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ABSTRACT

As metallic structures and devices are being created on a dimension comparable to the
length scales of the underlying dislocation microstructures, the mechanical properties of them
change drastically. Since such small structures are increasingly common in modern
technologies, there is an emergent need to understand the critical roles of elasticity, plasticity,
and fracture in small structures. Dislocation dynamics (DD) simulations, in which the
dislocations are the simulated entities, offer a way to extend length scales beyond those of
atomistic simulations and the results from DD simulations can be directly compared with the

micromechanical tests.

The primary objective of this research is to use 3-D DD simulations to study the plastic
deformation of nano- and micro-scale materials and understand the correlation between
dislocation motion, interactions and the mechanical response. Specifically, to identify what
critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and
dipole formation, pinning etc.) determine the deformation response and how these change
from bulk behavior as the system decreases in size and correlate and improve our current
knowledge of bulk plasticity with the knowledge gained from the direct observations of
small-scale plasticity. Our simulation results on single crystal micropillars and
polycrystalline thin films can march the experiment results well and capture the essential
features in small-scale plasticity. Furthermore, several simple and accurate models have
been developed following our simulation results and can reasonably predict the plastic

behavior of small scale materials.



CHAPTER 1

INTRODUCTION

The mechanical properties of materials change drastically when specimen dimensions
are smaller than a few micrometers. Since such small structures are increasingly common in
modern technologies, there is an emergent need to understand the critical roles of elasticity,
plasticity, and fracture in small structures. Small-scale structures also offer opportunities for
direct comparison between modeling and experiment at previously inaccessible scales. The
experiments provide data for validation of models, and the models provide a path for new,
physically-based understanding and prediction of materials behavior. Mechanical tests at
nanometer or micrometer scales are difficult to perform, but they provide guidance to
develop new technologies and new theories of plasticity. Experimental studies on the
mechanical behavior of small structures are not new; the first work on thin metal whiskers
(with diameters of ~100 microns) occurred more than 50 years ago [1]. The past few years,
however, have seen a major leap forward in the experimental study of small samples. We

focus here on studies of metals, highlighting examples of previous work.

1.1 Experimental observations of plasticity in single crystal

Uchic et al. recently pioneered the study of size effects in compression of 1-micron
diameter metal samples as shown in Figure 1.1 [2-6]. Cylindrical pillars with varying radii
were machined with a focused-ion beam (FIB) from single-crystal bulk samples and
compressed by a blunted nanoindentor. This pioneering work spurred similar activities from
several groups, with studies on sub-micron to many-micron sample sizes [7-14]. Studies on
face-centered cubic (fcc) metals show that flow stress increases as system size decreases,

with the onset of deviation from bulk behavior varying somewhat from material to material.
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Figure 1.1 (a)Schematic of the microcompression test, (b) Schematic of the flow response of a
microcrystal oriented for single slip, (c) Scanning electron microscope (SEM) image of a
5um-diameter microcrystal sample of pure Ni oriented for single slip, (d) SEM image of panel ¢

after testing [2].



The increased flow stress is accompanied by extremely large strain hardening at small to
moderate strains, with small samples showing higher strain-hardening rates in Figure 1.2. [2,
8, 14]. Indeed, very small samples can achieve extremely high flow stresses, e.g., a cylinder
with a diameter of about 0.2 micron in nickel can sustain a stress of up to 2 GPa [11]. This
general result that yield stress increases as system size decreases is also found in other tests
on fcc materials, including a study using an atomic force microscope (AFM) to bend gold
nanowires [15] and also in polycrystalline membranes of copper, gold, and aluminum in pure
tension [16]. Probably the most accepted explanation of these size effects is the “dislocation
starvation” model [9-11], in which dislocations are drawn to free surfaces by strong image
forces and exit the crystal. Recent work on body-centered cubic (bcc) molybdenum alloys
showed that both the initial yield stress and size-dependent hardening rate are strongly

dependent on initial dislocation density [17], an issue not well studied in the fcc metals.

Key to an understanding of these size effects is a characterization of the internal
structure of microscale samples. Some work has been done with transmission electron
microscopy (TEM), but there are limitations of the thickness of samples that can be studied
with TEM - thin foils must be cut from the samples and the results thus depend on the plane
of the foils as well as the size and orientation of the microstructures. Results from these
studies are reasonably consistent, however, showing a small net increase in dislocation
density after the initial loading [10, 12]. A recent study using a novel in situ TEM micropillar
method showed evidence of “mechanical annealing,” a sudden drop in dislocation density
upon initial loading and a subsequent small increase in density with further compression [18].
The dislocation structures before and after deformation are shown in Figure 1.3. Micro x-ray
diffraction (XRD) studies [19-21] of lattice rotations in these systems indicate approximately
the same dislocation contents as TEM measurements. Overall, it is clear that dislocation
densities and activities are greatly affected by system size, but the connection between

size-dependent strengthening and dislocation activity is not yet clearly established.
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Figure 1.2 (a) stress-strain curves for Au micropillars under compression test [65], (b)
stress-strain curves for Ni micropillars under compression test [2].



Figure 1.3 In situ TEM compression tests on a FIB microfabricated 160-nm-top-diameter Ni pillar
with <111> orientation: (a) Dark-field TEM image of the pillar before the tests; note the high
initial dislocation density, (b) Dark-field TEM image of the same pillar after the first test; the
pillar is now free of dislocations [18].

1.2 Plasticity in polycrystalline thin films

One of the most important phenomena in metallic thin films is that their strength differs
significantly from that of the corresponding bulk materials when their dimensions become
comparable to the length scales of the underlying dislocation microstructures. Although this
phenomenon has been known for quite a long time, a full understanding of thin film plasticity

has neither experimentally nor theoretically been obtained [22-23].

In general, the yield stress of metallic thin films increases with decreasing the film
thickness and/or grain size and the scaling behavior of the yield stress with varying film
thickness or grain size is described in power-law form [24]. Experimental results for
polycrystalline films reveal different scaling exponents ranging from -0.5 to -1 [25-27]. So
far, two kind models are widely used to describe the observed size effect in thin films. The
first one is Nix—Freund model [28-31] that considered dislocations channeling through the

film are forced to deposit interfacial dislocation segments at the film/substrate interface, and



explained the size dependent plasticity in single crystal thin films as a consequence of
geometrical constraints on dislocations in thin films. This kind model can give an exponent
of scaling behavior between film thickness and vyield strength close to -1. Another kind
model for thin film plasticity is based on Hall-Petch-like behavior [32-33] that dislocations
are assumed to totally pile-up at grain boundaries or the film/substrate interface and the
effective sizes of dislocation sources will shrink due to a reduction in the effective grain size
or film thickness by previously pile-up dislocations [34-35]. In contrast to Nix—Freund
models, an exponent of -0.5 on the scaling was predicted by these models. Up to now, none
of existed models seem to describe the plastic behavior of polycrystalline films in a
satisfactory manner. Undoubtedly, dislocation interactions are important in determining the
strengthening of thin films and can be more complicated than those considered in analytical
calculations. Thus, a detailed understanding of dislocation motion, multiplication and
interactions in a confined geometry is the key to explain the plastic deformation of

polycrystalline thin films.

1.3 Dislocation dynamics simulations of plasticity in single crystals

The recent increase in experimental deformation data in confined geometries has been
accompanied by a similar focus on use of modeling and simulation on small samples.
Discrete dislocation simulations, in which the dislocations are the simulated entities, offer a
way to extend length scales beyond those of atomistic simulations [36-40]. Simply put,
dislocation-based simulations (1) represent the dislocation line in some convenient way, (2)
determine either the forces or interaction energies between dislocations, and (3) calculate the
structures and response of the dislocations to external stresses. These simulations are useful
for mapping out the underlying mechanisms by providing “data” not available
experimentally on, for example, dislocation ordering, evolution of large-scale dislocation

structures (walls, cells, pile ups), dynamics (avalanches and instabilities), etc. For the



micron-scale systems described above, recent DD simulations have provided important

insights into the mechanisms that determine the size-affected mechanical response.

The first attempts to explain the micropillar results using DD simulations assumed
two-dimensional (2-D) models. Deshpande and colleagues [41-43] examined the uniaxial
deformation of 2-D simulation cells under constrained and unconstrained flow in which only
one slip system was operative. In these studies, the mean and variance of the dislocation
source strengths, obstacle spacing, and obstacle strength were selected to be independent of
the simulation-cell size. For unconstrained simulations, the size dependency displayed in
these 2-D DD simulations can be attributed to dislocation pinning, and subsequent pileups
were more likely to occur in larger cells, which resulted in stronger local fluctuations of the
stress field that lowered the applied stress needed to sustain plastic flow. Conversely, in the
constrained simulations, almost no size dependency was observed with flow-softening
behavior and all cells were able to establish internal dislocation-density gradients in order to
satisfy the boundary conditions, thus locally augmenting the internal stress field and mobile
segment population and mitigating the influences of cell size. After that, Benzerga and
colleagues [44-45] also developed 2-D DD simulations including different rules for the
effects from junction formation and source or obstacle creation. In contrast to the
investigations by Deshpande et al., Benzerga and colleagues randomly assigned each
dislocation source a length whereby the maximum possible length was dependent upon the
cell size. These 2-D DD simulations displayed a size-dependent increase in the proportional
limit with decreasing simulation-cell size, which was attributed to the change in the source
activation stress for the few largest sources in any given cell. That is, the simulated material
strength was directly related to the weakest source. However, whereas most simulated
stress-strain curves displayed little-to-no strain hardening after initial yield, in smaller cells,
dislocation pinning and subsequent blocking of sources produced strain hardening rates that

approached the elastic limit. Although 2-D DD SIMULATIONS studies demonstrated a



size-affected flow stress or strain hardening rate, the overall simulation-cell response is
unlike most experimental data, especially with regard to the change in strain-hardening

behavior at initial yield.

Recent 3-D DD simulations developed by a number of groups employing a variety of
approximations and models have some significant advantages over the aforementioned 2-D
DD SIMULATIONS ; for example, the local interactions between dislocations can be
naturally accounted for, and the motion of dislocations, especially those that interact with the
free surfaces of the microcrystal, can be more accurately modeled [5, 46-52]. In initial
studies, the set of isolated Frank-Read sources (FRs) with rigidly fixed ends was widely
employed as the starting dislocation populations [5, 46, 48-50, 52]. Tang et al., using a fixed
number of Frank-Read (FR) sources as the initial condition, stated that dislocation escape
through free surfaces plays a significant role in the size dependence of the plastic response of
single-crystals [50]. Rao et al. found that the intermittency of plastic flow in small samples
was normally caused by forest interactions [48]. Senger et al. argued that the observed size
effect is not pronounced in samples larger than 2 um and the flow stress in small pillars is
affected more strongly by dislocation reactions than in larger samples [49]. Meanwhile,
El-Awady et al. demostrated the effect of the weakest dislocation sources in samples and
cross-slip lead to additional strengthening and discontinuous on the stress-strain curves [5].
In addition, Parthasarathy et al. developed a statistical model for the flow strength of small
samples, which was entirely based on the stochastics of spiral source (single-arm source)
lengths in samples of finite size [53]. However, real dislocation structures in experiments are
much more complicated than the set of isolated FR sources used as the initial configuration
in most previous DD simulations. The recent study by Tang et al. [51] differed that the initial
source distribution is not FRs predefined; rather, used artificially generated jogged
dislocations as starting dislocation populations for their simulations while neglected the

boundary conditions and cross-slip, and showed that sources shut-down causes staircase



behavior observed in experiments. Motz et al. [47] used the dislocation structures relaxed
from high dense dislocation loops as the initial input for DD simulations, and reported the
flow stress at 0.2% plastic deformation scaled with specimen size with an exponent between
-0.6 and -0.9, depending on the initial structure and size regime. That is still under debates
since most pillars have been made from well-annealed single crystals or sputtered thin films
which do not involve such high densities of dislocation interactions [54]. Despite these
progresses, there are still many unanswered questions regarding the plasticity at small scales,
such as whether cross-slip is possible, how the image stresses induced by free surface and
confined geometries influence multiplication of dislocation sources and the effect of crystal

orientation (multi-slip versus single slip).

1.4 Dislocation dynamics simulations of plasticity in thin films

Initial attempts to explain the thin film plasticity using DD assumed two-dimensional
(2-D) models. Nicola and coworkers conducted a serial of 2-D simulations on polycrystalline
thin films and concluded that the yield strength of freestanding thin films is nearly
independent of film thickness and the size effect results from the dislocation pile-ups at
impenetrable interfaces, such as grain boundaries and passivation layers [35, 55-57].
Hartmaier et al. modeled polycrystalline films by incorporating dislocation climb in their 2-D
simulations and showed the dislocation slip mechanism will be dominant in thicker films,
while the creep mechanism prevails in ultra-thin films with thickness below 400 nm [58].
Han et al. investigated the surface induced size effects through 2-D simulations and the
results indicated that a free surface might act either as a dislocation sink or as a net
dislocation source that induced harder as well as softer deformation behaviors in a crystalline
solid [59]. However, 2-D simulations cannot capture real microstructures in materials and are
unlikely to describe thin film phenomena accurately, because dislocations are treated as

infinitely long and parallel to each other, and also dislocation interactions are almost
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neglected in 2-D DD, which are important in the plastic deformation of a real specimen.
Fortunately, full 3-D simulations can be used to understand these features of thin film
mechanical behavior. In 3-D DD simulations, every dislocation configuration is decomposed
into a succession of elementary segments, which can move under the external forces in
discrete steps and generate more realistic dislocation structures. Pant et al. [60] employed
3-D DD simulations to study the interaction of threading dislocations in face-centered cubic
(FCC) metal films. They found that different dislocation interactions dominate film behavior
in different ranges of film thickness and applied strain, thus simple analytical calculations are
unlikely to describe film phenomena. von Blanckenhagen et al. [61] investigated the plastic
deformation of polycrystalline FCC metal thin films by simulating the dynamics of discrete
dislocations in a representative columnar grain. Their simulations showed an inverse
dependence of the flow stress on film thickness and the dependence of the hardening rate on
film thickness can be reproduced by using an initial dislocation source density independent
of grain dimensions. Espinosa et al. [62-63] assumed all dislocation sources were located at
grain boundaries in their 3-D DD simulations and proposed a new interpretation of size scale
plasticity of thin films in their study based on the probability of activating grain boundary
dislocation sources. Recently, Fertig and Baker [64] conducted 3-D DD simulations on single
crystal thin films and demonstrated that weak dislocation interactions still survive at high
stress level, due to the inhomogeneity of the stress field in the film, and the mean free path
for dislocation motion is closely related to the inhomogeneous stress distribution. So far,
none of previous DD simulations on thin films considered stress relaxation mechanisms in
their models, such as cross-slip of dislocations and dislocations transmitting at grain
boundaries, and thus it is still unclear how these dynamic behaviors of dislocations will affect
mechanical properties of polycrystalline thin films. In order to generate simple, accurate
models that can be used to predict film behavior, there is an emergent need to identify the
critical features in the plastic deformation of polycrystalline thin films, which can be

accomplished by full 3-D DD simulations including basic dislocation mechanisms.



11

1.5 Thesis objectives

The primary objective of this thesis is to incorporate boundary-element method (BEM)
into 3-D DD SIMULATIONS to calculate the surface forces and incorporate the
thermally-activated cross-slip to study the plastic deformation of nano- and micro-scale
materials and understand the correlation between dislocation motion and the mechanical
response. Specifically, to identify what critical events (i.e., dislocation multiplication,
cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the
deformation response and how these change from bulk behavior as the system decreases in
size and correlate and improve our current knowledge of bulk plasticity with the knowledge

gained from the direct observations of small-scale plasticity.



12

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Herring C, Galt JK. Elastic and plastic properties of very small metal specimens.
Physical Review 1952;85:1060.

Dimiduk DM, Uchic MD, Parthasarathy TA. Size-affected single-slip behavior of pure
nickel microcrystals. Acta Materialia 2005;53:4065.

Dimiduk DM, Uchic MD, Rao SI, Woodward C, Parthasarathy TA. Overview of
experiments on microcrystal plasticity in FCC-derivative materials: selected challenges
for modelling and simulation of plasticity. Modelling and Simulation in Materials
Science and Engineering 2007;15:135.

Dimiduk DM, Woodward C, LeSar R, Uchic MD. Scale-free intermittent flow in
crystal plasticity. Science 2006;312:1188.

El-Awady JA, Wen M, Ghoniem NM. The role of the weakest-link mechanism in
controlling the plasticity of micropillars. Journal of the Mechanics and Physics of
Solids 2009;57:32.

Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence
strength and crystal plasticity. Science 2004;305:986.

Brinckmann S, Kim JY, Greer JR. Fundamental differences in mechanical behavior
between two types of crystals at the nanoscale. Physical Review Letters 2008;100.
Frick CP, Clark BG, Orso S, Schneider AS, Arzt E. Size effect on strength and strain
hardening of small-scale 111 nickel compression pillars. Materials Science and
Engineering a-Structural Materials Properties Microstructure and Processing
2008;489:3109.

Greer JR, Nix WD. Size dependence of mechanical properties of gold at the
sub-micron scale. Applied Physics a-Materials Science & Processing 2005;80:1625.
Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation.
Physical Review B 2006;73.

Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at
the micron scale in the absence of strain gradients. Acta Materialia 2005;53:1821.

Ng KS, Ngan AHW. Stochastic nature of plasticity of aluminum micro-pillars. Acta
Materialia 2008;56:1712.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

13

Ng KS, Ngan AHW. Stochastic theory for jerky deformation in small crystal volumes
with pre-existing dislocations. Philosophical Magazine 2008;88:677.

Volkert CA, Lilleodden ET. Size effects in the deformation of sub-micron Au columns.
Philosophical Magazine 2006;86:5567.

Wu B, Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold
nanowires. Nature Materials 2005;4:525.

Espinosa HD, Prorok BC, Peng B. Plasticity size effects in free-standing submicron
polycrystalline FCC films subjected to pure tension. Journal of the Mechanics and
Physics of Solids 2004;52:667.

Bei H, Shim S, Pharr GM, George EP. Effects of pre-strain on the compressive
stress-strain  response of Mo-alloy single-crystal micropillars. Acta Materialia
2008;56:4762.

Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM. Mechanical annealing and
source-limited deformation in submicrometre-diameter Ni crystals. Nature Materials
2008;7:115.

Budiman AS, Han SM, Greer JR, Tamura N, Patel JR, Nix WD. A search for evidence
of strain gradient hardening in Au submicron pillars under uniaxial compression using
synchrotron X-ray microdiffraction. Acta Materialia 2008;56:602.

Maass R, Grolimund D, Van Petegem S, Willimann M, Jensen M, Van Swygenhoven
H, Lehnert T, Gijs MAM, Volkert CA, Lilleodden ET, Schwaiger R. Defect structure
in micropillars using x-ray microdiffraction. Applied Physics Letters 2006;89.

Maal3 R, Van Petegem S, Zimmermann J, Borca CN, Van Swygenhoven H. On the
initial microstructure of metallic micropillars. Scripta Materialia 2008;59:471.

Kraft O, Volkert CA. Mechanical testing of thin films and small structures. Advanced
Engineering Materials 2001;3:99.

Nix WD. Mechanical-properties of thin-films. Metallurgical Transactions a-Physical
Metallurgy and Materials Science 1989;20:2217.

Kraft O, Freund LB, Phillips R, Arzt E. Dislocation plasticity in thin metal films. Mrs
Bulletin 2002;27:30.

Keller RM, Baker SP, Arzt E. Quantitative analysis of strengthening mechanisms in
thin Cu films: Effects of film thickness, grain size, and passivation. Journal of
Materials Research 1998;13:1307.



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

14

Venkatraman R, Bravman JC. Separation of film thickness and grain-boundary
strengthening effects in al thin-films on si. Journal of Materials Research 1992;7:2040.

Yu DYW, Spaepen F. The yield strength of thin copper films on Kapton. Journal of
Applied Physics 2004;95:2991.

Freund LB. The stability of a dislocation threading a strained layer on a substrate.
Journal of Applied Mechanics-Transactions of the Asme 1987;54:553.

Freund LB. The mechanics of dislocations in strained-layer semiconductor-materials.
Advances in Applied Mechanics, Vol 30, vol. 30. San Diego: Academic Press Inc,
1994. p.1.

Freund LB, Nix WD. Critical thickness condition for a strained compliant
substrate/epitaxial film system. Applied Physics Letters 1996;69:173.

Nix WD. Yielding and strain hardening of thin metal films on substrates. Scripta
Materialia 1998;39:545.

Hall EO. The deformation and ageing of mild steel .3. discussion of results.
Proceedings of the Physical Society of London Section B 1951;64:747.

Petch NJ. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute
1953;174:25.

Friedman LH, Chrzan DC. Continuum analysis of dislocation pile-ups: influence of
sources. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and
Mechanical Properties 1998;77:1185.

Nicola L, Van der Giessen E, Needleman A. Discrete dislocation analysis of size
effects in thin films. Journal of Applied Physics 2003;93:5920.

Devincre B, Kubin L, Hoc T. Physical analyses of crystal plasticity by DD simulations.
Scripta Materialia 2006;54:741.

Ghoniem NM, Tong SH, Sun LZ. Parametric dislocation dynamics: A
thermodynamics-based approach to investigations of mesoscopic plastic deformation.
Physical Review B 2000;61:913.

Gulluoglu AN, Srolovitz DJ, Lesar R, Lomdahl PS. Dislocation distributions in 2
dimensions. Scripta Metallurgica 1989;23:1347.

Kubin LP, Canova G. The modeling of dislocation patterns. Scripta Metallurgica Et
Materialia 1992;27:957.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

15

Zbib HM, de la Rubia TD, Rhee M, Hirth JP. 3D dislocation dynamics: stress-strain
behavior and hardening mechanisms in fcc and bcc metals. Journal of Nuclear
Materials 2000;276:154.

Balint DS, Deshpande VS, Needleman A, Van der Giessen E. Size effects in uniaxial
deformation of single and polycrystals: a discrete dislocation plasticity analysis.
Modelling and Simulation in Materials Science and Engineering 2006;14:409.
Deshpande VS, Needleman A, Van der Giessen E. Plasticity size effects in tension and
compression of single crystals. Journal of the Mechanics and Physics of Solids
2005;53:2661.

Deshpande VS, Needleman A, Van der Giessen E. Discrete dislocation plasticity
analysis of single slip tension. Materials Science and Engineering a-Structural
Materials Properties Microstructure and Processing 2005;400:154.

Benzerga AA, Shaver NF. Scale dependence of mechanical properties of single crystals
under uniform deformation. Scripta Materialia 2006;54:1937.

Guruprasad PJ, Benzerga AA. Size effects under homogeneous deformation of single
crystals: A discrete dislocation analysis. Journal of the Mechanics and Physics of
Solids 2008;56:132.

El-Awady JA, Biner SB, Ghoniem NM. A self-consistent boundary element,
parametric dislocation dynamics formulation of plastic flow in finite volumes. Journal
of the Mechanics and Physics of Solids 2008;56:2019.

Motz C, Weygand D, Senger J, Gumbsch P. Initial dislocation structures in 3-D
discrete dislocation dynamics and their influence on microscale plasticity. Acta
Materialia 2009;57:1744.

Rao SI, Dimiduk DM, Parthasarathy TA, Uchic MD, Tang M, Woodward C. Athermal
mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete
dislocation simulations. Acta Materialia 2008;56:3245.

Senger J, Weygand D, Gumbsch P, Kraft O. Discrete dislocation simulations of the
plasticity of micro-pillars under uniaxial loading. Scripta Materialia 2008;58:587.

Tang H, Schwarz KW, Espinosa HD. Dislocation escape-related size effects in
single-crystal micropillars under uniaxial compression. Acta Materialia 2007;55:1607.
Tang H, Schwarz KW, Espinosa HD. Dislocation-source shutdown and the plastic
behavior of single-crystal micropillars. Physical Review Letters 2008;100.



[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

16

Weygand D, Poignant M, Gumbsch P, Kraft O. Three-dimensional dislocation
dynamics simulation of the influence of sample size on the stress-strain behavior of fcc
single-crystalline pillars. Materials Science and Engineering a-Structural Materials
Properties Microstructure and Processing 2008;483:188.

Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR. Contribution to size
effect of yield strength from the stochastics of dislocation source lengths in finite
samples. Scripta Materialia 2007;56:313.

Lee SW, Han SM, Nix WD. Uniaxial compression of fcc Au nanopillars on an MgO
substrate: The effects of prestraining and annealing. Acta Materialia 2009;57:4404.
Nicola L, Van der Giessen E, Needleman A. Two hardening mechanisms in single
crystal thin films studied by discrete dislocation plasticity. Philosophical Magazine
2005;85:1507.

Nicola L, Van der Giessen E, Needleman A. Size effects in polycrystalline thin films
analyzed by discrete dislocation plasticity. Thin Solid Films 2005;479:329.

Nicola L, Xiang Y, Vlassak JJ, Van der Giessen E, Needleman A. Plastic deformation
of freestanding thin films: Experiments and modeling. Journal of the Mechanics and
Physics of Solids 2006;54:2089.

Hartmaier A, Buehler MJ, Gao HJ. Multiscale modeling of deformation in
polycrystalline thin metal films on substrates. Advanced Engineering Materials
2005;7:165.

Han CS, Hartmaier A, Gao HJ, Huang YG. Discrete dislocation dynamics simulations
of surface induced size effects in plasticity. Materials Science and Engineering
a-Structural Materials Properties Microstructure and Processing 2006;415:225.

Pant P, Schwarz KW, Baker SP. Dislocation interactions in thin FCC metal films. Acta
Materialia 2003;51:3243.

von Blanckenhagen B, Arst E, Gumbsch P. Discrete dislocation simulation of plastic
deformation in metal thin films. Acta Materialia 2004;52:773.

Espinosa HD, Berbenni S, Panico M, Schwarz KW. An interpretation of size-scale
plasticity in geometrically confined systems. Proceedings of the National Academy of
Sciences of the United States of America 2005;102:16933.



17

[63] Espinosa HD, Panico M, Berbenni S, Schwarz KW. Discrete dislocation dynamics
simulations to interpret plasticity size and surface effects in freestanding FCC thin
films. International Journal of Plasticity 2006;22:2091.

[64] Fertig lii RS, Baker SP. Dislocation dynamics simulations of dislocation interactions
and stresses in thin films. Acta Materialia 2010;58:5206.

[65] Kim J-Y, Greer JR. Tensile and compressive behavior of gold and molybdenum single
crystals at the nano-scale. Acta Materialia 2009;57:5245.



18

CHAPTER 2

DISLOCATION DYNAMICS SIMULATIONS

In recent years, dislocation dynamics (DD) simulations have attracted lots of interest
because of its power to simulate materials deformations and study the plastic flow in
crystalline materials [1-12]. There are several versions of 3D DD SIMULATIONS around
the world, most of which represent dislocation loops as many straight or curved segments
based on single dislocation theory and simulate the collective behavior of dislocation
ensembles. The parametric dislocation dynamics (PDD) [9-10] developed by Ghoniem and
colleagues has been employed in our studies, which avoided the abrupt variation or
singularities associated with the self-force at the joining nodes in between segments and
easily handled drastic variations in dislocation curvature without excessive re-meshing. In

this chapter, the formulation of PDD is briefly introduced and summarized.

2.1 The displacement field of dislocations in isotropic crystals

A dislocation is formed by making a hypothetical cut through a sold piece of material,
followed by rigid translation of the negative side of (S), while holding the positive side (S*)
fixed, as illustrated in Figure 2.1. Define the dislocation line vector t as the tangent to the
dislocation line. The Burgers vector b is prescribed as the displacement jump condition
across the surface (S). The elastic field is based on the Burgers equation [13], which defines
the distribution of elastic displacements around dislocation loops. Referring to Figure 2.1, we
define the dislocation loop by cutting over the surface S and translating the negative side by
the vector b, while holding the positive side fixed. Along any linking curve y, the closed line

integral of the displacement vector is b. Thus,
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bi :i/ui,jde (2.1)

For a given force distribution f,(t) in the medium, the displacement vector is given by

_ Cave (P13
Uk(l’)— aIIspaceka(r r)fm(r)d ' (2.2)

where Gyn(r-f) = Gim(R) are the isotropic elastic Green’s functions,

1 A+ u
Gm(R) = %|:5ka,pp _(/1+ ZﬂjR,km:| (2.3)

Here 1 and 4 are Lamé constants, and d;; is Kronecker delta. For the volume V, bound by the

surface S, and upon utilization of the divergence theorem for any rank tensor T

IVTidV :LTdSi 04

We obtain

U (r) = .[v Gjp(r—r)fi(rydv - L U; (N Cij Gy, (r —1)dS;

+ISUi(f)Cijlekm,| (r-r)ds; (25)

The second and third terms in eq. (2.5) account for displacement and traction boundary
conditions on the surface S, respectively. Assuming that body forces are absent in the

medium, as well as zero traction and rigid displacements b; across the surface S, we obtain

Up, (r) =D _L CijkiGym, (r —1)dS; , (2.6)
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Figure 2.1 Creation of a dislocation by a cut on the surface (S) [9].
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For an elastic isotropic medium, the fourth-rank elastic constant tensor is given in terms of
Lamé constants x and 4, and thus Ciju = u(didik + dikdik) + Adijon. Substituting in eq. (2.6) and

rearranging terms, the displacement vector is given by

1 1
um(r)=£jsme,ppjdsj+8ﬂj(b, R 55idSy —biR o0dS:)

L1 At

dS; —bR S (2.7)
Ar A+2u s DR iadS;)

(b R ppm

Equation 2.7 can be converted to a line integral through Stokes’ theorem:

: 1
Uj = —'—+g {‘Cﬁklbl R pp +Egkmnb” Rymi}d k (28)

where eijx IS permutation tensor and Q is the solid angle formed by the point of interest with
respect to the dislocation line. As shown in Figure 2.2, the solid angle differential dQ is the

ratio of the projected area element dS to the square of R. Thus:

o IdQ Le.ds _L X;;Si :_%L R S, 29

where e = R/R = set {e;} is a unit vector along R = set {X;}, and R ppi = —2Xi/R3. The solid
angle can be computed as a line integral, by virtue of Stokes theorem. Taking the derivatives

of Q in eq. (2.9), and applying Stokes theorem, we obtain:

1 1
Q; :EIS(R’pp"de_R’pp“dsl) 2§ 8jk|R,pp|d|k (2.10)

Thus, the displacement field of a single dislocation loop could be determined by eq. (2.8).
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j—y

Figure 2.2 Representation of the solid angle, Q, at a field point (Q) away from the dislocation loop
line containing the set of points (P) [10].

2.2 Strain and stress fields

Once the displacement field is determined, the strain tensor can be obtained from
deformation gradients, while the stress tensor is readily accessible through linear constitutive
relations. If we denote the deformation gradient tensor by uj, the strain tensor & in
infinitesimal elasticity is its symmetric decomposition:

(g -ug)
Uij = 25 Ui U5 Wi = Ui )= &+ @) (2.11)
where wj; is the rotation tensor. Taking the derivatives of eq. (2.11) yields the deformation

gradient tensor
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1
ui,j = ——'-i——ﬂ_ C|:€ik|b| R, ppi +E5kmnbn R,mij:|d Ik (2.12)

from which the following strain tensor is obtained

' 87 87

1 P2 o Y = QS
§C|:E (PR + &R j), op +M:|dlk

(2.13)

The derivatives of the solid angle Q are given by eq. (2.10), which can be used to derive the

strain tensor components as line integrals

1

gij zg o dlk

1 EkmnPn R mii
{E(gik'b' Rj+&jubRi =R —&ibjR)) pp +M}

(2.14)

To deduce the stress tensor, we use the isotropic stress-strain relations of linear elasticity.

First, the dilatation is obtained by letting both i and j = r in eq. (2.14)

_il—ZV
87 1-v

Erp = §C gkmnbnR,mrrdlk (2.15)

Using the stress-strain relations aj; = 2ueij + Aerrdij , We can readily obtain the stress tensor

_ Moy

i = 4

1 1
§C |:E R’mpp(gjmmd li + &imnd Ij )+ Egkmn(R’ijm_gin’ ppm)dlk} :

(2.16)
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2.3 Self force of dislocations

Once the stress and strain tensors are found, elastic self-energy can be obtained. By
considering an infinitesimal variation in the position of the dislocation loop over a time
interval o¢, an expression for the sefl-energy of the loop can be formulated. This formulation
is developed by Gavazza and Barnet and presented by Ghoniem is given as a single line

integral over the dislocation loop C

Userr = IQ [Gijd‘c"ij ](S)dQ = §C f(x,a,p)edr

_ § ({E(t) —(E(t)+ E"(t))ln(i)}lc— J(L, P)]n o 5t]ds| + [0 ]core (2.17)
c -

where n is normal to the dislocation line vector t on the glide plane, and ¢ =|b/2| is the
dislocation core radius [14]. The first term results from loop stretching during the
infinitesimal motion, the second and third are the line tension contribution, while J(L,P) is a
non-local contribution to the self-energy. The dominant contributions to the self-energy (or
force) are dictated by the local curvature x, and contain the pre-logarithmic energy term E(t)
for a straight dislocation tangent to the loop at point P, and its second angular derivative

E"(t). [0U]core IS the contribution of the dislocation core to the self-energy. Defining the angle

between the Burgers vector and the tangent as a:COS_l(TTﬁ)’ Gore [15] showed that a

convenient form of the self-energy integral for an isotropic elastic medium of v = 1/3 can be

written as
Usar =, {— HE(@) + E"(@)]In(-)
oK

2 20— 2.18
4 07 & 21+cos” « L= 2cos" a—1 n-5r\ds\ (2.18)
64 2
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where the energy prefactors are given by E(a) = [ub*/4x(1-v)](1-vcos?a), E”(a) is its second
angular derivative, and i is the average curvature of the loop.

The self force can be thought of as line tension in the dislocation loop. The direction of this
force is directed in, towards the center of curvature of the loop. The self force per unit length

is found as follows

U
0— ) )
E=—L=—K[E(a)+E"(a)]|n(i)+ﬂb2 » 21+C0s" « s 2c0s" a1 0
L or oK 64 27

(2.19)

2.4 Parametric dislocations

3-D dislocation loop can be reduced to a continuous line. The parametric dislocation is
different from other methods that represent dislocation poops am many straight segments
[3-8, 11-12]. In this method, the dislocation line is segmented into (ns) arbitrary curved
segments, labeled (1 <j <ng), as shown in Figure 2.3(a). For each segment, we define P(u) as
the position vector for any point on the segment, T(u) = Tt as the tangent vector to the
dislocation line. The space curve is then completely described by the parameter u, if one
defines certain relationships which determine P(u). As shown in Figure 2.3(b), segment j is
expressed as a function of a variable u which is from 0 to 1, and the positions of two

dislocation nodes:

Npr

PO W)= Ciua; (2.20)
i=0

where Npg is the number of total generalized coordinates at two ends of the loop segment,

Ci(u) are the general shape functions, q; are general coordinates of dislocation nodes.
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b
da Segment 2 P(0) g u=0
Y 4
VAL
T(u)
3 .
A P(u) - B(1)
Segment n A |
B} - -2 '
» ()

Figure 2.3 Parametric representation of dislocation lines. (a) A dislocation loop is divided into
segments connecting dislocation nodes; (b) a curved dislocation segment between two nodes [10].

In PDD used in this thesis, dislocation loops are divided into segments that are
represented as cubic spline curves, which could approximates self-force on a dislocation as a
simple function of its curvature and allow for continuity of the self-force along the entire
dislocation loop to capture non-linear deformations of the dislocation line itself. For cubic
spline segments, we use the following set of shape functions and their associated degrees of

freedom, respectively:

Ci(u) = 2u°-3u’+1
Co(u) = —2u®+3u?
Cs(u) = u*-2u®+u
Ciu) = u—u?

q = PY0)

9. = PYQ)

as = T90)
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g = TOQ)

where P9(0) and T?(0) are position and tangent vectors of the beginning point of segment j
where u = 0, and P9(1) and T9(1) are the position and tangent vectors of the ending point of

segment j where u = 1.

Following section 2.2, the strain field and stress filed tensors at any point due to Njgop
dislocation loops that are divided into Nsg segments can be written as fast numerical sum
over: quadrature points (1 < a < Qmax) associated with weighting factors (w,), loop segments

(1 < <Ns), and number of ensemble loops (1 <y < Nioop) [9]:

Nioop N Qpax N
£i =§IZTZ pa 8kmfjm”

y=1 =1 a=1
1 (2.21)
+§(5ik|b| Ri+éebRi—&ubiR) —&ib; R,I),ppjxk,u
N|OOD Ng Qpmax
Y7, 1
Oij _4_ bna)o{ R1mpp (gjmmxi,k +‘9iman,u)
T Y2151 a=1
1 (2.22)

2.5 Equations of motion

A derivation based on thermodynamics has been developed to obtain a variational form
for the equations of motion (EOM) for dislocation loops [9, 16]. The effects of inertia on
dislocation motion can become important under conditions of very high strain rates, such as
during shock propagation. In most other situations including the cases in this thesis, inertia

can be safely ignored. This means that, to a good approximation, there is no need to worry
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about the acceleration and masses of the dislocations. Motion in this regime is often called
over-damped motion, where the force determines the instantaneous velocity, leading to a

first-order differential equation of motion:

§C (fkt (t) - BV, )5"k dsj=0 (2.23)

where B, Is the resistive matrix which is related to the mobility of dislocations, V, is the
velocity of dislocations, and ' = fs + fo + fpx is the total force acting on the dislocations and
is summation of the self-force fs of dislocations, the osmotic force fo induced by
nonequilibrium point defects on dislocations [17] and the Peach-Koehler force fpk, which can

be written as:
fok :((aapp+aint+aimg)-b)xt (2.24)

where b is the burgers vector of dislocations, t is the tangent vector of the dislocation lines,
oapp IS the applied stress field, aintis the stress field from interaction of dislocations and &ing is

the image stress field described in Chapter 3.

Suppose that the dislocation line is divided into Ns segments, by applying the Galerkin

method and using the fat-sum strategy [10], the equation of motion (2.24) can be written as:

N total

F = ZFKIQI t (2.25)
=1

where [F] is the general force load, [7] is the general resisitivity matrix and [Qy] is the
general coordinates of dislocation nodes. By solving this equation dislocation positions are

obtained.

2.6 Simulation procedure
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The simulation procedure for a typical DD simulation is illustrated in this section, which
is used for a uniaxial load applied to the deformation of materials. The corresponding

microstructure evolution and the stress-strain curve are obtained from the results.

The loading is applied through a constant strain rate. Define

c=£"+¢P (2.26)

as the applied strain rate, where &° is the elastic strain rate and & the plastic strain rate. The

plastic strain rate is obtained from the motion of dislocations as

= 1 Nmtla a(b a a b)
& _NZ‘V‘ ®n“+n“®b (2.27)
i=1

where V is the volume of the simulated crystal, Ny is the total number of dislocation
Ia

segments, |“ is the length of dislocation segment i moving on the slip plane a, and V" is the

corresponding moving velocity of the segmenti. b;and n” are the Burgers vector of

dislocation segment i and the normal of slip plane o, respectively.

The elastic strain rate is defined as:

-e 0‘
& = £ (2.28)

where E is the Young’s modules.

Substituting eq. 2.27 and 2.28 into eq. 2.26, we can obtain the expression of the relation

of applied stress and strain rate as

c=E(c-¢£P) (2.29)
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oL ot

ot

Because of 6=

, €Q. 2.29 leads to

oM =o' +Est(c—£P) (2.30)
where ot is the time step.

In simulations, the plastic strain rate is calculated from the motion of dislocations. Using
eq. 2.30 we can obtain the strain-stress curves. The simulations will directly relate the
dislocation motion at the microscale to the macroscale mechanical properties, which provides

a way to study the material behaviors.
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CHAPTER 3

IMAGE STRESSES IN DISLOCATION DYNAMICS SIMULATIONS

In finite volume, free surface boundary condition plays an important role on the plastic
deformations, since dislocation motions are limited by the confined geometries. DD
SIMULATIONS at small scales mush solve the coupling between surface effect on
dislocations and surface deformation caused by dislocation loop evolution. In 2D problems,
this process is relatively easy as dislocations are either infinite, semi-infinite straight long, or
parallel to the surface face. However, in 3D problems, the surface effects become more

complex, because dislocation loops are curved and not necessarily parallel to the free surface.

The formulation and solution of the elastic boundary value problem of dislocations has
been pursued by a number of authors in the case of bounded crystals. Van der Giessen and
Needleman [1] set up a formalism of this problem based on the principle of superposition in

linear elasticity, the total displacement and stress fields are given as

where #@; and 6; are the displacement and stress fields in an infinite medium from all

dislocations, while ;;

; and §;;

; are the image fields that enforce the boundary conditions.

Following this procedure, Fivel and colleagues implemented the Boussinesg-point-force
method in DD SIMULATIONS to study the problems containing half space and
free-standing thin films [2-3]. Liu and Schwarz successfully evaluated the image field for
dislocations intersecting a free surface with high accuracy by Boussinesq-Cerruti formalism.
Lemarchand et al. approached the boundary problem in a crystal with a dynamic dislocation
configuration by using the discrete-continuum method to solve equilibrium and compatibility

conditions in a dislocated material containing interfaces [4]. Khraishi and Zbib employed an
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image segment and a distribution of prismatic rectangular dislocation loops padding the
surface to obtain the segment near a free surface is obtained the image stress-field of a
subsurface dislocation segment near a free surface [5]. Tang et al. [6] presented a boundary
value problem formulation for the image field, in which the singular part of the image field
for straight dislocations is analytically considered, while the rest of the image field is
computed by applying a non-singular traction term using the finite element method (FEM).
Recently, Weinberger and Cai decomposed the traction force on the free surface into Fourier
modes by a discrete Fourier transform and obtained the image stress field by superimposing

analytic solutions in the Fourier space [7-8].

In all of these works, the stress field of dislocations in bounded domains was evaluated
with a reasonable accuracy. However, most of them have to be restricted to the simulation of
plastic properties in nano- or submicronic scales containing very few dislocations (although
the density can be high). The simulations with samples sizes from half micron to several
microns containing free interfaces appear to be out of reach for the moment in above
methods. Currently, only two attempts have successfully accomplished this task. One work is
done by Weygand and colleagues who presented an approximate solution of the image stress
problem in the spirit of combination of the virtual dislocation technique and coarse-meshed
FEM [9]. Another method has been developed by El-Awady and coworkers to compute the
image stress field of dislocations in micropillars by using boundary element method (BEM)

[10].

The BEM belongs to superposition methods and has several advantages over the FEM

[11]:

1. Less data preparation time. This is a direct result of the 'surface-only’ modelling (i.e.
the reduction of dimensionality by one). Thus the analyst's time required for data

preparation (and data checking) for a given problem should be greatly reduced.
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2. High resolution of stresses. Stresses are accurate because no further approximation is
imposed on the solution at interior points, i.e. solution is exact (and fully continuous)
inside the domain.

3. Less computer time and storage. For the same level of accuracy, the BEM uses a
lesser number of nodes and elements (but a fully populated matrix) as the level of
approximation in the BEM solutions is confined to the surface

In this thesis, image fields of dislocations will be evaluated by coupling the BEM with

PDD method.

3.1 Boundary element method

The direct boundary element formulation for elastostatics problems can be derived from

Bett’s reciprocal work theorem [12], which states that work done by the stresses of system (u;,

i, bj) on the displacements of system (u;, t;, bf) is equal to the work done by the stresses of
system (u;, t;, bf) on the displacements of system (u;, t;, b;); uj and u; are displacements; t;

and t are tractions; bj and b; are body forces in the domain V with boundary S:
Jtuids+[ budv = [ tuds+| bludv (3.2)

The boundary integral equation for elastostatic problems can be derived by taking the

body force br to correspond to a point force in an infinite sheet, represented by the Dirac

delta function A(x — X) as
b’ =A(x—X)e,

where the unit vector component e; corresponds to a unit positive force in the i direction

applied at X and x, X € V. In three-dimensional problems, e;jis a pure concentrated force.
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The Dirac delta function has the property

J, 909Ax=X)dv =g(X)

Using this property, the last integral in eq. 3.2 can be written as
[, budv = [ A(x—X)eudV =u,(X)e, 33)

The displacement and traction fields corresponding to the point force solution can be written

as
u; =U, (X, x)e, (3.4)
and
t =T, ;(X,x)e; . (3.5)
From the above solutions and eq. (3.3), it can be seen that eq. (3.2) can be written as

u, (X) :Luij(x,x)tj(x)ds

_ L Tij (X , X)Uj (X)dS + .LUij (X , X)bj (X)dV (3.6)

where X € S. The above equation is known as the Somigliana’s identity for displacements. It
relates the value of displacements at an internal point X to boundary values of the
displacements and tractions. Equation (3.6) can be written in matrix form for

three-dimensional problems as
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U, U, U, U, |t
U, :L U, U, Uy it (dS
Us Uy, Us Ut
T11 T12 T13 U, Ull U12 UlS b1 (3.7)
_L T T T |ju; dS"‘J.V U, Uy Uy [ib, pdV
To Teo TosUs Uy Uz Ug b,

The strains at any interior point can be obtained by differentiating the displacements in eq.

(3.6) with respect to the source point X to give

u; . (X) :Isuij,k(x’x)tj(x)ds
3.8
= [Ty O U (0dS + [ Uy, (X, )y (x)dV (38)
where Uijjx and T« are derivatives of the fundamental solutions. Finally, Somigliana's

identity for stresses can be obtained by substituting eq. (3.8) into Hooke's law oj =

2V]J/(1-2V)5ij8kk+2u8ij, to give

oy (X) = L Di; (X, X)t, (x)dS

B ..-s Skij (X J X)uk (X)dS +L Dkij (X , x)bk (X)dV (3.9)

where Dy and Byj are obtained from Uj;« and Tij, and the application of Hooke's law.

Navier's equation can now be written for a unit point force applied to the body at a point

X, as

;55 + ~ lLlj’ji—l-A(X—X)ei =0

1-2v (3.10)
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The most popular technique for deriving the fundamental solutions is through the use of the
Galerkin vector, G;. The point force solution in an infinite medium was originally derived by
Lord Kelvin, and is known as Kelvin's fundamental solution. The displacements are

expressed in terms of the Galerkin vector as

U, = Gi,kk - ﬁe‘k,ik, (3.11)
Substituting (3.11) into (3.10) gives
Gi —ﬁew +(1+‘V)(Gj,kkij —ﬁjek,jk” +A(X—X)g =0
(3.12)
which can be simplified to
UG i + A(x—X)e =0 (3.13)

since Gk,ikjj = Gk,jjki, Gj,kkjj = Gk,jjki and Gk,jkij = Gk,jjki- Equation (3.13) can also be written as
2 2
uvs(V°G) +A(x—X)e; =0 . (3.14)

The solution of (3.14) is well known from the potential theory and is given by

1
2
VG =——¢ (3.15)

A

for three-dimensional problems. The Galerkin vector is given by

G =——re
[ 87Z'/J i (3.16)
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Substituting the derivatives of (3.16) into (3.11) gives

1 1
Ui " 8u 1€ _mr,ikek (3.17)

Now noting that r jx = (ik-r it )/r and r x = 2/r, eq. (3.17) can be rewritten as

1
u = 3—4v)o. +r.r.le.
From (3.4), we have
U (X.X) = [(B—a)5, +rr ]
L 167701 —Vv)r o (319)

where U;j(X,x) represents the displacement in the j direction at point x due to a unit point
force acting in the i direction at X. The traction fundamental solution is obtained from (3.18),
through the usual displacement-strain and strain-stress relationships, and by noting that t; =

ajin;, to give

- -1 2{6r
8zru(l—v)r< ~on

[(1—21/)5ij +3r,ir'j]

—(@-2v)(n;r; —n;r;)}e,

(3.20)

where n; denotes the components of the outward normal at the field point x. Again from (3.5),

we have
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Ti,j(X,X)— 1 { [(1 2v)o, +3r;r ]

aul=v)r’

—(@-2v)(n;r; —n;r;)}
(3.21)

where T;i(X, X) represents the traction in the j direction at point x due to a unit point force

acting in the i direction at X. Differentiating (3.19) and (3.21) with respect to X gives

1
Ui (X, X) = 3—4v)o,r, +3r,r,;r, —o0,r — oI
Ij,k( ) 1672'/,!(1—1/)r2{( V) jk ', k ,J}

(3.22)

T; (X, x)— (_ e sUA-2v)5;r, +3r;r;In,
+(1-2v)[6; —3r;r In; + (L—2v)[6,; —3r,1;]n,
+[30,,r; +30,r; —3(1-2v)o,r, —=15r,rr Jrin; }

(3.23)

Using the stress-strain relationships, gives

1
Dkij = 2
8r(1l—v)r

[(1_2V)(5ikr,j +05 I _5ijr,k) +3r;r, r]

(3.24)
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Y7, or
Kij = Ar(—v)r® {3 n [A-2v)5;r, +v(O,F; +J,1;)—orr;r,]

+3v(nir;r,+n;rir, ) +1-2v)@3n,r;r; +n;6, +nd;)
—(1-4v)no;}

(3.25)

After we obtained the boundary integral equation relating the displacements and
tractions at the surface, divide the surface into elements and use shape functions to describe
the geometry and variables over each element. Because analytical integrations are not
practical due to the complexity of the integral functions, numerical integration is performed
using the Gaussian quadrature technique. Special schemes are necessary to integrate the
singular terms when the nodal points are very close to each other or the load point X
coincides with the boundary point x, because the fundamental solution contains terms of the
order (1/r). By summing the integrals over each element, the total surface integral can be
evaluated. Form the solution matrix by repeating the integration process with the load point
X placed in turn at each point on the surface, which yields only three equations in three
dimensional problems relating all N variables on the surface, till 3N linearly independent

equations are formed. The resulting system of linear equations is of the following form:

[Al[u] = [B][t] (3.26)

Apply the boundary conditions. These take the form of either prescribed displacement or
prescribed traction (or stress). By rearranging the linear equations such that all the unknown
variables are on the left-hand side and all the known variables are on the right-hand side, the

following modified solution matrix is obtained:

[A'1[X] = [B]IY] = [c] (3.27)
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where the unknown vector [x] contains a mixture of unknown displacements and tractions,
while [y] contains all the prescribed values of displacements and tractions. The right-hand

side vector [c] is a vector of known coefficients.

Gaussian elimination techniques are used to solve the system of linear equations and
compute all boundary displacements and tractions, since the solution matrix is unsymmetric
and is fully populated. Then it is straightforward to calculate the displacements and tractions
at any interior point of interest. This is achieved by substituting the boundary displacements
and traction back into equation (3.8) and (3.9) and solving for the interior point X. When the
interior point is close to the boundary the singularity problem will arise. This may be
overcome by using integration by parts to transform the nearly singular surface integrals to a
series of line integrals along the contour of the elements. In addition, the image force acting
on the surface dislocation nodes is simply evaluated by the placing the node under the
surface with five Burgers vectors. This cutoff regularization will not affect the dynamical
behavior of the dislocations significantly [13], since all fields are computed using continuous

dislocations.

In the absence of body forces, the boundary integral equations (3.8) and (3.9), are solved
over any closed boundary by dividing the surface into boundary elements, where the
integration is obtained numerically over each element. This can be written as a fast numerical
sum over: quadrature points (1 < n, s < Ngauss) associated with weight factors (o, and ®s),
number of nodes per boundary element (1 < ¢ < N;;) and number of boundary elements (1 <

m < Ne) as
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Ne Nn NGaus NGauss

600000 =200 > S wwU (XN, (%, %,)3 (%, Xt ()

m=l c=1 s=1 n=l

Ne Nn NGaus NGauss

=3T3 W (X XN (%, %) (%, X DU (X)

m=lc=l s=1 n=l

(3.28)

and

Ne Nn NGaus NGaus

o (X) = ZZ Z ZWnWs Dy (X, XIN (X1, %) I (X, %)t (X)

m=lc=1 s=1 n=l
Ne Nn NGauss NGaUSS
=220 > 2 WS, O )N (X, %) (%, %), (X)

m=lc=l s=1 n=l
(3.29)
where cj; is a coefficient matrix, which in general is computed by applying rigid body motion,
the functions N¢(X1, X) are quadratic shape functions, and the Jacobian of transformation J is

equal to/dx?+dx2. Thus, the fast sum equations (3.28) and (3.29) are used to calculate the

displacements and stresses at all dislocation nodes due to the boundary constraints and are

added to the infinite medium solution given by equations (3.1).

3.2 Numerical results

In order to determine the accuracy and convergence of the PDD-BEM and optimize the
computational time, we compared numerical results to the limiting analytical solutions in the

following.

3.2.1 Stress fields associated the edge and screw dislocations
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Figure 3.1 Stress and displacement fields associated an edge dislocation, (a) the configuration an
edge dislocation created by inserting a half-plane of atoms, (b) 3D view of the stress and
displacement field of an edge dislocation from numerical results, (c) the analytical solution of oxx
for an edge dislocation, and (d) the numerical results of oxx for an edge dislocation (BEM mesh:
1734 elements, displacement magnification: 500, stress unit: MPa).

Since the analytic stress field of dislocation lines under complicated conditions often does
not exist, only the stresses fields associated with simple edge and screw dislocations were

calculated by the PDD method to compare with analytic solutions.

In the first case, an edge dislocation was set at the middle of a cube with size of
500>500>600 nm?* along Z-direction with slip system 2[100](010) as shown in Figure 3.1,

and the analytical solution of oy is as following [14]:
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o o b yBX+Y’)
XX 272_(1_‘/) (X2+y2)2 (3.30)

where shear modulus (= 50 GPa, the magnitude of Burgers vector b = 0.3 nm, Poisson’s

ratio v =0.347, and x, y are the distances to the dislocation in X and Y directions.

Figure 3.2 Stress and displacement fields associated a screw dislocation, (a) the configuration a
screw dislocation created by a “cut-and-slip” procedure in which the slip vector is parallel to the
dislocation line, (b) 3D view of the stress and displacement field of a screw dislocation from
numerical results , (c) the analytical solution of oxx for an edge dislocation, and (d) the numerical
results of oxx for an edge dislocation (BEM mesh: 1734 elements, displacement magnification:

500, stress unit: MPa).
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In the second case, an screw dislocation was set at the middle of a cube with size of
500>500>500 nm* along Z-direction with slip system %4[001](010) as shown in Figure 3.2,

and the analytical solution of 64 is as following [14]:

_Hb oy
27 (X° +Yy°) -

Xz

(3.31)

As illustrated in Figs. 3.1 and 3.2, the numerical results of magnitudes and distributions

of stress field around dislocation lines agree well with the analytic solutions.
3.2.2 Eshelby twist by a coaxial screw dislocation

In this case, a coaxial screw dislocation was created in a cylinder of radius R = 500 nm
and length to diameter ratio of 5:1, to investigate the accuracy and convergence of the
PDD-BEM. Eshelby (1953) worked out an analytical solution and predicted that two
cross-sections of a cylinder containing a coaxial dislocation [15], will undergo a relative

rotation angle 0, given by

bl

0= R2 (3.32)

where L is the distance between the two cross-sections, and R is the radius of the cylinder.

This is the so-called Eshelby twist.

The numerical result computing the deformed shape of a cylinder containing a coaxial
screw dislocation was compared with the analytical solution given by eq. (3.32). According
to St. Venant’s principle, this elementary result can only be used at distances greater than 2R
from the ends. Thus, the two cross-sections are chosen to be located at distances 5R and 6R

from the bottom edge, respectively. The relative error of the twist angle, for different
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Figure 3.3 Numerical results of Eshelby twist by a coaxial screw dislocation, (a) the configuration
of a coaxial screw dislocation in a meshed cylinder, (b) the distributions of displacement and stress
fields from numerical results, (c) relative error in the twist between two cross-sections of a
cylinder, located at 5R and 6R from the bottom surface, respectively, for different numbers of
surface elements (Displacement magnification: 100).

numbers of surface elements is shown in Figure 3.3. It is clear that relative error decreases
with increasing the number of elements, either on the sides of the cylinder or on the top and
bottom planes. Since the dislocation in analytical solution is infinitely long that is different

from our model, the relative error only converges to 2% rather than approaches absolute zero.
3.2.3 Image stress of a straight edge dislocation in a cylinder

Consider comparison of the image stress of a straight edge dislocation inside a cylinder.
As shown in Figure 3.4, the line direction of the edge dislocation lies in Z-axis

(perpendicular to the paper) and the Burgers vector is along X-axis. The analytical solution
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Figure 3.4 The relative error as a function of the number of surface elements on the cylinder for the
image force on an edge dislocation located at d = 0.3r, 0.6r and 0.9r.

can be obtained by a complex image construction [16]. The stress component that gives rise

to a PK force on the dislocation itself is [7, 16]

Gimg _ ,Ubd

Xy 272_(1_ V)(rz —d 2) (3.33)

where d is the distance offsetting from the origin along X-axis and set to 0.3r, 0.6r and 0.9r in
our test, the cylinder radius r = 250 nm and height of cylinder H = 1500 nm. From eq. (3.33),
we could see the edge dislocation is drawn towards the surface and so is the screw
dislocation in Ref. [16]. As shown in Figure 3.4, the relative errors decay fast with the total

number of elements increase. In addition, the numerical errors depend on the offsetting
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distance, i.e. numerical results converge faster for the dislocation near the center of cylinder
than for dislocations near the cylinder surface. This phenomenon results from the feature of
BEM. Since the elements of BEM mesh just located on the cylinder surface, the calculated
stress fields on inside points far from the surface are more accurate than those on points near
surface with a given number of elements [11]. When the number of meshed elements
increases to a high level, the numerical image stress on dislocation close to surface still
converges. However, numerical method itself is an approximation and could not calculated
the image stress on the dislocation in an “infinitely long” cylinder as assumed in the ideal
model [16], and hence only relative low rates of convergence can be arrived at by comparing

with the reference analytic solution.

In addition, when dislocations intersect a free surface, we extended a virtual segment
from the point of intersection with the free surface and continue tangent with the intersecting
line to make the stress field computed correctly, which also has been validated by

Weinberger et al [17].
3.2.4 Image force on a screw dislocation in thin film

The analytic solution of the image force on an infinitely long screw dislocation lying
parallel to the free surfaces has been calculated by Hirth and Lothe by considering an infinite

series of image dislocations originating from both sides of free surface[3].

The z-component of the force Fimg acting on a screw dislocation at position | has the

form

1’ a
Fimg = ECO{F) (3.34)
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Figure 3.5 Numerical results of image force on long screw dislocation in thin film, (a) the

configuration of a screw dislocation in a meshed film, (b) comparison of numerical results with
analytic results.

where h is the film thickness and ptis the shear modulus. The simulation box used for the

numerical calculation is shown in Figure 3.5. The film thickness and width are set to be 500

nm and 2000 nm, respectively.

Figure 3.5 shows the comparison of numerical results with analytical results. The
numerical values are all taken from the image force on the middle segment of this screw
dislocation. We can see a refinement of surface mesh yields better results, especially when
the dislocation moving the center of the film. However, we cannot generate infinitely long
screw dislocation in our study, thus the difference between numerical and analytical results
becomes lager when the dislocation approach surfaces. In a realistic case, thin films always

have edges and our numerical method still can be used in the simulations on thin films.

3.2.5 Effect of image stresses on the flow stress
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In order to study the effects of image stresses on the flow stress, we generated a set of
micropillars with the same diameter D = 500 nm and height H = 1500 nm with the aspect
ratio equals to H : D = 3:1 with the same initial density p = 2.0x10% m™. All dislocation
sources were composed of FR sources randomly set on all twelve <011>{111} slip systems
with random lengths. Following the results in section 3.2.3, we chose the optimized 1560
elements as the default mesh size on all micropillars, which is more computationally efficient
with negligible effect on the results compared with finer mesh sizes. And the experiment-like
load procedure described in Chapter 4 was used in all simulations with the applied stain rate

of 100 s,

500
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150} .
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50b — Strain-stress with image stress
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Figure 3.6 Comparison of flow stresses of the micropillars with and without image stresses
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As shown in Figure 3.6, it is clear that the flow stresses for samples with image stresses
are lower than those ignoring image stresses, which results from the attractive image forces
on internal dislocations from the free surface. As the dislocation sources start emitting
dislocations, the image stresses assist their glide towards the surface, i.e. the image stresses
assist the mobile sources in hastening the dislocation glide. This enhanced plastic flow
produces a softening effect reflected by the stress-strain curves. The relative differences
between flow stresses with and without considering image stresses vary from 10% to 20%.
The main factor affecting the relative difference is the distance between the activated
dislocation sources and free surfaces. As we discussed in previous section, the magnitude of
image stress increases with the decrease of the distance between the dislocation source and
free surfaces, so when the activated dislocation located near free surfaces, the influence from
image stresses will be stronger and cause larger relative differences on flow stresses.
Consequently, the effect of image stresses decrease fast with the increase of sample sizes
[10], since lager samples have lower surface to volume ratios and more dislocation sources

close to the center of samples at a given dislocation density.
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CHAPTER 4

SIZE EFFECTS ON PLASTICITY OF FCC SINGLE CRYSTALS

The goal of this work was to model the experiment as closely as possible. In addition to
creating initial conditions that best mimic experiment, the simulations discussed here also
include two effects not generally included in previous simulations: surface forces and
cross-slip. Surface forces were included through the use of the boundary-element method.
Cross slip was modeled with a stochastic method and was found to play a critical role in

dislocation behavior. Finally, the effects of loading direction were also studied.

4.1 Simulation procedures

The 3D DD SIMULATIONS framework described in Chapter 2 has been used to
simulate the mechanical behavior of Ni single crystals under uniform compression. . For the
simulations in this work, the materials properties of nickel are used: shear modulus (= 76
GPa, Poisson’s ratio v = 0.31, and lattice constant a = 0.35 nm. The dislocation mobility is
taken to be 10 Pa™* s™ in the calculations [1]. In finite volume problems, it is necessary to
include both the solution for dislocations in an infinite medium and the complementary
elastic solution that satisfies equilibrium at external and internal boundaries. To evaluate
image fields, the boundary element method (BEM) has been introduced into our dislocation
dynamics simulations and performed as follows. First, the elastic stress field in an infinite
medium resulting from all dislocations is evaluated. Then tractions at the surfaces of the
finite crystal owing to the dislocation stress field are determined, reversed and placed on the
surface as traction boundary conditions. These traction boundary conditions, as well as any

other imposed constraints, are employed in BEM to calculate all unknown surface tractions
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and displacements. Finally, the image stress field is calculated and the result is superimposed

as indicated in Chapter 3.

Cross slip, in which screw dislocations leave their habit planes and propagate to another
glide plane [2-3], plays a key role in macroscopic plastic deformation of FCC materials.
However, questions of how cross slip operates and its importance at the micron and
submicron scales are still under debate. In this study, we adopt a sophisticated cross-slip
model developed by Kubin and co-workers [4-5] that is based on the Friedel-Escaig
mechanism of thermally-activated cross-slip [6-7]. In this model, the probability of cross-slip
of a screw segment with length L in the discrete time step is determined by an activation

energy Vact (Jz]-zii) and the resolved shear stress on the cross-slip plane z,

L & Vact
P :ﬂL_oét_OeXp — KT (| z'|—2'“,) (4.1)

where £ is a normalization constant, k is the Boltzmann constant, T is set to room temperature,
Vat i the activation volume, and 7y, is the stress at which stage-three hardening starts. In
nickel, Vac is equal to 420b* with b the magnitude of Burgers vector [8], 7y = 55MPa [9],
and Lo = 1um and oty = 1s are reference values for the length of the cross-slipping segment
and for the time step. Eq. (4.1) describes the thermal activation of cross-slip, expressed in
terms of a probability function. A stochastic (Monte Carlo) method is used to determine if
cross slip is activated for a screw dislocation segment. At each time step, the probabilities for
cross slip of all screw segments are calculated using equation (3). For each screw segment,
the probability P is compared with a randomly generated number N between 0 and 1. If the
calculated P is larger than N, cross slip is activated, otherwise, the cross slip is disregarded [1,

10].



57

Our goal is to mimic the experimental conditions as well as possible. To that end, we
start by creating a “bulk” sample, from which we will “cut” a set of cylindrical samples. To
model the bulk, we assume a cubic cell with periodic boundary conditions and a size 3>3>3
pm?® containing a set of FR sources with an initial density equal to 2.0x10** m? The FR
sources (straight dislocation segments pinned at both ends) were randomly set on all twelve

<011>{111} slip systems with random lengths as shown in Figure 4.1a. After compression in

Figure 4.1 Dislocation structures in 3>3>3 pm® cube sample. (a) Initial dislocation structure in
[111] view, (b) deformed structure in [001] view, (c) deformed structure in [110] view.
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the [111] direction to a plastic strain of 0.1%, the distribution of dislocations evolves to the
structure shown Figure4.1b with a dislocation density of about 2.5x10'* m™. The cubic
sample was unloaded (i.e., relaxed) and cylinders of various sizes (representing micropillars)
were cut out of the bulk sample. The diameters D of the micropillars were D = 1.0, 0.75 and
0.5pm, and the aspect ratio was set to D : H = 1 : 2, where H denotes the height of
micropillars. Subsequently, the deformed dislocation microstructrures were relaxed only
under the influence of image and interaction forces as shown in Figure 4.2a and b. Most of
the micropillars were cut along the [001] direction, except for three samples along the [269]
direction with D = 1.0 pm. This procedure delivers what we assume to be realistic initial
dislocation structures that include internal FR sources of different sizes, single-ended sources

(spiral sources with one end pinned inside the cell and the other at the surface), surface

Figure 4.2 Dislocation structures in cut samples with D = 1.0 pm (Dotted lines are BEM meshes).
(a) Cutting from [001] before relaxation with p = 2.7x10" m™ ([111] view), (b) cutting from [001]
after relaxation with p = 1.9x10" m? ([111] view), (c) cutting from [001] direction with p =
1.9%10" m™ (upper [001] view), (lower [110] view), (d) cutting from [269] direction with p =
2.010" m (upper [001] view), (lower [110] view).
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dislocations (both ends at surface) and dislocation reactions, such as junctions. The
dislocation densities after relaxation were all in the range of 1.0 to 2.0x<10*® m™ and were

consistent with conditions observed in experiments [11].

We simulated the experimental loading conditions of Dimiduk and coworkers [11-15] in
our computations, in which a mixture of constant displacement rate and creep-like loading
conditions were employed; the applied stress was discretely increased by a small fixed value
(do) every time the plastic strain rate approached zero. When the plastic strain rate was
smaller than the applied rate, the applied load was increased by 2 MPa, i.e. do = 2 MPa, for
éP< &, while the applied stress was kept constant when the plastic strain rate was equal to or

higher than that of the applied rate, i.e. do = 0, for &*> é.

In all simulations, compression loading in [001] direction was performed under a
constant strain rate of 200 s™. To identify the effects of strain rate, several simulations were
performed with strain rates as low as 50 s™. The results from those simulations did not show
any significant difference from those seen at 200 s™. We found that a strain rate of 200 s is
computationally efficient with negligible effect on the results while also being lower than the

strain rates used in other similar simulations [16-19].

To investigate the effects of loading direction, as well as to make a direct comparison
with the experimental results of Dimiduk et al. [13], we also prepared three 1.0 pm samples
oriented in the [269] direction. We see distinct differences in the two typical initial
dislocation structures from the [001] and [269] samples as shown in Figure 4.2c and d,
respectively. Since the stress was then applied along the [001] axis, the simulations
correspond to a single-slip direction for samples cut from the [269] direction and along a

multi-slip direction for samples cut along the [001] direction. For the single-slip case, only
the %[101](111) [20]systems are active, each with the same Schmid factor of 0.41, whereas

the other four slip systems have zero Schmid factors and are inactive.
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4.2 Effect of loading direction

The stress-strain behavior for all simulations based on 1.0 pm samples is shown in
Figure 4.3a, while the equivalent experimental results for single-crystal nickel are shown in
Figure 4.3b. Comparing Figure 4.3a and Figure 4.3b, we see that the flow stress of the
multi-slip simulations (from the [100] samples) and the single-slip simulations (from the [269]
samples) are both similar to each other and agree well with the experimental results, which
employed loading along the [269] single-slip direction. In our simulations, only one, or at
most a few, mobile dislocations determined the strength at small volumes. Thus,
multiple-slip simulations and single-slip simulations exhibited similar results. The agreement
between the results for single-slip and multi-slip loading is not surprising in light of recent
results. Norfleet et al. [11] recently examined cut foils from deformed pillars and found that
for samples < 20 pm in diameter, multiple slip systems are always active regardless of the
loading direction. In addition, a recent theoretical study by Ng et al. concluded that Schmid’s
law, which states that plastic flow will occur on the slip system with the largest Schmid
factor, no longer holds for microcrystal deformation, because of the increase of the
probability to activate sources with low Schmid factors in small samples, as the overall
number of dislocation sources decreases with the sample diameter [21]. Thus, both
experiment and modeling indicate that single-slip and multiple-slip deformation should be

similar in these small samples.

Recent 3D DD simulations that were based on an initial dislocation structure within the
cylinder consisting of only internal FR sources showed linear elastic loading up to the yield
point [17-19, 22]. In contrast to those results, our simulations showed a large amount of
““microplasticity” at low loads (shown in Figure 4.3a), in agreement with the experimental
results (shown in Figure 4.3b). This early-stage plasticity is often the result of essentially free

dislocations being driven out of the system. These dislocations could either be weakly
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Figure 4.3 Comparison of stress-strain curves of simulation and experiment. (a) Stress-strain and
typical density-strain curves obtained from simulation with D = 1.0 pm, (b) Stress-strain curves
obtained from experiment [13].
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entangled or pre-existing at the surface. The movie A in supplementary materials of ref. [23]
illustrates one example of how a dislocation junction unzipped and then was driven out of the
sample as load was increased. The presence of such dislocations can be explained as follows.
After cutting the cylinders out of the bulk system, we relax the dislocation positions. While
some of surface dislocations escape to the surface owing to the large image forces, many
dislocations can be trapped by dislocation reactions, such as junctions, or be near the center
of the sample where the image forces are insufficient to cause any significant movement [24].
In experiments, a large number of surface dislocations of different sizes might also exist in
the micropillars. These dislocations may be generated by the act of the cutting, but could also
arise from defects caused by preparation procedures themselves, such as focused ion beam

milling [25].

As the loading is increased, the motion of free dislocations is gradually activated. The
dislocations then sweep quickly across the slip plane, exiting the micropillar, leading to a
rapid reduction in dislocation content referred to as “dislocation starvation.” The easy
movement of these free dislocations leads to a plastic strain rate that approaches the applied
strain rate, which causes the applied stress increment to approach zero, as mentioned in the
discussion of the loading scheme. Thus, we see an initial small strain burst on the
stress-strain curves. The amount of plastic strain in our simulations is smaller than that
observed in experiments, which likely arises from two possibilities. Experimental samples
are all processed by focused ion beam milling, leading to many surface defects that can
generate plastic strain under loading [26]. Also, the 200 s strain rate in our simulation is
four orders of magnitude larger than those in the experiments, which have a creep-like

loading and thus can carry more deformation at low loads.

Owing to the escape of free dislocations, the dislocation density in all samples will
decrease in the early stages as reflected by the density-strain curves in Figure 4.3a. In

previous 3D dislocations dynamics simulations [17-19, 22], only permanent internal FR
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sources were used as the initial configuration. Thus, the dislocation density could not
decrease even with the intermittent presence of mobile density-starved states. In our
simulation procedure, in small pillars, only a few surface dislocations, a few jogged
dislocations and no internal pinned points could be found in inside the cylinder. Under the
combination of high image forces and increased applied loading (and no cross slip, as
discussed below), all pre-existing dislocations can be quickly driven out of the pillar, which
supports the “dislocation starvation” model in small samples. Recently, Shan et al. [27]
directly observed that pre-existing dislocations could be driven out of the pillar with the
entire length of the pillar being left almost dislocation free for pillars with diameter less than
130nm. This phenomenon, which was called “mechanical annealing,” directly supports the
ideas behind the “dislocation starvation” model in smaller samples. However, for pillars
larger than 300 nm, pre-existing dislocations could not be completely driven from the
cylinder, which indicates that permanent pinning points exist in those micropillars and that
the dislocation density will eventually increase following the initial “mechanical annealing”.
These experimental results agree well with what is observed in our simulations as plotted in
Figure 4.3a. The dislocation density increase following “mechanical annealing” was caused
by the activation of dislocation sources and dislocation multiplication with the increasing

load arising from cross slip, as is described in next section.

4.3 Cross-slip

To investigate the influence of cross-slip on the mechanical response and evolution of
the dislocation microstructure, an additional sample with D = 1.0 pm was cut from the
undeformed cube shown in Figure 4.1a. Thus, only Frank-Read and spiral sources were
initially present, with an initial density of 1.8x10** m?in the sample. This sample was then
put under load both with and without cross-slip enabled. In Figure 4.4 we show the

comparison of microstructures and the stress and density evolution for these two cases. It is
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clear that the sample with cross-slip is softer than that without cross-slip, likely because
cross-slip leads to more sources and thus greatly increased dislocation density, as shown in

Figure 4.4d. We note that the cross-slip started at the onset of plastic flow.
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Figure 4.4 Comparison of the stress and density evolution with and without cross-slip. (a) stress
and density curves, (b) initial dislocation structure, (c) dislocation structure without cross-slip at
1% strain and (d) dislocation structure with cross-slip at 1% strain.
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Figure 4.5 Plot of cross-slip on parallel dislocations and formation of prismatic loop (PL): pink line
with 1/2[101](111) and forest green line with 1/2[101](111): (a) two parallel dislocations slip
on its own planes, (b) one dislocation cross-slip under the attractive force, (c) collinear reaction of
the leading segments forming two superjogs, (d) prismatic loops.

Figure 4.5 shows a series of snapshots that illustrate how cross-slip activates secondary
slip systems and enables oppositely signed screw dislocations on different planes to

annihilate each other. The two red dislocations L1 and L2 have the same slip system

[101](111) on parallel glide planes but opposite initial orientations. Hence, there is an

NI =

attractive force between the two dislocations that makes the screw segment J1 of dislocation
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Figure 4.6 Evolution of dislocation density with total strain.

L1 cross-slip on the plane (111). J1 continues bowing out under the attractive force until its
leading segments undergo a collinear reaction with the original dislocation L2 (they have the
same Burgers vector and opposite line orientation). In Figure 4.5c, we can see that two
superjogs were left after the collinear reaction. Under the external stress field, the two arms
of superjogs moved on their slip planes and formed a prismatic loop, as shown in Figure 4.5d.
The prismatic loops are quite stable and can move only along the cylinder axis. Since this
motion is difficult, the prismatic loops are fixed at the location at which the cross-slip
occurred. They can then trap mobile dislocations, forming a dislocation forest as shown in

Figure 4.5d, which has a strong influence on the subsequent plastic flow in small volumes.
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In Figure 4.6 we show the variation of dislocation density as a function of sample size
and total strain. For all sizes studied in this study, the dislocation density initially dropped
(“mechanical annealing”), followed by a steady increase (hardening). The dislocation density
is reasonably insensitive to system size, with the point at which the density begins to rise
occurring at approximately the same strain (approximately 0.4%) for all samples. Below we

shall discuss the behavior of the dislocation density in more detail.

The basic behavior of the hardening arises from the cross-slip mechanisms shown in
Figure 4.7. At the beginning of the deformation, only a few dislocation sources are available

after most of the free dislocations were driven out of the sample, as shown in Figure 4.7a and
described above. Under increasing load, a spiral source K1 with Burgers vector %[101] was

activated and moved in its slip plane (111) in Figure 4.7b. Screw segment C1 then cross
slipped on the slip plane (111) with the same Burgers vector, forming two joint corners pl
and p2, both of which then moved along the intersection line between the original slip plane
and the cross-slip plane (Figure 4.7c, discussed in detail hereinafter). After extending on the
slip plane under load, the original source K1 was truncated by the free surface and then
stopped moving in Figure 4.7d. However, the cross-slipped part C1 and non-cross-slipped
parts K2 and K3 truncated from K1 propagated smoothly until they encountered the free
surface. In Figure 4.7¢, the screw part C2 on C1 cross-slipped back to the original slip plane
(111) (double cross-slip), a mechanism that generates considerable plastic strain in the
deformation of bulk materials. Meanwhile, K2 and K3 behaved similarly to Frank-Read
sources in the bulk, in that they annihilated each other and generated new dislocations K4 and

KS.

The major difference between multiplication processes observed in small volumes and
those in the bulk is that the new dislocation, such as K5, escape to the surface under the

influence of image forces. In small volumes, it appears that the surface always confines
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Surface truncation

Figure 4.7 Plot of cross-slip forming dynamic FR source: green line with 1/2[101](111) and
navy line with 1/2[101](111), see details in text.

dislocation propagation, having a potent hardening effect as sample size decreases because of
the shortening of the dislocation sources. In our simulations, this “source-truncation” [28]
effect is reflected in Figure 4.7d, in which the original spiral source K1 was pinned after
being truncated by the surface. From Figure 4.7e to h, the two joint corners p1 and p2 formed
a new dynamic FR source that continuously generated dislocations on two different slip

planes, leading to the constant-stress avalanches reflected on the stress-strain curves.
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However, this dynamic FR source is not as stable as regular FR sources having permanent
pinning points, since the two endpoints of a dynamic FR source might move out of the
sample surface, thereby releasing the dynamic source. The stability of these sources increases
with the increased sample size, affecting their contribution to the accumulated plastic strain

of the sample and the increase of dislocation density.

4.4 Exhaustion hardening

In our simulations, superjogs and dynamic spiral sources, as illustrated in Figure 4.8a
and b, were always formed by cross-slip or collinear reactions [29] combined with the
truncation by free surfaces. The superjog AO;0,B with two ends A and B at the surface in
Figure 4.8a is similar to jogs artificially generated in Ref. [30], except that in our simulations
they were formed naturally. One difference in behavior between [30] and the present results
is that the middle segment O;0, bowed out under sufficient force in this study. Under
loading, the two dislocation arms, AO; and BO, operated independently around the jog
corners O; and Oy, producing continuous plastic flow. When O,0, is short enough, the
superjog AO,;0,B formed an intermediate jog, as the dislocations arms AO; and BO,
interacted like dislocation dipoles and could not pass by one another except at a high stress
[31]. Once the resolved shear stress on segment 010, is large enough, it bowed out like an
FR source. If it was truncated by the free surface, this superjog AO;0,B transformed into two
dynamic spiral sources, e.g., AOB in Figure 4.8b. These two dislocation arms of these
dynamic sources were rotated around the jog corners O, again producing continuous plastic
flow. This type of dynamic spiral source was not seen in Ref. [30], since the middle segment
of superjog was sessile and cross-slip was not considered in their simulation. As illustrated in
Figure 4.8, the joint points, O; and O; in superjog AO;0,B, and O in the dynamic spiral
sources AOB, moved along the intersection line of the two intersected slip planes. When

these joint points moved close to the free surface with its attractive image forces, they
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Figure 4.8 Configuration of superjog and dynamic spiral source: green line with 1/2[101](111)
and navy line with 1/2[101](111).

escaped and the dynamic spiral sources or superjogs ceased to operate. The movie B in
supplementary materials of ref. [23] gives one example of flow intermittency as the moving
dynamic spiral source escaped from free surface. The dynamic spiral source has two arms on
different slip planes as shown in Figure 4.8b. With increasing load, they could operate
independently on their own slip planes, and the joint point could move along the intersection
line of the two slip planes. The stability of this dynamic source depends on the exact position

of the jog corner and the sample diameter. For this source, after operating several times and
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generating a certain amount of plastic strain, it gradually escaped from the free surface and
ceased to operate. Since there were no other operating sources, to sustain the applied strain
rate required that the elastic strain (linearly related to the applied stress) increased until
another source could be activated. During this period, the fraction of plastic strain in the
total strain approached zero (no operating sources) and the strain hardening part was thus
essentially elastic. This dislocation-starved condition (the shutting off of available dislocation
sources) is called “exhaustion hardening”, and is found both in experiments and simulations
[16, 27]. After the applied stress increased to a sufficiently high level, new sources were
activated, generating plastic strain. Again, to keep the same overall strain rate, the elastic
strain (applied stress) stopped increasing, leading to a plateau in the stress-strain curve
corresponding to continuous operation of this new source. This type of dynamic source
showed considerable variability in behavior. In some cases, the sources just operated several
times and then escaped to the surface. While in others they were stable and operated
numerous times, existing as long as the simulations were run. Thus, the degree of
“exhaustion hardening” caused by the destruction of dynamic sources cannot be predicted a
priori and requires knowing the details of the internal dislocation structures. We can say,
however, that the frequency of this mechanism is much higher in smaller samples, in which

the dynamic sources are more easily destroyed at the surface and then regenerated.

The size-dependent exhaustion processes also affect the usual forest-hardening processes
of junction formation and dipole interactions, resulting in the shutting off of already scarce
dislocation sources. Figure 4.9 shows two typical cases of junction formation and collinear
reaction, which leads to intermittent plastic flow. This mechanism has been observed
previously by Rao and coworkers [22]. In Figure 4.9a, the single-ended spiral source S1
sweeps in its slip plane until it meets the FR source S2. As S1 moves close to S2, a glissile
junction was formed, locking the dislocations as shown in Figure 4.9b and c. When the

applied stress is increased to a critical value, the glissile junction unzipped and the spiral
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Figure 4.9 Dislocation reactions causing flow intermittence: (a-d) glissile junction, brown line
with 1/2[101](111) and navy line with 1/2[101](111), (e-h) collinear reaction, grey line with
1/2[011](111) and red line with 1/2[011](111).

source S1 cyclically rotated around the pinning point and created continual plastic strain for
the sample in Figure 4.9d. In contrast to glissile junction, the collinear reaction formed by

two mobile spiral sources in Figure 4.9e-h was much stronger and could not be easily
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dissolved, so the new dislocation source was activated in Figure 4.9h after the loading

increased.

In Ref. [31], strain bursts are attributed to the destruction of jammed configurations by
long-range interactions, which produce a collective avalanche-like process. This mechanism
seems to be at least somewhat consistent with our observations, as shown in movie A in ref.
[23] and Figure 4.9. The destruction of simple junctions leads to relatively small strain bursts
as the released free dislocations quickly escape to the surface. However, the spiral sources
released from the junction in Figure 4.9 continuously sweep in the slip plane and produce
large strain bursts. These strain bursts, or avalanche-like processes, are strongly influenced
by their physical size. As illustrated in movie B in ref. [23], the dynamic sources
continuously create plastic strain under loading, with the amount of this strain dependent on
their position and the sample diameter. From a statistical perspective, the probability of
sources truncated by a surface increases with decreasing diameter. Thus the frequency of
strain bursts and consequent flow intermittency in smaller samples is much higher than in
larger samples, which is verified in both experiment and our simulation results. After the
operation of dynamic sources is terminated by a surface, new sources need to be activated at
a higher load level to generate continuous plastic deformation. Recently, Ngan et al.
demonstrated that discrete strain bursts were directly related to the escape of dislocation
sources to the sample surface [32], agreeing well with our simulation results and providing a

physical explanation of the experimentally observed staircase stress-strain behavior.

4.5 Size effects

In Figure 4.10a, we show a series of stress-strain curves from samples with different
diameters under uniaxial compression in the absence of loading gradients. These results show
pronounced dependence on size, with smaller samples having higher strength. The stress

shows discrete jumps accompanied by strain bursts of varying sizes before ending at a
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saturation flow stress. There is a significant scatter in the magnitude of the saturation flow
stress with decreasing diameter. All of these features of the compression stress-strain curves
are in qualitative agreement with the experimentally observed behavior that shows discrete

strain bursts separated by intervals of nearly elastic loading [13-15, 33-43].

In Figure 4.10Db, the variation of the shear stress at 1% strain (t) as a function of the
sample diameter (D) are plotted on a logarithmic scale in both coordinates, for all simulations.
The scatter in strength increases with decreasing sample size, largely because the mechanical
response of smaller samples depends on a single or, at most very few, active sources. We fit
the average value of t for each size to a function of the form t o D™ and find a scaling
exponent n ~ 0.67. Similar behavior in both the magnitude and scatter of the values for the
shear stress at 1% strain was seen experimentally, with an exponent of 0.64 under [269]

single-slip loading from Ref. [13] and 0.69 under [111] multi-slip loading from Ref. [34].

In bulk samples, Taylor’s hardening law, which states that the flow stress is proportional
to the square root of the dislocation density, has been confirmed by both theoretical and
experimental studies [44]. However, there is little size dependence of the evolution of the
dislocation density, since all samples showing similar dislocation density variations as shown
in Figure 4.6. Thus, Taylor’s law does not hold and cannot be used to develop a theory of the

size effects of plasticity in small volumes.

Recently, Parthasarathy et al. [45] developed a statistical model for the flow strength of
small samples, which was completely based on the stochastics of spiral source (single-arm
source) lengths in samples of finite size. In their studies, the spiral source with one
permanent inside pinning point could be formed either by the FR sources being truncated at
the free surface or directly generated in the initial structure of simulation. In either case, the
spiral sources have a minimum strength based on the relative distance between the sources

and the free surfaces. For the FR sources, the minimum always appears when the FR source
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is set at the center of the sample and with the length of around 1/3 the slip-plane
characteristic dimension [46]. For a single-arm source, the minimum is set with the source
pinning point at the center of the sample [45]. This stochastic model was validated by the
in-situ observation of dislocation behavior in a submicrometre single crystal in which

single-ended sources are limited approximately by half of the crystal width [47].

Since the flow stress was always determined by the strength of spiral sources or stable
dynamic sources in our simulations, we used our simulation results and experiment results
from references [13, 34] to compare with this stochastic model, which estimates the critical

resolved shear stress (CRSS) as following:
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In(l/b)
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where 1, is the lattice friction stress (11 MPa for Ni), ks is a source-hardening constant, with
magnitude ks = 0.12, derived through a recent study [3], k:; represents the hardening
coefficient using a value of k; = 0.061 [48], p is forest dislocations density, p = 210" m

and A is an average effective source length calculated from the statistic model [45]. The
second and third term in equation (5) represent source truncation strengthening [28] and
forest strengthening, respectively. It can be seen from Figure 4.11 that this single-arm model
could predict the initial stress for plasticity well for smaller samples, because only one or at
most a few mobile dislocations determine the strength at small volumes, agreeing with the
basic assumption in this model. For the larger samples, the predicted scatter is less than that
observed, since internal dislocation structures and reactions are more complicated in larger

samples than those in smaller ones.

4.6 Concluding remarks

Experimental-like initial dislocation structures cut from larger deformed samples have
been introduced into 3D DD SIMULATIONS to study the plasticity in small sizes. Image
forces from traction-free surface and as well as thermally-activated cross-slip were
considered in our study. Three different sizes of micropillars all with initially relaxed
dislocation densities around 2.0x<10"* m™ have been analyzed under uniaxial compression to
identify the relationship between the evolution of internal dislocation structure and overall

mechanical behaviors.

The results indicate that the loading direction has negligible effect on the flow stress

with both multi-slip and single-slip loading resulting in the similar saturation. This lack of a
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dependence on loading direction can be easily understood. Since the number of dislocation
sources decreases with the sample diameters, the probability to activate a source with low

Schmid factors increases in small samples.

In small samples, dynamic sources can be easily generated by cross-slip or collinear
reactions, the stability of which depends on the position and sample size. There were at least
two origins of “exhaustion hardening”: the escape of dynamic sources from the surface and
dislocation interactions such as junction formation. Both of these effects shut off the
activated sources, leading to the flow intermittency. The “mechanical annealing” at the early
stage of deformation were seen to arise from the surface dislocations and the
weakly-entangled dislocations leaving the sample. The drop in dislocation density was
followed by an increase that always resulted from processes that were enabled by cross-slip.
The scarcity of available dislocation sources gives a major contribution to the higher flow
stress and larger scatter of strength in smaller sizes. The scaling law determined from the

current simulation results is close to that found experimentally.

There are still many unanswered questions regarding size-dependent strengthening in
small volumes, such as the critical size for transition from bulk behavior and the role that
dislocation structures and mechanisms play in determining that critical size. Further
investigations are planned for larger samples based on our simulation framework to address
these questions. Our goal is to develop a more sophisticated model to predict the mechanical

behavior of microcrystals over a wide range of sizes.



79

References

[1] Wang ZQ, Beyerlein 1J, Lesar R. Plastic anisotropy in fcc single crystals in high rate
deformation. International Journal of Plasticity 2009;25:26.

[2] Hirth JP, Lothe J. Theory of Dislocations McGraw-Hill, New York, 1982.

[3] Puschl W. Models for dislocation cross-slip in close-packed crystal structures: a critical
review. Prog. Mater. Sci. 2002;47:415.

[4] Kubin LP, Canova G. The modeling of dislocation patterns. Scripta Metallurgica Et
Materialia 1992;27:957.

[5] Verdier M, Fivel M, Groma I. Mesoscopic scale simulation of dislocation dynamics in
fcc metals: Principles and applications. Model. Simul. Mater. Sci. Eng. 1998;6:755.

[6] Escaig B. In: A. Rosenfield, G. Hahn, A. Bement and R. Jaffee, Editors. Proceedings of
the Battelle colloquium in dislocation dynamics. New York McGraw-Hill, 1968.

[7] Friedel J. In: J. Fisher, W. Johnston, R. Thromson and T. Vreeland, Editors.
Dislocations and mechanical properties of crystals. New York Wiley-Interscience,
1957.

[8] Rao S, Parthasarathy TA, Woodward C. Atomistic simulation of cross-slip processes in
model fcc structures. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop.
1999;79:1167.

[9] Starenchenko VA, Lychagin DV, Shaekhov RV, Kozlov EV. Action of test

temperature on evolution of dislocation structure of nickel single crystals with the [001]
compression axis. Russian Physics Journal 1999;42:653.

[10] Wang ZQ, Beyerlein 1J, Lesar R. The importance of cross-slip in high-rate deformation.

[11]

[12]

[13]

Model. Simul. Mater. Sci. Eng. 2007;15:675.

Norfleet DM, Dimiduk DM, Polasik SJ, Uchic MD, Mills MJ. Dislocation structures
and their relationship to strength in deformed nickel microcrystals. Acta Materialia
2008;56:2988.

Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence
strength and crystal plasticity. Science 2004;305:986.

Dimiduk DM, Uchic MD, Parthasarathy TA. Size-affected single-slip behavior of pure
nickel microcrystals. Acta Materialia 2005;53:4065.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

80

Dimiduk DM, Uchic MD, Rao SI, Woodward C, Parthasarathy TA. Overview of
experiments on microcrystal plasticity in FCC-derivative materials: selected challenges
for modelling and simulation of plasticity. Model. Simul. Mater. Sci. Eng.
2007;15:135.

Dimiduk DM, Woodward C, LeSar R, Uchic MD. Scale-free intermittent flow in
crystal plasticity. Science 2006;312:1188.

Motz C, Weygand D, Senger J, Gumbsch P. Initial dislocation structures in 3-D
discrete dislocation dynamics and their influence on microscale plasticity. Acta
Materialia 2009;57:1744.

Senger J, Weygand D, Gumbsch P, Kraft O. Discrete dislocation simulations of the
plasticity of micro-pillars under uniaxial loading. Scr. Mater. 2008;58:587.

Tang H, Schwarz KW, Espinosa HD. Dislocation escape-related size effects in
single-crystal micropillars under uniaxial compression. Acta Materialia 2007;55:1607.
Weygand D, Poignant M, Gumbsch P, Kraft O. Three-dimensional dislocation
dynamics simulation of the influence of sample size on the stress-strain behavior of fcc
single-crystalline pillars. Materials Science and Engineering a-Structural Materials
Properties Microstructure and Processing 2008;483:188.

Aliabadi MH. The Boundary Element Method : Applications in Solids and Structures
Wiley 2002.

Ng KS, Ngan AHW. Breakdown of Schmid's law in micropillars. Scr. Mater.
2008;59:796.

Rao SlI, Dimiduk DM, Parthasarathy TA, Uchic MD, Tang M, Woodward C. Athermal
mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete
dislocation simulations. Acta Materialia 2008;56:3245.

Zhou C, Biner SB, LeSar R. Discrete dislocation dynamics simulations of plasticity at
small scales. Acta Materialia 2010;58:1565.

Weinberger CR, Cai W. Surface-controlled dislocation multiplication in metal
micropillars. Proc. Natl. Acad. Sci. U. S. A. 2008;105:14304.

Bei H, Shim S, Pharr GM, George EP. Effects of pre-strain on the compressive
stress-strain  response of Mo-alloy single-crystal micropillars. Acta Materialia
2008;56:4762.



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

81

Shim S, Bei H, Miller MK, Pharr GM, George EP. Effects of focused ion beam milling
on the compressive behavior of directionally solidified micropillars and the
nanoindentation response of an electropolished surface. Acta Materialia 2009;57:503.
Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM. Mechanical annealing and
source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater.
2008;7:115.

Rao SI, Dimiduk DM, Tang M, Parthasarathy TA, Uchic MD, Woodward C.
Estimating the strength of single-ended dislocation sources in micron-sized single
crystals. Philosophical Magazine 2007;87:4777.

Madec R, Devincre B, Kubin L, Hoc T, Rodney D. The role of collinear interaction in
dislocation-induced hardening. Science 2003;301:1879.

Tang H, Schwarz KW, Espinosa HD. Dislocation-source shutdown and the plastic
behavior of single-crystal micropillars. Physical Review Letters 2008;100.

Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S. Dislocation avalanches, strain
bursts, and the problem of plastic forming at the micrometer scale. Science
2007;318:251.

Ng KS, Ngan AHW. Effects of trapping dislocations within small crystals on their
deformation behavior. Acta Materialia 2009;57:4902.

Brinckmann S, Kim JY, Greer JR. Fundamental differences in mechanical behavior
between two types of crystals at the nanoscale. Physical Review Letters 2008;100.
Frick CP, Clark BG, Orso S, Schneider AS, Arzt E. Size effect on strength and strain
hardening of small-scale 111 nickel compression pillars. Materials Science and
Engineering a-Structural Materials Properties Microstructure and Processing
2008;489:319.

Greer JR. Bridging the gap between computational and experimental length scales: A
review on nanoscale plasticity. Reviews on Advanced Materials Science 2006;13:59.
Greer JR, Nix WD. Size dependence of mechanical properties of gold at the
sub-micron scale. Applied Physics a-Materials Science & Processing 2005;80:1625.
Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation.
Physical Review B 2006;73.

Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at
the micron scale in the absence of strain gradients. Acta Materialia 2005;53:1821.



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

82

Ng KS, Ngan AHW. Creep of micron-sized aluminium columns. Philos. Mag. Lett.
2007;87:967.

Ng KS, Ngan AHW. Stochastic nature of plasticity of aluminum micro-pillars. Acta
Materialia 2008;56:1712.

Ng KS, Ngan AHW. Stochastic theory for jerky deformation in small crystal volumes
with pre-existing dislocations. Philosophical Magazine 2008;88:677.

Uchic MD, Shade PA, Dimiduk DM. Plasticity of Micrometer-Scale Single Crystals in
Compression. Ann. Rev. Mater. Res. 2009;39:361.

Volkert CA, Lilleodden ET. Size effects in the deformation of sub-micron Au columns.
Philosophical Magazine 2006;86:5567.

Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case.
Prog. Mater. Sci. 2003;48:171.

Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR. Contribution to size
effect of yield strength from the stochastics of dislocation source lengths in finite
samples. Scr. Mater. 2007;56:313.

von Blanckenhagen B, Gumbsch P, Arzt E. Dislocation sources and the flow stress of
polycrystalline thin metal films. Philos. Mag. Lett. 2003;83:1.

Oh SH, Legros M, Kiener D, Dehm G. In situ observation of dislocation nucleation and
escape in a submicrometre aluminium single crystal. Nat. Mater. 2009;8:95.

Basinski ZS. Forest hardening in face-centered cubic metals. Scripta Metallurgica
1974:8:1301.



83

CHAPTER 5
PLASTIC DEFORMATION MECHANISMS OF FCC SINGLE

CRYSTALS AT SMALL SCALES

Starting with the pioneering microcompression measurements of Uchic et al. that
reported an anomalous increase in the strength of micron-scale single crystal pillars as their
diameter decreased[1], numerous research groups have observed similar size effects in
various FCC single crystals[2-14]. An inverse relationship between sample size and flow
stress was predicted by strain gradient models for small indentations, resulting from an
increase in geometrically necessary dislocation densities to accommodate the lattice
mismatch [15-16]. However, TEM investigations [17] revealed that the dislocation structure
on the active slip systems in micropillars with diameters larger than 2 pm is comparable to
that found in bulk samples deformed to a similar state. Furthermore, the dislocation density
in nanopillars smaller than 150 nm apparently approaches zero after deformation [18]. These
experimental observations indicate that mechanisms other than the gradient-induced storage
of geometrically necessary dislocations must be the cause of the observed size effects in

microcompression tests on micropillars.

Two basic models have been used to explain the size effects in plasticity in FCC single
crystals. The first is the “dislocation starvation” (DS) model [4-6, 12, 19-20], in which
dislocations can easily escape from nearby free surfaces in a small sample prior to dislocation
multiplication, leaving samples in a dislocation-free state. Continuous plastic flow would
then require an increase in applied load to nucleate dislocations at the surface. Thus, the
principal idea behind the DS model is that plastic deformation at small scale is dislocation
nucleation dominated. The other model is the “single-arm dislocation” (SAD) model,

which is based on the notion that size effects in the plasticity of small single crystals can be
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rationalized almost completely by considering the stochastics of single-arm dislocation
source lengths in the sample [22]. In contrast with the DS model, the SAD model assumes
that the plastic deformation is induced by multiplication of internal dislocation sources rather
than nucleation of surface dislocations. To identify which of the two models best describes
the dislocation behavior requires a better understanding of the evolution of dislocation
structures with increasing strain and the details of the dynamic behavior of internal

dislocation sources.

3-D dislocation dynamics (DD) simulations, in which dislocations are the simulated
entities, have been the primary modeling tool employed to study the various aspects of
plastic behavior in nano- and micro-samples. The first applications of 3-D DD simulations
to this problem employed a set of isolated Frank-Read sources (FRs) with rigidly fixed ends
as the starting dislocation populations [21-26]. To extend that simple (and limited) model,
Tang et al. [27] employed artificially-generated jogged dislocations as the initial dislocation
configuration for their simulations (though they neglected the image stresses and cross-slip)
and demonstrated that the shut-down of sources causes staircase behavior similar to that
observed in experiments. Motz et al. [28] used the dislocation structures relaxed from a high
density of closed dislocation loops as the initial input for their simulations. In our previous
work, we [14] employed experimental-like initial dislocation structures, which were created
by cutting the cylindrical sample from the results of simulations on larger, bulk, samples.
Our goal was to mimic the physics of real systems as closely as possible. To that end, we
also included a boundary element method to determine the image forces and a detailed model
of cross slip.  We found that the scarcity of available dislocation sources is indeed a major
contributor to the higher flow stress in smaller sizes [29]. Despite this progress, however,
further studies are needed both to determine the critical events for plastic deformation at
small scales and to derive more accurate and reliable models to predict the mechanical

properties of small scale materials.
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In this paper, we present results from 3-D DD simulations on the dynamic behavior of
internal dislocation sources in micropillars. Based on our simulation results, analytical
formulations of the dislocation starvation (DS) model and a general single-arm dislocation
(SAD) model were developed, from which we can identify the relationship between
nucleation-dominated and multiplication-dominated plastic deformation in small-scale FCC

single crystals.

5.1 Simulation procedures

We employed the parametric DD method described in detail in [30-32] to simulate the
mechanical behavior of Ni single crystals under uniform compression. For the simulations in
this work, the material properties of Ni are used: shear modulus 1= 76 GPa, Poisson’s ratio v

=0.31, and lattice constant a = 0.35 nm.

A sophisticated thermally-activated cross-slip model developed by Kubin and
co-workers [33-34] was adopted in our DD simulations. We employed a Monte Carlo
method to determine the activation of cross slip based on the probability of the cross slip of a
screw segment with length L in a discrete time step, which is determined by an activation

energy Vac (|z]-7in) and the resolved shear stress on the cross-slip plane z,

L & V
P=pg——exp _ﬂq T|—T”|)

L, &, KT | 5.1)

where £ is a normalization constant, k is the Boltzmann constant, T is set to room
temperature, V. is the activation volume, and 7y, is the stress at which stage-three hardening
starts. In Ni, Vy is equal to 420b% with b the magnitude of Burgers vector, 7;;; = 55MPa
[35-36], and Lo = 1um and oty = 1s are reference values for the length of the cross-slipping

segment and for the time step.
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In our computations, the experimental loading conditions of Dimiduk and coworkers
[1-2, 17] were simulated, in which a mixture of constant displacement rate and creep-like
loading conditions were employed; the applied stress was discretely increased by a small
fixed value (do) every time the plastic strain rate approached the applied strain rate. In all
simulations, compression loading was performed in the [001] direction. When the plastic
strain rate was equal to 50, the applied load was increased by 1.0 MPa, i.e. o = 1.0 MPa, for
&P =50, while the applied stress was kept constant when the plastic strain rate was larger

than 50, i.e. 6 =0, for &P > 50.

5.2 Stability of internal dislocation sources

The major question that has arisen from recent work on plasticity at small scales is
whether the activated dislocations producing continuous plastic strain are the pre-existing
internal sources or sources nucleated from the surface [4-6, 10-12, 20]. If the dislocation
starvation mechanism is operant, nucleation of surface dislocation sources is the most likely
contributor to continuous plastic flow. Otherwise, plastic deformation is likely to be
dominated by the multiplication of internal dislocation sources. To answer this question
requires an examination of balance between the stability of internal dislocation sources and
the probability of dislocation starvation in samples with different sizes. In recent in situ TEM
studies, Oh et al. observed that some internal dislocation sources can be naturally created by
cross-slip of dislocations near free surfaces [37-38]. Unfortunately, it is unclear how stable
those naturally formed sources are in different samples. If these sources have a short enough
lifetime such that they can only operate a few times before finally escaping from the free
surfaces, then dislocation nucleation from the surface likely plays a critical role in controlling

plastic deformation.

To study the formation and stability of internal dislocation sources, we mimicked the

nucleation of a dislocation by putting a surface dislocation with a length of 100 nm on the
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surface and lying along the %[011](111) slip system in micropillars with various diameters

and an aspect ratio fixed at D : H = 1:3 (as observed in in situ experiments) [37]. All surface
dislocations nucleated from the middle part of the micropillars and were set as near-screw
dislocations to increase the cross-slip probability. Since we do not know the actual stress
required to nucleate dislocations from a rough surface, we estimated the nucleation stress
based on y/b, where the Burgers vector, b = 0.25nm and the stacking fault energy, y = 0.1
JIm? for Ni [39]. Thus, the required nucleation stress on {111} slip systems with Schmid
factor equal 0.41 is approximately equal to 1000 MPa.

Figure 5.1 shows the sequential snapshots from a simulation in which image stresses at
the free surfaces were ignored. In that case, a surface dislocation was nucleated from one side
of the sample, quickly swept across the plane and exited from other side. When image
stresses are included, the response is quite different, in that the screw segment on the
activated dislocation cross slipped from the original plane to an adjacent plane and then

emitted a new FR source, as shown in Figure 5.2 for a typical case in a 750 nm pillar. Figure
aO t@ @
d@ @ O

Figure 5.1 Dislocation Nucleating and escaping from the surface of micropillar without
considering image stresses (viewing along the Z-direction).
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5.2a-d shows the nucleated dislocation gliding on the original (111) plane. In Figure 5.2e,
the screw segment nearest the free surface has cross slipped to the (111) plane under the

influence of image stresses and formed a new FR source with the same Burgers vector

NI =

[011] as the original one. The newly formed FR dislocation source contains two internal

pinning points, pl and p2, as shown in Figure 5.2e. The pinning points have two single-arms
on different slip planes with the same Burgers vector and can move along the intersection
line of the two slip planes [27, 29]. Under loading, the two dislocation arms will operate
independently around the jog corners, producing continuous plastic flow. In Fig.2f and g, the
newly formed source bowed out under the external loading and then was truncated by the
free surface. Since the source containing pinning point p2 was quite close to the free surface,
it exited the pillar under attractive image forces and only the pl source continued operating,
as shown in Figure 5.2h. One of the new dislocations generated by the source p1l moved in
the opposite direction from the original one (Figure 5.2i) and when it approached the surface,
a cross-slip process similar to that in Figure 5.2e occurred, in which one new FR source was

formed, as shown in Figure 5.2j. The whole process in Figure 5.2 illustrates how internal

aQ b@ C@ d@ e.

Figure 5.2 Dislocation nucleating from the surface and forming internal pinning points by
cross-slip (CS) under the influence of image stresses (viewing along the Z-direction).
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sources can be formed by cross-slip under the influence of external stress fields. In FCC
crystals, cross-slip of dislocations mainly depends on the local resolved shear stresses and
dislocation line directions. In small volumes with large surface to volume ratios, image
stresses from surfaces can alter the local resolved shear stresses on slip planes, which results
in an increase in the probability of cross-slip. In our simulations, we find that internal
sources formed by cross-slip of the activated surface dislocation are most likely if the surface
dislocation initially nucleated from a direction within #15<from the direction of the pure
screw dislocation. The qualitative behavior reported here is robust against modification of
simulation details such as the discretized length of dislocation segments. It is worth noting
that the current DD simulation results differ from recent atomistic simulations [40], in which
cross-slip of dislocations seldom happened and, thus, nucleation of surface dislocations
controlled the plastic flow. However, since the sample size in the atomistic simulations is
only 36 nm and the applied strain rate is seven orders of magnitude larger than those in our

simulations, it is perhaps not surprising that the simulations differ.

To study the stability and effectiveness of the naturally formed sources, the dislocation
density for samples of different sizes along with the corresponding stress-strain curves are
plotted in Figure 5.3a. The plastic strain produced by the nucleated surface dislocation and
subsequently emitted sources decreases with the sample size, likely because dislocation
sources in smaller samples have shorter residence lifetime than those in larger samples under
the influence of attractive image forces and confined geometries. When all the dislocations
have been driven out from surfaces, the samples arrive at the state of dislocation starvation.
The movie in the supplementary materials gives one example of dislocation starvation in the
300 nm pillar that corresponds to the density-strain curve shown in Figure 5.3a. After
dislocation starvation, additional dislocations must be nucleated for plasticity to commence,
which requires the application of significantly higher stresses. During this period, the fraction

of plastic strain in the total strain is zero (because of no dislocation sources) and the strain
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hardening is essentially elastic, as reflected in the stress-strain curves. This effect is called
“starvation hardening.” Since the dynamic sources have shorter residence lifetimes in smaller
samples, the frequency of the repeating nucleating dislocation sources increases as the
sample size decreases, which is one reasonable explanation for why smaller samples have a
higher frequency of intermittency in plastic flow observed in most microcompression tests
[3-4, 6, 8, 14]. Figure 5.3b plots the evolution of the number of internal dislocation sources
for different sample sizes. Plastic flow is clearly a dynamic process, during which both loss
and gain of dislocation sources can happen in all pillars at all sizes. However, the stability of
these internal sources depends on the sample size, because those in the smaller samples have
a shorter average distance to the free surfaces and thus it is easier for them to escape from the

sample.

In real systems, internal dislocation sources are always present in the existing dislocation
structures before further deformation. These structures are formed by dislocation reactions
such as cross-slip, collinear annihilation [41], and Lomer-Cottrell junctions [28]. Assuming
that the average length of dislocation sources in the sample scales with radius R as <L>=sR,
the dislocation density in a micropillar with aspect ratio of 3:1, is equal to SNR/(zR**6R) =
sN/(6zR?), where N is the total number of dislocations. From this simple analysis, we can
see that the increase of the total number of sources is 2 orders of magnitude faster than the
increase in sample sizes at a given dislocation density. In addition, the longer lifetime of
internal sources in larger micropillars increases the probability of generating new sources
from an earlier source, preventing the dislocation-starved state seen in Figure 5.3. Thus, it is

much harder to totally eliminate internal dislocations in larger samples than in smaller ones.

5.3 Dislocation starvation (DS) model

Since the rate of dislocation loss from free surfaces increases and the rate of dislocation

multiplication decreases with decreasing sample size, there should be a critical size for FCC
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Figure 5.4 Schematic sketch of one dislocation loop in a finite cylindrical sample with the
distance, vdt, from free surfaces.

single crystals below which the dislocation density should decline in the course of plastic
deformation toward a dislocation-starved state. Here we present an analytical formulation
for the Dislocation Starvation (DS) model, following an idea from ref. [19], that will enable

us to predict that critical density.

Consider a cylindrical sample of radius r,with the primary slip plane oriented at an angle
S from the compressive axis as shown in Figure 5.4. The glide plane in this case is an ellipse
with major axis a = r/cosp and the minor axis r. Assuming any dislocation within the
distance vdt from a free surface has a 50% chance of escaping from the surface, the

dislocation loss rate is an inverse function of the sample size r, as follows
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1 z(a+r)vdt

d = — — = —
ploss pmob(z 7ar j pmob

cos’ (B /2)vdt
» ,

(5.2)

where v is the dislocation velocity and pmop is the mobile dislocation density. The dislocation
losses from dislocation annihilation and locks have been ignored, since from our simulations
they are small compared with surface losses. The dislocation multiplication rate is related to
the mean free path, L which is the distance traveled by a mobile dislocation before it is stored
[42]

vdt
dIOmuIt = pmobT . (5.3)

The overall rate of total dislocation density, pita, IS the sum of dislocation loss and the

multiplication rate, such that the total dislocation density evolves as:

(L/L—cos’(B12)/r) &,

ptotal - 100 + b M ) (5-4)

where p, is the initial dislocation density, b is the Burgers vector, M is the Schmid factor and

the plastic strain, &, = pmoobvdt. Based on eq. (5.4), samples can potentially arrive at a
dislocation starvation state if the term related to the sample size, cosz(%)/r, is smaller than

the reciprocal of the mean free path. In addition, eq. (5.4) demonstrates that the dislocation

density decreases faster with smaller sizes, which agrees with our DD simulation results.

From eq. (5.4), we can define a critical size, D = 2r, for dislocation starvation, below
which the term, (%— cosz(g)/r) in eq. (5.4) is negative and the dislocation density will

decrease with increasing strain leading to a dislocation-starved state at a given initial
dislocation density. To estimate the critical size for dislocation starvation, we assumed that

the mean free path of dislocations at small scales is approximated by L ~ p° and g = 35°for



94

<011>{111} slip systems. The critical size for dislocation starvation with a initial dislocation
density 2.0>10"* m™ is about 400 nm, and 1250 nm for initial dislocation density of 2.0<10'?
m™. Recently, TEM analysis [14] revealed that the initial dislocation density in nanopillars,
whether produced by a focused-ion beam or not, can easily reach on the order of 10** m?,
suggesting that the mechanical response of nanoscale crystals is a stronger function of initial
microstructure than of size regardless of fabrication method. In the case with dislocation
density at 10 m, the critical size for dislocation starvation is around 180 nm, which is
smaller than the sample sizes used in most previous experiments. This small size could
explain why Shan et al. observed dislocation starvation only in their 150nm sample via in situ
TEM [18] and why most experiments cannot find pristine samples with no internal
dislocations after deformation [3, 10-11, 13-14, 17, 43-44]. Although this model considers
the sample as a perfect single crystal without other kinds of defects, it still gives an

instructive insight into the unconventional plasticity at nano- and micro-scales.

5.4 Single-arm dislocation (SAD) model

Unlike nanocompression tests, micropillars under compression are exposed to a
nominally uniaxial stress and strain state. Thus, the observed size effects are likely to be
more related to the stochastic behavior of dislocations than the gradient-induced storage of
geometrically necessary dislocations [2]. In small volumes, a common dislocation source
consists of a single dislocation arm with one end at a surface and the other at an internal
pinning point. These single-arm sources can be formed either by the truncation of
Frank-Read sources at free surfaces or directly generated in the initial dislocation structures.
Guided by the observation of single-ended source operation in their 3-D DD simulations,
Parthasarathy et al. developed the single-arm dislocation (SAD) model based on the observed
dependence of the small-strain plastic response on the stochastic behavior of those sources

[45]. Their goal was to calculate the increase and variation in the critical resolved shear
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stress by determining the stress required to activate the weakest single-arm dislocation source
in a microcrystal when only one slip system is active. With these assumptions, the critical
resolved shear stress at yielding can be calculated by adding the source activation stress to

the lattice-friction stress and the back stress from the dislocation forest. They found that

K
T=TO+7ﬂb+a,ub\/; | (5.5)

where 7, is the lattice-friction stress, k is the source-strength coefficient (with an average
magnitude of k = 0.6 [46]), « is the hardening coefficient (~0.35 for FCC metals [47]), u is
the shear modulus, b is the magnitude of the Burgers vector, p is the dislocation density and
Z is an effective source length calculated from the statistical model that is dependent on the

sample dimensions and dislocation density [45].

In eq. (5.5), only the shear modulus and the Burgers vector show much variation for
different FCC metals, while all other parameters are almost the same. Thus, it is useful to
rearrange eg. (5.5) to make it independent of material parameters. Assuming the

lattice-friction stress is negligible, we find

r k
E=7+0€\/;. (5.6)

Since the right hand side of eq. (5.6) depends only on the effective source length 1 and
the dislocation density, we can use it to predict the yield stress of various FCC single crystals
with different sample sizes and dislocation densities. In the original SAD model, the number
of mobile dislocation sources was assumed to increase with the sample size at the sample
yielding point. However, recent TEM observations [48-49] and 3-D DD simulation results
[22, 29] indicated that only one, or at most a few, weakest sources determined the strength at

the onset of plasticity. Thus, in the present study we determined the effective source length 7,
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Figure 5.5 Comparison log-log plot of the general SAD model and microcompression results on

various FCC single crystals.

from the statistical distribution of only one random single-arm source inside the sample. For

validation, we present the data from microcompression tests from a number of FCC single

crystals, Ni [2-3], Al [9, 11], Cu [9] and Au [13], to compare with the predicted results from

our version of the SAD model, where we assume limiting values of the dislocation density

based on experimental observations [2, 6, 10], with the high and low values being 2.0x10'

m™ and 2.0<10"* m?, respectively. All experimental data were taken at the onset of plasticity

with a total strain less than 5%.
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As shown in Figure 5.5, the normalized resolved shear stress for various FCC single
crystals exhibits a similar size-dependent behavior with a scaling exponent of approximately
0.6. Furthermore, the general SAD model cannot only reasonably model the increase of yield
strength with decreasing sample sizes, but also the statistical variation of the strength at small
scales. The upper and lower bounds in Figure 5.5 were evaluated from the the standard
deviations of the effective source length by the statistical model in ref. [45]. It is interesting
to see that some of the sample sizes in Figure 5.5 are already below the critical size for
dislocation starvation calculated in previous section, such as the sizes smaller than 400 nm at
density equal 2.0<10" m™? However, the SAD model still seems to capture the yield strength
of these samples, perhaps because the process of thoroughly removing internal sources takes
a long time at these small strain levels, even in 100 nm samples [49]. Thus the initial plastic
deformation in these samples results from the motion of internal dislocation sources before

they have been driven out of the sample.

5.5 Dislocation interactions causing hardening at small scales

The SAD model is designed to estimate the stress at the onset of yield and thus cannot
explain the intermittency in plastic flow and discrete load increases in the post-yielding
region, as observed in the microcompression tests [2-11, 13]. In section 3.1, we have shown
that the strength increase in the post-yielding region can be caused by starvation hardening,
i.e., mobile sources escaping from free surfaces. In this section, we will use DD simulations
to investigate another type of hardening that arises from dislocation interactions during
plastic flow. To that end, we extended our simulations to include realistic initial dislocation

distributions.

We began our simulations with a cubic cell with periodic boundary conditions that was
slightly deformed and unloaded, mimicking the deformation of a bulk single crystal. A

cylinder was then cut out of the bulk sample with the aspect ratio of D : H =1 : 3, where D
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Figure 5.6 Stress-strain and density-strain curves obtained from simulations on the sample with D

=1.0 pm.
and H denote the diameter and height of the micropillar, respectively. The dislocation
microstructures in the pillars were then relaxed under the influence of image and interaction
forces until the initial dislocation structures reached a metastable configuration, as shown in
the inset in Figure 5.6. The dislocation density after relaxation is around 1.7>10"* m, which
is consistent with conditions observed in experiments [17]. This experimental-like
dislocation structure was then used as the initial configuration for our subsequent simulations.

Further information about the simulation procedures can be found in reference [29].

Figure 5.6 shows the strain-stress curve for a 1.0 pm diameter micropillar under
compression along with the corresponding strain-dislocation density curve. One may observe

in Figure 5.6 that a certain amount of ‘‘microplasticity” in the pillar was generated at low
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loads. This early-stage plasticity is often the result of weakly-entangled or surface
dislocations being driven out of the system [29]. Owing to the escape of these dislocations,
the dislocation density will decrease in the early stages as reflected by the strain-density
curve in Figure 5.6. In addition, we see discrete strain bursts separated by nearly elastic
loading after yielding, in agreement with experimental observations [2-11, 13]. This nearly
elastic increase of load between each strain burst results from the activated sources being
trapped by dislocation reactions and is called “exhaustion hardening.” Figure 5.7 illustrates
different dislocation configurations before and after exhaustion hardening, corresponding to
the load increase in Figure 5.6 marked by an arrow. At the beginning of plastic flow, two
single-arm spiral sources S1 and S2 cyclically sweep in their slip planes as shown in Figure
5.7a, producing continuous plastic flow. After the dislocations moved close to each other, a
dislocation junction was formed that caused the cessation of plastic flow in the sample (Fig

7b and c¢). For plasticity to commence, additional dislocations had to be activated, which
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Figure 5.7 Plot of dislocation configurations before and after hardening caused by dislocation
interactions.



100

required the application of a significantly higher stress. After the applied stress increased to a
sufficiently high level, S3 was activated (in Fig 7d), generating plastic deformation. To keep
the same overall strain rate (a result of the experimental loading conditions assumed in this
simulation), the applied stress stopped increasing, leading to a constant-stress flow in the

stress-strain curve arising from the continuous operation of this new source.

The whole process in Figure 5.7 illustrates how multiplication of internal dislocation
sources causes plastic flow in micro samples and also how dislocation interactions lead to
intermittent plastic flow. When sample sizes decrease to the micro and submicron range, only
one, or at most a few, mobile sources can carry all the plastic strain under loading. Thus,
dislocation interactions with the mobile source will cause distinct changes in the plastic
behavior of samples, resulting in highly jerky flow as manifest in stress-strain curves. In bulk
samples, various dislocation interactions, such as dipole and junction formation, also occur in
a similar way as in the micro samples and induce hardening, which is usually called “forest
hardening”. However, owing to the large number of mobile dislocation sources available for
the plastic flow, the stress-strain curves of macro samples are much smoother than those of
micro samples. It is worth noting that exhaustion hardening is always associated with plastic
flow induced by the multiplication of internal dislocation sources, while starvation hardening

is usually followed by the nucleation of surface dislocations.

5.6 Implications for plasticity at small scales

Combining our modeling and simulation results with dislocation structures observed in
experiments [14, 17-18, 48-49], a physically based plastic deformation map for FCC single
crystals at small scales has been presented in Figure 5.8, which divides the plasticity into
three zones that depend on the sample size. The position of the zone boundaries are the
critical sizes for dislocation starvation as evaluated from the dislocation starvation model in

section 3.2.
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Figure 5.8 Complex deformation mechanism map for FCC single crystals: zone (1) nucleation of
surface dislocations + starvation hardening, zone (Il) nucleation/multiplication, depended on
dislocation densities and structures, zone (I11) multiplication of internal dislocations + exhaustion
hardening.

In all three zones, the general single-arm dislocation (SAD) model can reasonably
predict the strength at the onset of yielding induced by the action of a few internal dislocation
sources. Beyond the initial plasticity, nucleation of surface dislocations or multiplication of
internal dislocations are the two most probable mechanisms responsible for plastic flow in
the post-yielding region. For samples located in zone | (very small samples), nucleation of
surface dislocations will control the plastic deformation, with dislocation starvation being the
dominant hardening mechanism, owing to the ease of dislocation sources escaping through
the nearby surfaces. In contrast, in zone Ill (large systems), it is almost impossible to
thoroughly eliminate internal sources through the free surfaces, so the multiplication of

internal dislocations will carry all the plastic flow. Intermittent plasticity arises from the
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exhaustion hardening caused by dislocation interactions. In the transition zone Il, both
nucleation of surface dislocations and multiplication of internal dislocations are likely to
occur, with a greater likelihood of nucleation-dominated plastic deformation for systems in
proximity to zone | and a greater likelihood of multiplication-dominated plastic deformation
for those near zone I1l. We note that the boundaries between these zones will likely be
highly sensitive to the dislocation density and internal dislocation structures. For example,
with increasing initial dislocation density, the position of zone Il will shift to small sample
size, which implies that the critical size for dislocation starvation should decrease

correspondingly.

We can clearly see that the plastic deformation of FCC single crystals at small scales is
not only size-dependent but is also dislocation density-dependent. With increasing
dislocation density and sample size, multiplication of internal dislocations will likely control
the plastic flow. In contrast, dislocation starvation and nucleation of surface dislocations
should dominate the plastic deformation with decreasing density and size. As the observed
dislocation densities from most experiments are on the order of 10> m™ to 10" m, we can
estimate that zone I in the plastic deformation map ends at around 0.5 um and zone III starts

at around 1.0 pm.

5.7 Concluding remarks

3-D DD simulations were employed to study the dynamic behavior of internal
dislocation sources in micropillars of different sizes. From the simulation results, we
identified the dominating plastic deformation mechanisms at small scales by combining our
modeling results. We note that these mechanisms are consistent with the available

experimental data.
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In confined volumes, image stresses alter the local resolved shear stresses on slip planes,
resulting in an increase in the probability of cross-slip to form new internal sources. These
naturally formed sources have shorter residence lifetimes in smaller samples under the

influence of attractive image forces from the nearby surfaces.

The normalized critically resolved shear stress for a number of FCC single crystals
exhibited a similar size-dependent behavior for all the materials. The generalized single-arm
dislocation model can reasonably predict both the increase of yield strength with decreasing

sample size, as well as the statistical variation of the strength at small scales.

The plastic deformation of FCC single crystals at small scales depends not only on
sample size but also on the dislocation density. At nano-and micro-scales, there is a critical
size for dislocation starvation, which strongly depends on the initial dislocation density.
Below this critical size, the dislocation loss rate will exceed the multiplication rate and thus
nucleation of surface dislocations and dislocation starvation hardening will likely dominate
plastic deformation process. Otherwise, multiplication of internal dislocation sources should

control the plastic flow with increasing strain.
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CHAPTER 6
SIMULATIONS OF THE EFFECT OF SURFACE COATINGS ON

PLASTICITY AT SMALL SCALES

Small-scale metallic structures have been widely utilized in microelectronic circuits,
optical and magnetic storage media, micro-electro-mechanical systems (MEMS) and so on,
owing to their excellent mechanical, chemical, or electrical properties. Recently,
size-dependent deformation properties of single crystals have attracted much attention in the
materials science community, in part because these properties are closely related to the

reliability of such structures in technical applications.

The sudden structural softening under compression arising from large strain bursts of
small scale materials is a critical problem for engineering application of such metallic
structures. Recently, Ng and Ngan [1] found that coating aluminum microcolumns with
tungsten significantly increased the compressive strength and alleviated strain bursts
compared with the free surface samples agreeing with Greer’s experiment results on Au
micropillars coated by Al3O; [2]. In addition, subcells and band structures always formed in
the coated samples which have seldom been observed in free surface samples. However, the
remarkable increase in strength and strain hardening rate of micropillars by hard coatings
could not be explained by the conventional rule of mixtures, which indicates the strength of
mixtures should be equal to the sum of the strength of each component multiplying their

volume fractions [1].

In this chapter, we employed 3-D DD simulations to examine the mechanical behavior
and microstructure evolution in micropillars with a hard coating layer similar to samples
studied experimentally [1]. The experiment-like initial dislocation structures containing FR

sources, jogged dislocations, surface dislocations and spiral (single-armed) sources was
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introduced into our DD simulations to study plastic behavior of Ni single-crystal micropillars
under compression. We compare the results from coated micropillars to those from
free-surface micropillars to investigate how coatings affect the plastic deformation behavior

in small volumes.

6.1 Simulation procedures

We employ the PDD method described in Chapter 2 to simulate the mechanical behavior
of Ni single crystals under uniform compression in [001] direction. For the simulations in this
work, the applied strain rate was equal to 200 s™ with the experimental loading conditions
described in Chapter 4, and the materials properties of nickel were used: shear modulus 1=
76 GPa, Poisson’s ratio v = 0.31, and lattice constant a = 0.35 nm. Finally, a sophisticated
thermally-activated cross-slip model developed by Kubin and co-workers [3-4] was adopted
in our DD simulations with Monte Carlo sampling to determine if cross-slip is activated or

not. Detailed procedures can be found in ref [5].

At beginning, a larger cubic cell was generated with periodic boundary conditions and a
size 3>3>3 m? containing a set of FR sources with an initial density equal to 2.0x10™ m™.
The FR sources (straight dislocation segments pinned at both ends) were randomly set on all
twelve <011>{111} slip systems with random lengths. After compression in the [111]
direction to a dislocation density of about 2.5x10" m? the “bulk” cubic sample was
unloaded and cylinders of various sizes (representing micropillars) were cut out of the bulk
sample along the [001] direction with the aspect ratio of D : H=1: 2, where D and H denote
the diameter and height of micropillars, respectively. Subsequently, the deformed dislocation
microstructures were relaxed under the influence of image and interaction forces. The
dislocation densities after relaxation were all in the range of 1.0 to 2.0x10"* m? and
consistent with conditions observed in experiments [6]. In the present study, samples with

diameters D = 0.5 and 1.0 pm were compressed in [001] direction with coated and free
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surfaces. In agreement with the experimental observations [1], the hard coating layer was
considered as an impenetrable obstacle for dislocations, while the free surface could
annihilate dislocations and generate image force attracting dislocations, which play a
significant role in mechanical behavior of uncoated mciro- and nano- samples [7]. The free

surfaces were modeled using the boundary element method (BEM) described in Chapter 3.

6.2 Effect of trapping dislocations

In Figure 6.1, the engineering stress—strain relationships of two micropillar sizes D = 0.5
and 1.0 pm are shown. The size-dependent behavior, in which smaller samples have higher
strength, is observed in both coated and free-surface samples. When the identical initial

dislocation configurations used, the flow stress of coated samples is approximated 110%
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Figure 6.1 Stress-strain curves for both coated and uncoated samples
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higher than that of the free-surface samples with D = 0.5 pm and 60% higher with D = 1.0
pm. In the coated samples, stress-strain curves exhibited larger stain hardening rates than
those did samples with free surfaces, and the magnitude of strain bursts was decreased to a
large degree, which agrees well with experiment results that coated samples demonstrated a

significant increase in flow stress and the strain-hardening rate [1-2].

Figure 6.2a shows the comparison of the strain-stress curves and the corresponding
variation of the dislocation density for a typical example of a coated and a free-surface
micropillar with diameter D = 1.0 pm. The identical initial dislocation structure is shown in
Figure 6.2b. The coated sample exhibited not only higher flow stress, but also a higher
hardening rate i.e., at the same stress level, the total strain is smaller than that in free-surface
sample. The large amount of ‘‘microplasticity”, plastic strain at low loads, in samples with
free surfaces is the result of the weakly-entangled dislocations from within the sample being
driven out free surface [5]. In the coated sample, however, dislocations are blocked by the
coated layer and stored near the interfaces, which induces a strong back stress on that
activated dislocations later in time. Thus, the plastic deformation induced by the movement
of dislocations was smaller in the coated sample at low loads and it showed steeper slope of
strain-stress curves before yielding. This large difference in dislocation behavior in the two
cases was also reflected in the corresponding strain-dislocation density curves in Figure 6.2a.
For the free-surface case, dislocation density decreased at the early stage of deformation
because of the mobile dislocations leaving the sample and then increased slightly with strain
as cross-slip was activated, which was also demonstrated in the experiment observations [8].
Although the dislocation starvation model seems to be valid at small diameters (about
150nm) [9], because of the sizes of our samples larger than 300nm, an absolute
dislocation-free state is almost impossible in our simulations. Dislocations were always
observed in the experiments for samples with diameter, D>300nm [10]. In coated samples,

early activated dislocations could not leave through the surface and were stored near the



112

a 700 v ' v v v v 14.0
— Strain-stress for coated surface .

600} | —strain-stress for free surface ____,.f"' 1120 —
= | Strain-density for coated surface o =
O 500F |- Strain-density for free surface & 4100 o
w S
0 A &
J 400 g
e a
o))
= 300p =
@ 2
o IS,
2 200} 9
H @

0O

100

0

C

) WU

Figure 6.2 (a) Stress-strain and dislocation density-strain curves with diameter D = 1.0 pm, (b)
initial dislocation structure, (c) dislocation structure in free-surface sample at 0.6% strain and (d)
dislocation structure in coated sample at 0.6% strain.
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interface, so total dislocation density gradually increased. At some critical applied stress,
which was larger than the flow stress of free-surface sample, there was a sharp increase in
dislocation density, indicating that a large number of dislocation had been activated creating
more mobile sources for plastic deformation. However, the higher the number of activated
sources, the greater the dislocation densities near the interface, which in turn induces addition
back stress that inhibits further dislocation nucleation. Thus, the large strain bursts in free
surface samples were not present in coated samples, but were replaced by smaller strain
bursts separated by elastic hardening stages (see Figure 6.1). The dislocation structures of
both the uncoated and coated samples at a strain level of 0.6% are plotted in Figure 6.2c and
d, respectively. Compared with the initial configuration in Figure 6.2b, the dislocation
density was relatively unchanged in the samples with free surfaces, but the dislocation lines
have changed from being relatively long and straight into being short and jogged, which
results from dislocation reactions and cross-slip. In contrast, the density in the coated sample
increases to around five times the initial density at 0.6% strain and showed a large number of
dislocations pile-ups near interfaces. Note that banded structures were gradually formed as

the strain increased.

6.3 Banded structures formed by cross-slip

To investigate the effect of cross-slip on the evolution of dislocation structures and the
mechanical behavior of coated samples, an additional sample with D = 1.0 um was cut from
the undeformed cube shown in Figure 6.3b, such that Frank-Read and spiral sources were
initially present (with an initial density of 1.810** m™). This sample was put under load with
and without cross-slip enabled. Figure 6.3a shows the comparison of the stress and
dislocation density evolution for these two cases. The non-cross-slip case exhibited
essentially hardening, except for several insignificant strain jumps corresponding to the

discrete increase of dislocation density in the density-strain curve. The dislocation structure



114

a 1200 T T T T T 'jl 120

—Strain-stress curve with cross-slip
—5&train-stress curve without cross-slip
----- Strain-density curve with cross-slip
sook |- Strain-density curve without cross-slip

1000 10.0

Engineering Stress (MPa)
)]
3
>
o
Dislocation Density (‘Id'?’ m'2)

..............

200} . 120
i —— e - . , . 00
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.3 (a) Stress-strain and dislocation density-strain curves with diameter D = 1.0 pm, (b)
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for non-cross-slip case at 0.6% stain is plotted in Figure 6.3c, which indicated dislocation
sources were just nucleated on several slip planes. Since fewer sources available in the
non-cross-slip sample, each source had to repeatedly operate on the same slip plane to sustain
the applied strain. This repeated process required much larger external loading to overcome
the high back stress generated by previous pile-up dislocations than nucleating new sources
on slip planes without pile-up dislocations, so non-cross-slip sample exhibited smaller strain
bursts and higher strength. In contrast, cross-slip enables screw dislocations under a strong
back stress to escape from the original slip plane to the cross-slip plane, generating new
dislocation sources that led to more plastic deformation. As shown in Figure 6.3a, the stress
and density curves of the cross-slip and non-cross-slip cases were very similar below about
0.2% strain. After that, there is a sharp increase of dislocations in the cross-slip-enabled
sample reflected in strain-stress curve by strain bursts that indicates new dislocation sources
were generated. The corresponding dislocation structure for the cross-slip case at 0.6% stain
is shown in Figure 6.3d, from which we could see that more slip systems have been activated
than of in the non-cross-slip case in Figure 6.3c. Banded structures were formed, in which
double-cross slip plays an important role. Figure 6.4 illustrated one typical example of

double-cross slip in the coated sample. In Figure 6.4a, the dislocation source L1 with slip
system %[101](111) approached the interface, experiencing a high repulsive stress from

previous piled-up dislocations on the same slip plane. Under the combination of applied
stress and dislocation interaction stress, the screw segment S1 of dislocation L1 cross-slipped
on the plane (111), to escape the original slip plane (111), as shown in Figure 6.4b. S1
continued bowing out under the applied stress in Figure 6.4c. Finally, double-cross slip
produced new dislocation sources in the slip plane parallel to the original one, as shown in
Figure 6.4d. The whole procedure was continuously repeated generating large number of
dislocation pile-ups on the cross-slipped planes as well as in the planes parallel to the original

ones, forming banded structures and subcells as observed in experiments [1]. Thus, cross-slip
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Figure 6.4 Plot of double cross-slip in coated sample: red line with 1/2[101](111) and green line
with 1/2[101](111), see details in text.

seems to be the primary mechanism in producing additional dislocation sources during the

plastic deformation of small coated samples.

6.4 Concluding remarks
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Our simulations offer an explanation for the significant increase in compressive strength
and formation of band structures in coated micropillars, demonstrating a fundamentally
different strengthening mechanism in coated micropillars than in samples with free surfaces.
Normally, in free-surface samples, image forces attract dislocations to the surface, where
they exit, leaving a relative clear free path for dislocations that are activated later. In the
coated samples, dislocations are blocked from leaving the sample, leading to dislocation
pile-ups that induce a strong back stress on the later-activated sources, inhibiting further
dislocation nucleation. The more dislocation pile-ups, the higher back stresses. Thus, the
coated samples exhibited a higher strain-hardening rate, smaller strain bursts and greater flow
stresses than those in samples with free surface. In addition, cross slip activated in coated
samples enable screw dislocations to escape their original slip plane, generating more mobile
dislocation sources for plastic deformation, and enabling the formation of banded structures

and subcells.
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CHAPTER 7
DISLOCATION DYNAMICS SIMULATIONS OF PLASTICITY IN

POLYCRYSTALLINE THIN FILMS

In this study, 3-D DD simulations considering both cross-slip of dislocations and stress
relaxation at grain boundaries have been used to investigate the size-dependent plasticity of
polycrystalline thin films. According to our simulation results, we relate the plastic
deformation of polycrystalline thin films to such quantities as dislocation density, grain size
and thin film thickness, and finally developed a spiral source model to predict the plastic

behavior of thin films.

7.1 Simulation procedures

The DD simulations are performed with the code UCLA-Microplasticity. Details on the
methods used in this code were described in Refs [1-3]. For the simulations in this work, the
materials properties of Cu are used: shear modulus (= 50 GPa, Poisson’s ratio v = 0.34, and
lattice constant a = 0.36 nm. The dislocation mobility is taken to be 10 Pa™ s* in the
calculations [4].

Cross-slip of dislocations is important for the plastic deformation of crystal materials,
even at small scales [5-8]. The moving dislocation leaves its habit planes and propagates on
the cross-slip plane to generate new sources for the following plastic deformation or enable
oppositely signed screw dislocations on different planes to annihilate each other. In our
simulations, a sophisticated thermally-activated cross-slip model developed by Kubin and
co-workers [9-10] was adopted in our DD simulations to study the evolution of
microstructures on in thin films, and a Monte Carlo method was used to check whether

cross-slip is activated or not. The probability of cross-slip of a screw segment with length L
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in the discrete time step is determined by an activation energy Vac (Jz]-zii) and the resolved

shear stress on the cross-slip plane z,

L ot V
P=pg——exp ——22(7]|-
IBLO &, P KT (lz'l z'|||)

: (7.0)
where £ is a normalization constant, k is the Boltzmann constant, T is set to room temperature,
Vat is the activation volume, and z is the stress at which stage-three hardening starts. For
Cu, Vaq is equal to 300b* with b the magnitude of Burgers vector, 7, = 32MPa, and Lo = 1pum
and Jty = 1s are reference values for the length of the cross-slipping segment and for the time

step [11].

Figure 7.1 Plot of the nine grain aggregate in DD simulations (Dashed lines are BEM mesh and
dislocations are in color)
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In this study, a volume element consisting of nine (= 3 %3 % 1) columnar grains is set up
and represents freestanding polycrystalline thin films as shown in Figure 7.7.1. Each grain
has the same size and is set in [001] directions. The cross-section of each grain is square, and
the length of each side of the square represents grain sizes (D) while the height of each grain
is equal to the thickness of thin films (H). Six sides of the grain aggregate are set as free
surfaces from which dislocations can escape. At the beginning of simulations, each grain
contains a set of Frank-Read sources with random lengths on twelve <011>{111} slip
systems. All initial dislocation densities of following simulations are set around 1.0x<10" m?.
In our simulations, the grain sizes, D, were set to 250, 500, 1000 and 1500 nm, and the film
thickness, H, varies from 250 nm to 1500 nm for each grain size. We performed ten
calculations with different initial dislocation configurations on each sample and then the
results on the same dimension are averaged.

In polycrystals, dislocation may be blocked, reflected, absorbed or transmitted at grain
boundaries. The interactions between dislocations and grain boundaries (GB) have been
studied by several groups using transmission electron microscopy [12-15]. On the basis of
their findings, three conditions have been developed to predict the transmission of
dislocations across grain boundaries: (i) the angle between the incoming and outgoing slip
planes should be a minimum; (ii) the magnitude of the Burgers vector of the residual
dislocation left in the grain boundary should a minimum; (iii) the resolved shear stress on the
outgoing slip planes should be a maximum. Recently, de Koning and coworkers [16-17]
developed a line tension (LT) model that can capture the essential features of dislocations
slipping transmission across grain boundaries and is compatible with the molecular dynamics
simulations and experimental results. The LT model considered the transmission as the
similar way with operating a FR source on the grain boundary between the incoming and
outgoing grains as illustrated in Figure 7.2. The GB transmission strength zgg can be
rationalized as relatively simple functional relationships between the GB geometry and

loading conditions. In our simulations, all grain boundaries are considered as pure tilt
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Figure 7.2 Illustration of a dislocation transmitting the tilt grain boundary according to the LT
model: the incoming dislocation in the Grainl with Burgers vector, by, gradually bows out under
the applied shear stress and then deposits a line segment along the GB; when the resolved shear
stress at the GB dislocation exceeds the GB transmission strength, transmission occurs by
punching a part of this deposited dislocation line onto Grain2 with Burgers vector, b,, and left a
residual dislocation with Burgers vector, Ab = b, - by, in the GB plane to ensure conservation of
the Burgers vector. (Details on the LT model were described in Ref [17]).

boundary, and the Burgers vector of outgoing dislocation segment is equal to that of
incoming dislocation segment so penetration does not require the formation of residual
dislocation in the GB plane. In this case, the GB transmission strength zgg compared with the
critical stress to activate the FR source is in the range zgg/trr = 2,...,10 [17-18]. When the
resolved shear stress at the GB dislocation exceeds the GB transmission strength, the GB
dislocation will transmit the grain boundary and continue operating in the outgoing grain. In
section 3.1, we will compare simulation results with experiment results in Ref [19] to figure

out the suitable GB transmission strength in our study.
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In our simulations, tensile loading was applied on the grain aggregate in [100] direction
with a constant strain rate equal to 2000 s™*. In order to mimic the plastic deformation in real
polycrystalline thin films, we tracked the stress-strain evolution in the center grain of the
aggregate marked in Figure 7.1 and averaged the simulation results from a series of
simulation results from different initial dislocation configurations to investigate the

size-dependent plasticity in polycrystalline thin films.

7.2 Validation of simulation results

In order to study the effect of dislocation transmission on the plasticity of thin films and
get proper parameters of GB transmission strength in our simulations, we firstly performed
simulations on three types of grain boundaries: (2) zes/trr — o, representing impenetrable
GB; (b) zes/ter = N, n from 2 to 10, representing penetrable GB; (¢) zes/zer = 0, representing
free GB without resistance on dislocations. In all validation simulations, the grain size is set
to 500 nm and the thickness of thin films is equal to 600 nm, and 15 calculations with
different initial dislocation configurations have been completed on each grain boundary
condition. A comparison of the computational results for the three types of grain boundaries
is shown in Figure 7.3a. To facilitate comparison between the computed and experimental
stress-strain curves, the experimental curve from Ref. [19] is also plotted together in Figure
7.3a. It is clear that, when zgg/ter = 5, the computed and experimental stress-strain curves
agree quite well and a good fit is obtained to the plateau regime in the stress—strain curves,
while the curve for impenetrable GB conditions exhibits nearly linear hardening after initial
yielding and the curve for free GB conditions has lower yielding point and flow stress. In
Figure 7.3b, the average dislocation density is plotted against the strain for the three
difference cases. We can see the impenetrable GB case has the highest dislocation density
and rate of densities increasing, while the dislocation density for free GB case always keeps

at the lowest level without any substantial increase. For the penetrable GB case, the
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dislocation density initially has the same increasing rate with impenetrable GB case, after
yielding, the increasing rate decreases and the difference of dislocation densities between
impenetrable and penetrable cases gradually becomes large with strain increasing. Figure 7.3
c-e shows the typical dislocation structures in polycrystalline films with three different GB
conditions after deformed to the same strain level, 0.6%. For the impenetrable GB case
shown in Figure 7.3c, the initial activated dislocations were blocked at the interface when

they arrived there. Dislocations activated subsequently are repelled in their progress toward
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the interface by those blocked earlier, and dislocation pile-ups are formed, producing a back
stress. Dislocation spacing in the pile-ups is smaller near the interface than it is further away.
These pile-ups can effectively reduce the free path of mobile dislocations in the grain and
induce hardening with increasing strain. That is why the dislocation-strain curve of
impenetrable GB case increasing much faster with increasing strain than the other two cases
and the corresponding stress-strain curve exhibits very high strain hardening rate in Figure
7.3a. On the contrary, in free GB case the interface between grains is very clean as shown in
Figure 7.3d, since no resistance exists in the boundary. The corresponding dislocation density
just has small fluctuations and almost keeps in the same density level as the initial condition
in Figure 7.3b, and the flow stress is generally characterized by the stress required to
continuously operate internal dislocation sources to generate the given plastic strain rate.
Between these two extreme cases, penetrable GB can trap a certain amount of dislocation
sources at the interface, but not permanently. When the resolved shear stress on the GB
dislocation exceeds the GB transmission strength, the GB dislocation will transmit the
interface and formed a GB source on the adjacent grain as marked in Figure 7.3e. These
transmissions of dislocations in grain boundaries can relax the internal stress in grains and
reduce the back stress on subsequently activated sources, thus much fewer dislocation
pile-ups can form in the penetrable GB case. The comparison between simulation and
experimental results in Figure 7.3 indicates that the free and impenetrable GB conditions in
DD simulations will under- and overestimate the strength of polycrystalline films,
respectively. This can explain why the stress-strain curves in previous 3-D DD simulations
on polycrystalline thin films [20-22] always exhibited very high strain hardening rate without
plateau regime in the stress—strain curves at larger strains, which idealized grain boundaries
as permanent impenetrable. According these validation results, GB transmission strengths,
B, are all set to equal to five times zrg, irrespective of grain sizes and film thicknesses in the
following simulations. In addition, the 0.2% offset yield strength, oy, is defined by the

intercept of the dash dotted line in Figure 7.30n stress-strain curves.
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7.3 Grain size dependent strength
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Figure 7.4 Stress-strain plots comparing grain sizes at 250, 500, 1000 and 1500 nm for film
thicknesses of (a) 250 nm; (b) 500 nm; (c) 1000 nm and (d) 1500 nm.

In order to analysis the effect of grain sizes on the strength of polycrystalline films at a
given film thickness, the stress-strain curves for films 250, 500, 1000 and 1500 nm thick are
plotted in Figure 7.4a-d, respectively. Each plot shows the effect of grain size on mechanical
response of thin film with grain sizes of 250, 500, 1000 and 1500 nm. Vertical bars on each
signature represent data scatter over ten to ten identically sized samples. There is a significant
scatter in the magnitude of the flow stress on all grain sizes with decreasing grain sizes in

Fig.4. An explanation of this behavior arises from considering that the number of dislocation
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Figure 7.5 Plots of total dislocation density vs. total strain in films with thicknesses of (a) 250 nm;
(b) 500 nm; (c) 1000 nm and (d) 1500 nm.

sources in grains decreases with grain sizes at a given dislocation density. Thus, the statistical
effect on the number of dislocation sources in grains will be more obviously reflected on the
mechanical response of films with smaller grains [23]. In Figure 7.4, the grain size dependent
behavior is remarkably exhibited that, with the grain size decreasing, the flow stress
increases irrespective of the film thickness and the strain value, and also the yielding point
was delayed to larger strain in smaller grains. The corresponding evolution of total
dislocation density and GB dislocation density are plotted in Figure 7.5 and 6, respectively.
From Figure 7.5, we can see, the total dislocation increases with increasing strain in all cases

and the density-strain curves for large grains are smoother than for small grains. It is
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Figure 7.6 Plots of GB dislocation density vs. total strain in films with thicknesses of (a) 250 nm;
(b) 500 nm; (c) 1000 nm and (d) 1500 nm.

interesting that there is one density jump in all samples after yielding indicating large number
of dislocation sources have been generated or activated after yielding. The slope of the
dislocation density jump is steeper for small grains than for large grains and the jump
happened earlier in samples with larger grains since they were yielded earlier. Generally, the
total dislocation densities at post-yielding region for 250 nm and 500 nm grains are in higher
levels, while the other two are in lower levels. Recently, Hommel and Kraft [24] conducted
experiments on the deformation behavior of thin copper films and found dislocation density
decreases with increasing grain size, which agrees with the trend observed in our simulations.

In Figure 7.6, GB dislocation densities in different cases have been plot against the total
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130

strain. The evolution of GB dislocation densities in Figure 7.6 has similar increasing trend
with total dislocation denies in Figure 7.5, such as the position and slope of dislocation jumps.
At a constant film thickness, the GB dislocation density increases with grain size decreasing
and also the portion of GB dislocation densities in the total densities increase. For samples
with 250 nm grain size in all thickness, the fluctuations of GB dislocation density and total
dislocation density have almost the same pace and the GB dislocation density almost
approaches 90% of the total densities. That because, at a constant film thickness, reducing
grain sizes will increase the GB surface area per unit of grain volume inducing that the free
path for dislocations is largely constrained by the grain boundaries, once activated, mobile
dislocations will be quickly trapped by the boundary. Hence, the total dislocation densities
were most composed of GB dislocation densities in films with smaller grains. Figure 7.6
indicates a general trend that the films with smaller grains held higher GB dislocation
densities than larger grain films did at the post-yielding region.

According to the well know Hall-Petch relation based on dislocation pile-up model
[25-26], the refinement of grain size can produce stronger polycrystalline materials and the
yield strength of the materials should linearly depend on the inverse of the square root of the
grain size. To quantitatively assess the size effect observed in Figure 7.4, the 0.2% yield
strength is plotted in Figure 7.7a as a function of grain size, D, on a Log-Log scale. This plot
clearly shows that the simulation results on films with thickness at 1000 and 1500 nm can be
fitted by the typical form of Hall-Petch relation, ¢ = o, + kD>, with scaling exponents
approaching 0.5, while the scaling exponents are relative smaller for thinner film with
thickness at 250 and 500 nm. In addition, the scaling exponent decreases with a reduction in
film thickness from 0.51 for 1500nm thickness to 0.27 for 250nm thickness. This trend
implies that the dependence of yield strength on the grain size gradually becomes weaker
with decreasing film thickness. The reason is that most of grains in 250 and 500 nm films
have a pancake-like shape with lower aspect ratio, H/D < 1.0 as shown in Figure 7.7b, while

grains in 1000 and 1500 nm thicker films have a needle-like shape with higher aspect ratio,
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H/D > 1.0, as shown in Figure 7.7c. In pancake-like grains, most of slip planes intersect the
free surfaces from where dislocations can escape freely, and the effective free path of mobile
dislocation is largely limited by the film thickness rather than grain boundaries. That
weakens the grain size dependent behavior in thin film and dramatically brings down the
scaling exponent in thinner films. While in needle-like grains, there is a large number of slip
planes end at grain boundaries due to the large ratio of GB areas over volumes that raises the
probability of mobile dislocations blocked at grain boundaries. Therefore, needle-like grains
strength the grain boundary effect in polycrystalline films and make the scaling exponent in

thicker films closer to that for Hall-Petch relation, 0.5.

7.4 Film thickness dependent strength

Since previous experimental results showed a strength increase for thinner films over the
thicker films [23, 27-30], in this section, the simulation results are sorted by grain sizes to
analysis the effect of film thickness on the strength of polycrystalline films. The stress-strain
curves for films with grain sizes of 250, 500, 1000 and 1500 nm have been plotted in Figure
7.8 a, b, c and d, respectively. Still quite evident, a film thickness effect on the flow stress is
presented irrespective of grain sizes that the flow strength increases as the film thickness
decreases. In addition, large scatter in the magnitude of the flow stress appears with
decreasing film thickness. The explanation for the large scatter in thinner films is the same as
for the significant scatter observed in smaller grains in Figure 7.4. Due to scarcity of
available dislocation sources in thinner films at a given dislocation density, the stochastic
distribution of dislocation source has stronger influence on the variable of flow stress in
thinner films than in thicker films [23]. The total dislocation density and GB dislocation
density verse strain are presented in Figure 7.9 and 10, respectively. Generally, the evolution
of GB dislocation densities has the same pace with total dislocation densities in all

thicknesses. In Figure 7.9 and 10, the density-strain curves for thicker films are smoother
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Figure 7.8 Stress-strain plots comparing different film thicknesses for grain sizes of (a) 250 nm;
(b) 500 nm; (c) 1000 nm and (d) 1500 nm.

than for thinner ones, and the dislocation density jump happened earlier in thicker films since
they were yielded earlier as shown in Figure 7.8. Compatible with the trend observed in
Figure 7.5 and 6 that smaller grains held higher dislocation densities, it is not surprising to
find that thicker films stored higher dislocation densities than thinner films did in Figure 7.9
and10. Figure 7.11 shows dislocation structures in films with different thicknesses at the
same grain size under the same strain level. It is clear that films with higher aspect ratio
stored more dislocations at the grain boundaries. Actually, increasing film thickness at a
given grain size and decreasing grain sizes at a given film thickness both will increase the
aspect ratio of grains in polycrystalline thin films. In high aspect ratio grains, mobile

dislocations have less chance to escape the sample from free surfaces and most of them will
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Figure 7.9 Plots of total dislocation density vs. total strain in films with grain sizes of (a) 250 nm;
(b) 500 nm; (c) 1000 nm and (d) 1500 nm.

be blocked by the grain boundaries that can preserve more dislocations in the grain. While it
is worth to mention that dislocations near grain boundaries are not necessary to form pile-up
under the influence of back-stresses from the source deposited at the grain boundaries, but
some of them can relax the repulsive stress by cross-slip to the adjacent plane. Figure 7.12
illustrates one typical example of how the mobile dislocation cross-slip when approaching

the grain boundary dislocation. In Figure 7.12a and b, the mobile dislocation source, L2, with
slip system g[lol](ﬁl) is gradually approaching the previous deposited GB dislocation, L1,

with the same slip system on the same plane and experiencing high repulsive stress from L1.

In order to relax the high repulsive stress, the screw segment L3 of dislocation L2 escaped the
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Figure 7.10 Plots of GB dislocation density vs. total strain in films with grain sizes of (a) 250 nm;
(b) 500 nm; (c) 1000 nm and (d) 1500 nm.

original (111) slip plane and cross slipped on the adjacent (111) plane without resistance
(Figure 7.12c). Under the applied stress, L3 continued bowing out and finally deposited at the
grain boundary, as shown in Figure 7.12d. The whole procedure can be repeated by any
mobile dislocations experiencing a high repulsive stress from GB dislocations, generating a
large number of dislocations depositing on the grain boundaries, if the area of grain boundary
is large enough. This can explain why the GB dislocation density is higher in high aspect
ratio films, since they have large grain boundary areas per volume in the film with the same
grain size. Recently, Chauhan and Bastawrosa [31] probed dislocation storage in freestanding

Cu films using residual electrical resistivity and found a reduction in film thickness would
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Figure 7.11 Dislocation structures in films with grain size equal 500 nm under 0.5% strain in
different film thicknesses: (a) thicknesses equal 250 nm (H/D = 0.5), upper in [001] view, lower in
[1 1 1] view; (b) thicknesses equal 500 nm (H/D = 1.0), upper in [001] view, lower in [1 1 1] view;
(c) thicknesses equal 2000 nm (H/D = 4.0), upper in [001] view, lower in [1 1 1] view.

limit GB dislocation sources and decrease dislocation densities in polycrystalline films,
which is in agreement with our results. According to the strain-gradient theory [32-34], the
accommodated geometrically necessary dislocations can cause lattice curvature and
non-homogeneous deformations in crystal materials that induces “smaller is stronger”.
However, the trend observed in our simulations, thinner films are harder shown in Figure 7.9
and 10, is not consistent with the strain-gradient theory, since they stored less dislocations
density in the grain.

The thickness effect on the film strength shown in Figure 7.8 is further illustrated in

Figure 7.13, where the yield stress is plotted as a function of thickness inverse and compared
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Figure 7.12 Plots of mobile dislocation cross-slip when approaching the grain boundary
dislocation: source L1 and L2 with 1/2[101](111), source L3 with 1/2[101](111), and black lines
indicating the grain boundaries, see details in text.

with experiment results on freestanding polycrystalline Cu films [19, 35]. For the samples
with grains size at 1000 and 1500 nm, we can observe a size effect in which the yield stress
scales proportionally to 1/H, while for 250 and 500 nm films, the thickness dependence is
relative weaker. That because most of grains in 250 and 500 nm films have needle-like grains
(H/D > 1.0) as shown in Figure 7.11c, in which most slip planes in the center grain has been
intersected by grain boundaries, and only few of them can touch the top and bottom free

surfaces. Since the free path of mobile dislocations will be mainly limited by the smaller
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Figure 7.13 Comparison of yield stresses from simulation and experiment results. Solid line
connecting the data points taken from samples with aspect ratio equal to one, above and below
which data are taken from samples with high aspect ratio (>1.0) and low aspect ratio (<1.0),
respectively.

dimension of the sample, the grain size in this case, films thicknesses exhibit a minor effect
on the strength of samples. Thus, at a given grain size, the difference of yield stresses is not
obvious in films with aspect ratio larger than one, which have been reflected by the larger
overlapping error bars in these cases on Figure 7.8a and b. In addition, our simulation results
can match experiment results well on the distribution of yield strength in Figure 7.13. Since
Xiang’s results were taken from samples with aspect ratio slightly larger than one, most of

their data points lay above the line, H/D = 1.0. While most of Gruber’s results lay below the
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line, as their samples have lower aspect ratios.

7.5 Spiral source model

Plastic deformation in thin film can generally be divided into two main categories: (i)
nucleation dominated mechanism, i.e. nucleation and absorption of partial dislocations at
grain boundaries or interfaces [36-38], which is similar to the mechanism found in
nanocrystalline metals, where grain boundaries are highly effective dislocation sinks and
sources and perfect dislocation sources cease to operated [39-40]. Actually, the thickness
dependence of the nucleation stress of partial dislocations is inherently lower than for perfect
dislocations since it strongly depends on the stacking fault energy which is independent of
film thickness. That may explain why some experiments found size-independent strength in
metallic films with thickness approaching 100 nm [41-43]. (ii) Multiplication dominated
mechanism, i.e. dislocation generating new sources or segments in films to relax the internal
stresses to achieve the imposed plastic deformation. Normally, the activating stress required
to produce new dislocation sources or segments is limited by confined geometries due to the
presence of the substrate or a passivation layer [28] and grain boundaries [44], and thus
strongly size-dependent plasticity can be found in the films at micron and submicron regime
[28, 45]. The plastic deformation in this study belongs to the second category, multiplication
dominated mechanism, since the film thickness and grain sizes are both in the range of
micron and submicron.

In the past decade, the misfit dislocation model [28] has been widely used to explain the
plastic deformation in passivated films, in which work done by the applied stress must be
enough to bow a dislocation and leave two dislocations at the film-substrate and film-oxide
interfaces. As misfit dislocation is not present in the top or bottom of freestanding films,
there must be other strengthening mechanism in these films to explain the size effects than

the existing one arising from misfit dislocations. von Blanckenhagen et al. [46-47] simulated
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Free surface

4

Free surface

Figure 7.14 Schematic depiction of the operation of spiral source in freestanding thin films. Red
lines are dislocations; d1 and d2 indicate the shortest distances of internal pinning point to the free
surface and grain boundary; the spiral source operates in counterclockwise direction.

thin film plasticity by putting a single Frank-Read source in the center of a columnar grain
and concluded that the size of the most effective dislocation source for unpassivated thin
films is 1/3 of the smaller dimension among film thickness or grain size. However, the two
arms of randomly set Frank-Read sources in our simulation are always blocked by the grain
boundary or truncated by free surfaces forming single-ended spiral sources and seldom
operate at the same time. Instead, only the one arm with longer distance to the edge of the

grain can continue operating and transform back to its initial position to allow further
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activation as shown in Figure 7.14. Recent in-situ TEM observations confirmed our
simulation results that the operation of single-ended spiral source was recorded during
straining and the emission of new dislocations relaxed the applied strain and stress [43, 48].
As shown in Figure 7.14, when the moving arm approaches the interface, the spiral source
can operate like double-ended Frank-Read sources and will deposit dislocation segments on
the grain boundary. When the moving arm arrived at free surfaces where they can escape free,
the surface node can just slip along the intersection line between its slip plane and the free
surface. The stress required to operate a single-ended spiral source have the same form as
that for double-ended Frank-Read source [49]. Since the dislocation sources in thin films are
rare and just have to operate several times to achieve the imposed plastic deformation, the
critical resolved shear stress (CRSS) for initiate yielding in the film can be rationalized by
considering the stress required to move the longest spiral sources formed in the sample as

following:

T=1,+Ku Ir2(|__L/$) +aby/p |

where 1, is the lattice friction stress, L is the effective source length, pLis shear modulus, b is

(7.2)

magnitude of Burgers vector, and k is source-hardening constant, equal to 0.12 for
single-ended sources and 0.18 for double-ended sources [49], « is the hardening coefficient
(~0.35 for FCC metals) [50], p is the dislocations density. In this study, we take 7, = 10 MPa,
b = 0.25 nm for Cu, p = 1.0x10"* m? and the average k = 0.15. The second and third terms in
eq. (7.2) represent the stress required to activate the effective spiral source in the sample and
back stress from the dislocation forest, respectively.

Following an idea from ref. [51], the length of effective spiral source can be evaluated
from a statistical model illustrated in Figure 7.15. Since most films in experiment showed

equiaxed grains, we assume the shape of the gain is square, H = D, and the spiral sources
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Figure 7.15 Schematic sketch of the statistical model for evaluating the effective length of spiral
source in an equiaxed grain. Dashed lines indicate the axis of symmetry in the square.

with internal pins located in the shaded area have the same distance to the edge of square
grain. As the square grain is quartic symmetry, we can take out an isosceles right triangle
from the square to analysis the problem as shown in Figure 7.15. For a random distribution of
pins in the triangle, the probability, P(I)dl, of finding a pin within the shaded area in the

isosceles right triangle width, dl, at a distance | from the edge (bottom) is given by

4(H —21)dl

P(I)dl = 73

For the case of n pins located randomly, the probability for the maximum distance from

the edge to be Lyay, IS given by
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n-1
4(H -2L_)dL (H-2L_.)?
P(Lmax)dl—max =N Hn12ax x| 1 HZmaX . (7-4)
The above equation gives the probability that a given sample with n pins has Lnyax as the
effective source length. The first moment of this distribution will give the mean effective

source length as

H

Lo = |2
Lmax _L LmaxP(Lmax)dLmax

4(H =20 )ALy,

H? '

—_— 2 _1
— (H 2Emax) dl—max '

H

— |2
= .[0 NL oy
(7.5)
Thus the second moment of this distribution gives the standard deviation of the effective

source length by
1
H L, 2
—1 1272 —

GLmaX - IO I—rnax P(Lmax )dLmax L mex (7.6)
The number of pins, n, is related to the sample dimensions and initial dislocation density

in the sample, as given by

Vv
n=Intege {pinitialL—j|X 2 (7.7)

where pinitiar 1S the initial dislocation density, V is the sample volume, L, is the average
length of dislocation segments in the sample and the factor two indicates each Frank-Read
source has two pins in the sample. In this study, the average length of dislocation segments is
taken to be H/2. The upper bound of this spiral source model should be stress required to

nucleate dislocations from the free surface or grain boundaries. Since we do not know the
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Figure 7.16 Comparison of the results predicted by spiral source model stress with experimental
data. The stress is shown versus the reciprocal value of the smaller dimension among film
thickness or grain size.

actual stress, we estimated the nucleation stress based on y/b, where the stacking fault energy;,
y = 0.04 J/m? for Cu [52]. Thus, the required nucleation is approximately equal to 160 MPa.
In Figure 7.16, the results predicted by spiral source model are compared with
experimental data for freestanding polycrystalline Cu films. It can be seen that this spiral
source model can reasonably predict the increase of strength with film thickness decreasing
and the large scatter in the magnitude of strength in thinner films. For the thicker films, the
predicted results are relative lower than that observed in experiments. That because this
model just predicts the initial stress for plasticity and neglects hardening from the reactions

between mobile sources and forest dislocations. Since the dislocation structures and reactions
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are more complicated in thicker films than those in thinner ones, the effective dislocation
sources may be shortened in thicker films resulting in higher strength. In addition, the
dislocation density in experiment may vary from one to one. That can also cause the
experiment results diverge from the predicted value. It is worth to point out that this model
can not only be developed to predict the yield stress for polycrystalline thin films, but also

other confined small volumes, such as single crystal thin films and micropillars [51].

7.6 Conclusions

In this study, a 3D DD simulation was set up to investigate the plasticity of freestanding
polycrystalline thin films. Both cross-slip and grain boundary relaxation mechanisms have
been considered in our simulations, which are important in the plastic deformation of
polycrystalline films and neglected by previous studies. The simulations were analyzed to
identify the evolution of dislocation sources and densities in the presence of free surfaces and
grain boundaries at the micron and submicron regime. According to our simulation results, a
spiral source model has been established to predict the size-dependent strength in thin films.
The findings can be summarized as follows:

The stress-strain curves of freestanding polycrystalline films can be predicted by 3D DD
simulations with a probable dislocation transmission rule. The computed and experimental
stress-strain curves agree quite well and a good fit is obtained to the plateau regime with
penetrable GB condition, while the curve for impenetrable GB conditions exhibits nearly
linear hardening after initial yielding and the curve for free GB conditions has lower yielding
point and flow stress.

At a constant film thickness, the total dislocation density deceases with increasing grain
sizes due to the increment of surface area to volume ratio. In films with pancake-like grains,
the dependence of yield stress on the grain size gradually becomes weaker with decreasing

film thickness. In contrast, the needle-like grains strength the grain boundary effect in
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polycrystalline films and grain size dependent behaviors in films with high aspect ratio can
be described by Hall-Petch relation.

With the same grain size, high aspect ratio films can hold higher total and GB dislocation
density, since they have large grain boundary areas per volume in the film. The yield strength
of films can scale proportionally to the reciprocal of thickness. With high aspect ratios
increases, the dependence of the film strength on thickness becomes weaker due to the effect
of free surfaces has been diminished.

According to the dislocation structures observed in our simulations, a spiral source
model has been set up to predict the yield stress of thin films. Comparison with data on
freestanding thin films shows that spiral source model can reasonably explain the increase of
strength with film thickness decreasing and the large scatter in the magnitude of strength in
thinner films.

Further investigations are need for studying the plasticity of polycrystalline films with
few grains across the thickness and also implement more realistic models on dislocation and
grain boundary reactions in 3D DD simulations, both of which will slow down computation

significantly.
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CHAPTER 8
DISLOCATION DYNAMICS SIMULATIONS OF BAUSCHINGER

EFFECTS IN METALLIC THIN FILMS

The Bauschinger effect normally refers the decrease of reversal strength of a metal after
a forward deformation [1-2]. It is an important phenomenon found in most crystalline
materials. In single crystals, it is controlled by the reversibility of the accumulated
dislocations during forward loading and the associated misorientation patterns [3-5]. In
polycrystals, it is mainly attributed to dissolution of dislocation cell walls or sub-boundaries
formed during pre-straining [6-8]. In precipitation-strengthened materials, the large BE is
related to the dislocation interaction with precipitates that impede dislocations glide in
traction and promote it under reversed loading [9-11]. Normally, all Bauschinger effect in
bulk materials just appears during the reversed loading. Recently, an anomalous Bauschinger
effect has been observed in metallic thin films with passivation layers [12-14], that the
reverse flow already takes place on unloading. This BE is much stronger than in bulk
materials, and indicates the reduced length scales plays a particular role on mechanical
behavior of small scale materials during strain-path changes. According to the strain-gradient
plasticity theory, the size-dependent plasticity at small scales results from the presence of
plastic strain gradients that increases the resistance to plastic flow by locally increasing the
dislocation density [15-18]. For the thin films with passivating layers, dislocations are
prevented from exiting the film and the yield stress increases with decreasing film thickness
can be explained by a plastic strain gradient near the film-passivation interface. However, the
BE observed in passivated thin films cannot be predicted by strain gradient plasticity
calculations [13].

As mechanical structures and devices are being created on a dimension comparable to

the length scales of the underlying dislocation microstructures, the dynamical behavior of
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discrete dislocations casts a significant impact on the plastic deformation of metallic
materials at micron and submicron scales [19-20]. A detailed understanding of dislocation
motion, multiplication and interactions in a confined geometry is the key to explain the
plastic deformation of polycrystalline thin films. In this study, 3-D DD simulations have been

used to investigate the Bauschinger effect in freestanding and passivated metallic thin films.

8.1 Simulation procedures

The 3D DD SIMULATIONS framework described in [21-23] has been used in our
study to simulate the plasticity in Cu (FCC) polycrystalline thin films. In this work, the
materials properties of Cu are used: shear modulus (1= 50 GPa, Poisson’s ratio v = 0.34, and
lattice constant a = 0.36 nm. In agreement with the experimental observations [13], the
passivation layer on films was considered as an impenetrable obstacle for dislocations, while
free surfaces both served as a sink for dislocations and also generated image forces and were
modeled using the boundary element method (BEM) [24-25]. Finally, a sophisticated
thermally-activated cross-slip model developed by Kubin and co-workers [26-27] was
adopted in our DD simulations with Monte Carlo sampling to determine the activation of
cross slip.

In this study, a volume element consisting of nine (= 3 %<3 x1) columnar grains is set
up and represents freestanding polycrystalline thin films. Each grain has the same size and is
set in [100] directions. The cross-section of each grain is square, and the length of each side
of the square represents grain sizes (D) while the height of each grain is equal to the
thickness of thin films (H). Six sides of the grain aggregate are set as impenetrable obstacle
for dislocations for passivated films and free surfaces from which dislocations can escape for
freestanding films. All grain boundaries are considered as pure tilt boundary with the
misorientation between adjacent grains less than 10< In this case, the GB transmission

strength, g, compared with the critical stress to activate the Frank-Read source, 7R, is in the
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range zeg/ter = 2,...,10 [28-29]. When the resolved shear stress at the GB dislocation exceeds
the GB transmission strength, the GB dislocation will transmit the grain boundary and
continue operate in the outgoing grain. In our previous simulations [30], we found when
tee/trr = 5, the computed and experimental stress-strain curves agree quite well. Thus, we
use the same GB transmission strength in current simulations.

At the beginning of simulations, each grain contains a set of Frank-Read sources with
random lengths on twelve <011>{111} slip systems. All initial dislocation densities of
following simulations are set around 1.0<10** m™. In our simulations, tensile loading was
applied on the grain aggregate in [100] direction with a constant strain rate equal to 2000 s™.
In order to mimic the plastic deformation in real polycrystalline thin films, we tracked the
stress-strain evolution in the center grain of the aggregate and averaged the simulation results
from ten simulation results from different initial dislocation configurations at the same
dislocation density.

At the beginning of simulations, each grain contains a set of Frank-Read sources with
random lengths on twelve <011>{111} slip systems. All initial dislocation densities of
following simulations are set around 1.0<10** m™. In our simulations, tensile loading was
applied on the grain aggregate in [100] direction with a constant strain rate equal to 2000 s™.
In order to mimic the plastic deformation in real polycrystalline thin films, we tracked the
stress-strain evolution in the center grain of the aggregate and averaged the simulation results
from ten simulation results from different initial dislocation configurations at the same

dislocation density.

8.2 Effect of passivation layers on the film strength

To compare simulation results from freestanding films and passivated films, Figure 8.1a
plots the stress-strain curves for both cases together. In our simulations, we fixed the grain

size at 500 nm, and varied the film thickness from 250 to 1000 nm with corresponding aspect
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ratios at 0.5, 1.0 and 2.0. The 0.2% offset yield strength, denoted by oy, is obtained from the
intercept of the dash dotted line in Figure 8.1a. The size-dependent behavior, in which
thinner films have higher strength, is observed in both freestanding and passivated films. The

stress-strain curves for freestanding films exhibited plateaus regime after yielding and
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Figure 8.1 (a) Stress-strain curves of freestanding and passivated films under forward loading
(dashed and solid lines for freestanding and passivated films, respectively); (b) dislocation
structures in the 250nm freestanding film; (c) dislocation structures in the 250nm passivated film.
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the strain hardening rates approached zero in all thicknesses. While the stress-strain curves
for passivated films had larger-strain-hardening rates than those for freestanding films.
Furthermore, the strain-hardening rate in passivated films increases with decreasing film
thickness that 250 and 1000 nm films have the highest and lowest hardening rates,
respectively. Compared with freestanding films, the yield strengths for passivated films have
approximately been increased by 13%, 30% and 56% for thicknesses at 1000, 500 and 250
nm, respectively. The typical dislocation structures in freestanding and passivated films after
yielding are shown in Figure 8.1b and c. Since dislocation sources can escape from the free
surface without resistance, the dislocation structure in freestanding films is relative clean and
the dislocations are composed of short segments truncated by free surfaces. In the passivated
film shown in Figure 8.1c, lots of long misfit dislocations deposited at the interface between
the film and passivation layers that results in higher dislocation density stored in the film.
The misfit dislocations in passivated film produced a back stress to the on subsequently
activated sources, caused dislocation pile-ups near the interface, and thus reduced the free
path of mobile dislocations in the film and induced hardening with increasing strain. This can
explain why passivated films exhibited higher hardening rate and strength than freestanding

films.

8.3 Effect of passivation layers on reverse plasticity of thin films

In order to understand to effect of passivation layers on reverse plasticity of
polycrystalline thin films, we unloaded the freestanding and passivated films from the same
strain level to see the different responses between them. Figure 8.2a shows the response of
freestanding and passivated films under unloading from pre-strains of 0.6% and 0.9%. It is
clear that unloading curves are nearly elastic and without any reverse plastic flow in
freestanding films and only the unloading curve from pre-strain at 0.9% slightly deviates

from elastic curve. On the other hand, the passivated film shows a significant Bauschinger
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(c) the corresponding grain boundary dislocation density evolution and interface dislocation
density evolution in the passivated film.
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effect during unloading that large plastic flow occurs. In addition, the reverse plastic strain
increases with increasing pre-strains as shown in Figure 8.2a. At this point, our simulation
results agree well with experiment results that passivated films demonstrated a significant
Bauschinger effect during unloading in contrast with freestanding films [13]. Figure 8.2b
plots the total dislocation evolutions in both cases. We can see the dislocation increasing rate
is higher in the passivated film than in the freestanding film, because the passivation layers
can block dislocations near interfaces while free surface will assistant mobile dislocations
escaping from the sample. During unloading, the dislocation density almost keeps constant in
the freestanding films, while the density drops a lot with reverse strain in passivated films.
However, there is not a direct relationship between the total dislocation density and the
Bauschinger effect in thin films, since the passivated film exhibits much stronger
Bauschinger effect than freestanding films, even they hold the same total dislocation
densities. As shown in Figure 8.2b, total dislocation density in passviated film at 0.6%
pre-strain is at the same level as that in passviated film at 0.9% pre-strain, but the mechanical
response under unloading are totally different between these two cases shown in Figure 8.2a.
To further analysis the Bauschinger effect in passivated films, the evolution of interface
dislocation density and grain boundary (GB) dislocation density in passivated films have
been plotted in Figure 8.2c. It is obvious that GB dislocation density did not change too much
during unloading, while the interface dislocation density decreased fast with increasing
reverse strain and has the same pace with the evolution of total dislocation density. After
comparing the interface dislocation density curve in Figure 8.2c to the total dislocation
density curve in Figure 8.2b, we can easily find the loss amount of total dislocation in
passivated films approximates the loss amount of interface dislocation. In our simulations,
the loss of interface dislocation results from the reversed motion of pile-up dislocations and
collapse of misfit dislocations. Figure 8.3 illustrates one typical example of the reversed
motion of pile-up dislocations. During forward loading, the misfit dislocations deposited at

the interface between films and passivation layers produced a back stress on subsequently
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Figure 8.3 Illustration of the reversed motion of the pile-up dislocation (marked with arrow) in
passivated films during unloading.

coming dislocations. When the following dislocation approaches the misfit dislocations, it
will stop near interfaces due to the back stress. Although cross-slip of screw dislocations can
relax part of these back-stresses from deposit misfit dislocation [31], there still lots of
non-screw dislocation pile-ups formed near the interface. The total force on these immobile
pile-up dislocations equals to zero and is composed of three major parts, the applied force,
repulsive force, and self-force. The first part makes the dislocation bow-out and moving

forward, while the other two parts make it moving back. When the applied load decreases,
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the immobile pile-up dislocations will move back to balance the three forces on them. With
progress of unloading, the expanded dislocation continued shrinking and finally arrived at an
equilibrium position even the whole film was still under tension as shown in Figure 8.3. If
there is few dislocation pile-ups formed near misfit dislocations, the deposited long misfit
will collapse from the interface and reverse move to its original position. The back motion of
dislocations will create reverse plastic strain that results in the observed reverse plastic flow
during unloading. Furthermore, the reverse plastic flow increases with the interface
dislocation density as show in Figure 8.2, because more interface dislocations can have more
sources to create reverse plastic strain during unloading. Although dislocation pile-ups may
form near grain boundary, the number is limited as shown in Figure 8.1b and c that cannot
generate sufficient reverse plastic flow during unloading. This can explain why current
simulations and previous experiments [12-14] did not observed Bauschinger effect in
freestanding films during unloading. Since the interface dislocation is the key factor to the
Bauschinger effect in thin films, the freestanding cases are not considered in the following

investigations and the analysis only focus passivated films.

8.4 Bauschinger effect in passivated thin films

To study the Bauschinger effect in passivated films quantitatively, we performed our
simulations on films with different aspect ratios and unloaded them from different pre-strains.
The Bauschinger strain and pre-strain are defined in Figure 8.4a and the normalized
Bauschinger strain is plotted as a function of normalized pre-strain in Figure 8.4b. It is easy
to see that the increasing pre-strain will promote the Bauschinger effect in passivated films,
since the interface dislocation density increases with pre-strain as show in Figure 8.2c.
Moreover, the film aspect ratio has a strong effect on the reverse flow in the passivated films,
as the amplitude of BE strain increases faster in films with lower aspect ratios as shown in

Figure 8.4. That because films with lower aspect ratios have larger interface areas that can
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Figure 8.4 (a) Description of notations used for quantifying BE, ¢, denotes yield strain, ey
denotes pre- strain and ege denotes BE strain; (b) plot of normalized BE strain vs normalized
pre-strain from simulation results on passivated films with different aspect ratios and comparison
with experiment results from ref. [13].

adopt more misfit dislocations at the interface and more pile-ups dislocations near interfaces,
finally result in larger reverse plastic flow during unloading. From Figure 8.4, we can see our
simulation results march well with experiment results from ref. [13].

In bulk polycrystalline metals, Bauschinger effect is a widely observed and regarded as
an intrinsic feature of the hardening process [3]. The Bauschinger effect in passivated thin
films is also closely related to the strain hardening during forward loading, that low aspect
ratio films have higher strain hardening rates as showed in Figure 8.1a and also exhibit
stronger Bauschinger effect in Figure 8.4. However, the reverse plastic strain in bulk metals
at the end of each unloading cycle is no more than 4% of maximum elastic strain [3]. While
the Bauschinger strain in thin films can approach over 50% of the yield strain as shown in
Figure 8.4b. This deference is caused by different hardening process in bulk metal and

passivated film. The strain hardening in bulk metals normally results from dislocation
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reactions forming cell structures or subgrains [4, 6]. In passivated thin films, dislocation
pile-ups are the main factor for the hardening process with increasing strain. Since
dislocation pile-ups are more unstable compared with dislocation cell structures during
unloading, the Bauschinger effect is much stronger in passivated thin films than in bulk

metals at unloading.

8.5 Conclusions

The purpose of the present study is to enhance the understanding of the BE in small
scale materials with the help of DD simulations, which account for the discrete nature of
plasticity. In our simulations, we found passivated films have higher strain hardening rate and
strength compared with freestanding films and the strain hardening rate in passivated films
increases with decreasing film aspect ratios. Under unloading, passivated films exhibited a
significant Bauschinger effect from pre-strains and the increasing pre-strain will promote
more reverse plastic strain. Besides that, the amplitude of BE strain increases with decreasing
film aspect ratios. The reverse motion of pile-up dislocation and collapse of misfit

dislocations are responsible to the observed Bauschinger effect in passivated films.
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CHAPTER 9

CONCLUSIONS

Miniaturization of structures and devices in micro- and nanotechnology leads to the
development of materials and compounds with novel properties that cannot simply be
extrapolated from material properties on larger scales. Mechanical behavior and reliability of
devices containing metallic structures are of critical importance to innovations in integrated
micro electronics, electro-mechanical, optoelectronic, and micro- or nano-electro-mechanical
devices. DD simulations, in which the dislocations are the simulated entities, offer a way to
extend length scales beyond those of atomistic simulations and the results from DD
simulations can be directly compared with the micromechanical tests. In this research, 3-D
DD simulations was used to study the plastic deformation of nano- and micro-scale materials
and understand the correlation between dislocation motion, interactions and the mechanical
response.

In Chapter 4, an experimental-like initial dislocation structures cut from larger deformed
samples have been introduced into 3-D DD simulations to study the plasticity in small sizes.
The results indicate that the loading direction has negligible effect on the flow stress with
both multi-slip and single-slip loading resulting in the similar saturation. This lack of a
dependence on loading direction can be easily understood. Since the number of dislocation
sources decreases with the sample diameters, the probability to activate a source with low
Schmid factors increases in small samples. In small samples, dynamic sources can be easily
generated by cross-slip or collinear reactions, the stability of which depends on the position
and sample size. There were at least two origins of “exhaustion hardening”: the escape of
dynamic sources from the surface and dislocation interactions such as junction formation.
Both of these effects shut off the activated sources, leading to the flow intermittency. The

“mechanical annealing” at the early stage of deformation were seen to arise from the surface
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dislocations and the weakly-entangled dislocations leaving the sample. The drop in
dislocation density was followed by an increase that always resulted from processes that
were enabled by cross-slip. The scarcity of available dislocation sources gives a major
contribution to the higher flow stress and larger scatter of strength in smaller sizes. The
scaling law determined from the current simulation results is close to that found
experimentally.

In Chapter 5, 3-D DD simulations were employed to study the dynamic behavior of
internal dislocation sources in micropillars of different sizes. From the simulation results, we
identified the dominating plastic deformation mechanisms at small scales by combining our
modeling results. We note that these mechanisms are consistent with the available
experimental data. In confined volumes, image stresses alter the local resolved shear stresses
on slip planes, resulting in an increase in the probability of cross-slip to form new internal
sources. These naturally formed sources have shorter residence lifetimes in smaller samples
under the influence of attractive image forces from the nearby surfaces. The normalized
critically resolved shear stress for a number of FCC single crystals exhibited a similar
size-dependent behavior for all the materials. The generalized single-arm dislocation model
can reasonably predict both the increase of yield strength with decreasing sample size, as
well as the statistical variation of the strength at small scales. The plastic deformation of FCC
single crystals at small scales depends not only on sample size but also on the dislocation
density. At nano-and micro-scales, there is a critical size for dislocation starvation, which
strongly depends on the initial dislocation density. Below this critical size, the dislocation
loss rate will exceed the multiplication rate and thus nucleation of surface dislocations and
dislocation starvation hardening will likely dominate plastic deformation process. Otherwise,
multiplication of internal dislocation sources should control the plastic flow with increasing
strain.

In Chapter 6, our simulations offer an explanation for the significant increase in

compressive strength and formation of band structures in coated micropillars, demonstrating
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a fundamentally different strengthening mechanism in coated micropillars than in samples
with free surfaces. In the coated samples, dislocations are blocked from leaving the sample,
leading to dislocation pile-ups that induce a strong back stress on the later-activated sources,
inhibiting further dislocation nucleation. Thus, the coated samples exhibited a higher
strain-hardening rate, smaller strain bursts and greater flow stresses than those in samples
with free surface. In addition, cross slip activated in coated samples enable screw
dislocations to escape their original slip plane, generating more mobile dislocation sources
for plastic deformation, and enabling the formation of banded structures and subcells.

In Chapter 7, a 3-D DD simulation was set up to investigate the plasticity of freestanding
polycrystalline thin films. Both cross-slip and grain boundary relaxation mechanisms have
been considered in our simulations, which are important in the plastic deformation of
polycrystalline films and neglected by previous studies. According to our simulation results,
a spiral source model has been established to predict the size-dependent strength in thin films.
At a constant film thickness, the total dislocation density deceases with increasing grain sizes
due to the increment of surface area to volume ratio. In films with pancake-like grains, the
dependence of yield stress on the grain size gradually becomes weaker with decreasing film
thickness. In contrast, the needle-like grains strength the grain boundary effect in
polycrystalline films and grain size dependent behaviors in films with high aspect ratio can
be described by Hall-Petch relation. With the same grain size, high aspect ratio films can
hold higher total and GB dislocation density, since they have large grain boundary areas per
volume in the film. The yield strength of films can scale proportionally to the reciprocal of
thickness. With high aspect ratios increases, the dependence of the film strength on thickness
becomes weaker due to the effect of free surfaces has been diminished. According to the
dislocation structures observed in our simulations, a spiral source model has been set up to
predict the yield stress of thin films. Comparison with data on freestanding thin films shows
that spiral source model can reasonably explain the increase of strength with film thickness

decreasing and the large scatter in the magnitude of strength in thinner films.
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In Chapter 8, the purpose is to enhance the understanding of the BE in small scale
materials with the help of DD simulations, which account for the discrete nature of plasticity.
In our simulations, we found passivated films have higher strain hardening rate and strength
compared with freestanding films and the strain hardening rate in passivated films increases
with decreasing film aspect ratios. Under unloading, passivated films exhibited a significant
Bauschinger effect from pre-strains and the increasing pre-strain will promote more reverse
plastic strain. Besides that, the amplitude of BE strain increases with decreasing film aspect
ratios. The reverse motion of pile-up dislocation and collapse of misfit dislocations are
responsible to the observed Bauschinger effect in passivated films.

Through a series of simulations, detailed investigation of the relationship between
material microstructure and mechanical properties of small scale materials were performed
by the method of dislocation dynamics. Numerical results can be directly compared with
experiment results that indicate DD simulations are of great help in understanding plasticity

at small scales.



