hand side have the opposite sign and T can either increase
or decrease. We also note that for both EOS, when Ps < PCJ , the deflagra-
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Figure 15: Deflagration loci in (D,P )-plane from shocked state for PBX 9501.
Black and red curves are for realistic EOS and ideal explosive EOS, respectively.
Solid circle denotes constant pressure deflagration state and open circle CJ defla-
gration state. Both symbols are labeled with the shock pressure. Diamond marks
the sonic point with respect to cT . Dashed portion of loci are supersonic with
respect to cT .

tion temperature is less than the CJ detonation temperature; 3000K for the
realistic EOS and 3420K for the ideal EOS.

The different shock compression ratio for the two EOS has important
qualitative effects shown in Fig. 15. For the realistic EOS, the CJ deflagration
speed is larger than that of the ideal explosive EOS. For a fixed deflagration
speed, the change in pressure across the deflagration wave is smaller for the
realistic EOS. We also note that for a fixed deflagation speed, ∆P decreases
as the ahead state shock pressure increases. For the realistic EOS and a
shock pressure of 30GPa, ∆P < 1GPa up to a deflagration speed of 1 km/s.
Another difference, due to the thermal properties, is that a larger portion of
the deflagration loci for the ideal explosive EOS is supersonic with respect
to the isothermal sound speed.
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Appendix C. Thermodynamic relations

An equilibrium mixture EOS is used for the partly burned explosive. The
pressure equilibrium conditions are

P̃ (V, T ) = P̃r(Vr, T ) = P̃p(Vp, T ) , (C.1a)

V = λ Vp + (1− λ) Vr , (C.1b)

where the subscripts p and r denote the products and reactants variables,
respectively, and λ is the mass fraction of the products. Following Menikoff
[2007, § 4.6] thermodynamic quantities of the mixture are derived in terms
of those of the components.

The isothermal sound speed of the mixture can be obtained by taking the
derivative with respect to V at fixed λ and T of Eq. (C.1). This yields a pair
of simultaneous equations

KT,p

Vp

d

dV
Vp −

KT,r

Vr

d

dV
Vr = 0 , (C.2a)

λ
d

dV
Vp + (1− λ)

d

dV
Vr = 1 , (C.2b)

where KT = −V ∂P̃
∂V

= ρ c2
T is the isothermal bulk modulus. Hence,

d

dV
Vp =

KT,r/Vr

λKT,r/V r + (1− λ)KT,p/Vp

, (C.3a)

d

dV
Vr =

KT,p/Vp

λKT,r/V r + (1− λ)KT,p/Vp

. (C.3b)

Substituting into the equation for the mixture bulk modulus,

KT = V
KT,p

Vp

d

dV
Vp , (C.4)

the result can be expressed as

V

KT

=
λ Vp

KT,p

+
(1− λ) Vr

KT,r

. (C.5)

71



The isentropic bulk modulus can be obtained from the thermodynamic rela-
tion,

KS = KT +
Γ2

V
CV T , (C.6)

in terms of the specific heat CV =
(

∂e
∂T

)
V,λ

and the Grüneisen coefficient

Γ = V
(

∂P
∂e

)
V,λ

.

The mixture specific heat can be derived by taking the derivative with
respect to T , at fixed V and λ, of the mixture energy

e(V, T ) = λ ep(Vp, T ) + (1− λ) er(Vr, T ) . (C.7)

First one has to determine d
dT

Vp and d
dT

Vr by solving the simultaneous equa-
tions obtained by taking the derivative of the pressure equilibrium conditions,
Eq. (C.1). Using the thermodynamic relations,(

∂P̃

∂T

)
V,λ

=
Γ

V
CV , (C.8)

applied to the reactants and products, the result is

λ−1 d

dT
Vr = −(1− λ)−1 d

dT
Vp =

ΓrCV,r/Vr − ΓpCV,p/Vp

(1− λ)KT,p/Vp + λKT,r/Vr

. (C.9)

Then using the thermodynamic relations,(
∂e

∂V

)
T,λ

= −
(
P − Γ

V
CV T

)
, (C.10)

applied to the reactant and products, the result for the mixture specific heat
is

CV = λ CV,p + (1− λ) CV,r

+ λ (1− λ)
KT

KT,pKT,r

Vp Vr

V

[
ΓpCV,p

Vp

− ΓrCV,r

Vr

]2

T . (C.11)

We note that the mixture specific heat is greater than the mass weighted
average of the reactant and products specific heats, i.e., the first two terms
on the right hand side of Eq. (C.11).
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Again using the derivative d
dT

Vp, the mixture Grüneisen coefficient can
be obtained from Eq. (C.8),

Γ =
V

CV

[
∂P̃p

∂T
+

∂P̃p

∂V

d

dT
Vp

]
. (C.12)

The result is

Γ =
λ ΓpCV,p/KT,p + (1− λ) ΓrCV,r/KT,r

CV /KT

. (C.13)

It is readily checked that the mixture formulae for KT , CV and Γ have the
correct limits for pure products (λ = 1), pure reactants (λ = 0), and when
the reactants and products have the same EOS.

For completeness, we note an alternate derivation based on the Gibbs free
energy, Eq. (2). The fundamental thermodynamic identity, Eq. (3), can be
expressed as

dG = V dP − S dT + ∆G dλ . (C.14)

It is easy to show that the second derivatives are given by(
∂2G

∂P 2

)
T,λ

= − 1

(ρ cT )2
, (C.15a)(

∂2G

∂T 2

)
P,λ

= − CP

T
. (C.15b)

Equations (C.15a) and (2) yield Eq. (C.5). Similarly, Eqs. (C.15b) and (2)
gives for the mixed specific heat at constant pressure

CP = λ CP,p + (1− λ) CP,r . (C.16)

Finally, the mixed second derivative is(
∂2G

∂P ∂T

)
λ

= β V , (C.17)

where β = V −1(∂V/∂T )P,λ is the coefficient of thermal expansion. Combined
with Eq. (2), this gives the mixed coefficient of thermal expansion

β = φβp + (1− φ) βr , (C.18)

where φ = λVp/V is the volume fraction of the products. The equations for
CP and β are thermodynamically consistent with those for CV and Γ since
they all can be derived from the same thermodynamic potential.
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C.1 Partial derivatives with respect to λ

The partial derivatives with respect to λ,
(

∂P̃
∂λ

)
V,T

and
(

∂e
∂λ

)
V,T

, can be ob-

tained in terms of thermodynamic derivatives of the reactants and products
component EOS as follows. Taking the derivative with respect to λ, at fixed
V and T , of the pressure equilibrium condition, Eq. (C.1), yields

KT,p

Vp

d

dλ
Vp −

KT,r

Vr

d

dλ
Vr = 0 , (C.19a)

λ
d

dλ
Vp + (1− λ)

d

dλ
Vr = Vr − Vp . (C.19b)

This determines the λ derivative of the component specific volumes

d

dλ
Vp =

KT,r/Vr

(1− λ) KT,p/Vp + λ KT,r/Vr

(
Vr − Vp

)
, (C.20a)

d

dλ
Vr =

KT,p/Vp

(1− λ) KT,p/Vp + λ KT,r/Vr

(
Vr − Vp

)
. (C.20b)

Substituting into Eq. (C.19a) leads to the desired pressure derivative(
∂P̃

∂λ

)
V,T

=
Vp − Vr

λ Vp/KT,p + (1− λ) Vr/KT,r

=
Vp − Vr

V
KT .

(C.21)

Since reactions typically increases the mole fraction, we expect that Vp > Vr,
i.e., in P–T equilibrium the HE products have a lower density than the
reactants. In this case, (∂λP̃ )V,T > 0.

Taking the derivative of the mixture specific energy, Eq. (C.7), using the
chain rule, we obtain(

∂e

∂λ

)
V,T

= ep − er + λ
(
∂V ep

)
T

d

dλ
Vp + (1− λ)

(
∂V er

)
T

d

dλ
Vr . (C.22)

Substituting Eq. (C.20) and the thermodynamic relation, Eq. (C.10), we find

(
∂e

∂λ

)
V,T

=
(
hp − hr

)
−

λ
(

Γ CV

KT

)
p
+ (1− λ)

(
Γ CV

KT

)
r

λ Vp/KT,p + (1− λ) Vr/KT,r

(
Vp − Vr

)
T , (C.23)

74



where h = e + P V is the enthalpy. This can be simplified using Eq. (C.5),
Eq. (C.13) and Eq. (C.21) to yield(

∂e

∂λ

)
V,T

=
(
hp − hr

)
− Γ CV T

Vp − Vr

V

=
(
hp − hr

)
− Γ CV T

KT

(
∂P

∂λ

)
V,T

.

(C.24)

For an exothermic reaction, hp − hr < 0. Since Vp > Vr, both terms on the
right hand side of Eq. (C.24) are negative. Hence, (∂λe)V,T < 0.

C.2 Additional formula

The derivation of wave properties often depends on the sign of derivatives of
thermodynamic quantities. Additional formula are derived below. These are
obtained using the cyclic rule for variables x, y, z,(

∂y

∂x

)
z

(
∂z

∂y

)
x

(
∂x

∂z

)
y

= −1 , (C.25)

and the chain rule for f(x, y) = f̂(x, z(x, y)),

(
∂f

∂x

)
y

=
(

∂f̂

∂x

)
z
+
(

∂z

∂x

)
y

(
∂f̂

∂z

)
x

. (C.26)

Applying the cyclic rule to the variables T , P , λ (with V held constant)
yields (

∂T

∂λ

)
V,P

= − V

Γ CV

(
∂P̃

∂λ

)
V,T

. (C.27)

If as expected (∂λP̃ )V,T > 0, then (∂λT )V,P < 0.

The cyclic rule for variables T , e, λ (with V held constant) yields(
∂e

∂λ

)
V,T

= −CV

(
∂T

∂λ

)
V,e

. (C.28)

If as expected (∂λe)V,T < 0, then (∂λT )V,e > 0; i.e., the temperature goes up
as an adiabatically confined explosive burns.
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Applying the chain rule and using Eq. (C.8),(
∂P

∂λ

)
V,e

=
(

∂P̃

∂λ

)
V,T

+
Γ

V
CV

(
∂T

∂λ

)
V,e

. (C.29)

As noted previously, we expect (∂λT )V,e > 0 and (∂λP̃ )V,T > 0. Hence,
(∂λP )V,e > (∂λP̃ )V,T > 0. The dimensionless quantity (∂λP )V,e/KS is called
the thermicity. Physically, the first term on the right hand side of Eq. (C.29)
is associated with the change in mole fraction and the second term with the
heat release.

The cyclic rule applied to variable e, P , λ (with V fixed) yields(
∂e

∂λ

)
V,P

= − V

Γ

(
∂P

∂λ

)
V,e

. (C.30)

Since the thermicity is positive, we obtain (∂λe)V,P < 0.

Derivatives of the mixture entropy can be derived using Eq. (3). Most
important is the relation

T
(

∂S

∂λ

)
V,e

= −∆G . (C.31)

Since the reaction tends to minimize the entropy, the sign of ∆G = Gp −
Gr determines the direction of the reaction. In particular, reactants go to
products if ∆G < 0. Finally, from Eq. (C.24) and the relation h = G + T S,
it can be shown that (

∂S

∂λ

)
V,T

= ∆S − Γ
Vp − Vr

V
CV . (C.32)

When the reaction significantly increases the mole fraction, we expect Sp �
Sr. In this case, (∂λS)V,T > 0.

C.3 Partly burned Hugoniot loci

For a fixed wave speed, or mass flux m, on the partly burned Hugoniot loci,
the specific volume as a function of λ is determined by a system of ODEs.
In particular, from Eq. (33),

d

dλ
V =

(∂λP̃ )V,T − Γ
V

(∂λe)V,T

(ρ c)2 −m2
. (C.33)
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Using Eq. (C.28) and Eq. (C.29) the numerator reduces to (∂λP )V,e, which
is proportional to the thermicity. The denominator only vanishes at a sonic
point. Consequently, when the thermicity is positive, d

dλ
V > 0 on the sub-

sonic branch and d
dλ

V < 0 on the supersonic branch. Therefore, V (λ) would
be monotonic on each branch.

Moreover, for positive thermicity, Eq. (C.30) implies that e, for fixed V
and P , is monotonically decreasing with λ. It then follows from the Hugoniot
equation, ∆e = 1

2
(P + P0)(V0 − V ), that partly burned Hugoniot loci with

different values of λ, do not intersect in the (V, P )-plane.

We note that a phase transition, for example from a liquid to a gas, can
be viewed as an endothermic reaction. With a sufficiently large change in
mole fraction, the thermicity can be positive. In this case, a phase front will
have properties similar to those of a deflagration wave.

C.4 Caveats

A P -T equilibrium mixture EOS is equivalent to maximizing the mixture
entropy

S(V, e) = λ Sp(Vp, ep) + (1− λ) Sr(Vr, er) , (C.34)

subject to the constraints that mass and energy are conserved

V = λ Vp + (1− λ) Vr , (C.35a)

e = λ ep + (1− λ) er . (C.35b)

For a thermodynamically stable EOS, the entropy is jointly concave in V
and e. Consequently, if the reactants and products each have thermodynam-
ically stable EOS, then there is a unique equilibrium solution for Vp, ep, and
Vr, er. Moreover, the P -T equilibrium EOS is thermodynamically consistent
and thermodynamically stable.

Outside the domain on which the component EOS are thermodynamically
stable, the equilibrium EOS for a given V , e and λ may fail to exist. This can
and sometimes does occur for model EOS typically used for solid reactants.
Solid EOS models, such as the Mie-Grüneisen EOS with the principal shock
Hugoniot as the reference curve, have been developed for compression. In
expansion, sometimes by as little as V/V0 − 1 = 5%, the isothermal com-
pressibility may go negative, which would violate thermodynamic stability.
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The EOS difficulty sometime results from the choice of fitting form for the
Grüneisen coefficient, such as Γ/V = constant, in which Γ grows unphysically
large as V increases. However, the fundamental issue is due to the fact
that a solid sublimates. Hence, at high temperature and low density, it is
not physical to treat a solid as a single-phase material. It should also be
noted that the reactant vapor is not chemically the same as the products.
Moreover, rather than to simply vaporize, the large reactant molecules may
break up into smaller intermediate molecules in a pyrolysis step. When this
occurs, the assumption of a single-step reaction may not be adequate for a
description of an explosive. The EOS difficulty is most severe for calculating
the deflagration wave speed when the ahead state for the reactants is at
ambient conditions; room temperature and one atmosphere.

In addition, empirical burn models used to simulate a detonation wave
in a PBX, are typically insensitive to the thermal component of the explo-
sive. Typically, the specific heats of the reactants and products are taken
as constant. This simplification is not adequate for use with a temperature
sensitive chemical reaction rate. In particular, the explosives used in PBXs
are large molecules and the reactant specific heat has a significant variation
with temperature.
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Appendix D. Model EOS for PBX 9501

Both the reactants and products EOS models have a pressure in the Mie-
Grüneisen form

P (V, e) = Pref(V ) +
Γ(V )

V

(
e− eref(V )

)
, (D.1)

and a thermodynamically consistent temperature. The reference curve for
the reactants is the cold curve (T = 0 isotherm, which is also the S = 0
isentrope), and for the products is the isentrope through the CJ detonation
state. Consequently, for both reactants and products,

eref(V ) = eref(Vref)−
∫ V

Vref

dV ′ Pref(V
′) . (D.2)

Both EOS models are calibrated to high pressure data. In addition, eref(Vref)
for the products is chosen to be compatible with the Hugoniot equation
for the ambient reactants state and the measured CJ detonation speed and
pressure.

D.1 Reactants model

A Birch-Murnaghan fitting form is used for the pressure on the cold curve

Pc(V ) = 3
2
Kc

[
(V/Vc)

−7/3 − (V/Vc)
−5/3

]
×(

1 + 3
4

[
K ′

c − 4
][

(V/Vc)
−2/3 − 1

])
, (D.3)

where Kc is the bulk modulus and K ′
c = dKc/dP , both evaluated at the

reference specific volume Vc at which Pc = 0. The cold curve energy is

ec(V ) = ec(Vc)−
∫ V

Vc

dV ′ Pc(V
′) , (D.4)

and ec(Vc) = 0. The Grüneisen coefficient is taken to have the form

Γ(V ) = a + b
V

Vc

. (D.5)
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The temperature is based on a quasi-harmonic model for lattice vibrations
and a single temperature scale. The specific heat has the form

C(V, T ) = ĈV (T/θ(V )) , (D.6)

where the temperature scale is

θ(V )/θ(Vc) =
(

Vc

V

)a

exp
[
b (Vc − V )/V

]
, (D.7)

θ(Vc) = 1K serves to set the unit for the temperature, and the scaled specific
heat has the form

ĈV (T̃ ) =
T̃ 3

c0 + c1T̃ 2 + c2T̃ 2 + c3T̃ 3
. (D.8)

The temperature, T (V, e), is determined by the equation

e− ec(V ) =
∫ T (V,e)

0
dT ′ C(V, T ′) . (D.9)

The EOS model can be derived from a thermodynamic potential, and hence
is thermodynamically consistent; see [Menikoff, 2007, §4.3.4] and [Menikoff,
2009b, 2011].

The parameters fit to HMX diamond anvil cell compression data and
shock Hugoniot data by Menikoff and Sewell [2003] have been adjusted
slightly for PBX 9501, which is 95 wt% HMX. They are listed in table 6.
The ambient state, P0 = 10−4 GPa and T0 = 300 K, is ρ0 = 1.828 g/cm3 and
e0 = 0.1753MJ/kg. The domain of the fit is e ≥ ec(V ) and V ≤ Vc.

The fit for Pc(V ) can be extrapolated to V < 0.622 cm3/g before the
compressibility −V dPc/dV goes negative. The extension of the EOS domain
to larger V requires a modification to limit the value of Γ. For V > Vc, we
use the form

Γ(V ) = a +
(V/Vc) ε

[(V/Vc − 1)2 + ε2]1/2
b (D.10)

where ε is a parameter. This has the properties that Γ and (d/dV )Γ are
continuous at V = Vc, Γ → a + εb for large V , and d

dV
[Γ(V )/V ] < 0. The

last condition guarantees that

∂c2

∂e
= V 2

([
Γ(V )

V

]2
− d

dV

[
Γ(V )

V

])
> 0 . (D.11)
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Thermodynamic consistency requires that Γ = −d ln θ/d ln V . Therefore, θ
also needs to be modified for V > Vc,

− ln
[
θ(V )

θ(Vc)

]
= a ln

[
V

Vc

]
+b ε ln

[
(V/Vc − 1 + [(V/Vc − 1)2 + ε2]1/2

ε

]
. (D.12)

While the extrapolation to larger V is thermodynamically consistent, it is
not expected to be accurate.

D.2 Products model

The fitting form for pressure on the CJ isentrope is

PCJ(ρ) =

ργ1
∑

n a1(n)ρn for ρ < ρsw ,

ργ2
∑

n a2(n)ρn for ρ > ρsw ,
(D.13)

and for the Grüneisen coefficient

ρ Γ(ρ) =


∑

n b1(n)ρn for ρ < ρswg ,∑
n b2(n)ρn for ρ > ρswg .

(D.14)

The parameters fit to overdriven detonation wave data and release isentrope
data [Fritz et al., 1996, Hixson et al., 2000] by M. Sam Shaw [private com-
munications, LANL 2005] are given in the table 7. The polynomials have
been constructed such that P , P ′ and P ′′ are continuous at ρsw and Γ is
continuous at ρswg. The domain of the fit 0.5 < ρ < 3.4 g/cm3 has a range
0.35 < PCJ(ρ) < 90GPa. For lower densities the model losses accuracy, and
for larger densities c2 = dP/dρ < 0 and the model becomes thermodynami-
cally unstable.

For the initial state ρ0 = 1.836 g/cm3 and P0 = 0, the CJ detonation
state is given by: ρCJ = 2.4403 g/cm3, PCJ = 34.9GPa and detonation speed
D = 8.811 km/s. The Rayleigh line is tangent to the reference isentrope at
the CJ state. The energy on the CJ isentrope is defined by

eCJ(V ) = eCJ −
∫ V

VCJ

dV ′ PCJ(V
′) (D.15)

with eCJ = e0 + 1
2
(P0 + PCJ) (V0 − VCJ) where the subscript ‘0’ denotes the

ambient state of the reactants. We note that initial state, for which the
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CJ isentrope was calibrated, differs slightly from the ambient state of the
reactants EOS model. We use eCJ = 2.5385MJ/kg corresponding to ρCJ =
2.4305 g/cm3, PCJ = 34.86GPa and D = 8.773 km/s.

The temperature along the CJ isentrope is given by

TCJ(V ) = TCJ(V0) exp
[
−
∫ V

V0

dV Γ(V )/V
]

, (D.16)

where TCJ(V0) = 2650K. Off the CJ isentrope

T (V, e) = TCJ(V ) +
(
e− eCJ(V )

)
/CV , (D.17)

where the specific heat is CV = 2.09× 10−3 (MJ/kg)/K.
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Table 6: Parameters for PBX 9501 reactants EOS.

Vc 0.534418 cm3/g

Kc 14. GPa

K ′
c 9.8 —

a 0. —

b 0.9 —

ε 0.2 —

c0 0.5265 K·kg/MJ

c1 307.3 K·kg/MJ

c2 183.1×103 K·kg/MJ

c3 419.4 K·kg/MJ

Table 7: Parameters for PBX 9501 products EOS. Units for density and
pressure are g/cm3 and GPa, respectively.

ρsw = 2.10 ρswg = 2.5

n a1 a2 b1 b2

0 0.6728985375 -219.2657856 0. 61.5054

1 7.874226637 543.2739202 0.43901 -61.5554

2 -40.42313566 -546.3149119 20.5154

3 66.04682011 289.1261639 -2.2234

4 -1.205555487 -85.06903635

5 -104.6827535 13.21219714

6 124.3984562 -0.8473

7 -65.66713800

8 16.83269500

9 -1.702550000

γ1 = 1.4 γ2 = 3.0
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Appendix E. Nodal critical point

For the ahead state of the reduced model with zero viscosity, the matrix for
the critical point, Eq. (52), has the form

A =

(
1 −b
ε 0

)
, (E.1)

where ε � 1 and b = O (1) > 0. Here we analyze the structure of the critical
points, and discuss the effect of the boundary in phase space at either λ = 0
or T = Tign.

The eigenvalue equation for the matrix A is

α2 − α + ε b = 0 . (E.2)

The eigenvalues,
α± = 1

2

(
1± [1− 4ε b]1/2

)
, (E.3)

are both positve. The corresponding right eigenvectors are

~r± = (2b, 1∓ [1− 4ε b]1/2)T . (E.4)

To leading order in ε, the eigenvalues and eigenvectors are:

α1 = 1 , ~r1 = (1, ε)T ; (E.5)

α2 = ε b , ~r2 = (1, 1/b)T . (E.6)

Since A is not Hermitian, the eigenfunctions are not orthogonal. The left
eigenvectors are

~̀
1 =

1

1− ε b
(1,−b) , (E.7)

~̀
2 =

b

1− ε b
(−ε, 1) . (E.8)

Hence, A = α1 ~r1 ⊗ ~̀
1 + α2 ~r2 ⊗ ~̀

2. For the case of interest, α2 � α1.

The linearized ODEs about the critical point are

d

dζ

(
T̂

λ̂

)
= A

(
T̂

λ̂

)
. (E.9)
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Figure 16: Solution trajectories for nodal critical point corresponding to the ahead
state. Solid and dashed red lines correspond to the eigenfunction with the larger
eigenvalue. Solid and dashed black lines correspond to the eigenfunction with the
smaller eigenvalue. Dotted red lines correspond to |c1| > |c2|. Dotted black lines
correspond to |c1| < |c2|. Dotted blue lines are the portion of the trajectory for
which either λ < 0 or T < Tign; i.e., outside the physical domain.

For convenience, we assume here that the ahead state is at ζ = −∞ and that
ζ increases as the trajectory heads towards the behind state at ζ = ∞. The
solution to Eq. (E.9) with T̂ (−∞) = 0 and λ̂(−∞) = 0 is(

T̂ (ζ), λ̂(ζ)
)T

= c1 exp(α1ζ)~r1 + c2 exp(α2ζ)~r2 , (E.10)

where c1 and c2 are arbitrary constants.

The phase portrait — solution trajectories as c1 and c2 are varied — is
shown in Fig. 16 for the case with ε = 0.1 and b = 2. The noteworthy feature
is that unless c1 = 0, the slope of the trajectories asymptotically approaches
dλ/dT → ε corresponding to the eigenvector r̂1. Moreover, as ε gets smaller
the asymptotics sets in sooner. For a realistic case, ε � 1, and the larger
eigenvalue is even more dominant. This results in extreme curvature of the
trajectories very close to the critical point. Moreover, b = T−1dTh/dλ ≈
T1/T0 which may be about 10. Consequently, the angle of the sector between
the two eigenfunction directions is much smaller than shown in the figure.

Mathematically, for a repeller node, the outgoing trajectories cover a local
neighborhood of the critical point. Physically, however, there is a boundary
on phase space; namely, λ ≥ 0. Moreover, the linearization would be discon-
tinuous for T < Tign. Discarding those trajectories for which either λ < 0
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or T̂ < 0, then for any ε > 0 there would be no trajectory emanating from
the critical point that traverses the line segment λ = 0 with T̂ > 0. For the
purpose of determining a heteroclinic orbit corresponding to a deflagration
wave, this has the effect of eliminating the degree of freedom at the ahead
state normally associated with the repeller nature of the critical point.
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