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ABSTRACT 

 

As metallic structures and devices are being created on a dimension comparable to the 

length scales of the underlying dislocation microstructures, the mechanical properties of them 

change drastically. Since such small structures are increasingly common in modern 

technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, 

and fracture in small structures. Dislocation dynamics (DD) simulations, in which the 

dislocations are the simulated entities, offer a way to extend length scales beyond those of 

atomistic simulations and the results from DD simulations can be directly compared with the 

micromechanical tests.  

The primary objective of this research is to use 3-D DD simulations to study the plastic 

deformation of nano- and micro-scale materials and understand the correlation between 

dislocation motion, interactions and the mechanical response. Specifically, to identify what 

critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and 

dipole formation, pinning etc.) determine the deformation response and how these change 

from bulk behavior as the system decreases in size and correlate and improve our current 

knowledge of bulk plasticity with the knowledge gained from the direct observations of 

small-scale plasticity. Our simulation results on single crystal micropillars and 

polycrystalline thin films can march the experiment results well and capture the essential 

features in small-scale plasticity. Furthermore, several simple and accurate models have 

been developed following our simulation results and can reasonably predict the plastic 

behavior of small scale materials. 
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CHAPTER 1  

INTRODUCTION 

 

The mechanical properties of materials change drastically when specimen dimensions 

are smaller than a few micrometers. Since such small structures are increasingly common in 

modern technologies, there is an emergent need to understand the critical roles of elasticity, 

plasticity, and fracture in small structures. Small-scale structures also offer opportunities for 

direct comparison between modeling and experiment at previously inaccessible scales. The 

experiments provide data for validation of models, and the models provide a path for new, 

physically-based understanding and prediction of materials behavior. Mechanical tests at 

nanometer or micrometer scales are difficult to perform, but they provide guidance to 

develop new technologies and new theories of plasticity. Experimental studies on the 

mechanical behavior of small structures are not new; the first work on thin metal whiskers 

(with diameters of ~100 microns) occurred more than 50 years ago [1]. The past few years, 

however, have seen a major leap forward in the experimental study of small samples. We 

focus here on studies of metals, highlighting examples of previous work. 

1.1 Experimental observations of plasticity in single crystal 

Uchic et al. recently pioneered the study of size effects in compression of 1-micron 

diameter metal samples as shown in Figure 1.1 [2-6]. Cylindrical pillars with varying radii 

were machined with a focused-ion beam (FIB) from single-crystal bulk samples and 

compressed by a blunted nanoindentor. This pioneering work spurred similar activities from 

several groups, with studies on sub-micron to many-micron sample sizes [7-14]. Studies on 

face-centered cubic (fcc) metals show that flow stress increases as system size decreases, 

with the onset of deviation from bulk behavior varying somewhat from material to material. 
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Figure 1.1 (a)Schematic of the microcompression test, (b) Schematic of the flow response of a 

microcrystal oriented for single slip, (c) Scanning electron microscope (SEM) image of a 

5μm-diameter microcrystal sample of pure Ni oriented for single slip, (d) SEM image of panel c 

after testing [2]. 
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The increased flow stress is accompanied by extremely large strain hardening at small to 

moderate strains, with small samples showing higher strain-hardening rates in Figure 1.2. [2, 

8, 14]. Indeed, very small samples can achieve extremely high flow stresses, e.g., a cylinder 

with a diameter of about 0.2 micron in nickel can sustain a stress of up to 2 GPa [11]. This 

general result that yield stress increases as system size decreases is also found in other tests 

on fcc materials, including a study using an atomic force microscope (AFM) to bend gold 

nanowires [15] and also in polycrystalline membranes of copper, gold, and aluminum in pure 

tension [16]. Probably the most accepted explanation of these size effects is the “dislocation 

starvation” model [9-11], in which dislocations are drawn to free surfaces by strong image 

forces and exit the crystal. Recent work on body-centered cubic (bcc) molybdenum alloys 

showed that both the initial yield stress and size-dependent hardening rate are strongly 

dependent on initial dislocation density [17], an issue not well studied in the fcc metals.   

Key to an understanding of these size effects is a characterization of the internal 

structure of microscale samples. Some work has been done with transmission electron 

microscopy (TEM), but there are limitations of the thickness of samples that can be studied 

with TEM - thin foils must be cut from the samples and the results thus depend on the plane 

of the foils as well as the size and orientation of the microstructures. Results from these 

studies are reasonably consistent, however, showing a small net increase in dislocation 

density after the initial loading [10, 12]. A recent study using a novel in situ TEM micropillar 

method showed evidence of “mechanical annealing,” a sudden drop in dislocation density 

upon initial loading and a subsequent small increase in density with further compression [18]. 

The dislocation structures before and after deformation are shown in Figure 1.3. Micro x-ray 

diffraction (XRD) studies [19-21] of lattice rotations in these systems indicate approximately 

the same dislocation contents as TEM measurements. Overall, it is clear that dislocation 

densities and activities are greatly affected by system size, but the connection between 

size-dependent strengthening and dislocation activity is not yet clearly established. 
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Figure 1.2 (a) stress-strain curves for Au micropillars under compression test [65], (b) 

stress-strain curves for Ni micropillars under compression test [2]. 
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1.2 Plasticity in polycrystalline thin films 

One of the most important phenomena in metallic thin films is that their strength differs 

significantly from that of the corresponding bulk materials when their dimensions become 

comparable to the length scales of the underlying dislocation microstructures. Although this 

phenomenon has been known for quite a long time, a full understanding of thin film plasticity 

has neither experimentally nor theoretically been obtained [22-23].  

In general, the yield stress of metallic thin films increases with decreasing the film 

thickness and/or grain size and the scaling behavior of the yield stress with varying film 

thickness or grain size is described in power-law form [24]. Experimental results for 

polycrystalline films reveal different scaling exponents ranging from -0.5 to -1 [25-27]. So 

far, two kind models are widely used to describe the observed size effect in thin films. The 

first one is Nix–Freund model [28-31] that considered dislocations channeling through the 

film are forced to deposit interfacial dislocation segments at the film/substrate interface, and 

 

Figure 1.3 In situ TEM compression tests on a FIB microfabricated 160-nm-top-diameter Ni pillar 

with <111> orientation: (a) Dark-field TEM image of the pillar before the tests; note the high 

initial dislocation density, (b) Dark-field TEM image of the same pillar after the first test; the 

pillar is now free of dislocations [18]. 
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explained the size dependent plasticity in single crystal thin films as a consequence of 

geometrical constraints on dislocations in thin films. This kind model can give an exponent 

of scaling behavior between film thickness and yield strength close to -1. Another kind 

model for thin film plasticity is based on Hall-Petch-like behavior [32-33] that dislocations 

are assumed to totally pile-up at grain boundaries or the film/substrate interface and the 

effective sizes of dislocation sources will shrink due to a reduction in the effective grain size 

or film thickness by previously pile-up dislocations [34-35]. In contrast to Nix–Freund 

models, an exponent of -0.5 on the scaling was predicted by these models. Up to now, none 

of existed models seem to describe the plastic behavior of polycrystalline films in a 

satisfactory manner. Undoubtedly, dislocation interactions are important in determining the 

strengthening of thin films and can be more complicated than those considered in analytical 

calculations. Thus, a detailed understanding of dislocation motion, multiplication and 

interactions in a confined geometry is the key to explain the plastic deformation of 

polycrystalline thin films. 

1.3 Dislocation dynamics simulations of plasticity in single crystals 

The recent increase in experimental deformation data in confined geometries has been 

accompanied by a similar focus on use of modeling and simulation on small samples. 

Discrete dislocation simulations, in which the dislocations are the simulated entities, offer a 

way to extend length scales beyond those of atomistic simulations [36-40]. Simply put, 

dislocation-based simulations (1) represent the dislocation line in some convenient way, (2) 

determine either the forces or interaction energies between dislocations, and (3) calculate the 

structures and response of the dislocations to external stresses. These simulations are useful 

for mapping out the underlying mechanisms by providing “data” not available 

experimentally on, for example, dislocation ordering, evolution of large-scale dislocation 

structures (walls, cells, pile ups), dynamics (avalanches and instabilities), etc. For the 
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micron-scale systems described above, recent DD simulations have provided important 

insights into the mechanisms that determine the size-affected mechanical response. 

The first attempts to explain the micropillar results using DD simulations assumed 

two-dimensional (2-D) models. Deshpande and colleagues [41-43] examined the uniaxial 

deformation of 2-D simulation cells under constrained and unconstrained flow in which only 

one slip system was operative. In these studies, the mean and variance of the dislocation 

source strengths, obstacle spacing, and obstacle strength were selected to be independent of 

the simulation-cell size. For unconstrained simulations, the size dependency displayed in 

these 2-D DD simulations can be attributed to dislocation pinning, and subsequent pileups 

were more likely to occur in larger cells, which resulted in stronger local fluctuations of the 

stress field that lowered the applied stress needed to sustain plastic flow. Conversely, in the 

constrained simulations, almost no size dependency was observed with flow-softening 

behavior and all cells were able to establish internal dislocation-density gradients in order to 

satisfy the boundary conditions, thus locally augmenting the internal stress field and mobile 

segment population and mitigating the influences of cell size. After that, Benzerga and 

colleagues [44-45] also developed 2-D DD simulations including different rules for the 

effects from junction formation and source or obstacle creation. In contrast to the 

investigations by Deshpande et al., Benzerga and colleagues randomly assigned each 

dislocation source a length whereby the maximum possible length was dependent upon the 

cell size. These 2-D DD simulations displayed a size-dependent increase in the proportional 

limit with decreasing simulation-cell size, which was attributed to the change in the source 

activation stress for the few largest sources in any given cell. That is, the simulated material 

strength was directly related to the weakest source. However, whereas most simulated 

stress-strain curves displayed little-to-no strain hardening after initial yield, in smaller cells, 

dislocation pinning and subsequent blocking of sources produced strain hardening rates that 

approached the elastic limit. Although 2-D DD SIMULATIONS  studies demonstrated a 
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size-affected flow stress or strain hardening rate, the overall simulation-cell response is 

unlike most experimental data, especially with regard to the change in strain-hardening 

behavior at initial yield.  

Recent 3-D DD simulations developed by a number of groups employing a variety of 

approximations and models have some significant advantages over the aforementioned 2-D 

DD SIMULATIONS ; for example, the local interactions between dislocations can be 

naturally accounted for, and the motion of dislocations, especially those that interact with the 

free surfaces of the microcrystal, can be more accurately modeled [5, 46-52]. In initial 

studies, the set of isolated Frank-Read sources (FRs) with rigidly fixed ends was widely 

employed as the starting dislocation populations [5, 46, 48-50, 52]. Tang et al., using a fixed 

number of Frank-Read (FR) sources as the initial condition, stated that dislocation escape 

through free surfaces plays a significant role in the size dependence of the plastic response of 

single-crystals [50]. Rao et al. found that the intermittency of plastic flow in small samples 

was normally caused by forest interactions [48]. Senger et al. argued that the observed size 

effect is not pronounced in samples larger than 2 μm and the flow stress in small pillars is 

affected more strongly by dislocation reactions than in larger samples [49]. Meanwhile, 

El-Awady et al. demostrated the effect of the weakest dislocation sources in samples and 

cross-slip lead to additional strengthening and discontinuous on the stress-strain curves [5]. 

In addition, Parthasarathy et al. developed a statistical model for the flow strength of small 

samples, which was entirely based on the stochastics of spiral source (single-arm source) 

lengths in samples of finite size [53]. However, real dislocation structures in experiments are 

much more complicated than the set of isolated FR sources used as the initial configuration 

in most previous DD simulations. The recent study by Tang et al. [51] differed that the initial 

source distribution is not FRs predefined; rather, used artificially generated jogged 

dislocations as starting dislocation populations for their simulations while neglected the 

boundary conditions and cross-slip, and showed that sources shut-down causes staircase 
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behavior observed in experiments. Motz et al. [47] used the dislocation structures relaxed 

from high dense dislocation loops as the initial input for DD simulations, and reported the 

flow stress at 0.2% plastic deformation scaled with specimen size with an exponent between 

-0.6 and -0.9, depending on the initial structure and size regime. That is still under debates 

since most pillars have been made from well-annealed single crystals or sputtered thin films 

which do not involve such high densities of dislocation interactions [54]. Despite these 

progresses, there are still many unanswered questions regarding the plasticity at small scales, 

such as whether cross-slip is possible, how the image stresses induced by free surface and 

confined geometries influence multiplication of dislocation sources and the effect of crystal 

orientation (multi-slip versus single slip).  

1.4 Dislocation dynamics simulations of plasticity in thin films 

Initial attempts to explain the thin film plasticity using DD assumed two-dimensional 

(2-D) models. Nicola and coworkers conducted a serial of 2-D simulations on polycrystalline 

thin films and concluded that the yield strength of freestanding thin films is nearly 

independent of film thickness and the size effect results from the dislocation pile-ups at 

impenetrable interfaces, such as grain boundaries and passivation layers [35, 55-57]. 

Hartmaier et al. modeled polycrystalline films by incorporating dislocation climb in their 2-D 

simulations and showed the dislocation slip mechanism will be dominant in thicker films, 

while the creep mechanism prevails in ultra-thin films with thickness below 400 nm [58]. 

Han et al. investigated the surface induced size effects through 2-D simulations and the 

results indicated that a free surface might act either as a dislocation sink or as a net 

dislocation source that induced harder as well as softer deformation behaviors in a crystalline 

solid [59]. However, 2-D simulations cannot capture real microstructures in materials and are 

unlikely to describe thin film phenomena accurately, because dislocations are treated as 

infinitely long and parallel to each other, and also dislocation interactions are almost 
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neglected in 2-D DD, which are important in the plastic deformation of a real specimen. 

Fortunately, full 3-D simulations can be used to understand these features of thin film 

mechanical behavior. In 3-D DD simulations, every dislocation configuration is decomposed 

into a succession of elementary segments, which can move under the external forces in 

discrete steps and generate more realistic dislocation structures. Pant et al. [60] employed 

3-D DD simulations to study the interaction of threading dislocations in face-centered cubic 

(FCC) metal films. They found that different dislocation interactions dominate film behavior 

in different ranges of film thickness and applied strain, thus simple analytical calculations are 

unlikely to describe film phenomena. von Blanckenhagen et al. [61] investigated the plastic 

deformation of polycrystalline FCC metal thin films by simulating the dynamics of discrete 

dislocations in a representative columnar grain. Their simulations showed an inverse 

dependence of the flow stress on film thickness and the dependence of the hardening rate on 

film thickness can be reproduced by using an initial dislocation source density independent 

of grain dimensions. Espinosa et al. [62-63] assumed all dislocation sources were located at 

grain boundaries in their 3-D DD simulations and proposed a new interpretation of size scale 

plasticity of thin films in their study based on the probability of activating grain boundary 

dislocation sources. Recently, Fertig and Baker [64] conducted 3-D DD simulations on single 

crystal thin films and demonstrated that weak dislocation interactions still survive at high 

stress level, due to the inhomogeneity of the stress field in the film, and the mean free path 

for dislocation motion is closely related to the inhomogeneous stress distribution. So far, 

none of previous DD simulations on thin films considered stress relaxation mechanisms in 

their models, such as cross-slip of dislocations and dislocations transmitting at grain 

boundaries, and thus it is still unclear how these dynamic behaviors of dislocations will affect 

mechanical properties of polycrystalline thin films. In order to generate simple, accurate 

models that can be used to predict film behavior, there is an emergent need to identify the 

critical features in the plastic deformation of polycrystalline thin films, which can be 

accomplished by full 3-D DD simulations including basic dislocation mechanisms.     
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1.5 Thesis objectives 

The primary objective of this thesis is to incorporate boundary-element method (BEM) 

into 3-D DD SIMULATIONS  to calculate the surface forces and incorporate the 

thermally-activated cross-slip to study the plastic deformation of nano- and micro-scale 

materials and understand the correlation between dislocation motion and the mechanical 

response. Specifically, to identify what critical events (i.e., dislocation multiplication, 

cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the 

deformation response and how these change from bulk behavior as the system decreases in 

size and correlate and improve our current knowledge of bulk plasticity with the knowledge 

gained from the direct observations of small-scale plasticity.  
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CHAPTER 2 

DISLOCATION DYNAMICS SIMULATIONS 

 

In recent years, dislocation dynamics (DD) simulations have attracted lots of interest 

because of its power to simulate materials deformations and study the plastic flow in 

crystalline materials [1-12]. There are several versions of 3D DD SIMULATIONS  around 

the world, most of which represent dislocation loops as many straight or curved segments 

based on single dislocation theory and simulate the collective behavior of dislocation 

ensembles. The parametric dislocation dynamics (PDD) [9-10] developed by Ghoniem and 

colleagues has been employed in our studies, which avoided the abrupt variation or 

singularities associated with the self-force at the joining nodes in between segments and 

easily handled drastic variations in dislocation curvature without excessive re-meshing. In 

this chapter, the formulation of PDD is briefly introduced and summarized.  

2.1 The displacement field of dislocations in isotropic crystals 

A dislocation is formed by making a hypothetical cut through a sold piece of material, 

followed by rigid translation of the negative side of (S
-
), while holding the positive side (S

+
) 

fixed, as illustrated in Figure 2.1. Define the dislocation line vector t as the tangent to the 

dislocation line. The Burgers vector b is prescribed as the displacement jump condition 

across the surface (S). The elastic field is based on the Burgers equation [13], which defines 

the distribution of elastic displacements around dislocation loops. Referring to Figure 2.1, we 

define the dislocation loop by cutting over the surface S and translating the negative side by 

the vector b, while holding the positive side fixed. Along any linking curve γ, the closed line 

integral of the displacement vector is b. Thus,  
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jjii dxub ,                              (2.1) 

For a given force distribution fm(r ) in the medium, the displacement vector is given by  
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Here μ and λ are Lame  constants, and δij is Kronecker delta. For the volume V, bound by the 

surface S, and upon utilization of the divergence theorem for any rank tensor T 
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The second and third terms in eq. (2.5) account for displacement and traction boundary 

conditions on the surface S, respectively. Assuming that body forces are absent in the 

medium, as well as zero traction and rigid displacements bi across the surface S, we obtain  

jlkm
S

ijklim dSGCbu )ˆ()( , rrr    .                  (2.6) 



20 

 

Figure 2.1 Creation of a dislocation by a cut on the surface (S) [9].  
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For an elastic isotropic medium, the fourth-rank elastic constant tensor is given in terms of 

Lame  constants μ and λ, and thus Cijkl = μ(δikδik + δikδik) + λδijδkl. Substituting in eq. (2.6) and 

rearranging terms, the displacement vector is given by 
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Equation 2.7 can be converted to a line integral through Stokes‟ theorem: 
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where εijk is permutation tensor and Ω is the solid angle formed by the point of interest with 

respect to the dislocation line. As shown in Figure 2.2, the solid angle differential dΩ is the 

ratio of the projected area element dS to the square of R. Thus:  
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where e = R/R = set {ei} is a unit vector along R = set {Xi}, and R,ppi = −2Xi/R
3
. The solid 

angle can be computed as a line integral, by virtue of Stokes theorem. Taking the derivatives 

of Ω in eq. (2.9), and applying Stokes theorem, we obtain: 
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Thus, the displacement field of a single dislocation loop could be determined by eq. (2.8). 
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2.2 Strain and stress fields 

Once the displacement field is determined, the strain tensor can be obtained from 

deformation gradients, while the stress tensor is readily accessible through linear constitutive 

relations. If we denote the deformation gradient tensor by uij, the strain tensor εij in 

infinitesimal elasticity is its symmetric decomposition: 

    ijijijjiijjiij uuuuu   ,,,,
2

1

2

1
           (2.11) 

where ωij is the rotation tensor. Taking the derivatives of eq. (2.11) yields the deformation 

gradient tensor 

 

Figure 2.2 Representation of the solid angle, Ω, at a field point (Q) away from the dislocation loop 

line containing the set of points (P) [10]. 
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from which the following strain tensor is obtained 
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The derivatives of the solid angle Ω are given by eq. (2.10), which can be used to derive the 

strain tensor components as line integrals 
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To deduce the stress tensor, we use the isotropic stress-strain relations of linear elasticity. 

First, the dilatation is obtained by letting both i and j = r in eq. (2.14) 
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Using the stress-strain relations ζij = 2μεij + λεrrδij , we can readily obtain the stress tensor 
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2.3 Self force of dislocations 

Once the stress and strain tensors are found, elastic self-energy can be obtained. By 

considering an infinitesimal variation in the position of the dislocation loop over a time 

interval δt, an expression for the sefl-energy of the loop can be formulated. This formulation 

is developed by Gavazza and Barnet and presented by Ghoniem is given as a single line 

integral over the dislocation loop C  

 
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where n is normal to the dislocation line vector t on the glide plane, and θ =|b/2| is the 

dislocation core radius [14]. The first term results from loop stretching during the 

infinitesimal motion, the second and third are the line tension contribution, while J(L,P) is a 

non-local contribution to the self-energy. The dominant contributions to the self-energy (or 

force) are dictated by the local curvature κ, and contain the pre-logarithmic energy term E(t) 

for a straight dislocation tangent to the loop at point P, and its second angular derivative 

E″(t). [δU]core is the contribution of the dislocation core to the self-energy. Defining the angle 

between the Burgers vector and the tangent as α = cos-1(
t•b

|b|
), Gore [15] showed that a 

convenient form of the self-energy integral for an isotropic elastic medium of ν = 1/3 can be 

written as 
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where the energy prefactors are given by E(α) = [μb
2
/4π(1-ν)](1-νcos

2
α), E″(α) is its second 

angular derivative, and 𝜅  is the average curvature of the loop.  

The self force can be thought of as line tension in the dislocation loop. The direction of this 

force is directed in, towards the center of curvature of the loop. The self force per unit length 

is found as follows 
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2.4 Parametric dislocations 

3-D dislocation loop can be reduced to a continuous line. The parametric dislocation is 

different from other methods that represent dislocation poops am many straight segments 

[3-8, 11-12]. In this method, the dislocation line is segmented into (ns) arbitrary curved 

segments, labeled (1 ≤ j ≤ ns), as shown in Figure 2.3(a). For each segment, we define P(u) as 

the position vector for any point on the segment, T(u) = Tt as the tangent vector to the 

dislocation line. The space curve is then completely described by the parameter u, if one 

defines certain relationships which determine P(u). As shown in Figure 2.3(b), segment j is 

expressed as a function of a variable u which is from 0 to 1, and the positions of two 

dislocation nodes:  

 



DFN

i

ii
j uCu

0

)( )()( qP
                           (2.20) 

where NDF is the number of total generalized coordinates at two ends of the loop segment, 

Ci(u) are the general shape functions, qi are general coordinates of dislocation nodes.  
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In PDD used in this thesis, dislocation loops are divided into segments that are 

represented as cubic spline curves, which could approximates self-force on a dislocation as a 

simple function of its curvature and allow for continuity of the self-force along the entire 

dislocation loop to capture non-linear deformations of the dislocation line itself. For cubic 

spline segments, we use the following set of shape functions and their associated degrees of 

freedom, respectively: 

      C1(u)  =  2u
3
 – 3u

2
 + 1 

      C2(u)  =  –2u
3
 + 3u

2
 

      C3(u)  =  u
3
 – 2u

2
 + u 

      C4(u)  =  u
3
 – u

2
  

                     q1  =  P
(j)

(0) 

      q2  =  P
(j)

(1) 

q3  =  T
(j)

(0) 

 

Figure 2.3 Parametric representation of dislocation lines. (a) A dislocation loop is divided into 

segments connecting dislocation nodes; (b) a curved dislocation segment between two nodes [10].  
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q4  =  T
(j)

(1) 

where P
(j)

(0) and T
(j)

(0) are position and tangent vectors of the beginning point of segment j 

where u = 0, and P
(j)

(1) and T
(j)

(1) are the position and tangent vectors of the ending point of 

segment j where u = 1. 

Following section 2.2, the strain field and stress filed tensors at any point due to Nloop 

dislocation loops that are divided into Nseg segments can be written as fast numerical sum 

over: quadrature points (1 ≤ α ≤ Qmax) associated with weighting factors (ωα), loop segments 

(1 ≤ β ≤ Ns), and number of ensemble loops (1 ≤ γ ≤ Nloop) [9]: 

 

ukppljikllijkliljkljlikl

mijnkmn

N N Q

ij

xRbRbRbRb

Rbloop s

,,,,,,

,

1 1 1

)(
2

1

18

1 max















 

  











  



   (2.21) 

 

  












 

  

ukppmijijmkmn

ujimnkijmmmpp

N N Q

nij

xRR

xxRb

loop s

,

,,

1 1 1

,,
1

1

,
2

1

4

max










  



  .    (2.22) 

2.5 Equations of motion 

A derivation based on thermodynamics has been developed to obtain a variational form 

for the equations of motion (EOM) for dislocation loops [9, 16]. The effects of inertia on 

dislocation motion can become important under conditions of very high strain rates, such as 

during shock propagation. In most other situations including the cases in this thesis, inertia 

can be safely ignored. This means that, to a good approximation, there is no need to worry 
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about the acceleration and masses of the dislocations. Motion in this regime is often called 

over-damped motion, where the force determines the instantaneous velocity, leading to a 

first-order differential equation of motion: 

  0)( C kk
t

k dsrVBtf                      (2.23) 

where Bαk is the resistive matrix which is related to the mobility of dislocations, Vα is the 

velocity of dislocations, and f
t
 = fS + fO + fPK is the total force acting on the dislocations and 

is summation of the self-force fS of dislocations, the osmotic force fO induced by 

nonequilibrium point defects on dislocations [17] and the Peach-Koehler force fPK, which can 

be written as: 

      tbf  imgappPK σσσ int                       (2.24) 

where b is the burgers vector of dislocations, t is the tangent vector of the dislocation lines, 

σapp is the applied stress field, σint is the stress field from interaction of dislocations and σimg is 

the image stress field described in Chapter 3. 

Suppose that the dislocation line is divided into Ns segments, by applying the Galerkin 

method and using the fat-sum strategy [10], the equation of motion (2.24) can be written as: 





totalN

l

tlklk QF

1

,                                (2.25) 

where [Fk] is the general force load, [Гkl] is the general resisitivity matrix and [Ql,t] is the 

general coordinates of dislocation nodes. By solving this equation dislocation positions are 

obtained. 

2.6 Simulation procedure 
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The simulation procedure for a typical DD simulation is illustrated in this section, which 

is used for a uniaxial load applied to the deformation of materials. The corresponding 

microstructure evolution and the stress-strain curve are obtained from the results. 

The loading is applied through a constant strain rate. Define 

pec                                    (2.26) 

as the applied strain rate, where ε e is the elastic strain rate and ε p the plastic strain rate. The 

plastic strain rate is obtained from the motion of dislocations as 

 iii

N

i

i

p vl
V

tot

bnnb  



12

1


                (2.27) 

where V is the volume of the simulated crystal, Ntot is the total number of dislocation 

segments, 

il is the length of dislocation segment i moving on the slip plane α, and 



iv is the 

corresponding moving velocity of the segment i.  bi and n
α
 are the Burgers vector of 

dislocation segment i and the normal of slip plane α, respectively.  

The elastic strain rate is defined as: 

E

e 



                                      (2.28) 

where E is the Young‟s modules. 

Substituting eq. 2.27 and 2.28 into eq. 2.26, we can obtain the expression of the relation 

of applied stress and strain rate as 

 )( pcE                               (2.29) 
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Because of ζ  = 
ζt+1 - ζt

δt
, eq. 2.29 leads to 

)(1 ptt ctE  
                   (2.30) 

where δt is the time step. 

In simulations, the plastic strain rate is calculated from the motion of dislocations. Using 

eq. 2.30 we can obtain the strain-stress curves. The simulations will directly relate the 

dislocation motion at the microscale to the macroscale mechanical properties, which provides 

a way to study the material behaviors. 
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CHAPTER 3 

IMAGE STRESSES IN DISLOCATION DYNAMICS SIMULATIONS 

 

In finite volume, free surface boundary condition plays an important role on the plastic 

deformations, since dislocation motions are limited by the confined geometries. DD 

SIMULATIONS  at small scales mush solve the coupling between surface effect on 

dislocations and surface deformation caused by dislocation loop evolution. In 2D problems, 

this process is relatively easy as dislocations are either infinite, semi-infinite straight long, or 

parallel to the surface face. However, in 3D problems, the surface effects become more 

complex, because dislocation loops are curved and not necessarily parallel to the free surface.  

The formulation and solution of the elastic boundary value problem of dislocations has 

been pursued by a number of authors in the case of bounded crystals. Van der Giessen and 

Needleman [1] set up a formalism of this problem based on the principle of superposition in 

linear elasticity, the total displacement and stress fields are given as 

  ijijij uuu ˆ~   and ijijij  ˆ~                 (3.1) 

where 𝑢 𝑖𝑗  and 𝜎 𝑖𝑗   are the displacement and stress fields in an infinite medium from all 

dislocations, while 𝑢 𝑖𝑗  and 𝜎 𝑖𝑗  are the image fields that enforce the boundary conditions. 

Following this procedure, Fivel and colleagues implemented the Boussinesq-point-force 

method in DD SIMULATIONS  to study the problems containing half space and 

free-standing thin films [2-3]. Liu and Schwarz successfully evaluated the image field for 

dislocations intersecting a free surface with high accuracy by Boussinesq-Cerruti formalism. 

Lemarchand et al. approached the boundary problem in a crystal with a dynamic dislocation 

configuration by using the discrete-continuum method to solve equilibrium and compatibility 

conditions in a dislocated material containing interfaces [4]. Khraishi and Zbib employed an 
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image segment and a distribution of prismatic rectangular dislocation loops padding the 

surface to obtain the segment near a free surface is obtained the image stress-field of a 

subsurface dislocation segment near a free surface [5]. Tang et al. [6] presented a boundary 

value problem formulation for the image field, in which the singular part of the image field 

for straight dislocations is analytically considered, while the rest of the image field is 

computed by applying a non-singular traction term using the finite element method (FEM). 

Recently, Weinberger and Cai decomposed the traction force on the free surface into Fourier 

modes by a discrete Fourier transform and obtained the image stress field by superimposing 

analytic solutions in the Fourier space [7-8].   

In all of these works, the stress field of dislocations in bounded domains was evaluated 

with a reasonable accuracy. However, most of them have to be restricted to the simulation of 

plastic properties in nano- or submicronic scales containing very few dislocations (although 

the density can be high). The simulations with samples sizes from half micron to several 

microns containing free interfaces appear to be out of reach for the moment in above 

methods. Currently, only two attempts have successfully accomplished this task. One work is 

done by Weygand and colleagues who presented an approximate solution of the image stress 

problem in the spirit of combination of the virtual dislocation technique and coarse-meshed 

FEM [9]. Another method has been developed by El-Awady and coworkers to compute the 

image stress field of dislocations in micropillars by using boundary element method (BEM) 

[10].  

 The BEM belongs to superposition methods and has several advantages over the FEM 

[11]: 

1. Less data preparation time. This is a direct result of the 'surface-only' modelling (i.e. 

the reduction of dimensionality by one). Thus the analyst's time required for data 

preparation (and data checking) for a given problem should be greatly reduced.  



35 

2. High resolution of stresses. Stresses are accurate because no further approximation is 

imposed on the solution at interior points, i.e. solution is exact (and fully continuous) 

inside the domain. 

3. Less computer time and storage. For the same level of accuracy, the BEM uses a 

lesser number of nodes and elements (but a fully populated matrix) as the level of 

approximation in the BEM solutions is confined to the surface 

In this thesis, image fields of dislocations will be evaluated by coupling the BEM with 

PDD method. 

3.1 Boundary element method 

 The direct boundary element formulation for elastostatics problems can be derived from 

Bett‟s reciprocal work theorem [12], which states that work done by the stresses of system (ui, 

ti, bi) on the displacements of system (ui
*, ti

*, bi
*
) is equal to the work done by the stresses of 

system (ui
*, ti

*, bi
*
) on the displacements of system (ui, ti, bi); ui and ui

* are displacements; ti 

and ti
* are tractions; bi and bi

* are body forces in the domain V with boundary S: 

   dVubdSutdVubdSut
V

ii
S

ii
V

ii
S

ii   ****
 .           (3.2) 

 The boundary integral equation for elastostatic problems can be derived by taking the 

body force bi
*
 to correspond to a point force in an infinite sheet, represented by the Dirac 

delta function Δ(x – X) as  

ii eXxb )(*   

where the unit vector component ei corresponds to a unit positive force in the i direction 

applied at X and x, X ∈ V. In three-dimensional problems, ei is a pure concentrated force. 
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 The Dirac delta function has the property 

)()()( XgdVXxxg
V

  

Using this property, the last integral in eq. 3.2 can be written as 

ii
V

ii
V

ii eXudVueXxdVub )()(*                  (3.3) 

The displacement and traction fields corresponding to the point force solution can be written 

as 

jjii exXUu ),(,

*                            (3.4) 

and 

jjii exXTt ),(,

*   .                         (3.5) 

From the above solutions and eq. (3.3), it can be seen that eq. (3.2) can be written as  

dVxbxXUdSxuxXT

dSxtxXUXu

S
jij

S
jij

S
jiji








)(),()(),(

)(),()(

       (3.6) 

where x ∈ S. The above equation is known as the Somigliana's identity for displacements. It 

relates the value of displacements at an internal point X to boundary values of the 

displacements and tractions. Equation (3.6) can be written in matrix form for 

three-dimensional problems as 
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   (3.7) 

The strains at any interior point can be obtained by differentiating the displacements in eq. 

(3.6) with respect to the source point X to give 

dVxbxXUdSxuxXT

dSxtxXUXu

V
jkij

S
jkij

S
jkijki
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,,

       (3.8) 

where Uij,k and Tij,k are derivatives of the fundamental solutions. Finally, Somigliana's 

identity for stresses can be obtained by substituting eq. (3.8) into Hooke's law ζij = 

2νµ/(1-2ν)δijεkk+2µεij, to give 

dVxbxXDdSxuxXS

dSxtxXDX

V
kkij

S
kkij

S
kkijik








)(),()(),(

)(),()(

        (3.9) 

where Dkij and Bkij are obtained from Uij,k and Tij,k, and the application of Hooke's law. 

 Navier's equation can now be written for a unit point force applied to the body at a point 

X, as 

 
0)(

21
,, 


 ijijjji eXxu 






 .              (3.10) 
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The most popular technique for deriving the fundamental solutions is through the use of the 

Galerkin vector, Gi. The point force solution in an infinite medium was originally derived by 

Lord Kelvin, and is known as Kelvin's fundamental solution. The displacements are 

expressed in terms of the Galerkin vector as 

ikkkkii GGu ,,
)1(2

1




.                  (3.11) 

Substituting (3.11) into (3.10) gives 

0)(
)1(2

1

)1()1(2
,,,, 
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
 ijkijkkkijjikjjkkkjji eXxGGGuG









(3.12) 

which can be simplified to 

0)(,  ikkjji eXxuG                       (3.13) 

since Gk,ikjj = Gk,jjki, Gj,kkjj = Gk,jjki and Gk,jkij = Gk,jjki. Equation (3.13) can also be written as  

0)()( 22  ii eXxGu  .                   (3.14) 

The solution of (3.14) is well known from the potential theory and is given by  

ii e
r

G
4

12                               (3.15) 

for three-dimensional problems. The Galerkin vector is given by 

ii reG
8

1
                               (3.16) 
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Substituting the derivatives of (3.16) into (3.11) gives 











 kikikki ereru ,,
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8

1

                (3.17) 

Now noting that r,ik = (δik-r,ir,k)/r and r,kk = 2/r, eq. (3.17) can be rewritten as  

jjiiji err
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From (3.4), we have 

])43[(
)1(16

1
),( ,, jiijij rr

r
xXU 


 

      (3.19) 

where Uij(X,x) represents the displacement in the j direction at point x due to a unit point 

force acting in the i direction at X. The traction fundamental solution is obtained from (3.18), 

through the usual displacement-strain and strain-stress relationships, and by noting that ti = 

ζjinj, to give  
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where nj denotes the components of the outward normal at the field point x. Again from (3.5), 

we have  
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where Tij(X, x) represents the traction in the j direction at point x due to a unit point force 

acting in the i direction at X. Differentiating (3.19) and (3.21) with respect to X gives 
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Using the stress-strain relationships, gives 
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After we obtained the boundary integral equation relating the displacements and 

tractions at the surface, divide the surface into elements and use shape functions to describe 

the geometry and variables over each element. Because analytical integrations are not 

practical due to the complexity of the integral functions, numerical integration is performed 

using the Gaussian quadrature technique. Special schemes are necessary to integrate the 

singular terms when the nodal points are very close to each other or the load point X 

coincides with the boundary point x, because the fundamental solution contains terms of the 

order (1/r). By summing the integrals over each element, the total surface integral can be 

evaluated. Form the solution matrix by repeating the integration process with the load point 

X placed in turn at each point on the surface, which yields only three equations in three 

dimensional problems relating all N variables on the surface, till 3N linearly independent 

equations are formed. The resulting system of linear equations is of the following form: 

[A][u] = [B][t]                                (3.26) 

Apply the boundary conditions. These take the form of either prescribed displacement or 

prescribed traction (or stress). By rearranging the linear equations such that all the unknown 

variables are on the left-hand side and all the known variables are on the right-hand side, the 

following modified solution matrix is obtained: 

[A
*
][x] = [B

*
][y] = [c]                           (3.27) 
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where the unknown vector [x] contains a mixture of unknown displacements and tractions, 

while [y] contains all the prescribed values of displacements and tractions. The right-hand 

side vector [c] is a vector of known coefficients. 

Gaussian elimination techniques are used to solve the system of linear equations and 

compute all boundary displacements and tractions, since the solution matrix is unsymmetric 

and is fully populated. Then it is straightforward to calculate the displacements and tractions 

at any interior point of interest. This is achieved by substituting the boundary displacements 

and traction back into equation (3.8) and (3.9) and solving for the interior point X. When the 

interior point is close to the boundary the singularity problem will arise. This may be 

overcome by using integration by parts to transform the nearly singular surface integrals to a 

series of line integrals along the contour of the elements. In addition, the image force acting 

on the surface dislocation nodes is simply evaluated by the placing the node under the 

surface with five Burgers vectors. This cutoff regularization will not affect the dynamical 

behavior of the dislocations significantly [13], since all fields are computed using continuous 

dislocations. 

In the absence of body forces, the boundary integral equations (3.8) and (3.9), are solved 

over any closed boundary by dividing the surface into boundary elements, where the 

integration is obtained numerically over each element. This can be written as a fast numerical 

sum over: quadrature points (1 ≤ n, s ≤ NGauss) associated with weight factors (ωn and ωs), 

number of nodes per boundary element (1 ≤ c ≤ Nn) and number of boundary elements (1 ≤ 

m ≤ Ne) as 
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(3.29) 

where cij is a coefficient matrix, which in general is computed by applying rigid body motion, 

the functions Nc(x1, x2) are quadratic shape functions, and the Jacobian of transformation J is 

equal to 𝑑𝑥1
2+𝑑𝑥2

2. Thus, the fast sum equations (3.28) and (3.29) are used to calculate the 

displacements and stresses at all dislocation nodes due to the boundary constraints and are 

added to the infinite medium solution given by equations (3.1). 

3.2 Numerical results 

In order to determine the accuracy and convergence of the PDD-BEM and optimize the 

computational time, we compared numerical results to the limiting analytical solutions in the 

following.  

3.2.1 Stress fields associated the edge and screw dislocations 
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   Since the analytic stress field of dislocation lines under complicated conditions often does 

not exist, only the stresses fields associated with simple edge and screw dislocations were 

calculated by the PDD method to compare with analytic solutions.  

In the first case, an edge dislocation was set at the middle of a cube with size of 

500×500×500 nm
3
 along Z-direction with slip system ½[100](010) as shown in Figure 3.1, 

and the analytical solution of ζxx is as following [14]: 

 

Figure 3.1 Stress and displacement fields associated an edge dislocation, (a) the configuration an 

edge dislocation created by inserting a half-plane of atoms, (b) 3D view of the stress and 

displacement field of an edge dislocation from numerical results, (c) the analytical solution of ζxx 

for an edge dislocation, and (d) the numerical results of ζxx for an edge dislocation (BEM mesh: 

1734 elements, displacement magnification: 500, stress unit: MPa).  
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where shear modulus µ = 50 GPa, the magnitude of Burgers vector b = 0.3 nm, Poisson‟s 

ratio ν = 0.347, and x, y are the distances to the dislocation in X and Y directions.   

 

 

Figure 3.2 Stress and displacement fields associated a screw dislocation, (a) the configuration a 

screw dislocation created by a “cut-and-slip” procedure in which the slip vector is parallel to the 

dislocation line, (b) 3D view of the stress and displacement field of a screw dislocation from 

numerical results , (c) the analytical solution of ζxx for an edge dislocation, and (d) the numerical 

results of ζxx for an edge dislocation (BEM mesh: 1734 elements, displacement magnification: 

500, stress unit: MPa).  
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In the second case, an screw dislocation was set at the middle of a cube with size of 

500×500×500 nm
3
 along Z-direction with slip system ½[001](010) as shown in Figure 3.2, 

and the analytical solution of ζxx is as following [14]: 

)(2 22 yx

yb
xz









 .                      (3.31) 

As illustrated in Figs. 3.1 and 3.2, the numerical results of magnitudes and distributions 

of stress field around dislocation lines agree well with the analytic solutions. 

 3.2.2 Eshelby twist by a coaxial screw dislocation 

In this case, a coaxial screw dislocation was created in a cylinder of radius R = 500 nm 

and length to diameter ratio of 5:1, to investigate the accuracy and convergence of the 

PDD-BEM. Eshelby (1953) worked out an analytical solution and predicted that two 

cross-sections of a cylinder containing a coaxial dislocation [15], will undergo a relative 

rotation angle θ, given by 

2R

bL


 

                              (3.32) 

where L is the distance between the two cross-sections, and R is the radius of the cylinder. 

This is the so-called Eshelby twist.  

The numerical result computing the deformed shape of a cylinder containing a coaxial 

screw dislocation was compared with the analytical solution given by eq. (3.32). According 

to St. Venant‟s principle, this elementary result can only be used at distances greater than 2R 

from the ends. Thus, the two cross-sections are chosen to be located at distances 5R and 6R 

from the bottom edge, respectively. The relative error of the twist angle, for different 



47 

numbers of surface elements is shown in Figure 3.3. It is clear that relative error decreases 

with increasing the number of elements, either on the sides of the cylinder or on the top and 

bottom planes. Since the dislocation in analytical solution is infinitely long that is different 

from our model, the relative error only converges to 2% rather than approaches absolute zero. 

3.2.3 Image stress of a straight edge dislocation in a cylinder  

Consider comparison of the image stress of a straight edge dislocation inside a cylinder. 

As shown in Figure 3.4, the line direction of the edge dislocation lies in Z-axis 

(perpendicular to the paper) and the Burgers vector is along X-axis. The analytical solution 

 

Figure 3.3 Numerical results of Eshelby twist by a coaxial screw dislocation, (a) the configuration 

of a coaxial screw dislocation in a meshed cylinder, (b) the distributions of displacement and stress 

fields from numerical results, (c) relative error in the twist between two cross-sections of a 

cylinder, located at 5R and 6R from the bottom surface, respectively, for different numbers of 

surface elements (Displacement magnification: 100).  
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can be obtained by a complex image construction [16]. The stress component that gives rise 

to a PK force on the dislocation itself is [7, 16] 

))(1(2 22 dr

bdimg
xy









                     (3.33) 

where d is the distance offsetting from the origin along X-axis and set to 0.3r, 0.6r and 0.9r in 

our test, the cylinder radius r = 250 nm and height of cylinder H = 1500 nm. From eq. (3.33), 

we could see the edge dislocation is drawn towards the surface and so is the screw 

dislocation in Ref. [16]. As shown in Figure 3.4, the relative errors decay fast with the total 

number of elements increase. In addition, the numerical errors depend on the offsetting 
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Figure 3.4 The relative error as a function of the number of surface elements on the cylinder for the 

image force on an edge dislocation located at d = 0.3r, 0.6r and 0.9r. 
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distance, i.e. numerical results converge faster for the dislocation near the center of cylinder 

than for dislocations near the cylinder surface. This phenomenon results from the feature of 

BEM. Since the elements of BEM mesh just located on the cylinder surface, the calculated 

stress fields on inside points far from the surface are more accurate than those on points near 

surface with a given number of elements [11]. When the number of meshed elements 

increases to a high level, the numerical image stress on dislocation close to surface still 

converges. However, numerical method itself is an approximation and could not calculated 

the image stress on the dislocation in an “infinitely long” cylinder as assumed in the ideal 

model [16], and hence only relative low rates of convergence can be arrived at by comparing 

with the reference analytic solution.  

 In addition, when dislocations intersect a free surface, we extended a virtual segment 

from the point of intersection with the free surface and continue tangent with the intersecting 

line to make the stress field computed correctly, which also has been validated by 

Weinberger et al [17].   

3.2.4 Image force on a screw dislocation in thin film 

The analytic solution of the image force on an infinitely long screw dislocation lying 

parallel to the free surfaces has been calculated by Hirth and Lothe by considering an infinite 

series of image dislocations originating from both sides of free surface[3].  

The z-component of the force Fimg acting on a screw dislocation at position l has the 

form 
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where h is the film thickness and µ is the shear modulus. The simulation box used for the 

numerical calculation is shown in Figure 3.5. The film thickness and width are set to be 500 

nm and 2000 nm, respectively.  

Figure 3.5 shows the comparison of numerical results with analytical results. The 

numerical values are all taken from the image force on the middle segment of this screw 

dislocation. We can see a refinement of surface mesh yields better results, especially when 

the dislocation moving the center of the film. However, we cannot generate infinitely long 

screw dislocation in our study, thus the difference between numerical and analytical results 

becomes lager when the dislocation approach surfaces. In a realistic case, thin films always 

have edges and our numerical method still can be used in the simulations on thin films.  

3.2.5 Effect of image stresses on the flow stress 

 

Figure 3.5 Numerical results of image force on long screw dislocation in thin film, (a) the 

configuration of a screw dislocation in a meshed film, (b) comparison of numerical results with 

analytic results.  
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In order to study the effects of image stresses on the flow stress, we generated a set of 

micropillars with the same diameter D = 500 nm and height H = 1500 nm with the aspect 

ratio equals to H : D = 3:1 with the same initial density ρ = 2.0×10
12

 m
-2

. All dislocation 

sources were composed of FR sources randomly set on all twelve <011>{111} slip systems 

with random lengths. Following the results in section 3.2.3, we chose the optimized 1560 

elements as the default mesh size on all micropillars, which is more computationally efficient 

with negligible effect on the results compared with finer mesh sizes. And the experiment-like 

load procedure described in Chapter 4 was used in all simulations with the applied stain rate 

of 100 s
-1

.   

 

 

Figure 3.6 Comparison of flow stresses of the micropillars with and without image stresses  
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As shown in Figure 3.6, it is clear that the flow stresses for samples with image stresses 

are lower than those ignoring image stresses, which results from the attractive image forces 

on internal dislocations from the free surface. As the dislocation sources start emitting 

dislocations, the image stresses assist their glide towards the surface, i.e. the image stresses 

assist the mobile sources in hastening the dislocation glide. This enhanced plastic flow 

produces a softening effect reflected by the stress-strain curves. The relative differences 

between flow stresses with and without considering image stresses vary from 10% to 20%. 

The main factor affecting the relative difference is the distance between the activated 

dislocation sources and free surfaces. As we discussed in previous section, the magnitude of 

image stress increases with the decrease of the distance between the dislocation source and 

free surfaces, so when the activated dislocation located near free surfaces, the influence from 

image stresses will be stronger and cause larger relative differences on flow stresses. 

Consequently, the effect of image stresses decrease fast with the increase of sample sizes 

[10], since lager samples have lower surface to volume ratios and more dislocation sources 

close to the center of samples at a given dislocation density.  
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CHAPTER 4 

SIZE EFFECTS ON PLASTICITY OF FCC SINGLE CRYSTALS 

 

The goal of this work was to model the experiment as closely as possible. In addition to 

creating initial conditions that best mimic experiment, the simulations discussed here also 

include two effects not generally included in previous simulations: surface forces and 

cross-slip. Surface forces were included through the use of the boundary-element method. 

Cross slip was modeled with a stochastic method and was found to play a critical role in 

dislocation behavior. Finally, the effects of loading direction were also studied. 

4.1 Simulation procedures 

The 3D DD SIMULATIONS  framework described in Chapter 2 has been used to 

simulate the mechanical behavior of Ni single crystals under uniform compression. . For the 

simulations in this work, the materials properties of nickel are used: shear modulus µ = 76 

GPa, Poisson‟s ratio ν = 0.31, and lattice constant a = 0.35 nm. The dislocation mobility is 

taken to be 10
-4

 Pa
-1

 s
-1

 in the calculations [1]. In finite volume problems, it is necessary to 

include both the solution for dislocations in an infinite medium and the complementary 

elastic solution that satisfies equilibrium at external and internal boundaries. To evaluate 

image fields, the boundary element method (BEM) has been introduced into our dislocation 

dynamics simulations and performed as follows. First, the elastic stress field in an infinite 

medium resulting from all dislocations is evaluated. Then tractions at the surfaces of the 

finite crystal owing to the dislocation stress field are determined, reversed and placed on the 

surface as traction boundary conditions. These traction boundary conditions, as well as any 

other imposed constraints, are employed in BEM to calculate all unknown surface tractions 
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and displacements. Finally, the image stress field is calculated and the result is superimposed 

as indicated in Chapter 3. 

Cross slip, in which screw dislocations leave their habit planes and propagate to another 

glide plane [2-3], plays a key role in macroscopic plastic deformation of FCC materials. 

However, questions of how cross slip operates and its importance at the micron and 

submicron scales are still under debate. In this study, we adopt a sophisticated cross-slip 

model developed by Kubin and co-workers [4-5] that is based on the Friedel–Escaig 

mechanism of thermally-activated cross-slip [6-7]. In this model, the probability of cross-slip 

of a screw segment with length L in the discrete time step is determined by an activation 

energy Vact (|η|-ηIII) and the resolved shear stress on the cross-slip plane η, 

 
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             (4.1) 

where β is a normalization constant, k is the Boltzmann constant, T is set to room temperature, 

Vact is the activation volume, and ηIII is the stress at which stage-three hardening starts.  In 

nickel, Vact is equal to 420b
3
 with b the magnitude of Burgers vector [8], ηIII = 55MPa [9], 

and L0 = 1μm and δt0 = 1s are reference values for the length of the cross-slipping segment 

and for the time step. Eq. (4.1) describes the thermal activation of cross-slip, expressed in 

terms of a probability function. A stochastic (Monte Carlo) method is used to determine if 

cross slip is activated for a screw dislocation segment. At each time step, the probabilities for 

cross slip of all screw segments are calculated using equation (3). For each screw segment, 

the probability P is compared with a randomly generated number N between 0 and 1. If the 

calculated P is larger than N, cross slip is activated, otherwise, the cross slip is disregarded [1, 

10]. 
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Our goal is to mimic the experimental conditions as well as possible. To that end, we 

start by creating a “bulk” sample, from which we will “cut” a set of cylindrical samples. To 

model the bulk, we assume a cubic cell with periodic boundary conditions and a size 3×3×3 

µm
3
 containing a set of FR sources with an initial density equal to 2.0×10

12
 m

-2
. The FR 

sources (straight dislocation segments pinned at both ends) were randomly set on all twelve 

<011>{111} slip systems with random lengths as shown in Figure 4.1a. After compression in 

 

Figure 4.1 Dislocation structures in 3×3×3 µm
3
 cube sample. (a) Initial dislocation structure in 

[111] view, (b) deformed structure in [001] view, (c) deformed structure in [110] view. 
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the [111] direction to a plastic strain of 0.1%, the distribution of dislocations evolves to the 

structure shown Figure4.1b with a dislocation density of about 2.5×10
13

 m
-2

. The cubic 

sample was unloaded (i.e., relaxed) and cylinders of various sizes (representing micropillars) 

were cut out of the bulk sample. The diameters D of the micropillars were D = 1.0, 0.75 and 

0.5µm, and the aspect ratio was set to D : H = 1 : 2, where H denotes the height of 

micropillars.  Subsequently, the deformed dislocation microstructrures were relaxed only 

under the influence of image and interaction forces as shown in Figure 4.2a and b. Most of 

the micropillars were cut along the [001] direction, except for three samples along the [269] 

direction with D = 1.0 µm. This procedure delivers what we assume to be realistic initial 

dislocation structures that include internal FR sources of different sizes, single-ended sources 

(spiral sources with one end pinned inside the cell and the other at the surface), surface 

 

Figure 4.2 Dislocation structures in cut samples with D = 1.0 µm (Dotted lines are BEM meshes). 

(a) Cutting from [001] before relaxation with ρ = 2.7×10
13

 m
-2

 ([111] view), (b) cutting from [001] 

after relaxation with ρ = 1.9×10
13

 m
-2

 ([111] view), (c) cutting from [001] direction with ρ = 

1.9×10
13

 m
-2

 (upper [001] view), (lower [110] view), (d) cutting from [269] direction with ρ = 

2.0×10
13

 m
-2

 (upper [001] view), (lower [110] view). 
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dislocations (both ends at surface) and dislocation reactions, such as junctions. The 

dislocation densities after relaxation were all in the range of 1.0 to 2.0×10
13

 m
-2

 and were 

consistent with conditions observed in experiments [11].  

We simulated the experimental loading conditions of Dimiduk and coworkers [11-15] in 

our computations, in which a mixture of constant displacement rate and creep-like loading 

conditions were employed; the applied stress was discretely increased by a small fixed value 

(δζ) every time the plastic strain rate approached zero. When the plastic strain rate was 

smaller than the applied rate, the applied load was increased by 2 MPa, i.e. δζ = 2 MPa, for 

ε p< ε , while the applied stress was kept constant when the plastic strain rate was equal to or 

higher than that of the applied rate, i.e. δζ = 0, for ε p> ε .  

In all simulations, compression loading in [001] direction was performed under a 

constant strain rate of 200 s
-1

. To identify the effects of strain rate, several simulations were 

performed with strain rates as low as 50 s
-1

. The results from those simulations did not show 

any significant difference from those seen at 200 s
-1

. We found that a strain rate of 200 s
-1

 is 

computationally efficient with negligible effect on the results while also being lower than the 

strain rates used in other similar simulations [16-19]. 

To investigate the effects of loading direction, as well as to make a direct comparison 

with the experimental results of Dimiduk et al. [13], we also prepared three 1.0 µm samples 

oriented in the [269] direction. We see distinct differences in the two typical initial 

dislocation structures from the [001] and [269] samples as shown in Figure 4.2c and d, 

respectively. Since the stress was then applied along the [001] axis, the simulations 

correspond to a single-slip direction for samples cut from the [269] direction and along a 

multi-slip direction for samples cut along the [001] direction. For the single-slip case, only 

the 
1

2
 101 (1 11) [20]systems are active, each with the same Schmid factor of 0.41, whereas 

the other four slip systems have zero Schmid factors and are inactive. 
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4.2 Effect of loading direction  

The stress-strain behavior for all simulations based on 1.0 µm samples is shown in 

Figure 4.3a, while the equivalent experimental results for single-crystal nickel are shown in 

Figure 4.3b. Comparing Figure 4.3a and Figure 4.3b, we see that the flow stress of the 

multi-slip simulations (from the [100] samples) and the single-slip simulations (from the [269] 

samples) are both similar to each other and agree well with the experimental results, which 

employed loading along the [269] single-slip direction. In our simulations, only one, or at 

most a few, mobile dislocations determined the strength at small volumes. Thus, 

multiple-slip simulations and single-slip simulations exhibited similar results. The agreement 

between the results for single-slip and multi-slip loading is not surprising in light of recent 

results. Norfleet et al. [11] recently examined cut foils from deformed pillars and found that 

for samples < 20 µm in diameter, multiple slip systems are always active regardless of the 

loading direction. In addition, a recent theoretical study by Ng et al. concluded that Schmid‟s 

law, which states that plastic flow will occur on the slip system with the largest Schmid 

factor, no longer holds for microcrystal deformation, because of the increase of the 

probability to activate sources with low Schmid factors in small samples, as the overall 

number of dislocation sources decreases with the sample diameter [21]. Thus, both 

experiment and modeling indicate that single-slip and multiple-slip deformation should be 

similar in these small samples.  

Recent 3D DD simulations that were based on an initial dislocation structure within the 

cylinder consisting of only internal FR sources showed linear elastic loading up to the yield 

point [17-19, 22]. In contrast to those results, our simulations showed a large amount of 

„„microplasticity” at low loads (shown in Figure 4.3a), in agreement with the experimental 

results (shown in Figure 4.3b). This early-stage plasticity is often the result of essentially free 

dislocations being driven out of the system. These dislocations could either be weakly 
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Figure 4.3 Comparison of stress-strain curves of simulation and experiment. (a) Stress-strain and 

typical density-strain curves obtained from simulation with D = 1.0 µm, (b) Stress-strain curves 

obtained from experiment [13]. 
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entangled or pre-existing at the surface. The movie A in supplementary materials of ref. [23] 

illustrates one example of how a dislocation junction unzipped and then was driven out of the 

sample as load was increased. The presence of such dislocations can be explained as follows. 

After cutting the cylinders out of the bulk system, we relax the dislocation positions. While 

some of surface dislocations escape to the surface owing to the large image forces, many 

dislocations can be trapped by dislocation reactions, such as junctions, or be near the center 

of the sample where the image forces are insufficient to cause any significant movement [24]. 

In experiments, a large number of surface dislocations of different sizes might also exist in 

the micropillars. These dislocations may be generated by the act of the cutting, but could also 

arise from defects caused by preparation procedures themselves, such as focused ion beam 

milling [25].  

As the loading is increased, the motion of free dislocations is gradually activated. The 

dislocations then sweep quickly across the slip plane, exiting the micropillar, leading to a 

rapid reduction in dislocation content referred to as “dislocation starvation.” The easy 

movement of these free dislocations leads to a plastic strain rate that approaches the applied 

strain rate, which causes the applied stress increment to approach zero, as mentioned in the 

discussion of the loading scheme. Thus, we see an initial small strain burst on the 

stress-strain curves. The amount of plastic strain in our simulations is smaller than that 

observed in experiments, which likely arises from two possibilities. Experimental samples 

are all processed by focused ion beam milling, leading to many surface defects that can 

generate plastic strain under loading [26]. Also, the 200 s
-1

 strain rate in our simulation is 

four orders of magnitude larger than those in the experiments, which have a creep-like 

loading and thus can carry more deformation at low loads. 

Owing to the escape of free dislocations, the dislocation density in all samples will 

decrease in the early stages as reflected by the density-strain curves in Figure 4.3a. In 

previous 3D dislocations dynamics simulations [17-19, 22], only permanent internal FR 
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sources were used as the initial configuration. Thus, the dislocation density could not 

decrease even with the intermittent presence of mobile density-starved states. In our 

simulation procedure, in small pillars, only a few surface dislocations, a few jogged 

dislocations and no internal pinned points could be found in inside the cylinder. Under the 

combination of high image forces and increased applied loading (and no cross slip, as 

discussed below), all pre-existing dislocations can be quickly driven out of the pillar, which 

supports the “dislocation starvation” model in small samples. Recently, Shan et al. [27] 

directly observed that pre-existing dislocations could be driven out of the pillar with the 

entire length of the pillar being left almost dislocation free for pillars with diameter less than 

130nm. This phenomenon, which was called “mechanical annealing,” directly supports the 

ideas behind the “dislocation starvation” model in smaller samples. However, for pillars 

larger than 300 nm, pre-existing dislocations could not be completely driven from the 

cylinder, which indicates that permanent pinning points exist in those micropillars and that 

the dislocation density will eventually increase following the initial “mechanical annealing”. 

These experimental results agree well with what is observed in our simulations as plotted in 

Figure 4.3a. The dislocation density increase following “mechanical annealing” was caused 

by the activation of dislocation sources and dislocation multiplication with the increasing 

load arising from cross slip, as is described in next section.  

4.3 Cross-slip 

To investigate the influence of cross-slip on the mechanical response and evolution of 

the dislocation microstructure, an additional sample with D = 1.0 µm was cut from the 

undeformed cube shown in Figure 4.1a. Thus, only Frank-Read and spiral sources were 

initially present, with an initial density of 1.8×10
12

 m
-2 

in the sample. This sample was then 

put under load both with and without cross-slip enabled. In Figure 4.4 we show the 

comparison of microstructures and the stress and density evolution for these two cases. It is 
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clear that the sample with cross-slip is softer than that without cross-slip, likely because 

cross-slip leads to more sources and thus greatly increased dislocation density, as shown in 

Figure 4.4d. We note that the cross-slip started at the onset of plastic flow.  

 

 

Figure 4.4 Comparison of the stress and density evolution with and without cross-slip. (a) stress 

and density curves, (b) initial dislocation structure, (c) dislocation structure without cross-slip at 

1% strain and (d) dislocation structure with cross-slip at 1% strain. 
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Figure 4.5 shows a series of snapshots that illustrate how cross-slip activates secondary 

slip systems and enables oppositely signed screw dislocations on different planes to 

annihilate each other. The two red dislocations L1 and L2 have the same slip system 

1

2
 101 (1 11) on parallel glide planes but opposite initial orientations. Hence, there is an 

attractive force between the two dislocations that makes the screw segment J1 of dislocation 

 

Figure 4.5 Plot of cross-slip on parallel dislocations and formation of prismatic loop (PL): pink line 

with 1/2[101](11    1) and forest green line with 1/2[101](1 1 1): (a) two parallel dislocations slip 

on its own planes, (b) one dislocation cross-slip under the attractive force, (c) collinear reaction of 

the leading segments forming two superjogs, (d) prismatic loops. 
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L1 cross-slip on the plane (1 1 1). J1 continues bowing out under the attractive force until its 

leading segments undergo a collinear reaction with the original dislocation L2 (they have the 

same Burgers vector and opposite line orientation). In Figure 4.5c, we can see that two 

superjogs were left after the collinear reaction. Under the external stress field, the two arms 

of superjogs moved on their slip planes and formed a prismatic loop, as shown in Figure 4.5d. 

The prismatic loops are quite stable and can move only along the cylinder axis. Since this 

motion is difficult, the prismatic loops are fixed at the location at which the cross-slip 

occurred. They can then trap mobile dislocations, forming a dislocation forest as shown in 

Figure 4.5d, which has a strong influence on the subsequent plastic flow in small volumes. 

 

Figure 4.6 Evolution of dislocation density with total strain. 
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In Figure 4.6 we show the variation of dislocation density as a function of sample size 

and total strain. For all sizes studied in this study, the dislocation density initially dropped 

(“mechanical annealing”), followed by a steady increase (hardening). The dislocation density 

is reasonably insensitive to system size, with the point at which the density begins to rise 

occurring at approximately the same strain (approximately 0.4%) for all samples. Below we 

shall discuss the behavior of the dislocation density in more detail.  

The basic behavior of the hardening arises from the cross-slip mechanisms shown in 

Figure 4.7. At the beginning of the deformation, only a few dislocation sources are available 

after most of the free dislocations were driven out of the sample, as shown in Figure 4.7a and 

described above. Under increasing load, a spiral source K1 with Burgers vector 
1

2
 1 01  was 

activated and moved in its slip plane (111) in Figure 4.7b. Screw segment C1 then cross 

slipped on the slip plane (11 1) with the same Burgers vector, forming two joint corners p1 

and p2, both of which then moved along the intersection line between the original slip plane 

and the cross-slip plane (Figure 4.7c, discussed in detail hereinafter). After extending on the 

slip plane under load, the original source K1 was truncated by the free surface and then 

stopped moving in Figure 4.7d.  However, the cross-slipped part C1 and non-cross-slipped 

parts K2 and K3 truncated from K1 propagated smoothly until they encountered the free 

surface. In Figure 4.7e, the screw part C2 on C1 cross-slipped back to the original slip plane 

(111) (double cross-slip), a mechanism that generates considerable plastic strain in the 

deformation of bulk materials. Meanwhile, K2 and K3 behaved similarly to Frank-Read 

sources in the bulk, in that they annihilated each other and generated new dislocations K4 and 

K5.  

The major difference between multiplication processes observed in small volumes and 

those in the bulk is that the new dislocation, such as K5, escape to the surface under the 

influence of image forces. In small volumes, it appears that the surface always confines 
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dislocation propagation, having a potent hardening effect as sample size decreases because of 

the shortening of the dislocation sources. In our simulations, this “source-truncation” [28] 

effect is reflected in Figure 4.7d, in which the original spiral source K1 was pinned after 

being truncated by the surface. From Figure 4.7e to h, the two joint corners p1 and p2 formed 

a new dynamic FR source that continuously generated dislocations on two different slip 

planes, leading to the constant-stress avalanches reflected on the stress-strain curves. 

 

Figure 4.7 Plot of cross-slip forming dynamic FR source: green line with 1/2[1 01](111) and 

navy line with 1/2[1 01](11 1), see details in text. 
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However, this dynamic FR source is not as stable as regular FR sources having permanent 

pinning points, since the two endpoints of a dynamic FR source might move out of the 

sample surface, thereby releasing the dynamic source. The stability of these sources increases 

with the increased sample size, affecting their contribution to the accumulated plastic strain 

of the sample and the increase of dislocation density.  

4.4 Exhaustion hardening 

In our simulations, superjogs and dynamic spiral sources, as illustrated in Figure 4.8a 

and b, were always formed by cross-slip or collinear reactions [29] combined with the 

truncation by free surfaces. The superjog AO1O2B with two ends A and B at the surface in 

Figure 4.8a is similar to jogs artificially generated in Ref. [30], except that in our simulations 

they were formed naturally. One difference in behavior between [30] and the present results 

is that the middle segment O1O2 bowed out under sufficient force in this study. Under 

loading, the two dislocation arms, AO1 and BO2 operated independently around the jog 

corners O1 and O2, producing continuous plastic flow. When O1O2 is short enough, the 

superjog AO1O2B formed an intermediate jog, as the dislocations arms AO1 and BO2 

interacted like dislocation dipoles and could not pass by one another except at a high stress 

[31]. Once the resolved shear stress on segment O1O2 is large enough, it bowed out like an 

FR source. If it was truncated by the free surface, this superjog AO1O2B transformed into two 

dynamic spiral sources, e.g., AOB in Figure 4.8b. These two dislocation arms of these 

dynamic sources were rotated around the jog corners O, again producing continuous plastic 

flow. This type of dynamic spiral source was not seen in Ref. [30], since the middle segment 

of superjog was sessile and cross-slip was not considered in their simulation. As illustrated in 

Figure 4.8, the joint points, O1 and O2 in superjog AO1O2B, and O in the dynamic spiral 

sources AOB, moved along the intersection line of the two intersected slip planes. When 

these joint points moved close to the free surface with its attractive image forces, they 
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escaped and the dynamic spiral sources or superjogs ceased to operate. The movie B in 

supplementary materials of ref. [23] gives one example of flow intermittency as the moving 

dynamic spiral source escaped from free surface. The dynamic spiral source has two arms on 

different slip planes as shown in Figure 4.8b. With increasing load, they could operate 

independently on their own slip planes, and the joint point could move along the intersection 

line of the two slip planes. The stability of this dynamic source depends on the exact position 

of the jog corner and the sample diameter.  For this source, after operating several times and 

 

Figure 4.8 Configuration of superjog and dynamic spiral source: green line with 1/2[1 01](111) 

and navy line with 1/2[1 01](11 1). 
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generating a certain amount of plastic strain, it gradually escaped from the free surface and 

ceased to operate. Since there were no other operating sources, to sustain the applied strain 

rate required that the elastic strain (linearly related to the applied stress) increased until 

another source could be activated.  During this period, the fraction of plastic strain in the 

total strain approached zero (no operating sources) and the strain hardening part was thus 

essentially elastic. This dislocation-starved condition (the shutting off of available dislocation 

sources) is called “exhaustion hardening”, and is found both in experiments and simulations 

[16, 27]. After the applied stress increased to a sufficiently high level, new sources were 

activated, generating plastic strain. Again, to keep the same overall strain rate, the elastic 

strain (applied stress) stopped increasing, leading to a plateau in the stress-strain curve 

corresponding to continuous operation of this new source. This type of dynamic source 

showed considerable variability in behavior. In some cases, the sources just operated several 

times and then escaped to the surface. While in others they were stable and operated 

numerous times, existing as long as the simulations were run. Thus, the degree of 

“exhaustion hardening” caused by the destruction of dynamic sources cannot be predicted a 

priori and requires knowing the details of the internal dislocation structures. We can say, 

however, that the frequency of this mechanism is much higher in smaller samples, in which 

the dynamic sources are more easily destroyed at the surface and then regenerated. 

The size-dependent exhaustion processes also affect the usual forest-hardening processes 

of junction formation and dipole interactions, resulting in the shutting off of already scarce 

dislocation sources. Figure 4.9 shows two typical cases of junction formation and collinear 

reaction, which leads to intermittent plastic flow. This mechanism has been observed 

previously by Rao and coworkers [22]. In Figure 4.9a, the single-ended spiral source S1 

sweeps in its slip plane until it meets the FR source S2. As S1 moves close to S2, a glissile 

junction was formed, locking the dislocations as shown in Figure 4.9b and c. When the 

applied stress is increased to a critical value, the glissile junction unzipped and the spiral 
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source S1 cyclically rotated around the pinning point and created continual plastic strain for 

the sample in Figure 4.9d. In contrast to glissile junction, the collinear reaction formed by 

two mobile spiral sources in Figure 4.9e-h was much stronger and could not be easily 

 

Figure 4.9 Dislocation reactions causing flow intermittence: (a-d) glissile junction, brown line 

with 1/2[1 01](111) and navy line with 1/2[1 01](11 1), (e-h) collinear reaction, grey line with 

1/2[011 ](1 11) and red line with 1/2[011 ](111). 
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dissolved, so the new dislocation source was activated in Figure 4.9h after the loading 

increased. 

In Ref. [31], strain bursts are attributed to the destruction of jammed configurations by 

long-range interactions, which produce a collective avalanche-like process. This mechanism 

seems to be at least somewhat consistent with our observations, as shown in movie A in ref. 

[23] and Figure 4.9. The destruction of simple junctions leads to relatively small strain bursts 

as the released free dislocations quickly escape to the surface. However, the spiral sources 

released from the junction in Figure 4.9 continuously sweep in the slip plane and produce 

large strain bursts. These strain bursts, or avalanche-like processes, are strongly influenced 

by their physical size. As illustrated in movie B in ref. [23], the dynamic sources 

continuously create plastic strain under loading, with the amount of this strain dependent on 

their position and the sample diameter. From a statistical perspective, the probability of 

sources truncated by a surface increases with decreasing diameter. Thus the frequency of 

strain bursts and consequent flow intermittency in smaller samples is much higher than in 

larger samples, which is verified in both experiment and our simulation results. After the 

operation of dynamic sources is terminated by a surface, new sources need to be activated at 

a higher load level to generate continuous plastic deformation. Recently, Ngan et al. 

demonstrated that discrete strain bursts were directly related to the escape of dislocation 

sources to the sample surface [32], agreeing well with our simulation results and providing a 

physical explanation of the experimentally observed staircase stress-strain behavior.  

4.5 Size effects 

In Figure 4.10a, we show a series of stress-strain curves from samples with different 

diameters under uniaxial compression in the absence of loading gradients. These results show 

pronounced dependence on size, with smaller samples having higher strength. The stress 

shows discrete jumps accompanied by strain bursts of varying sizes before ending at a 
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Figure 4.10 (a) Stress-strain curves obtained from simulation with different sizes, (b) comparison 

log-log plot of the shear stress at 1% total strain of simulation results and experimental results. 
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saturation flow stress. There is a significant scatter in the magnitude of the saturation flow 

stress with decreasing diameter. All of these features of the compression stress-strain curves 

are in qualitative agreement with the experimentally observed behavior that shows discrete 

strain bursts separated by intervals of nearly elastic loading [13-15, 33-43]. 

In Figure 4.10b, the variation of the shear stress at 1% strain () as a function of the 

sample diameter (D) are plotted on a logarithmic scale in both coordinates, for all simulations. 

The scatter in strength increases with decreasing sample size, largely because the mechanical 

response of smaller samples depends on a single or, at most very few, active sources. We fit 

the average value of  for each size to a function of the form   D
-n

 and find a scaling 

exponent n  0.67. Similar behavior in both the magnitude and scatter of the values for the 

shear stress at 1% strain was seen experimentally, with an exponent of 0.64 under [269] 

single-slip loading from Ref. [13] and 0.69 under [111] multi-slip loading from Ref. [34].  

In bulk samples, Taylor‟s hardening law, which states that the flow stress is proportional 

to the square root of the dislocation density, has been confirmed by both theoretical and 

experimental studies [44]. However, there is little size dependence of the evolution of the 

dislocation density, since all samples showing similar dislocation density variations as shown 

in Figure 4.6. Thus, Taylor‟s law does not hold and cannot be used to develop a theory of the 

size effects of plasticity in small volumes. 

Recently, Parthasarathy et al. [45] developed a statistical model for the flow strength of 

small samples, which was completely based on the stochastics of spiral source (single-arm 

source) lengths in samples of finite size. In their studies, the spiral source with one 

permanent inside pinning point could be formed either by the FR sources being truncated at 

the free surface or directly generated in the initial structure of simulation. In either case, the 

spiral sources have a minimum strength based on the relative distance between the sources 

and the free surfaces. For the FR sources, the minimum always appears when the FR source 



76 

is set at the center of the sample and with the length of around 1/3 the slip-plane 

characteristic dimension [46]. For a single-arm source, the minimum is set with the source 

pinning point at the center of the sample [45]. This stochastic model was validated by the 

in-situ observation of dislocation behavior in a submicrometre single crystal in which 

single-ended sources are limited approximately by half of the crystal width [47].   

Since the flow stress was always determined by the strength of spiral sources or stable 

dynamic sources in our simulations, we used our simulation results and experiment results 

from references [13, 34] to compare with this stochastic model, which estimates the critical 

resolved shear stress (CRSS) as following: 
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Figure 4.11 Comparison log-log plot of the statistic model and simulation and experimental 

results. 
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where ηo is the lattice friction stress (11 MPa for Ni), ks is a source-hardening constant, with 

magnitude ks = 0.12, derived through a recent study [3], kf represents the hardening 

coefficient using a value of kf = 0.061 [48], ρf is forest dislocations density, ρf = 2×10
12

 m
-2

 

and λ  is an average effective source length calculated from the statistic model [45]. The 

second and third term in equation (5) represent source truncation strengthening [28] and 

forest strengthening, respectively. It can be seen from Figure 4.11 that this single-arm model 

could predict the initial stress for plasticity well for smaller samples, because only one or at 

most a few mobile dislocations determine the strength at small volumes, agreeing with the 

basic assumption in this model. For the larger samples, the predicted scatter is less than that 

observed, since internal dislocation structures and reactions are more complicated in larger 

samples than those in smaller ones. 

4.6 Concluding remarks 

Experimental-like initial dislocation structures cut from larger deformed samples have 

been introduced into 3D DD SIMULATIONS  to study the plasticity in small sizes. Image 

forces from traction-free surface and as well as thermally-activated cross-slip were 

considered in our study. Three different sizes of micropillars all with initially relaxed 

dislocation densities around 2.0×10
13

 m
-2

 have been analyzed under uniaxial compression to 

identify the relationship between the evolution of internal dislocation structure and overall 

mechanical behaviors.  

The results indicate that the loading direction has negligible effect on the flow stress 

with both multi-slip and single-slip loading resulting in the similar saturation. This lack of a 



78 

dependence on loading direction can be easily understood. Since the number of dislocation 

sources decreases with the sample diameters, the probability to activate a source with low 

Schmid factors increases in small samples. 

In small samples, dynamic sources can be easily generated by cross-slip or collinear 

reactions, the stability of which depends on the position and sample size. There were at least 

two origins of “exhaustion hardening”: the escape of dynamic sources from the surface and 

dislocation interactions such as junction formation. Both of these effects shut off the 

activated sources, leading to the flow intermittency. The “mechanical annealing” at the early 

stage of deformation were seen to arise from the surface dislocations and the 

weakly-entangled dislocations leaving the sample. The drop in dislocation density was 

followed by an increase that always resulted from processes that were enabled by cross-slip. 

The scarcity of available dislocation sources gives a major contribution to the higher flow 

stress and larger scatter of strength in smaller sizes. The scaling law determined from the 

current simulation results is close to that found experimentally. 

There are still many unanswered questions regarding size-dependent strengthening in 

small volumes, such as the critical size for transition from bulk behavior and the role that 

dislocation structures and mechanisms play in determining that critical size. Further 

investigations are planned for larger samples based on our simulation framework to address 

these questions. Our goal is to develop a more sophisticated model to predict the mechanical 

behavior of microcrystals over a wide range of sizes. 
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CHAPTER 5 

PLASTIC DEFORMATION MECHANISMS OF FCC SINGLE 

CRYSTALS AT SMALL SCALES 

 

Starting with the pioneering microcompression measurements of Uchic et al. that 

reported an anomalous increase in the strength of micron-scale single crystal pillars as their 

diameter decreased[1], numerous research groups have observed similar size effects in 

various FCC single crystals[2-14]. An inverse relationship between sample size and flow 

stress was predicted by strain gradient models for small indentations, resulting from an 

increase in geometrically necessary dislocation densities to accommodate the lattice 

mismatch [15-16]. However, TEM investigations [17] revealed that the dislocation structure 

on the active slip systems in micropillars with diameters larger than 2 µm is comparable to 

that found in bulk samples deformed to a similar state.  Furthermore, the dislocation density 

in nanopillars smaller than 150 nm apparently approaches zero after deformation [18]. These 

experimental observations indicate that mechanisms other than the gradient-induced storage 

of geometrically necessary dislocations must be the cause of the observed size effects in 

microcompression tests on micropillars. 

Two basic models have been used to explain the size effects in plasticity in FCC single 

crystals.  The first is the “dislocation starvation” (DS) model [4-6, 12, 19-20], in which 

dislocations can easily escape from nearby free surfaces in a small sample prior to dislocation 

multiplication, leaving samples in a dislocation-free state.  Continuous plastic flow would 

then require an increase in applied load to nucleate dislocations at the surface. Thus, the 

principal idea behind the DS model is that plastic deformation at small scale is dislocation 

nucleation dominated.  The other model is the “single-arm dislocation” (SAD) model, 

which is based on the notion that size effects in the plasticity of small single crystals can be 
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rationalized almost completely by considering the stochastics of single-arm dislocation 

source lengths in the sample [22].  In contrast with the DS model, the SAD model assumes 

that the plastic deformation is induced by multiplication of internal dislocation sources rather 

than nucleation of surface dislocations. To identify which of the two models best describes 

the dislocation behavior requires a better understanding of the evolution of dislocation 

structures with increasing strain and the details of the dynamic behavior of internal 

dislocation sources. 

3-D dislocation dynamics (DD) simulations, in which dislocations are the simulated 

entities, have been the primary modeling tool employed to study the various aspects of 

plastic behavior in nano- and micro-samples.  The first applications of 3-D DD simulations 

to this problem employed a set of isolated Frank-Read sources (FRs) with rigidly fixed ends 

as the starting dislocation populations [21-26].  To extend that simple (and limited) model, 

Tang et al. [27] employed artificially-generated jogged dislocations as the initial dislocation 

configuration for their simulations (though they neglected the image stresses and cross-slip) 

and demonstrated that the shut-down of sources causes staircase behavior similar to that 

observed in experiments. Motz et al. [28] used the dislocation structures relaxed from a high 

density of closed dislocation loops as the initial input for their simulations.  In our previous 

work, we [14] employed experimental-like initial dislocation structures, which were created 

by cutting the cylindrical sample from the results of simulations on larger, bulk, samples.  

Our goal was to mimic the physics of real systems as closely as possible.  To that end, we 

also included a boundary element method to determine the image forces and a detailed model 

of cross slip.  We found that the scarcity of available dislocation sources is indeed a major 

contributor to the higher flow stress in smaller sizes [29]. Despite this progress, however, 

further studies are needed both to determine the critical events for plastic deformation at 

small scales and to derive more accurate and reliable models to predict the mechanical 

properties of small scale materials.  
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In this paper, we present results from 3-D DD simulations on the dynamic behavior of 

internal dislocation sources in micropillars. Based on our simulation results, analytical 

formulations of the dislocation starvation (DS) model and a general single-arm dislocation 

(SAD) model were developed, from which we can identify the relationship between 

nucleation-dominated and multiplication-dominated plastic deformation in small-scale FCC 

single crystals.  

5.1 Simulation procedures 

We employed the parametric DD method described in detail in [30-32] to simulate the 

mechanical behavior of Ni single crystals under uniform compression. For the simulations in 

this work, the material properties of Ni are used: shear modulus µ = 76 GPa, Poisson‟s ratio ν 

= 0.31, and lattice constant a = 0.35 nm. 

A sophisticated thermally-activated cross-slip model developed by Kubin and 

co-workers [33-34] was adopted in our DD simulations.  We employed a Monte Carlo 

method to determine the activation of cross slip based on the probability of the cross slip of a 

screw segment with length L in a discrete time step, which is determined by an activation 

energy Vact (|η|-ηIII) and the resolved shear stress on the cross-slip plane η, 
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where β is a normalization constant, k is the Boltzmann constant, T is set to room 

temperature, Vact is the activation volume, and ηIII is the stress at which stage-three hardening 

starts.  In Ni, Vact is equal to 420b
3
 with b the magnitude of Burgers vector, ηIII = 55MPa 

[35-36], and L0 = 1μm and δt0 = 1s are reference values for the length of the cross-slipping 

segment and for the time step.  



86 

In our computations, the experimental loading conditions of Dimiduk and coworkers 

[1-2, 17] were simulated, in which a mixture of constant displacement rate and creep-like 

loading conditions were employed; the applied stress was discretely increased by a small 

fixed value (δζ) every time the plastic strain rate approached the applied strain rate. In all 

simulations, compression loading was performed in the [001] direction. When the plastic 

strain rate was equal to 50, the applied load was increased by 1.0 MPa, i.e. δζ = 1.0 MPa, for 

𝜀 𝑝 = 50, while the applied stress was kept constant when the plastic strain rate was larger 

than 50, i.e. δζ = 0, for 𝜀 𝑝 > 50.  

5.2 Stability of internal dislocation sources 

The major question that has arisen from recent work on plasticity at small scales is 

whether the activated dislocations producing continuous plastic strain are the pre-existing 

internal sources or sources nucleated from the surface [4-6, 10-12, 20].  If the dislocation 

starvation mechanism is operant, nucleation of surface dislocation sources is the most likely 

contributor to continuous plastic flow. Otherwise, plastic deformation is likely to be 

dominated by the multiplication of internal dislocation sources.  To answer this question 

requires an examination of balance between the stability of internal dislocation sources and 

the probability of dislocation starvation in samples with different sizes. In recent in situ TEM 

studies, Oh et al. observed that some internal dislocation sources can be naturally created by 

cross-slip of dislocations near free surfaces [37-38]. Unfortunately, it is unclear how stable 

those naturally formed sources are in different samples. If these sources have a short enough 

lifetime such that they can only operate a few times before finally escaping from the free 

surfaces, then dislocation nucleation from the surface likely plays a critical role in controlling 

plastic deformation.   

To study the formation and stability of internal dislocation sources, we mimicked the 

nucleation of a dislocation by putting a surface dislocation with a length of 100 nm on the 
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surface and lying along the 
1

2
 011  (111) slip system in micropillars with various diameters 

and an aspect ratio fixed at D : H = 1:3 (as observed in in situ experiments) [37]. All surface 

dislocations nucleated from the middle part of the micropillars and were set as near-screw 

dislocations to increase the cross-slip probability. Since we do not know the actual stress 

required to nucleate dislocations from a rough surface, we estimated the nucleation stress 

based on γ/b, where the Burgers vector, b = 0.25nm and the stacking fault energy, γ = 0.1 

J/m
2
 for Ni [39]. Thus, the required nucleation stress on {111} slip systems with Schmid 

factor equal 0.41 is approximately equal to 1000 MPa. 

Figure 5.1 shows the sequential snapshots from a simulation in which image stresses at 

the free surfaces were ignored. In that case, a surface dislocation was nucleated from one side 

of the sample, quickly swept across the plane and exited from other side. When image 

stresses are included, the response is quite different, in that the screw segment on the 

activated dislocation cross slipped from the original plane to an adjacent plane and then 

emitted a new FR source, as shown in Figure 5.2 for a typical case in a 750 nm pillar. Figure 

 

Figure 5.1 Dislocation Nucleating and escaping from the surface of micropillar without 

considering image stresses (viewing along the Z-direction). 
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5.2a-d shows the nucleated dislocation gliding on the original (111) plane.  In Figure 5.2e, 

the screw segment nearest the free surface has cross slipped to the (1 11) plane under the 

influence of image stresses and formed a new FR source with the same Burgers vector 

1

2
 011   as the original one. The newly formed FR dislocation source contains two internal 

pinning points, p1 and p2, as shown in Figure 5.2e. The pinning points have two single-arms 

on different slip planes with the same Burgers vector and can move along the intersection 

line of the two slip planes [27, 29]. Under loading, the two dislocation arms will operate 

independently around the jog corners, producing continuous plastic flow. In Fig.2f and g, the 

newly formed source bowed out under the external loading and then was truncated by the 

free surface. Since the source containing pinning point p2 was quite close to the free surface, 

it exited the pillar under attractive image forces and only the p1 source continued operating, 

as shown in Figure 5.2h. One of the new dislocations generated by the source p1 moved in 

the opposite direction from the original one (Figure 5.2i) and when it approached the surface, 

a cross-slip process similar to that in Figure 5.2e occurred, in which one new FR source was 

formed, as shown in Figure 5.2j. The whole process in Figure 5.2 illustrates how internal 

 

Figure 5.2 Dislocation nucleating from the surface and forming internal pinning points by 

cross-slip (CS) under the influence of image stresses (viewing along the Z-direction). 
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sources can be formed by cross-slip under the influence of external stress fields. In FCC 

crystals, cross-slip of dislocations mainly depends on the local resolved shear stresses and 

dislocation line directions. In small volumes with large surface to volume ratios, image 

stresses from surfaces can alter the local resolved shear stresses on slip planes, which results 

in an increase in the probability of cross-slip.  In our simulations, we find that internal 

sources formed by cross-slip of the activated surface dislocation are most likely if the surface 

dislocation initially nucleated from a direction within ±15° from the direction of the pure 

screw dislocation. The qualitative behavior reported here is robust against modification of 

simulation details such as the discretized length of dislocation segments.  It is worth noting 

that the current DD simulation results differ from recent atomistic simulations [40], in which 

cross-slip of dislocations seldom happened and, thus, nucleation of surface dislocations 

controlled the plastic flow. However, since the sample size in the atomistic simulations is 

only 36 nm and the applied strain rate is seven orders of magnitude larger than those in our 

simulations, it is perhaps not surprising that the simulations differ.   

To study the stability and effectiveness of the naturally formed sources, the dislocation 

density for samples of different sizes along with the corresponding stress-strain curves are 

plotted in Figure 5.3a. The plastic strain produced by the nucleated surface dislocation and 

subsequently emitted sources decreases with the sample size, likely because dislocation 

sources in smaller samples have shorter residence lifetime than those in larger samples under 

the influence of attractive image forces and confined geometries. When all the dislocations 

have been driven out from surfaces, the samples arrive at the state of dislocation starvation. 

The movie in the supplementary materials gives one example of dislocation starvation in the 

300 nm pillar that corresponds to the density-strain curve shown in Figure 5.3a. After 

dislocation starvation, additional dislocations must be nucleated for plasticity to commence, 

which requires the application of significantly higher stresses. During this period, the fraction 

of plastic strain in the total strain is zero (because of no dislocation sources) and the strain 
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Figure 5.3 (a) Stress-strain curves and corresponding density-strain curves, (b) evolution of the 

number of internal dislocation sources. 
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hardening is essentially elastic, as reflected in the stress-strain curves. This effect is called 

“starvation hardening.” Since the dynamic sources have shorter residence lifetimes in smaller 

samples, the frequency of the repeating nucleating dislocation sources increases as the 

sample size decreases, which is one reasonable explanation for why smaller samples have a 

higher frequency of intermittency in plastic flow observed in most microcompression tests 

[3-4, 6, 8, 14]. Figure 5.3b plots the evolution of the number of internal dislocation sources 

for different sample sizes. Plastic flow is clearly a dynamic process, during which both loss 

and gain of dislocation sources can happen in all pillars at all sizes. However, the stability of 

these internal sources depends on the sample size, because those in the smaller samples have 

a shorter average distance to the free surfaces and thus it is easier for them to escape from the 

sample.  

In real systems, internal dislocation sources are always present in the existing dislocation 

structures before further deformation.  These structures are formed by dislocation reactions 

such as cross-slip, collinear annihilation [41], and Lomer-Cottrell junctions [28]. Assuming 

that the average length of dislocation sources in the sample scales with radius R as <L>=sR, 

the dislocation density in a micropillar with aspect ratio of 3:1, is equal to sNR/(πR
2
*6R) = 

sN/(6πR
2
), where N is the total number of dislocations.  From this simple analysis, we can 

see that the increase of the total number of sources is 2 orders of magnitude faster than the 

increase in sample sizes at a given dislocation density.  In addition, the longer lifetime of 

internal sources in larger micropillars increases the probability of generating new sources 

from an earlier source, preventing the dislocation-starved state seen in Figure 5.3. Thus, it is 

much harder to totally eliminate internal dislocations in larger samples than in smaller ones. 

5.3 Dislocation starvation (DS) model 

Since the rate of dislocation loss from free surfaces increases and the rate of dislocation 

multiplication decreases with decreasing sample size, there should be a critical size for FCC 
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single crystals below which the dislocation density should decline in the course of plastic 

deformation toward a dislocation-starved state.  Here we present an analytical formulation 

for the Dislocation Starvation (DS) model, following an idea from ref. [19], that will enable 

us to predict that critical density.  

Consider a cylindrical sample of radius r,with the primary slip plane oriented at an angle 

β from the compressive axis as shown in Figure 5.4. The glide plane in this case is an ellipse 

with major axis a = r/cosβ and the minor axis r. Assuming any dislocation within the 

distance vdt from a free surface has a 50% chance of escaping from the surface, the 

dislocation loss rate is an inverse function of the sample size r, as follows  

 

 

Figure 5.4 Schematic sketch of one dislocation loop in a finite cylindrical sample with the 

distance, vdt, from free surfaces. 
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where v is the dislocation velocity and ρmob is the mobile dislocation density. The dislocation 

losses from dislocation annihilation and locks have been ignored, since from our simulations 

they are small compared with surface losses. The dislocation multiplication rate is related to 

the mean free path, L which is the distance traveled by a mobile dislocation before it is stored 

[42]  

L

vdt
d mobmult    .                         (5.3) 

The overall rate of total dislocation density, ρtotal, is the sum of dislocation loss and the 

multiplication rate, such that the total dislocation density evolves as: 
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where ρo is the initial dislocation density, b is the Burgers vector, M is the Schmid factor and 

the plastic strain, εp = ρmobbvdt. Based on eq. (5.4), samples can potentially arrive at a 

dislocation starvation state if the term related to the sample size, 𝑐𝑜𝑠2(
𝛽

2
)/𝑟, is smaller than 

the reciprocal of the mean free path.  In addition, eq. (5.4) demonstrates that the dislocation 

density decreases faster with smaller sizes, which agrees with our DD simulation results.  

From eq. (5.4), we can define a critical size, D = 2r, for dislocation starvation, below 

which the term, (
1

𝐿
− 𝑐𝑜𝑠2(

𝛽

2
)/𝑟) in eq. (5.4) is negative and the dislocation density will 

decrease with increasing strain leading to a dislocation-starved state at a given initial 

dislocation density. To estimate the critical size for dislocation starvation, we assumed that 

the mean free path of dislocations at small scales is approximated by L ≈ ρ
-0.5

 and β = 35° for 
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<011>{111} slip systems. The critical size for dislocation starvation with a initial dislocation 

density 2.0×10
13

 m
-2

 is about 400 nm, and 1250 nm for initial dislocation density of 2.0×10
12

 

m
-2

. Recently, TEM analysis [14] revealed that the initial dislocation density in nanopillars, 

whether produced by a focused-ion beam or not, can easily reach on the order of 10
14

 m
-2

, 

suggesting that the mechanical response of nanoscale crystals is a stronger function of initial 

microstructure than of size regardless of fabrication method. In the case with dislocation 

density at 10
14

 m
-2

, the critical size for dislocation starvation is around 180 nm, which is 

smaller than the sample sizes used in most previous experiments. This small size could 

explain why Shan et al. observed dislocation starvation only in their 150nm sample via in situ 

TEM [18] and why most experiments cannot find pristine samples with no internal 

dislocations after deformation [3, 10-11, 13-14, 17, 43-44]. Although this model considers 

the sample as a perfect single crystal without other kinds of defects, it still gives an 

instructive insight into the unconventional plasticity at nano- and micro-scales. 

5.4 Single-arm dislocation (SAD) model 

Unlike nanocompression tests, micropillars under compression are exposed to a 

nominally uniaxial stress and strain state. Thus, the observed size effects are likely to be 

more related to the stochastic behavior of dislocations than the gradient-induced storage of 

geometrically necessary dislocations [2]. In small volumes, a common dislocation source 

consists of a single dislocation arm with one end at a surface and the other at an internal 

pinning point.  These single-arm sources can be formed either by the truncation of 

Frank-Read sources at free surfaces or directly generated in the initial dislocation structures.  

Guided by the observation of single-ended source operation in their 3-D DD simulations, 

Parthasarathy et al. developed the single-arm dislocation (SAD) model based on the observed 

dependence of the small-strain plastic response on the stochastic behavior of those sources 

[45].  Their goal was to calculate the increase and variation in the critical resolved shear 
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stress by determining the stress required to activate the weakest single-arm dislocation source 

in a microcrystal when only one slip system is active. With these assumptions, the critical 

resolved shear stress at yielding can be calculated by adding the source activation stress to 

the lattice-friction stress and the back stress from the dislocation forest. They found that 





 b

bk
o   ,                   (5.5) 

where ηo is the lattice-friction stress, k is the source-strength coefficient (with an average 

magnitude of k = 0.6 [46]), α is the hardening coefficient (~0.35 for FCC metals [47]), μ is 

the shear modulus, b is the magnitude of the Burgers vector, ρ is the dislocation density and 

λ  is an effective source length calculated from the statistical model that is dependent on the 

sample dimensions and dislocation density [45].  

In eq. (5.5), only the shear modulus and the Burgers vector show much variation for 

different FCC metals, while all other parameters are almost the same. Thus, it is useful to 

rearrange eq. (5.5) to make it independent of material parameters.  Assuming the 

lattice-friction stress is negligible, we find 
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Since the right hand side of eq. (5.6) depends only on the effective source length λ  and 

the dislocation density, we can use it to predict the yield stress of various FCC single crystals 

with different sample sizes and dislocation densities. In the original SAD model, the number 

of mobile dislocation sources was assumed to increase with the sample size at the sample 

yielding point. However, recent TEM observations [48-49] and 3-D DD simulation results 

[22, 29] indicated that only one, or at most a few, weakest sources determined the strength at 

the onset of plasticity. Thus, in the present study we determined the effective source length λ , 
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from the statistical distribution of only one random single-arm source inside the sample. For 

validation, we present the data from microcompression tests from a number of FCC single 

crystals, Ni [2-3], Al [9, 11], Cu [9] and Au [13], to compare with the predicted results from 

our version of the SAD model, where we assume limiting values of the dislocation density 

based on experimental observations [2, 6, 10], with the high and low values being 2.0×10
12

 

m
-2

 and 2.0×10
13

 m
-2

, respectively. All experimental data were taken at the onset of plasticity 

with a total strain less than 5%.  
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Figure 5.5 Comparison log-log plot of the general SAD model and microcompression results on 

various FCC single crystals. 
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As shown in Figure 5.5, the normalized resolved shear stress for various FCC single 

crystals exhibits a similar size-dependent behavior with a scaling exponent of approximately 

0.6. Furthermore, the general SAD model cannot only reasonably model the increase of yield 

strength with decreasing sample sizes, but also the statistical variation of the strength at small 

scales. The upper and lower bounds in Figure 5.5 were evaluated from the the standard 

deviations of the effective source length by the statistical model in ref. [45]. It is interesting 

to see that some of the sample sizes in Figure 5.5 are already below the critical size for 

dislocation starvation calculated in previous section, such as the sizes smaller than 400 nm at 

density equal 2.0×10
13

 m
-2.

 However, the SAD model still seems to capture the yield strength 

of these samples, perhaps because the process of thoroughly removing internal sources takes 

a long time at these small strain levels, even in 100 nm samples [49]. Thus the initial plastic 

deformation in these samples results from the motion of internal dislocation sources before 

they have been driven out of the sample.   

5.5 Dislocation interactions causing hardening at small scales 

The SAD model is designed to estimate the stress at the onset of yield and thus cannot 

explain the intermittency in plastic flow and discrete load increases in the post-yielding 

region, as observed in the microcompression tests [2-11, 13]. In section 3.1, we have shown 

that the strength increase in the post-yielding region can be caused by starvation hardening, 

i.e., mobile sources escaping from free surfaces. In this section, we will use DD simulations 

to investigate another type of hardening that arises from dislocation interactions during 

plastic flow. To that end, we extended our simulations to include realistic initial dislocation 

distributions. 

We began our simulations with a cubic cell with periodic boundary conditions that was 

slightly deformed and unloaded, mimicking the deformation of a bulk single crystal. A 

cylinder was then cut out of the bulk sample with the aspect ratio of D : H = 1 : 3, where D 
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and H denote the diameter and height of the micropillar, respectively. The dislocation 

microstructures in the pillars were then relaxed under the influence of image and interaction 

forces until the initial dislocation structures reached a metastable configuration, as shown in 

the inset in Figure 5.6. The dislocation density after relaxation is around 1.7×10
13

 m
-2

, which 

is consistent with conditions observed in experiments [17]. This experimental-like 

dislocation structure was then used as the initial configuration for our subsequent simulations. 

Further information about the simulation procedures can be found in reference [29]. 

Figure 5.6 shows the strain-stress curve for a 1.0 µm diameter micropillar under 

compression along with the corresponding strain-dislocation density curve. One may observe 

in Figure 5.6 that a certain amount of „„microplasticity” in the pillar was generated at low 

 

Figure 5.6 Stress-strain and density-strain curves obtained from simulations on the sample with D 

= 1.0 µm. 
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loads. This early-stage plasticity is often the result of weakly-entangled or surface 

dislocations being driven out of the system [29]. Owing to the escape of these dislocations, 

the dislocation density will decrease in the early stages as reflected by the strain-density 

curve in Figure 5.6. In addition, we see discrete strain bursts separated by nearly elastic 

loading after yielding, in agreement with experimental observations [2-11, 13]. This nearly 

elastic increase of load between each strain burst results from the activated sources being 

trapped by dislocation reactions and is called “exhaustion hardening.” Figure 5.7 illustrates 

different dislocation configurations before and after exhaustion hardening, corresponding to 

the load increase in Figure 5.6 marked by an arrow. At the beginning of plastic flow, two 

single-arm spiral sources S1 and S2 cyclically sweep in their slip planes as shown in Figure 

5.7a, producing continuous plastic flow. After the dislocations moved close to each other, a 

dislocation junction was formed that caused the cessation of plastic flow in the sample (Fig 

7b and c).  For plasticity to commence, additional dislocations had to be activated, which 

 

Figure 5.7 Plot of dislocation configurations before and after hardening caused by dislocation 

interactions. 
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required the application of a significantly higher stress. After the applied stress increased to a 

sufficiently high level, S3 was activated (in Fig 7d), generating plastic deformation. To keep 

the same overall strain rate (a result of the experimental loading conditions assumed in this 

simulation), the applied stress stopped increasing, leading to a constant-stress flow in the 

stress-strain curve arising from the continuous operation of this new source. 

The whole process in Figure 5.7 illustrates how multiplication of internal dislocation 

sources causes plastic flow in micro samples and also how dislocation interactions lead to 

intermittent plastic flow. When sample sizes decrease to the micro and submicron range, only 

one, or at most a few, mobile sources can carry all the plastic strain under loading. Thus, 

dislocation interactions with the mobile source will cause distinct changes in the plastic 

behavior of samples, resulting in highly jerky flow as manifest in stress-strain curves. In bulk 

samples, various dislocation interactions, such as dipole and junction formation, also occur in 

a similar way as in the micro samples and induce hardening, which is usually called “forest 

hardening”. However, owing to the large number of mobile dislocation sources available for 

the plastic flow, the stress-strain curves of macro samples are much smoother than those of 

micro samples. It is worth noting that exhaustion hardening is always associated with plastic 

flow induced by the multiplication of internal dislocation sources, while starvation hardening 

is usually followed by the nucleation of surface dislocations. 

5.6 Implications for plasticity at small scales 

Combining our modeling and simulation results with dislocation structures observed in 

experiments [14, 17-18, 48-49], a physically based plastic deformation map for FCC single 

crystals at small scales has been presented in Figure 5.8, which divides the plasticity into 

three zones that depend on the sample size. The position of the zone boundaries are the 

critical sizes for dislocation starvation as evaluated from the dislocation starvation model in 

section 3.2.  
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In all three zones, the general single-arm dislocation (SAD) model can reasonably 

predict the strength at the onset of yielding induced by the action of a few internal dislocation 

sources. Beyond the initial plasticity, nucleation of surface dislocations or multiplication of 

internal dislocations are the two most probable mechanisms responsible for plastic flow in 

the post-yielding region. For samples located in zone I (very small samples), nucleation of 

surface dislocations will control the plastic deformation, with dislocation starvation being the 

dominant hardening mechanism, owing to the ease of dislocation sources escaping through 

the nearby surfaces. In contrast, in zone III (large systems), it is almost impossible to 

thoroughly eliminate internal sources through the free surfaces, so the multiplication of 

internal dislocations will carry all the plastic flow.   Intermittent plasticity arises from the 

 

Figure 5.8 Complex deformation mechanism map for FCC single crystals: zone (I) nucleation of 

surface dislocations + starvation hardening, zone (II) nucleation/multiplication, depended on 

dislocation densities and structures, zone (III) multiplication of internal dislocations + exhaustion 

hardening. 
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exhaustion hardening caused by dislocation interactions.  In the transition zone II, both 

nucleation of surface dislocations and multiplication of internal dislocations are likely to 

occur, with a greater likelihood of nucleation-dominated plastic deformation for systems in 

proximity to zone I and a greater likelihood of multiplication-dominated plastic deformation 

for those near zone III.  We note that the boundaries between these zones will likely be 

highly sensitive to the dislocation density and internal dislocation structures. For example, 

with increasing initial dislocation density, the position of zone II will shift to small sample 

size, which implies that the critical size for dislocation starvation should decrease 

correspondingly.  

We can clearly see that the plastic deformation of FCC single crystals at small scales is 

not only size-dependent but is also dislocation density-dependent. With increasing 

dislocation density and sample size, multiplication of internal dislocations will likely control 

the plastic flow. In contrast, dislocation starvation and nucleation of surface dislocations 

should dominate the plastic deformation with decreasing density and size. As the observed 

dislocation densities from most experiments are on the order of 10
12

 m
-2

 to 10
13

 m
-2

, we can 

estimate that zone I in the plastic deformation map ends at around 0.5 μm and zone III starts 

at around 1.0 μm.  

5.7 Concluding remarks 

3-D DD simulations were employed to study the dynamic behavior of internal 

dislocation sources in micropillars of different sizes. From the simulation results, we 

identified the dominating plastic deformation mechanisms at small scales by combining our 

modeling results. We note that these mechanisms are consistent with the available 

experimental data. 
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In confined volumes, image stresses alter the local resolved shear stresses on slip planes, 

resulting in an increase in the probability of cross-slip to form new internal sources. These 

naturally formed sources have shorter residence lifetimes in smaller samples under the 

influence of attractive image forces from the nearby surfaces.  

    The normalized critically resolved shear stress for a number of FCC single crystals 

exhibited a similar size-dependent behavior for all the materials. The generalized single-arm 

dislocation model can reasonably predict both the increase of yield strength with decreasing 

sample size, as well as the statistical variation of the strength at small scales.  

The plastic deformation of FCC single crystals at small scales depends not only on 

sample size but also on the dislocation density. At nano-and micro-scales, there is a critical 

size for dislocation starvation, which strongly depends on the initial dislocation density. 

Below this critical size, the dislocation loss rate will exceed the multiplication rate and thus 

nucleation of surface dislocations and dislocation starvation hardening will likely dominate 

plastic deformation process. Otherwise, multiplication of internal dislocation sources should 

control the plastic flow with increasing strain. 
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CHAPTER 6 

SIMULATIONS OF THE EFFECT OF SURFACE COATINGS ON 

PLASTICITY AT SMALL SCALES 

 

Small-scale metallic structures have been widely utilized in microelectronic circuits, 

optical and magnetic storage media, micro-electro-mechanical systems (MEMS) and so on, 

owing to their excellent mechanical, chemical, or electrical properties. Recently, 

size-dependent deformation properties of single crystals have attracted much attention in the 

materials science community, in part because these properties are closely related to the 

reliability of such structures in technical applications.  

The sudden structural softening under compression arising from large strain bursts of 

small scale materials is a critical problem for engineering application of such metallic 

structures. Recently, Ng and Ngan [1] found that coating aluminum microcolumns with 

tungsten significantly increased the compressive strength and alleviated strain bursts 

compared with the free surface samples agreeing with Greer‟s experiment results on Au 

micropillars coated by Al3O2 [2]. In addition, subcells and band structures always formed in 

the coated samples which have seldom been observed in free surface samples. However, the 

remarkable increase in strength and strain hardening rate of micropillars by hard coatings 

could not be explained by the conventional rule of mixtures, which indicates the strength of 

mixtures should be equal to the sum of the strength of each component multiplying their 

volume fractions [1].  

In this chapter, we employed 3-D DD simulations to examine the mechanical behavior 

and microstructure evolution in micropillars with a hard coating layer similar to samples 

studied experimentally [1]. The experiment-like initial dislocation structures containing FR 

sources, jogged dislocations, surface dislocations and spiral (single-armed) sources was 
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introduced into our DD simulations to study plastic behavior of Ni single-crystal micropillars 

under compression. We compare the results from coated micropillars to those from 

free-surface micropillars to investigate how coatings affect the plastic deformation behavior 

in small volumes.   

6.1 Simulation procedures 

We employ the PDD method described in Chapter 2 to simulate the mechanical behavior 

of Ni single crystals under uniform compression in [001] direction. For the simulations in this 

work, the applied strain rate was equal to 200 s
-1

 with the experimental loading conditions 

described in Chapter 4, and the materials properties of nickel were used: shear modulus µ = 

76 GPa, Poisson‟s ratio ν = 0.31, and lattice constant a = 0.35 nm. Finally, a sophisticated 

thermally-activated cross-slip model developed by Kubin and co-workers [3-4] was adopted 

in our DD simulations with Monte Carlo sampling to determine if cross-slip is activated or 

not. Detailed procedures can be found in ref [5]. 

At beginning, a larger cubic cell was generated with periodic boundary conditions and a 

size 3×3×3 µm
3
 containing a set of FR sources with an initial density equal to 2.0×10

12
 m

-2
. 

The FR sources (straight dislocation segments pinned at both ends) were randomly set on all 

twelve <011>{111} slip systems with random lengths. After compression in the [111] 

direction to a dislocation density of about 2.5×10
13

 m
-2

, the “bulk” cubic sample was 

unloaded and cylinders of various sizes (representing micropillars) were cut out of the bulk 

sample along the [001] direction with the aspect ratio of D : H = 1 : 2, where D and H denote 

the diameter and height of micropillars, respectively. Subsequently, the deformed dislocation 

microstructures were relaxed under the influence of image and interaction forces. The 

dislocation densities after relaxation were all in the range of 1.0 to 2.0×10
13

 m
-2

 and 

consistent with conditions observed in experiments [6]. In the present study, samples with 

diameters D = 0.5 and 1.0 µm were compressed in [001] direction with coated and free 
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surfaces. In agreement with the experimental observations [1], the hard coating layer was 

considered as an impenetrable obstacle for dislocations, while the free surface could 

annihilate dislocations and generate image force attracting dislocations, which play a 

significant role in mechanical behavior of uncoated mciro- and nano- samples [7]. The free 

surfaces were modeled using the boundary element method (BEM) described in Chapter 3.  

6.2 Effect of trapping dislocations 

In Figure 6.1, the engineering stress–strain relationships of two micropillar sizes D = 0.5 

and 1.0 µm are shown. The size-dependent behavior, in which smaller samples have higher 

strength, is observed in both coated and free-surface samples. When the identical initial 

dislocation configurations used, the flow stress of coated samples is approximated 110% 

 

Figure 6.1 Stress-strain curves for both coated and uncoated samples 
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higher than that of the free-surface samples with D = 0.5 µm and 60% higher with D = 1.0 

µm. In the coated samples, stress-strain curves exhibited larger stain hardening rates than 

those did samples with free surfaces, and the magnitude of strain bursts was decreased to a 

large degree, which agrees well with experiment results that coated samples demonstrated a 

significant increase in flow stress and the strain-hardening rate [1-2].  

Figure 6.2a shows the comparison of the strain-stress curves and the corresponding 

variation of the dislocation density for a typical example of a coated and a free-surface 

micropillar with diameter D = 1.0 µm. The identical initial dislocation structure is shown in 

Figure 6.2b. The coated sample exhibited not only higher flow stress, but also a higher 

hardening rate i.e., at the same stress level, the total strain is smaller than that in free-surface 

sample. The large amount of „„microplasticity”, plastic strain at low loads, in samples with 

free surfaces is the result of the weakly-entangled dislocations from within the sample being 

driven out free surface [5]. In the coated sample, however, dislocations are blocked by the 

coated layer and stored near the interfaces, which induces a strong back stress on that 

activated dislocations later in time.  Thus, the plastic deformation induced by the movement 

of dislocations was smaller in the coated sample at low loads and it showed steeper slope of 

strain-stress curves before yielding. This large difference in dislocation behavior in the two 

cases was also reflected in the corresponding strain-dislocation density curves in Figure 6.2a. 

For the free-surface case, dislocation density decreased at the early stage of deformation 

because of the mobile dislocations leaving the sample and then increased slightly with strain 

as cross-slip was activated, which was also demonstrated in the experiment observations [8]. 

Although the dislocation starvation model seems to be valid at small diameters (about 

150nm) [9], because of the sizes of our samples larger than 300nm, an absolute 

dislocation-free state is almost impossible in our simulations. Dislocations were always 

observed in the experiments for samples with diameter, D>300nm [10].  In coated samples, 

early activated dislocations could not leave through the surface and were stored near the 
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Figure 6.2 (a) Stress-strain and dislocation density-strain curves with diameter D = 1.0 µm, (b) 

initial dislocation structure, (c) dislocation structure in free-surface sample at 0.6% strain and (d) 

dislocation structure in coated sample at 0.6% strain. 
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interface, so total dislocation density gradually increased. At some critical applied stress, 

which was larger than the flow stress of free-surface sample, there was a sharp increase in 

dislocation density, indicating that a large number of dislocation had been activated creating 

more mobile sources for plastic deformation. However, the higher the number of activated 

sources, the greater the dislocation densities near the interface, which in turn induces addition 

back stress that inhibits further dislocation nucleation. Thus, the large strain bursts in free 

surface samples were not present in coated samples, but were replaced by smaller strain 

bursts separated by elastic hardening stages (see Figure 6.1). The dislocation structures of 

both the uncoated and coated samples at a strain level of 0.6% are plotted in Figure 6.2c and 

d, respectively. Compared with the initial configuration in Figure 6.2b, the dislocation 

density was relatively unchanged in the samples with free surfaces, but the dislocation lines 

have changed from being relatively long and straight into being short and jogged, which 

results from dislocation reactions and cross-slip. In contrast, the density in the coated sample 

increases to around five times the initial density at 0.6% strain and showed a large number of 

dislocations pile-ups near interfaces. Note that banded structures were gradually formed as 

the strain increased. 

6.3 Banded structures formed by cross-slip 

To investigate the effect of cross-slip on the evolution of dislocation structures and the 

mechanical behavior of coated samples, an additional sample with D = 1.0 µm was cut from 

the undeformed cube shown in Figure 6.3b, such that Frank-Read and spiral sources were 

initially present (with an initial density of 1.8×10
12

 m
-2

). This sample was put under load with 

and without cross-slip enabled. Figure 6.3a shows the comparison of the stress and 

dislocation density evolution for these two cases. The non-cross-slip case exhibited 

essentially hardening, except for several insignificant strain jumps corresponding to the 

discrete increase of dislocation density in the density-strain curve. The dislocation structure 
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Figure 6.3 (a) Stress-strain and dislocation density-strain curves with diameter D = 1.0 µm, (b) 

initial dislocation structure, (c) dislocation structure without cross-slip at 0.6% strain and (d) 

dislocation structure with cross-slip at 0.6% strain. 
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for non-cross-slip case at 0.6% stain is plotted in Figure 6.3c, which indicated dislocation 

sources were just nucleated on several slip planes. Since fewer sources available in the 

non-cross-slip sample, each source had to repeatedly operate on the same slip plane to sustain 

the applied strain. This repeated process required much larger external loading to overcome 

the high back stress generated by previous pile-up dislocations than nucleating new sources 

on slip planes without pile-up dislocations, so non-cross-slip sample exhibited smaller strain 

bursts and higher strength. In contrast, cross-slip enables screw dislocations under a strong 

back stress to escape from the original slip plane to the cross-slip plane, generating new 

dislocation sources that led to more plastic deformation. As shown in Figure 6.3a, the stress 

and density curves of the cross-slip and non-cross-slip cases were very similar below about 

0.2% strain. After that, there is a sharp increase of dislocations in the cross-slip-enabled 

sample reflected in strain-stress curve by strain bursts that indicates new dislocation sources 

were generated. The corresponding dislocation structure for the cross-slip case at 0.6% stain 

is shown in Figure 6.3d, from which we could see that more slip systems have been activated 

than of in the non-cross-slip case in Figure 6.3c. Banded structures were formed, in which 

double-cross slip plays an important role. Figure 6.4 illustrated one typical example of 

double-cross slip in the coated sample. In Figure 6.4a, the dislocation source L1 with slip 

system 
1

2
 101 (1 11) approached the interface, experiencing a high repulsive stress from 

previous piled-up dislocations on the same slip plane. Under the combination of applied 

stress and dislocation interaction stress, the screw segment S1 of dislocation L1 cross-slipped 

on the plane (1 1 1), to escape the original slip plane (1 11), as shown in Figure 6.4b. S1 

continued bowing out under the applied stress in Figure 6.4c. Finally, double-cross slip 

produced new dislocation sources in the slip plane parallel to the original one, as shown in 

Figure 6.4d. The whole procedure was continuously repeated generating large number of 

dislocation pile-ups on the cross-slipped planes as well as in the planes parallel to the original 

ones, forming banded structures and subcells as observed in experiments [1]. Thus, cross-slip 

http://www.iciba.com/continuously/
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seems to be the primary mechanism in producing additional dislocation sources during the 

plastic deformation of small coated samples. 

6.4 Concluding remarks 

 

Figure 6.4 Plot of double cross-slip in coated sample: red line with 1/2[101](1 11) and green line 

with 1/2[101](1 1 1), see details in text. 
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Our simulations offer an explanation for the significant increase in compressive strength 

and formation of band structures in coated micropillars, demonstrating a fundamentally 

different strengthening mechanism in coated micropillars than in samples with free surfaces. 

Normally, in free-surface samples, image forces attract dislocations to the surface, where 

they exit, leaving a relative clear free path for dislocations that are activated later. In the 

coated samples, dislocations are blocked from leaving the sample, leading to dislocation 

pile-ups that induce a strong back stress on the later-activated sources, inhibiting further 

dislocation nucleation. The more dislocation pile-ups, the higher back stresses. Thus, the 

coated samples exhibited a higher strain-hardening rate, smaller strain bursts and greater flow 

stresses than those in samples with free surface. In addition, cross slip activated in coated 

samples enable screw dislocations to escape their original slip plane, generating more mobile 

dislocation sources for plastic deformation, and enabling the formation of banded structures 

and subcells.  
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CHAPTER 7 

DISLOCATION DYNAMICS SIMULATIONS OF PLASTICITY IN 

POLYCRYSTALLINE THIN FILMS  

 

In this study, 3-D DD simulations considering both cross-slip of dislocations and stress 

relaxation at grain boundaries have been used to investigate the size-dependent plasticity of 

polycrystalline thin films. According to our simulation results, we relate the plastic 

deformation of polycrystalline thin films to such quantities as dislocation density, grain size 

and thin film thickness, and finally developed a spiral source model to predict the plastic 

behavior of thin films. 

7.1 Simulation procedures 

The DD simulations are performed with the code UCLA-Microplasticity. Details on the 

methods used in this code were described in Refs [1-3]. For the simulations in this work, the 

materials properties of Cu are used: shear modulus µ = 50 GPa, Poisson‟s ratio ν = 0.34, and 

lattice constant a = 0.36 nm. The dislocation mobility is taken to be 10
-4

 Pa
-1

 s
-1

 in the 

calculations [4]. 

Cross-slip of dislocations is important for the plastic deformation of crystal materials, 

even at small scales [5-8]. The moving dislocation leaves its habit planes and propagates on 

the cross-slip plane to generate new sources for the following plastic deformation or enable 

oppositely signed screw dislocations on different planes to annihilate each other. In our 

simulations, a sophisticated thermally-activated cross-slip model developed by Kubin and 

co-workers [9-10] was adopted in our DD simulations to study the evolution of 

microstructures on in thin films, and a Monte Carlo method was used to check whether 

cross-slip is activated or not. The probability of cross-slip of a screw segment with length L 
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in the discrete time step is determined by an activation energy Vact (|η|-ηIII) and the resolved 

shear stress on the cross-slip plane η, 

 







 III

act

kT
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t

t

L

L
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


 ||exp

00 ,           (7.1) 

where β is a normalization constant, k is the Boltzmann constant, T is set to room temperature, 

Vact is the activation volume, and ηIII is the stress at which stage-three hardening starts. For 

Cu, Vact is equal to 300b
3
 with b the magnitude of Burgers vector, ηIII = 32MPa, and L0 = 1μm 

and δt0 = 1s are reference values for the length of the cross-slipping segment and for the time 

step [11]. 

 

 

Figure 7.1 Plot of the nine grain aggregate in DD simulations (Dashed lines are BEM mesh and 

dislocations are in color) 
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In this study, a volume element consisting of nine (= 3 × 3 × 1) columnar grains is set up 

and represents freestanding polycrystalline thin films as shown in Figure 7.7.1. Each grain 

has the same size and is set in [001] directions. The cross-section of each grain is square, and 

the length of each side of the square represents grain sizes (D) while the height of each grain 

is equal to the thickness of thin films (H). Six sides of the grain aggregate are set as free 

surfaces from which dislocations can escape. At the beginning of simulations, each grain 

contains a set of Frank-Read sources with random lengths on twelve <011>{111} slip 

systems. All initial dislocation densities of following simulations are set around 1.0×10
13 

m
-2

. 

In our simulations, the grain sizes, D, were set to 250, 500, 1000 and 1500 nm, and the film 

thickness, H, varies from 250 nm to 1500 nm for each grain size. We performed ten 

calculations with different initial dislocation configurations on each sample and then the 

results on the same dimension are averaged. 

In polycrystals, dislocation may be blocked, reflected, absorbed or transmitted at grain 

boundaries. The interactions between dislocations and grain boundaries (GB) have been 

studied by several groups using transmission electron microscopy [12-15]. On the basis of 

their findings, three conditions have been developed to predict the transmission of 

dislocations across grain boundaries: (i) the angle between the incoming and outgoing slip 

planes should be a minimum; (ii) the magnitude of the Burgers vector of the residual 

dislocation left in the grain boundary should a minimum; (iii) the resolved shear stress on the 

outgoing slip planes should be a maximum. Recently, de Koning and coworkers [16-17] 

developed a line tension (LT) model that can capture the essential features of dislocations 

slipping transmission across grain boundaries and is compatible with the molecular dynamics 

simulations and experimental results. The LT model considered the transmission as the 

similar way with operating a FR source on the grain boundary between the incoming and 

outgoing grains as illustrated in Figure 7.2. The GB transmission strength ηGB can be 

rationalized as relatively simple functional relationships between the GB geometry and 

loading conditions. In our simulations, all grain boundaries are considered as pure tilt 
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boundary, and the Burgers vector of outgoing dislocation segment is equal to that of 

incoming dislocation segment so penetration does not require the formation of residual 

dislocation in the GB plane. In this case, the GB transmission strength ηGB compared with the 

critical stress to activate the FR source is in the range ηGB/ηFR ≈ 2,…,10 [17-18]. When the 

resolved shear stress at the GB dislocation exceeds the GB transmission strength, the GB 

dislocation will transmit the grain boundary and continue operating in the outgoing grain. In 

section 3.1, we will compare simulation results with experiment results in Ref [19] to figure 

out the suitable GB transmission strength in our study.  

GB

Incoming dislocation, b1

Outgoing dislocation, b2

Residual dislocation, ∆b

Grain 2

Grain 1

 

Figure 7.2 Illustration of a dislocation transmitting the tilt grain boundary according to the LT 

model: the incoming dislocation in the Grain1 with Burgers vector, b1, gradually bows out under 

the applied shear stress and then deposits a line segment along the GB; when the resolved shear 

stress at the GB dislocation exceeds the GB transmission strength, transmission occurs by 

punching a part of this deposited dislocation line onto Grain2 with Burgers vector, b2, and left a 

residual dislocation with Burgers vector, ∆b = b2 - b1, in the GB plane to ensure conservation of 

the Burgers vector. (Details on the LT model were described in Ref [17]).  
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In our simulations, tensile loading was applied on the grain aggregate in [100] direction 

with a constant strain rate equal to 2000 s
-1

. In order to mimic the plastic deformation in real 

polycrystalline thin films, we tracked the stress-strain evolution in the center grain of the 

aggregate marked in Figure 7.1 and averaged the simulation results from a series of 

simulation results from different initial dislocation configurations to investigate the 

size-dependent plasticity in polycrystalline thin films. 

7.2 Validation of simulation results 

In order to study the effect of dislocation transmission on the plasticity of thin films and 

get proper parameters of GB transmission strength in our simulations, we firstly performed 

simulations on three types of grain boundaries: (a) ηGB/ηFR → ∞, representing impenetrable 

GB; (b) ηGB/ηFR = n, n from 2 to 10, representing penetrable GB; (c) ηGB/ηFR = 0, representing 

free GB without resistance on dislocations. In all validation simulations, the grain size is set 

to 500 nm and the thickness of thin films is equal to 600 nm, and 15 calculations with 

different initial dislocation configurations have been completed on each grain boundary 

condition. A comparison of the computational results for the three types of grain boundaries 

is shown in Figure 7.3a. To facilitate comparison between the computed and experimental 

stress-strain curves, the experimental curve from Ref. [19] is also plotted together in Figure 

7.3a. It is clear that, when ηGB/ηFR = 5, the computed and experimental stress-strain curves 

agree quite well and a good fit is obtained to the plateau regime in the stress–strain curves, 

while the curve for impenetrable GB conditions exhibits nearly linear hardening after initial 

yielding and the curve for free GB conditions has lower yielding point and flow stress. In 

Figure 7.3b, the average dislocation density is plotted against the strain for the three 

difference cases. We can see the impenetrable GB case has the highest dislocation density 

and rate of densities increasing, while the dislocation density for free GB case always keeps 

at the lowest level without any substantial increase. For the penetrable GB case, the 
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dislocation density initially has the same increasing rate with impenetrable GB case, after 

yielding, the increasing rate decreases and the difference of dislocation densities between 

impenetrable and penetrable cases gradually becomes large with strain increasing. Figure 7.3 

c-e shows the typical dislocation structures in polycrystalline films with three different GB 

conditions after deformed to the same strain level, 0.6%. For the impenetrable GB case 

shown in Figure 7.3c, the initial activated dislocations were blocked at the interface when 

they arrived there. Dislocations activated subsequently are repelled in their progress toward 

 

Figure 7.3 Comparison of simulations results with experiment results from Ref. [19]: (a) 

stress-strain curves of simulation and experimental results on polycrystalline thin films with 500 

nm grain size and 600 nm thickness; (b) evolution of dislocation densities; (c) dislocation 

structures in impenetrable GB case, (d) dislocation structures in free GB case; (e) dislocation 

structures in penetrable GB case with markers on transmitting GB dislocation sources. (Viewing 

along the [001]-direction).  
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the interface by those blocked earlier, and dislocation pile-ups are formed, producing a back 

stress. Dislocation spacing in the pile-ups is smaller near the interface than it is further away. 

These pile-ups can effectively reduce the free path of mobile dislocations in the grain and 

induce hardening with increasing strain. That is why the dislocation-strain curve of 

impenetrable GB case increasing much faster with increasing strain than the other two cases 

and the corresponding stress-strain curve exhibits very high strain hardening rate in Figure 

7.3a. On the contrary, in free GB case the interface between grains is very clean as shown in 

Figure 7.3d, since no resistance exists in the boundary. The corresponding dislocation density 

just has small fluctuations and almost keeps in the same density level as the initial condition 

in Figure 7.3b, and the flow stress is generally characterized by the stress required to 

continuously operate internal dislocation sources to generate the given plastic strain rate. 

Between these two extreme cases, penetrable GB can trap a certain amount of dislocation 

sources at the interface, but not permanently. When the resolved shear stress on the GB 

dislocation exceeds the GB transmission strength, the GB dislocation will transmit the 

interface and formed a GB source on the adjacent grain as marked in Figure 7.3e. These 

transmissions of dislocations in grain boundaries can relax the internal stress in grains and 

reduce the back stress on subsequently activated sources, thus much fewer dislocation 

pile-ups can form in the penetrable GB case. The comparison between simulation and 

experimental results in Figure 7.3 indicates that the free and impenetrable GB conditions in 

DD simulations will under- and overestimate the strength of polycrystalline films, 

respectively. This can explain why the stress-strain curves in previous 3-D DD simulations 

on polycrystalline thin films [20-22] always exhibited very high strain hardening rate without 

plateau regime in the stress–strain curves at larger strains, which idealized grain boundaries 

as permanent impenetrable. According these validation results, GB transmission strengths, 

ηGB, are all set to equal to five times ηFR, irrespective of grain sizes and film thicknesses in the 

following simulations. In addition, the 0.2% offset yield strength, ζy, is defined by the 

intercept of the dash dotted line in Figure 7.3on stress-strain curves.  
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7.3 Grain size dependent strength 

 

In order to analysis the effect of grain sizes on the strength of polycrystalline films at a 

given film thickness, the stress-strain curves for films 250, 500, 1000 and 1500 nm thick are 

plotted in Figure 7.4a-d, respectively. Each plot shows the effect of grain size on mechanical 

response of thin film with grain sizes of 250, 500, 1000 and 1500 nm. Vertical bars on each 

signature represent data scatter over ten to ten identically sized samples. There is a significant 

scatter in the magnitude of the flow stress on all grain sizes with decreasing grain sizes in 

Fig.4. An explanation of this behavior arises from considering that the number of dislocation 

 

Figure 7.4 Stress-strain plots comparing grain sizes at 250, 500, 1000 and 1500 nm for film 

thicknesses of (a) 250 nm; (b) 500 nm; (c) 1000 nm and (d) 1500 nm. 
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sources in grains decreases with grain sizes at a given dislocation density. Thus, the statistical 

effect on the number of dislocation sources in grains will be more obviously reflected on the 

mechanical response of films with smaller grains [23]. In Figure 7.4, the grain size dependent 

behavior is remarkably exhibited that, with the grain size decreasing, the flow stress 

increases irrespective of the film thickness and the strain value, and also the yielding point 

was delayed to larger strain in smaller grains. The corresponding evolution of total 

dislocation density and GB dislocation density are plotted in Figure 7.5 and 6, respectively. 

From Figure 7.5, we can see, the total dislocation increases with increasing strain in all cases 

and the density-strain curves for large grains are smoother than for small grains. It is 

 

Figure 7.5 Plots of total dislocation density vs. total strain in films with thicknesses of (a) 250 nm; 

(b) 500 nm; (c) 1000 nm and (d) 1500 nm. 

 



128 

interesting that there is one density jump in all samples after yielding indicating large number 

of dislocation sources have been generated or activated after yielding. The slope of the 

dislocation density jump is steeper for small grains than for large grains and the jump 

happened earlier in samples with larger grains since they were yielded earlier. Generally, the 

total dislocation densities at post-yielding region for 250 nm and 500 nm grains are in higher 

levels, while the other two are in lower levels. Recently, Hommel and Kraft [24] conducted 

experiments on the deformation behavior of thin copper films and found dislocation density 

decreases with increasing grain size, which agrees with the trend observed in our simulations. 

In Figure 7.6, GB dislocation densities in different cases have been plot against the total 

 

Figure 7.6 Plots of GB dislocation density vs. total strain in films with thicknesses of (a) 250 nm; 

(b) 500 nm; (c) 1000 nm and (d) 1500 nm. 
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Figure 7.7 (a) Plot of yield stress vs. grain size, D, for the four film thicknesses. Solid line 

connecting the data points taken from samples with aspect ratio equal to one, above and below 

which data are taken from samples with low aspect ratio (<1.0) and high aspect ratio (>1.0), 

respectively; (b) dislocation structures in the film with low aspect ratio, (D = 1000 nm, H = 250 

nm and H/D = 0.25) and (c) dislocation structures in the film with high aspect ratio, (D = 250 nm, 

H = 1000 nm and H/D = 4.0). 
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strain. The evolution of GB dislocation densities in Figure 7.6 has similar increasing trend 

with total dislocation denies in Figure 7.5, such as the position and slope of dislocation jumps. 

At a constant film thickness, the GB dislocation density increases with grain size decreasing 

and also the portion of GB dislocation densities in the total densities increase. For samples 

with 250 nm grain size in all thickness, the fluctuations of GB dislocation density and total 

dislocation density have almost the same pace and the GB dislocation density almost 

approaches 90% of the total densities. That because, at a constant film thickness, reducing 

grain sizes will increase the GB surface area per unit of grain volume inducing that the free 

path for dislocations is largely constrained by the grain boundaries, once activated, mobile 

dislocations will be quickly trapped by the boundary. Hence, the total dislocation densities 

were most composed of GB dislocation densities in films with smaller grains. Figure 7.6 

indicates a general trend that the films with smaller grains held higher GB dislocation 

densities than larger grain films did at the post-yielding region. 

According to the well know Hall–Petch relation based on dislocation pile-up model 

[25-26], the refinement of grain size can produce stronger polycrystalline materials and the 

yield strength of the materials should linearly depend on the inverse of the square root of the 

grain size. To quantitatively assess the size effect observed in Figure 7.4, the 0.2% yield 

strength is plotted in Figure 7.7a as a function of grain size, D, on a Log-Log scale. This plot 

clearly shows that the simulation results on films with thickness at 1000 and 1500 nm can be 

fitted by the typical form of Hall–Petch relation, 𝜎 = 𝜎0 + 𝑘𝐷−0.5, with scaling exponents 

approaching 0.5, while the scaling exponents are relative smaller for thinner film with 

thickness at 250 and 500 nm. In addition, the scaling exponent decreases with a reduction in 

film thickness from 0.51 for 1500nm thickness to 0.27 for 250nm thickness. This trend 

implies that the dependence of yield strength on the grain size gradually becomes weaker 

with decreasing film thickness. The reason is that most of grains in 250 and 500 nm films 

have a pancake-like shape with lower aspect ratio, H/D < 1.0 as shown in Figure 7.7b, while 

grains in 1000 and 1500 nm thicker films have a needle-like shape with higher aspect ratio, 
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H/D > 1.0, as shown in Figure 7.7c. In pancake-like grains, most of slip planes intersect the 

free surfaces from where dislocations can escape freely, and the effective free path of mobile 

dislocation is largely limited by the film thickness rather than grain boundaries. That 

weakens the grain size dependent behavior in thin film and dramatically brings down the 

scaling exponent in thinner films. While in needle-like grains, there is a large number of slip 

planes end at grain boundaries due to the large ratio of GB areas over volumes that raises the 

probability of mobile dislocations blocked at grain boundaries. Therefore, needle-like grains 

strength the grain boundary effect in polycrystalline films and make the scaling exponent in 

thicker films closer to that for Hall–Petch relation, 0.5. 

7.4 Film thickness dependent strength 

Since previous experimental results showed a strength increase for thinner films over the 

thicker films [23, 27-30], in this section, the simulation results are sorted by grain sizes to 

analysis the effect of film thickness on the strength of polycrystalline films. The stress-strain 

curves for films with grain sizes of 250, 500, 1000 and 1500 nm have been plotted in Figure 

7.8 a, b, c and d, respectively. Still quite evident, a film thickness effect on the flow stress is 

presented irrespective of grain sizes that the flow strength increases as the film thickness 

decreases. In addition, large scatter in the magnitude of the flow stress appears with 

decreasing film thickness. The explanation for the large scatter in thinner films is the same as 

for the significant scatter observed in smaller grains in Figure 7.4. Due to scarcity of 

available dislocation sources in thinner films at a given dislocation density, the stochastic 

distribution of dislocation source has stronger influence on the variable of flow stress in 

thinner films than in thicker films [23]. The total dislocation density and GB dislocation 

density verse strain are presented in Figure 7.9 and 10, respectively. Generally, the evolution 

of GB dislocation densities has the same pace with total dislocation densities in all 

thicknesses. In Figure 7.9 and 10, the density-strain curves for thicker films are smoother 
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than for thinner ones, and the dislocation density jump happened earlier in thicker films since 

they were yielded earlier as shown in Figure 7.8. Compatible with the trend observed in 

Figure 7.5 and 6 that smaller grains held higher dislocation densities, it is not surprising to 

find that thicker films stored higher dislocation densities than thinner films did in Figure 7.9 

and10. Figure 7.11 shows dislocation structures in films with different thicknesses at the 

same grain size under the same strain level. It is clear that films with higher aspect ratio 

stored more dislocations at the grain boundaries. Actually, increasing film thickness at a 

given grain size and decreasing grain sizes at a given film thickness both will increase the 

aspect ratio of grains in polycrystalline thin films. In high aspect ratio grains, mobile 

dislocations have less chance to escape the sample from free surfaces and most of them will 

 

Figure 7.8 Stress-strain plots comparing different film thicknesses for grain sizes of (a) 250 nm; 

(b) 500 nm; (c) 1000 nm and (d) 1500 nm. 
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be blocked by the grain boundaries that can preserve more dislocations in the grain. While it 

is worth to mention that dislocations near grain boundaries are not necessary to form pile-up 

under the influence of back-stresses from the source deposited at the grain boundaries, but 

some of them can relax the repulsive stress by cross-slip to the adjacent plane. Figure 7.12 

illustrates one typical example of how the mobile dislocation cross-slip when approaching 

the grain boundary dislocation. In Figure 7.12a and b, the mobile dislocation source, L2, with 

slip system 
1

2
 101 (1 1 1) is gradually approaching the previous deposited GB dislocation, L1, 

with the same slip system on the same plane and experiencing high repulsive stress from L1. 

In order to relax the high repulsive stress, the screw segment L3 of dislocation L2 escaped the 

 

Figure 7.9 Plots of total dislocation density vs. total strain in films with grain sizes of (a) 250 nm; 

(b) 500 nm; (c) 1000 nm and (d) 1500 nm. 



134 

original (1 1 1) slip plane and cross slipped on the adjacent (1 11) plane without resistance 

(Figure 7.12c). Under the applied stress, L3 continued bowing out and finally deposited at the 

grain boundary, as shown in Figure 7.12d. The whole procedure can be repeated by any 

mobile dislocations experiencing a high repulsive stress from GB dislocations, generating a 

large number of dislocations depositing on the grain boundaries, if the area of grain boundary 

is large enough. This can explain why the GB dislocation density is higher in high aspect 

ratio films, since they have large grain boundary areas per volume in the film with the same 

grain size. Recently, Chauhan and Bastawrosa [31] probed dislocation storage in freestanding 

Cu films using residual electrical resistivity and found a reduction in film thickness would 

 

Figure 7.10 Plots of GB dislocation density vs. total strain in films with grain sizes of (a) 250 nm; 

(b) 500 nm; (c) 1000 nm and (d) 1500 nm. 
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limit GB dislocation sources and decrease dislocation densities in polycrystalline films, 

which is in agreement with our results. According to the strain-gradient theory [32-34], the 

accommodated geometrically necessary dislocations can cause lattice curvature and 

non-homogeneous deformations in crystal materials that induces “smaller is stronger”. 

However, the trend observed in our simulations, thinner films are harder shown in Figure 7.9 

and 10, is not consistent with the strain-gradient theory, since they stored less dislocations 

density in the grain. 

The thickness effect on the film strength shown in Figure 7.8 is further illustrated in 

Figure 7.13, where the yield stress is plotted as a function of thickness inverse and compared 

 

Figure 7.11 Dislocation structures in films with grain size equal 500 nm under 0.5% strain in 

different film thicknesses: (a) thicknesses equal 250 nm (H/D = 0.5), upper in [001] view, lower in 

[1 1 1] view; (b) thicknesses equal 500 nm (H/D = 1.0), upper in [001] view, lower in [1 1 1] view; 

(c) thicknesses equal 2000 nm (H/D = 4.0), upper in [001] view, lower in [1 1 1] view. 
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with experiment results on freestanding polycrystalline Cu films [19, 35]. For the samples 

with grains size at 1000 and 1500 nm, we can observe a size effect in which the yield stress 

scales proportionally to 1/H, while for 250 and 500 nm films, the thickness dependence is 

relative weaker. That because most of grains in 250 and 500 nm films have needle-like grains 

(H/D > 1.0) as shown in Figure 7.11c, in which most slip planes in the center grain has been 

intersected by grain boundaries, and only few of them can touch the top and bottom free 

surfaces. Since the free path of mobile dislocations will be mainly limited by the smaller 

 

Figure 7.12 Plots of mobile dislocation cross-slip when approaching the grain boundary 

dislocation: source L1 and L2 with 1/2[101](1 1 1), source L3 with 1/2[101](1 11), and black lines 

indicating the grain boundaries, see details in text. 
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dimension of the sample, the grain size in this case, films thicknesses exhibit a minor effect 

on the strength of samples. Thus, at a given grain size, the difference of yield stresses is not 

obvious in films with aspect ratio larger than one, which have been reflected by the larger 

overlapping error bars in these cases on Figure 7.8a and b. In addition, our simulation results 

can match experiment results well on the distribution of yield strength in Figure 7.13. Since 

Xiang‟s results were taken from samples with aspect ratio slightly larger than one, most of 

their data points lay above the line, H/D = 1.0. While most of Gruber‟s results lay below the 
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Figure 7.13 Comparison of yield stresses from simulation and experiment results. Solid line 

connecting the data points taken from samples with aspect ratio equal to one, above and below 

which data are taken from samples with high aspect ratio (>1.0) and low aspect ratio (<1.0), 

respectively. 
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line, as their samples have lower aspect ratios. 

7.5 Spiral source model 

Plastic deformation in thin film can generally be divided into two main categories: (i) 

nucleation dominated mechanism, i.e. nucleation and absorption of partial dislocations at 

grain boundaries or interfaces [36-38], which is similar to the mechanism found in 

nanocrystalline metals, where grain boundaries are highly effective dislocation sinks and 

sources and perfect dislocation sources cease to operated [39-40]. Actually, the thickness 

dependence of the nucleation stress of partial dislocations is inherently lower than for perfect 

dislocations since it strongly depends on the stacking fault energy which is independent of 

film thickness. That may explain why some experiments found size-independent strength in 

metallic films with thickness approaching 100 nm [41-43]. (ii) Multiplication dominated 

mechanism, i.e. dislocation generating new sources or segments in films to relax the internal 

stresses to achieve the imposed plastic deformation. Normally, the activating stress required 

to produce new dislocation sources or segments is limited by confined geometries due to the 

presence of the substrate or a passivation layer [28] and grain boundaries [44], and thus 

strongly size-dependent plasticity can be found in the films at micron and submicron regime 

[28, 45]. The plastic deformation in this study belongs to the second category, multiplication 

dominated mechanism, since the film thickness and grain sizes are both in the range of 

micron and submicron.  

In the past decade, the misfit dislocation model [28] has been widely used to explain the 

plastic deformation in passivated films, in which work done by the applied stress must be 

enough to bow a dislocation and leave two dislocations at the film-substrate and film-oxide 

interfaces. As misfit dislocation is not present in the top or bottom of freestanding films, 

there must be other strengthening mechanism in these films to explain the size effects than 

the existing one arising from misfit dislocations. von Blanckenhagen et al. [46-47] simulated 
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thin film plasticity by putting a single Frank-Read source in the center of a columnar grain 

and concluded that the size of the most effective dislocation source for unpassivated thin 

films is 1/3 of the smaller dimension among film thickness or grain size. However, the two 

arms of randomly set Frank-Read sources in our simulation are always blocked by the grain 

boundary or truncated by free surfaces forming single-ended spiral sources and seldom 

operate at the same time. Instead, only the one arm with longer distance to the edge of the 

grain can continue operating and transform back to its initial position to allow further 

 

Figure 7.14 Schematic depiction of the operation of spiral source in freestanding thin films. Red 

lines are dislocations; d1 and d2 indicate the shortest distances of internal pinning point to the free 

surface and grain boundary; the spiral source operates in counterclockwise direction. 
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activation as shown in Figure 7.14. Recent in-situ TEM observations confirmed our 

simulation results that the operation of single-ended spiral source was recorded during 

straining and the emission of new dislocations relaxed the applied strain and stress [43, 48]. 

As shown in Figure 7.14, when the moving arm approaches the interface, the spiral source 

can operate like double-ended Frank-Read sources and will deposit dislocation segments on 

the grain boundary. When the moving arm arrived at free surfaces where they can escape free, 

the surface node can just slip along the intersection line between its slip plane and the free 

surface. The stress required to operate a single-ended spiral source have the same form as 

that for double-ended Frank-Read source [49]. Since the dislocation sources in thin films are 

rare and just have to operate several times to achieve the imposed plastic deformation, the 

critical resolved shear stress (CRSS) for initiate yielding in the film can be rationalized by 

considering the stress required to move the longest spiral sources formed in the sample as 

following: 

 b
bL

bL
ko 

)/(

)/ln(

,            (7.2) 

where ηo is the lattice friction stress, 𝐿  is the effective source length, µ is shear modulus, b is 

magnitude of Burgers vector, and k is source-hardening constant, equal to 0.12 for 

single-ended sources and 0.18 for double-ended sources [49], α is the hardening coefficient 

(~0.35 for FCC metals) [50], ρ is the dislocations density. In this study, we take ηo = 10 MPa, 

b = 0.25 nm for Cu, ρ = 1.0×10
13

 m
-2

 and the average k = 0.15. The second and third terms in 

eq. (7.2) represent the stress required to activate the effective spiral source in the sample and 

back stress from the dislocation forest, respectively.   

Following an idea from ref. [51], the length of effective spiral source can be evaluated 

from a statistical model illustrated in Figure 7.15. Since most films in experiment showed 

equiaxed grains, we assume the shape of the gain is square, H = D, and the spiral sources 



141 

with internal pins located in the shaded area have the same distance to the edge of square 

grain. As the square grain is quartic symmetry, we can take out an isosceles right triangle 

from the square to analysis the problem as shown in Figure 7.15. For a random distribution of 

pins in the triangle, the probability, P(l)dl, of finding a pin within the shaded area in the 

isosceles right triangle width, dl, at a distance l from the edge (bottom) is given by  

2

)2(4
)(

H

dllH
dl


lP

.                     (7.3) 

 

For the case of n pins located randomly, the probability for the maximum distance from 

the edge to be Lmax, is given by 

 

Figure 7.15 Schematic sketch of the statistical model for evaluating the effective length of spiral 

source in an equiaxed grain. Dashed lines indicate the axis of symmetry in the square. 
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The above equation gives the probability that a given sample with n pins has Lmax as the 

effective source length. The first moment of this distribution will give the mean effective 

source length as  
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Thus the second moment of this distribution gives the standard deviation of the effective 

source length by 
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The number of pins, n, is related to the sample dimensions and initial dislocation density 

in the sample, as given by 

2

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



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aveL

V
n initialInteger ,                      (7.7) 

where ρinitial is the initial dislocation density, V is the sample volume, Lave is the average 

length of dislocation segments in the sample and the factor two indicates each Frank-Read 

source has two pins in the sample. In this study, the average length of dislocation segments is 

taken to be H/2. The upper bound of this spiral source model should be stress required to 

nucleate dislocations from the free surface or grain boundaries. Since we do not know the 
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actual stress, we estimated the nucleation stress based on γ/b, where the stacking fault energy, 

γ = 0.04 J/m
2
 for Cu [52]. Thus, the required nucleation is approximately equal to 160 MPa.  

In Figure 7.16, the results predicted by spiral source model are compared with 

experimental data for freestanding polycrystalline Cu films. It can be seen that this spiral 

source model can reasonably predict the increase of strength with film thickness decreasing 

and the large scatter in the magnitude of strength in thinner films. For the thicker films, the 

predicted results are relative lower than that observed in experiments. That because this 

model just predicts the initial stress for plasticity and neglects hardening from the reactions 

between mobile sources and forest dislocations. Since the dislocation structures and reactions 

 

Figure 7.16 Comparison of the results predicted by spiral source model stress with experimental 

data. The stress is shown versus the reciprocal value of the smaller dimension among film 

thickness or grain size. 
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are more complicated in thicker films than those in thinner ones, the effective dislocation 

sources may be shortened in thicker films resulting in higher strength. In addition, the 

dislocation density in experiment may vary from one to one. That can also cause the 

experiment results diverge from the predicted value. It is worth to point out that this model 

can not only be developed to predict the yield stress for polycrystalline thin films, but also 

other confined small volumes, such as single crystal thin films and micropillars [51].  

7.6 Conclusions 

In this study, a 3D DD simulation was set up to investigate the plasticity of freestanding 

polycrystalline thin films. Both cross-slip and grain boundary relaxation mechanisms have 

been considered in our simulations, which are important in the plastic deformation of 

polycrystalline films and neglected by previous studies. The simulations were analyzed to 

identify the evolution of dislocation sources and densities in the presence of free surfaces and 

grain boundaries at the micron and submicron regime. According to our simulation results, a 

spiral source model has been established to predict the size-dependent strength in thin films. 

The findings can be summarized as follows: 

The stress-strain curves of freestanding polycrystalline films can be predicted by 3D DD 

simulations with a probable dislocation transmission rule. The computed and experimental 

stress-strain curves agree quite well and a good fit is obtained to the plateau regime with 

penetrable GB condition, while the curve for impenetrable GB conditions exhibits nearly 

linear hardening after initial yielding and the curve for free GB conditions has lower yielding 

point and flow stress. 

At a constant film thickness, the total dislocation density deceases with increasing grain 

sizes due to the increment of surface area to volume ratio. In films with pancake-like grains, 

the dependence of yield stress on the grain size gradually becomes weaker with decreasing 

film thickness. In contrast, the needle-like grains strength the grain boundary effect in 
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polycrystalline films and grain size dependent behaviors in films with high aspect ratio can 

be described by Hall-Petch relation.  

With the same grain size, high aspect ratio films can hold higher total and GB dislocation 

density, since they have large grain boundary areas per volume in the film. The yield strength 

of films can scale proportionally to the reciprocal of thickness. With high aspect ratios 

increases, the dependence of the film strength on thickness becomes weaker due to the effect 

of free surfaces has been diminished. 

According to the dislocation structures observed in our simulations, a spiral source 

model has been set up to predict the yield stress of thin films. Comparison with data on 

freestanding thin films shows that spiral source model can reasonably explain the increase of 

strength with film thickness decreasing and the large scatter in the magnitude of strength in 

thinner films.  

Further investigations are need for studying the plasticity of polycrystalline films with 

few grains across the thickness and also implement more realistic models on dislocation and 

grain boundary reactions in 3D DD simulations, both of which will slow down computation 

significantly.  
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CHAPTER 8 

DISLOCATION DYNAMICS SIMULATIONS OF BAUSCHINGER 

EFFECTS IN METALLIC THIN FILMS 

 

The Bauschinger effect normally refers the decrease of reversal strength of a metal after 

a forward deformation [1-2]. It is an important phenomenon found in most crystalline 

materials. In single crystals, it is controlled by the reversibility of the accumulated 

dislocations during forward loading and the associated misorientation patterns [3-5]. In 

polycrystals, it is mainly attributed to dissolution of dislocation cell walls or sub-boundaries 

formed during pre-straining [6-8]. In precipitation-strengthened materials, the large BE is 

related to the dislocation interaction with precipitates that impede dislocations glide in 

traction and promote it under reversed loading [9-11]. Normally, all Bauschinger effect in 

bulk materials just appears during the reversed loading. Recently, an anomalous Bauschinger 

effect has been observed in metallic thin films with passivation layers [12-14], that the 

reverse flow already takes place on unloading. This BE is much stronger than in bulk 

materials, and indicates the reduced length scales plays a particular role on mechanical 

behavior of small scale materials during strain-path changes. According to the strain-gradient 

plasticity theory, the size-dependent plasticity at small scales results from the presence of 

plastic strain gradients that increases the resistance to plastic flow by locally increasing the 

dislocation density [15-18]. For the thin films with passivating layers, dislocations are 

prevented from exiting the film and the yield stress increases with decreasing film thickness 

can be explained by a plastic strain gradient near the film-passivation interface. However, the 

BE observed in passivated thin films cannot be predicted by strain gradient plasticity 

calculations [13].  

As mechanical structures and devices are being created on a dimension comparable to 

the length scales of the underlying dislocation microstructures, the dynamical behavior of 
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discrete dislocations casts a significant impact on the plastic deformation of metallic 

materials at micron and submicron scales [19-20]. A detailed understanding of dislocation 

motion, multiplication and interactions in a confined geometry is the key to explain the 

plastic deformation of polycrystalline thin films. In this study, 3-D DD simulations have been 

used to investigate the Bauschinger effect in freestanding and passivated metallic thin films.  

8.1 Simulation procedures 

The 3D DD SIMULATIONS  framework described in [21-23] has been used in our 

study to simulate the plasticity in Cu (FCC) polycrystalline thin films. In this work, the 

materials properties of Cu are used: shear modulus µ = 50 GPa, Poisson‟s ratio ν = 0.34, and 

lattice constant a = 0.36 nm. In agreement with the experimental observations [13], the 

passivation layer on films was considered as an impenetrable obstacle for dislocations, while 

free surfaces both served as a sink for dislocations and also generated image forces and were 

modeled using the boundary element method (BEM) [24-25]. Finally, a sophisticated 

thermally-activated cross-slip model developed by Kubin and co-workers [26-27] was 

adopted in our DD simulations with Monte Carlo sampling to determine the activation of 

cross slip.  

    In this study, a volume element consisting of nine (= 3 × 3 × 1) columnar grains is set 

up and represents freestanding polycrystalline thin films. Each grain has the same size and is 

set in [100] directions. The cross-section of each grain is square, and the length of each side 

of the square represents grain sizes (D) while the height of each grain is equal to the 

thickness of thin films (H). Six sides of the grain aggregate are set as impenetrable obstacle 

for dislocations for passivated films and free surfaces from which dislocations can escape for 

freestanding films. All grain boundaries are considered as pure tilt boundary with the 

misorientation between adjacent grains less than 10°. In this case, the GB transmission 

strength, ηGB, compared with the critical stress to activate the Frank-Read source, ηFR, is in the 
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range ηGB/ηFR ≈ 2,…,10 [28-29]. When the resolved shear stress at the GB dislocation exceeds 

the GB transmission strength, the GB dislocation will transmit the grain boundary and 

continue operate in the outgoing grain. In our previous simulations [30], we found when 

ηGB/ηFR ≈ 5, the computed and experimental stress-strain curves agree quite well. Thus, we 

use the same GB transmission strength in current simulations. 

At the beginning of simulations, each grain contains a set of Frank-Read sources with 

random lengths on twelve <011>{111} slip systems. All initial dislocation densities of 

following simulations are set around 1.0×10
13 

m
-2

. In our simulations, tensile loading was 

applied on the grain aggregate in [100] direction with a constant strain rate equal to 2000 s
-1

. 

In order to mimic the plastic deformation in real polycrystalline thin films, we tracked the 

stress-strain evolution in the center grain of the aggregate and averaged the simulation results 

from ten simulation results from different initial dislocation configurations at the same 

dislocation density. 

At the beginning of simulations, each grain contains a set of Frank-Read sources with 

random lengths on twelve <011>{111} slip systems. All initial dislocation densities of 

following simulations are set around 1.0×10
13 

m
-2

. In our simulations, tensile loading was 

applied on the grain aggregate in [100] direction with a constant strain rate equal to 2000 s
-1

. 

In order to mimic the plastic deformation in real polycrystalline thin films, we tracked the 

stress-strain evolution in the center grain of the aggregate and averaged the simulation results 

from ten simulation results from different initial dislocation configurations at the same 

dislocation density. 

8.2 Effect of passivation layers on the film strength 

To compare simulation results from freestanding films and passivated films, Figure 8.1a 

plots the stress-strain curves for both cases together. In our simulations, we fixed the grain 

size at 500 nm, and varied the film thickness from 250 to 1000 nm with corresponding aspect 
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ratios at 0.5, 1.0 and 2.0. The 0.2% offset yield strength, denoted by ζy, is obtained from the 

intercept of the dash dotted line in Figure 8.1a. The size-dependent behavior, in which 

thinner films have higher strength, is observed in both freestanding and passivated films. The 

stress-strain curves for freestanding films exhibited plateaus regime after yielding and 

 

Figure 8.1 (a) Stress-strain curves of freestanding and passivated films under forward loading 

(dashed and solid lines for freestanding and passivated films, respectively); (b) dislocation 

structures in the 250nm freestanding film; (c) dislocation structures in the 250nm passivated film. 
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the strain hardening rates approached zero in all thicknesses. While the stress-strain curves 

for passivated films had larger-strain-hardening rates than those for freestanding films. 

Furthermore, the strain-hardening rate in passivated films increases with decreasing film 

thickness that 250 and 1000 nm films have the highest and lowest hardening rates, 

respectively. Compared with freestanding films, the yield strengths for passivated films have 

approximately been increased by 13%, 30% and 56% for thicknesses at 1000, 500 and 250 

nm, respectively. The typical dislocation structures in freestanding and passivated films after 

yielding are shown in Figure 8.1b and c. Since dislocation sources can escape from the free 

surface without resistance, the dislocation structure in freestanding films is relative clean and 

the dislocations are composed of short segments truncated by free surfaces. In the passivated 

film shown in Figure 8.1c, lots of long misfit dislocations deposited at the interface between 

the film and passivation layers that results in higher dislocation density stored in the film. 

The misfit dislocations in passivated film produced a back stress to the on subsequently 

activated sources, caused dislocation pile-ups near the interface, and thus reduced the free 

path of mobile dislocations in the film and induced hardening with increasing strain. This can 

explain why passivated films exhibited higher hardening rate and strength than freestanding 

films.   

8.3 Effect of passivation layers on reverse plasticity of thin films 

In order to understand to effect of passivation layers on reverse plasticity of 

polycrystalline thin films, we unloaded the freestanding and passivated films from the same 

strain level to see the different responses between them. Figure 8.2a shows the response of 

freestanding and passivated films under unloading from pre-strains of 0.6% and 0.9%. It is 

clear that unloading curves are nearly elastic and without any reverse plastic flow in 

freestanding films and only the unloading curve from pre-strain at 0.9% slightly deviates 

from elastic curve. On the other hand, the passivated film shows a significant Bauschinger 
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Figure 8.2 (a) Stress-strain curves of freestanding and passivated films during unloading (H and D 

are both equal to 500nm); (b) the corresponding total dislocation density evolution in both cases; 

(c) the corresponding grain boundary dislocation density evolution and interface dislocation 

density evolution in the passivated film.  
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effect during unloading that large plastic flow occurs. In addition, the reverse plastic strain 

increases with increasing pre-strains as shown in Figure 8.2a. At this point, our simulation 

results agree well with experiment results that passivated films demonstrated a significant 

Bauschinger effect during unloading in contrast with freestanding films [13]. Figure 8.2b 

plots the total dislocation evolutions in both cases. We can see the dislocation increasing rate 

is higher in the passivated film than in the freestanding film, because the passivation layers 

can block dislocations near interfaces while free surface will assistant mobile dislocations 

escaping from the sample. During unloading, the dislocation density almost keeps constant in 

the freestanding films, while the density drops a lot with reverse strain in passivated films. 

However, there is not a direct relationship between the total dislocation density and the 

Bauschinger effect in thin films, since the passivated film exhibits much stronger 

Bauschinger effect than freestanding films, even they hold the same total dislocation 

densities. As shown in Figure 8.2b, total dislocation density in passviated film at 0.6% 

pre-strain is at the same level as that in passviated film at 0.9% pre-strain, but the mechanical 

response under unloading are totally different between these two cases shown in Figure 8.2a. 

To further analysis the Bauschinger effect in passivated films, the evolution of interface 

dislocation density and grain boundary (GB) dislocation density in passivated films have 

been plotted in Figure 8.2c. It is obvious that GB dislocation density did not change too much 

during unloading, while the interface dislocation density decreased fast with increasing 

reverse strain and has the same pace with the evolution of total dislocation density. After 

comparing the interface dislocation density curve in Figure 8.2c to the total dislocation 

density curve in Figure 8.2b, we can easily find the loss amount of total dislocation in 

passivated films approximates the loss amount of interface dislocation. In our simulations, 

the loss of interface dislocation results from the reversed motion of pile-up dislocations and 

collapse of misfit dislocations. Figure 8.3 illustrates one typical example of the reversed 

motion of pile-up dislocations. During forward loading, the misfit dislocations deposited at 

the interface between films and passivation layers produced a back stress on subsequently 
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coming dislocations. When the following dislocation approaches the misfit dislocations, it 

will stop near interfaces due to the back stress. Although cross-slip of screw dislocations can 

relax part of these back-stresses from deposit misfit dislocation [31], there still lots of 

non-screw dislocation pile-ups formed near the interface. The total force on these immobile 

pile-up dislocations equals to zero and is composed of three major parts, the applied force, 

repulsive force, and self-force. The first part makes the dislocation bow-out and moving 

forward, while the other two parts make it moving back. When the applied load decreases, 

 

Figure 8.3 Illustration of the reversed motion of the pile-up dislocation (marked with arrow) in 

passivated films during unloading. 
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the immobile pile-up dislocations will move back to balance the three forces on them. With 

progress of unloading, the expanded dislocation continued shrinking and finally arrived at an 

equilibrium position even the whole film was still under tension as shown in Figure 8.3. If 

there is few dislocation pile-ups formed near misfit dislocations, the deposited long misfit 

will collapse from the interface and reverse move to its original position. The back motion of 

dislocations will create reverse plastic strain that results in the observed reverse plastic flow 

during unloading. Furthermore, the reverse plastic flow increases with the interface 

dislocation density as show in Figure 8.2, because more interface dislocations can have more 

sources to create reverse plastic strain during unloading. Although dislocation pile-ups may 

form near grain boundary, the number is limited as shown in Figure 8.1b and c that cannot 

generate sufficient reverse plastic flow during unloading. This can explain why current 

simulations and previous experiments [12-14] did not observed Bauschinger effect in 

freestanding films during unloading. Since the interface dislocation is the key factor to the 

Bauschinger effect in thin films, the freestanding cases are not considered in the following 

investigations and the analysis only focus passivated films. 

8.4 Bauschinger effect in passivated thin films 

    To study the Bauschinger effect in passivated films quantitatively, we performed our 

simulations on films with different aspect ratios and unloaded them from different pre-strains. 

The Bauschinger strain and pre-strain are defined in Figure 8.4a and the normalized 

Bauschinger strain is plotted as a function of normalized pre-strain in Figure 8.4b. It is easy 

to see that the increasing pre-strain will promote the Bauschinger effect in passivated films, 

since the interface dislocation density increases with pre-strain as show in Figure 8.2c. 

Moreover, the film aspect ratio has a strong effect on the reverse flow in the passivated films, 

as the amplitude of BE strain increases faster in films with lower aspect ratios as shown in 

Figure 8.4. That because films with lower aspect ratios have larger interface areas that can 
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adopt more misfit dislocations at the interface and more pile-ups dislocations near interfaces, 

finally result in larger reverse plastic flow during unloading. From Figure 8.4, we can see our 

simulation results march well with experiment results from ref. [13].  

In bulk polycrystalline metals, Bauschinger effect is a widely observed and regarded as 

an intrinsic feature of the hardening process [3]. The Bauschinger effect in passivated thin 

films is also closely related to the strain hardening during forward loading, that low aspect 

ratio films have higher strain hardening rates as showed in Figure 8.1a and also exhibit 

stronger Bauschinger effect in Figure 8.4. However, the reverse plastic strain in bulk metals 

at the end of each unloading cycle is no more than 4% of maximum elastic strain [3]. While 

the Bauschinger strain in thin films can approach over 50% of the yield strain as shown in 

Figure 8.4b. This deference is caused by different hardening process in bulk metal and 

passivated film. The strain hardening in bulk metals normally results from dislocation 

 

Figure 8.4 (a) Description of notations used for quantifying BE, εy denotes yield strain, εpre 

denotes pre- strain and εBE denotes BE strain; (b) plot of normalized BE strain vs normalized 

pre-strain from simulation results on passivated films with different aspect ratios and comparison 

with experiment results from ref. [13]. 
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reactions forming cell structures or subgrains [4, 6]. In passivated thin films, dislocation 

pile-ups are the main factor for the hardening process with increasing strain. Since 

dislocation pile-ups are more unstable compared with dislocation cell structures during 

unloading, the Bauschinger effect is much stronger in passivated thin films than in bulk 

metals at unloading.  

8.5 Conclusions 

The purpose of the present study is to enhance the understanding of the BE in small 

scale materials with the help of DD simulations, which account for the discrete nature of 

plasticity. In our simulations, we found passivated films have higher strain hardening rate and 

strength compared with freestanding films and the strain hardening rate in passivated films 

increases with decreasing film aspect ratios. Under unloading, passivated films exhibited a 

significant Bauschinger effect from pre-strains and the increasing pre-strain will promote 

more reverse plastic strain. Besides that, the amplitude of BE strain increases with decreasing 

film aspect ratios. The reverse motion of pile-up dislocation and collapse of misfit 

dislocations are responsible to the observed Bauschinger effect in passivated films.  
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CHAPTER 9 

CONCLUSIONS 

 

Miniaturization of structures and devices in micro- and nanotechnology leads to the 

development of materials and compounds with novel properties that cannot simply be 

extrapolated from material properties on larger scales. Mechanical behavior and reliability of 

devices containing metallic structures are of critical importance to innovations in integrated 

micro electronics, electro-mechanical, optoelectronic, and micro- or nano-electro-mechanical 

devices. DD simulations, in which the dislocations are the simulated entities, offer a way to 

extend length scales beyond those of atomistic simulations and the results from DD 

simulations can be directly compared with the micromechanical tests. In this research, 3-D 

DD simulations was used to study the plastic deformation of nano- and micro-scale materials 

and understand the correlation between dislocation motion, interactions and the mechanical 

response. 

In Chapter 4, an experimental-like initial dislocation structures cut from larger deformed 

samples have been introduced into 3-D DD simulations to study the plasticity in small sizes. 

The results indicate that the loading direction has negligible effect on the flow stress with 

both multi-slip and single-slip loading resulting in the similar saturation. This lack of a 

dependence on loading direction can be easily understood. Since the number of dislocation 

sources decreases with the sample diameters, the probability to activate a source with low 

Schmid factors increases in small samples. In small samples, dynamic sources can be easily 

generated by cross-slip or collinear reactions, the stability of which depends on the position 

and sample size. There were at least two origins of “exhaustion hardening”: the escape of 

dynamic sources from the surface and dislocation interactions such as junction formation. 

Both of these effects shut off the activated sources, leading to the flow intermittency. The 

“mechanical annealing” at the early stage of deformation were seen to arise from the surface 
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dislocations and the weakly-entangled dislocations leaving the sample. The drop in 

dislocation density was followed by an increase that always resulted from processes that 

were enabled by cross-slip. The scarcity of available dislocation sources gives a major 

contribution to the higher flow stress and larger scatter of strength in smaller sizes. The 

scaling law determined from the current simulation results is close to that found 

experimentally. 

In Chapter 5, 3-D DD simulations were employed to study the dynamic behavior of 

internal dislocation sources in micropillars of different sizes. From the simulation results, we 

identified the dominating plastic deformation mechanisms at small scales by combining our 

modeling results. We note that these mechanisms are consistent with the available 

experimental data. In confined volumes, image stresses alter the local resolved shear stresses 

on slip planes, resulting in an increase in the probability of cross-slip to form new internal 

sources. These naturally formed sources have shorter residence lifetimes in smaller samples 

under the influence of attractive image forces from the nearby surfaces. The normalized 

critically resolved shear stress for a number of FCC single crystals exhibited a similar 

size-dependent behavior for all the materials. The generalized single-arm dislocation model 

can reasonably predict both the increase of yield strength with decreasing sample size, as 

well as the statistical variation of the strength at small scales. The plastic deformation of FCC 

single crystals at small scales depends not only on sample size but also on the dislocation 

density. At nano-and micro-scales, there is a critical size for dislocation starvation, which 

strongly depends on the initial dislocation density. Below this critical size, the dislocation 

loss rate will exceed the multiplication rate and thus nucleation of surface dislocations and 

dislocation starvation hardening will likely dominate plastic deformation process. Otherwise, 

multiplication of internal dislocation sources should control the plastic flow with increasing 

strain. 

In Chapter 6, our simulations offer an explanation for the significant increase in 

compressive strength and formation of band structures in coated micropillars, demonstrating 
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a fundamentally different strengthening mechanism in coated micropillars than in samples 

with free surfaces. In the coated samples, dislocations are blocked from leaving the sample, 

leading to dislocation pile-ups that induce a strong back stress on the later-activated sources, 

inhibiting further dislocation nucleation. Thus, the coated samples exhibited a higher 

strain-hardening rate, smaller strain bursts and greater flow stresses than those in samples 

with free surface. In addition, cross slip activated in coated samples enable screw 

dislocations to escape their original slip plane, generating more mobile dislocation sources 

for plastic deformation, and enabling the formation of banded structures and subcells.  

In Chapter 7, a 3-D DD simulation was set up to investigate the plasticity of freestanding 

polycrystalline thin films. Both cross-slip and grain boundary relaxation mechanisms have 

been considered in our simulations, which are important in the plastic deformation of 

polycrystalline films and neglected by previous studies. According to our simulation results, 

a spiral source model has been established to predict the size-dependent strength in thin films. 

At a constant film thickness, the total dislocation density deceases with increasing grain sizes 

due to the increment of surface area to volume ratio. In films with pancake-like grains, the 

dependence of yield stress on the grain size gradually becomes weaker with decreasing film 

thickness. In contrast, the needle-like grains strength the grain boundary effect in 

polycrystalline films and grain size dependent behaviors in films with high aspect ratio can 

be described by Hall-Petch relation. With the same grain size, high aspect ratio films can 

hold higher total and GB dislocation density, since they have large grain boundary areas per 

volume in the film. The yield strength of films can scale proportionally to the reciprocal of 

thickness. With high aspect ratios increases, the dependence of the film strength on thickness 

becomes weaker due to the effect of free surfaces has been diminished. According to the 

dislocation structures observed in our simulations, a spiral source model has been set up to 

predict the yield stress of thin films. Comparison with data on freestanding thin films shows 

that spiral source model can reasonably explain the increase of strength with film thickness 

decreasing and the large scatter in the magnitude of strength in thinner films.  
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In Chapter 8, the purpose is to enhance the understanding of the BE in small scale 

materials with the help of DD simulations, which account for the discrete nature of plasticity. 

In our simulations, we found passivated films have higher strain hardening rate and strength 

compared with freestanding films and the strain hardening rate in passivated films increases 

with decreasing film aspect ratios. Under unloading, passivated films exhibited a significant 

Bauschinger effect from pre-strains and the increasing pre-strain will promote more reverse 

plastic strain. Besides that, the amplitude of BE strain increases with decreasing film aspect 

ratios. The reverse motion of pile-up dislocation and collapse of misfit dislocations are 

responsible to the observed Bauschinger effect in passivated films.  

Through a series of simulations, detailed investigation of the relationship between 

material microstructure and mechanical properties of small scale materials were performed 

by the method of dislocation dynamics. Numerical results can be directly compared with 

experiment results that indicate DD simulations are of great help in understanding plasticity 

at small scales. 

 

 

 


