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ABSTRACT

The field of metamaterials is driven by fascinating and far-reaching theoretical visions,

such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However,

losses have become the major obstacle towards real world applications in the optical regime.

Reducing the losses of optical metamaterials becomes necessary and extremely important.

In this thesis, two approaches are taken to reduce the losses. One is to construct an

indefinite medium. Indefinite media are materials where not all the principal components of the

permittivity and permeability tensors have the same sign. They do not need the resonances to

achieve negative permittivity, ε. So, the losses can be comparatively small. To obtain indefinite

media, three-dimensional (3D) optical metallic nanowire media with different structures are

designed. They are numerically demonstrated that they are homogeneous effective indefinite

anisotropic media by showing that their dispersion relations are hyperbolic. Negative group

refraction and pseudo focusing are observed.

Another approach is to incorporate gain into metamaterial nanostructures. The nonlin-

earity of gain is included by a generic four-level atomic model. A computational scheme

is presented, which allows for a self-consistent treatment of a dispersive metallic photonic

metamaterial coupled to a gain material incorporated into the nanostructure using the finite-

difference time-domain (FDTD) method. The loss compensations with gain are done for various

structures, from 2D simplified models to 3D realistic structures. Results show the losses of

optical metamaterials can be effectively compensated by gain. The effective gain coefficient of

the combined system can be much larger than the bulk gain counterpart, due to the strong

local-field enhancement.
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CHAPTER 1. INTRODUCTION

1.1 Electromagnetic Metamaterials

Electromagnetic metamaterials are artificially constructed structures with extraordinary

electromagnetic properties which do not exist in naturally occurring materials [1–12]. More

than 40 years ago, it was first proposed by V. G. Veselago [1] that in a medium for which

the electric permittivity, ε, and the magnetic permeability, µ, are simultaneously negative, the

wave vector, k, electric field, E, and magnetic field, H, can form a left-handed set, based on

Maxwell’s equations. Hence, it is called a left-handed material (LHM). It follows that the

direction of phase velocity is opposite to that of energy flow in LHMs. Hence, the refractive

index, n, must be negative. The negative refractive index brings an alternative name, negative

index material (NIM), and means at an interface between a conventional positive-index material

(PIM) and a negative-index material, the refracted electromagnetic (EM) wave is bent to the

‘wrong’ side with respect to the normal, i.e., it experiences a negative refraction (shown in

Figure 1.1). This is an unusual electromagnetic property which does not exist in any naturally

occurring materials and provides an opportunity to rethink the interpretation of very basic

laws. However, Veselago’s early work did not raise much interest from the researchers at

that time because no known natural materials exhibit a frequency range with ε < 0 and µ < 0

simultaneously. Negative permittivity materials are very common. Many metals, such as silver

and gold, have negative ε up to the visible spectrum below their plasma frequencies. However,

it is hard to find natural materials with negative permeability, µ, except some ferromagnetic

materials for which magnetic resonances typically die out at microwave frequencies. Natural

diamagnetic materials have very weak magnetic responses. For example, the susceptibility of

the most strongly diamagnetic material, bismuth, is χ = −1.66 × 10−4. So the permeability,
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µ, can only be slightly less than 1.

Energy flow Phase velocity

NIM
ε < 0
μ < 0

PIM1θ 1θ

2θ
2θ

Figure 1.1 Illustration of a negative refraction at the interface between
a positive-index material (PIM) and a negative-index material
(NIM). Note that the phase velocity is in the direction opposite
to that of energy flow in NIM.

The situation changed in 1999, when Pendry [13] suggested that µ < 0 can be achieved

by two concentric split-ring resonators (SRRs)(Figure 1.2(a)) made of nonmagnetic materials.

The idea is the SRR can be treated by a simple LCR model, which can exhibit a magnetic

resonance when the incident magnetic field is oriented perpendicular to the SRR plane. If the

magnetic resonance is strong enough, the negative permeability, µ, is obtained in a frequency

band above the resonance frequency. The magnetic resonance frequency can be modulated by

choosing the SRR parameters, such as the size of the ring and gap of the SRR.

(a) (b)

Figure 1.2 (a) The two concentric split-ring resonator, taken from Ref. [14].
(b) The first experimentally realized negative index material in
microwave regime (see Ref. [14]).
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Following Pendry’s pioneer work, Smith et al. [14] first demonstrated the negative index

material with both ε and µ negative in a frequency range in the gigahertz regime in 2000,

by interleaving the SRR lattice with a lattice of metallic wires (Figure 1.2(b)). The negative

permittivity comes from the lattice of metallic wires, for which the plasma frequency can be

significantly lowered because the wire lattice dilutes the average concentration of electrons and

considerably enhance the effective electron mass through self-inductance [15]. By choosing

the parameters of the lattice of metallic wires, we can achieve the plasma frequency above

the resonance frequency of the SRR. Hence, the composite material can have an overlapping

region where ε < 0 and µ < 0. Later, the existence of negative refractive index n was further

demonstrated by different groups [16–18] through Snell’s law experiments on a wedge-shaped

NIM (Figure 1.3).

Positive refraction

Negative refraction

Normal

Figure 1.3 Illustration of Snell’s law experiments on a NIM wedge. Note,
the exiting beam is bent to different sides of the surface normal
for positive and negative refractions.

Another milestone development in NIMs is Pendry’s famous perfect lens prediction in

2000 [2]. He showed a flat NIM slab, with ε = −1 and µ = −1, can bring together not

only the propagating waves but also the evanescent waves carrying finer details of the object

(Figure 1.4), such that it can achieve a super-resolution beyond the diffraction limit. The

diffraction limit is roughly half a wavelength and constrains all conventional lens.

Inspired by the successful experimental realization of NIMs and Pendry’s perfect lens pre-

diction, research on metamaterials has experienced an explosive growth. More and more re-
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Figure 1.4 Illustration of perfect lensing, taken from Ref. [4]. Both the
propagating waves (A) and the evanescent waves (B) are re-
stored in the image.

search has been conducted on various metamaterial structures, and more intriguing electro-

magnetic properties have been discovered. By scaling down the size of the SRR and geometry

optimization, researchers have brought artificial magnetism from the microwave regime to the

optical frequency [19–25]. The negative permeability, µ, is achieved up to the red light by Yuan

et al. [25] at Purdue University. This is amazing, because optical magnetism does not exist

in natural materials. The existence of the negative refractive index also has been pushed into

optical wavelengths by introducing new designs [5–7, 26–30] such as short-wire pairs [27] and

fishnet structures [26, 28–30] (see Figure 1.5), which enables exciting applications of negative

index materials.

Although primary research in metamaterials investigates materials with negative refractive

index, metamaterials are not limited to NIMs. They also include artificial dielectrics, artificial

magnetic materials, and bi-isotropic and bi-anisotropic composites (such as chiral metamate-

rials), etc. In a more general case, metamaterials are beyond the field of electromagnetics and

the idea has been introduced in the research of acoustics and seismology [31–34]. This is an

example where the identification of new material parameters can prompt the development of

similar concepts in similar research areas. The word ‘meta’ means ‘beyond’ in Greek, and in

this sense, metamaterials are defined as materials beyond conventional materials. In conven-
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(a) (b)

Figure 1.5 (a) Illustration of an array of short-wire pairs, taken from
Ref. [27]. (b) Top-view electron micrograph of the silver-based
fishnet structure, taken from Ref. [29].

tional materials, light does not ‘see’ the details of atoms because the illumination wavelength

is hundreds of times larger than the atoms, so the materials can be considered as a homo-

geneous medium characterized by their macroscopic material parameters, such as the electric

permittivity, ε, and the magnetic permeability, µ, based on the averaged responses over the

atomic scale. The key idea of metamaterials is to mimick this electromagnetic phenomena of

conventional materials, and replace the atoms and molecules of a conventional material with

deep subwavelength predesigned artificial inclusions, i.e., meta-atoms, to achieve a homoge-

neous medium with unprecedented macroscopic electromagnetic properties and functionalities.

In general, metamaterials have the following features:

• Artificially constructed periodic structures;

• Exhibit exceptional properties not readily found in natural materials, which result from

the design of artificial inclusions;

• The sizes of artificial inclusions and the structure unit cell are much smaller than the illu-

mination wavelength, so that the constructed material can be treated as a homogeneous

medium characterized by averaged responses over the unit cell.

Metamaterials offer us more freedom to manipulate the propagation of light by achieving exotic

material properties not found in conventional materials through artificially-designed ‘meta-

atoms’, especially in optical wavelengths, where metamaterials can manipulate the magnetic
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response incapable for conventional materials. So if an application is limited by conventional

material responses, metamaterials might be a solution.

1.2 Some Typical Potential Applications of Metamaterials and Their

Limitations

As metamaterials developed over time, numerous potential applications are proposed [2, 4–

8, 12]. In this section, only selected parts are chosen as examples to show the unique importance

of metamaterials.

1.2.1 Subwavelength imaging

In imaging, rays emanating from an object can be divided into propagating and evanescent

waves. For propagating waves, the wavevector component parallel to the lens k|| is less than

k0 = ω/c, then the wavevector component perpendicular to the lens k⊥ is real from the

dispersion relation in vacuum k2
⊥ + k2

|| = k2
0. It is the opposite for evanescent waves, for

which k|| > k0 and k⊥ is imaginary. Hence, they decay exponentially with the distance from

the object. For conventional positive-n lenses, which require curved surfaces to focus light

utilizing the refractive index contrast, propagating waves can be reassembled to a focus by

applying a phase compensation. However, evanescent waves will be lost and their amplitudes

can not be restored. Since evanescent waves carry finer details of an object, the focus with

restored propagating waves only will have a maximum resolution around half of the illumination

wavelength, i.e., the diffraction limit. This is a physical limit on a conventional lens, no

matter how perfect the lens and how large its aperture. The situation changed when Pendry

suggested a perfect lens [2] made of a flat NIM slab with ε = −1, µ = −1, hence, n = −1 (see

Figure 1.4). This perfect lens not only focuses propagating waves by a phase compensation, but

also reproduces the same amplitude in the image plane as in the object plane by amplifying the

field inside the lens. In Figure 1.4, we can see the evanescent near fields decay exponentially

after emanating from the object, then exponentially grow in a NIM slab and exponentially

decay again to the same amplitude in the image plane after exiting from the slab. Since all the
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rays emanating from an object can be restored on the image, ideally the perfect lens can have an

unlimited resolution. Of course, it is impossible due to the inherent losses. However, it shows,

in principle, subwavelength imaging is achievable and no fundamental physical reason prevents

an image from a higher resolution beyond the diffraction limit. Subwavelength imaging can

find a wide variety of potential applications, such as new devices on biomedical imaging with

high resolution, subwavelength photolithography, nanocircuits, etc.

1.2.2 Cloaking devices

Figure 1.6 Illustration of the cloaking mechanism using metamaterials.
(A) A 2D cross-section of rays trajectories in the cloaking sys-
tem. (B) A 3D view. Figures are taken from Ref. [3]. The
cloaked object (orange) is coated by a layer of metamaterials
(blue), for which ε and µ are spatially modulated, based on
coordinate transformations [3].

Another active research area in metamaterials is the study of invisibility cloaking using

metamaterial coating, based on coordinate transformations [3, 35–38]. It was first proposed by

Pendry et al. in 2006 [3] and then experimentally demonstrated in the microwave frequencies

[36] by Schurig et al. in the same year. The key idea is to exploit the flexibility of metamaterials

to manipulate electromagnetic waves and produce new functionalities to take full control of the

permittivity and permeability values throughout a material, independently taking any values

as desired, such that the electromagnetic fields can be controlled to flow around a hidden object

inside like a fluid and return to their original ray trajectories undisturbed on the far side of the

object, which makes it appear nothing was there ever [3] (see Figure 1.6). Cloaking devices
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may have applications in stealth technology.

1.2.3 Optical nonlinearity

Metamaterials are also studied with the incorporation of conventional nonlinear materials

[6, 12, 39–43]. Metamaterials can increase the interaction time with nonlinear medium by

slowing light [44], and strongly enhance the local field [39, 40], hence they can enhance the

nonlinear response [12, 39, 40]. The combination of metamaterials and nonlinear media has

already been predicted to show some new properties, such as second-harmonic generation [43],

bistability [40] and phase conjugation [42], which can be dynamically tuned by the light inten-

sity of external stimuli. The combination of metamaterials and some conventional materials,

such as liquid crystals [6], carbon nanotubes [41], conjugated polymers, semiconductors and

semiconductor multiple-quantum well structures, can lead to fast and highly responsive non-

linearity in refractive index, n. Thus they are good candidates [12] to use in the application

of nanoscale all-optical faster data processing. Zheludev [12] also suggested plasmonic non-

linearity of metals can be used together with metamaterials to achieve femtosecond timescale

modulations on the propagating plasmon pulse [45], a speed at least five orders of magnitude

faster than existing technologies.

1.2.4 Zero index of refraction metamaterials

n1

n2

θ1

θ2

(a)

n1 ≈ 0 n2 = 1

point source

(b)

Figure 1.7 (a) Schematic of ray refractions at the material interface. (b)
Rays emanating from a point source inside zero index metama-
terials exit from the slab as a plane wave.
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Metamaterials can be engineered to have a zero index of refraction. For ray refractions

occurring at the interface between two materials (see Figure 1.7(a)), assume the indice of re-

fraction for these two materials are n1 and n2, respectively. The relation between the refracted

angle, θ2, and the incident angle, θ1, can be obtained from Snell’s law,

n1 sin θ1 = n2 sin θ2. (1.1)

If we have n1 = 0, then θ2 = 0, regardless the value of θ1. This means the rays emanating from

a point source inside a metamaterial slab with zero index of refraction can switch to a plane

wave after exiting from the slab. This idea can be used in beam generations and beam steering

devices. It also suggests if we do the opposite, i.e., have a plane wave normally incident on

the zero index metamaterial slab, the light can be focused. Hence, the metamaterial slab with

zero index of refraction can work as a concentrator to help harvest sunlight in solar cells.

1.2.5 The limitations on optical metamaterials

Development of metamaterials has enabled scientists and engineers to work on applications

in microwave regime. However, there are still limitations on optical metamaterials [7, 12]:

• large intrinsic losses,

• 3D isotropic designs,

• massive production of large-area structures.

This section focuses on the limitations from the large intrinsic losses in optical wavelengths,

which have become the main obstacle towards real world applications for optical NIMs.

At microwave frequencies, the losses are small. For example, in Ref. [46], the transmission

loss at the peak is the order of 1 − 5 dB/λ. This is because the conductivity, σ, of a metal is

extremely large so that it behaves like a perfect conductor. However, at optical wavelengths,

ε in metals can be very lossy, especially for nanostructures like thin films, where additional

losses from electron scattering should be included [47, 48]. The large losses also come from
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the resonances in NIMs, in particular the magnetic resonance, needed to achieve negative

µ. Electric resonance can be avoided, because negative ε can be obtained from the metallic

background. These two factors make the losses of NIMs extremely large. So far, to the best

of my knowledge, the best fabricated NIM at optical wavelengths is the fishnet structure from

the Karlsruhe group operating at around 1.4 µm wavelength [29], which shows a figure of merit

FOM = |Re(n)/Im(n)| = 3. The corresponding absolute absorption coefficient for this FOM is

α = 3×104 cm−1, larger than the band-to-band absorption of typical direct-gap semiconductors

such as, GaAs (where α = 104 cm−1). This can eliminate almost all envisioned applications of

metamaterials at optical frequencies, except those designed to work as absorbers. For examples,

the perfect lens has very strict requirements on material parameters [49, 50]. For a perfect

lens with ε = −1 and µ = −1, the transfer function should be unity for all k‖. However, any

deviation from ε = −1 and µ = −1, including the inherent losses, even very small, can lead to

an exponential decay of transfer function with k‖. Hence, this limits the maximum k‖ for which

the fields can be restored in the image plane [49, 50]. Thus, the resolution is limited because

high k‖ fields carry finer details of objects. This makes it impossible for existing optical NIMs

to realize the perfect lens effect due to its large losses.

1.3 The Methods to Reduce the Losses of Optical Metamaterials

Although optical metamaterials have huge intrinsic losses, there is still a need to go into

the optical region because they enable more exciting applications [2, 6, 7, 12]. So, losses must

be addressed. However, studies show that losses should decreases exponentially to obtain a

linear improvement in the spatial resolution [49, 50]. Hence, it is a big challenge to reduce the

losses of optical metamaterials. In this section, some typical methods are presented to reduce

the losses.

Indefinite media are referred as materials for which not all of the principal components of

permittivity and permeability tensors have the same sign. Such materials were carefully studied

by different groups [51–63]. It is shown that indefinite media can have negative group refraction,

backward-wave effect, and partial focusing. The more interesting thing is that the evanescent
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near-fields can be converted to propagating fields inside an indefinite material slab, transferred

to the other side of the slab, and refocused outside [51, 62]. Although there is no amplification

inside the slab like a perfect lens, the evanescent waves can survive much longer distance

than a conventional lens, and may provide subwavelength imaging at optical wavelengths.

In addition, some dielectric indefinite media, such as a metallic-wire medium, do not need a

resonance because we can obtain negative permittivity from the metallic background. So, these

indefinite media do not have large resonance losses like ordinary NIMs and only the intrinsic

metallic losses remain. By selecting low loss noble metals, such as silver and gold, the losses

can be much lower than optical NIMs. We have conducted the theoretical study on optical

3D metallic-wire media made by silver and gold [62]. The results are presented in Chapter

3. Similar work was done by Liu [61]. Yao et al. [56] experimentally demonstrated negative

refraction inside a silver-based wire medium at optical frequencies.

Geometry optimization is also used to reduce the losses. Zhou et al. [64] suggested the

losses can be reduced by increasing the effective inductance to capacitance ratio, L/C, based

on the fact that the damping factor, Γm, of a magnetic resonance, is inversely proportional

to the effective inductance, Γm ∝ R/L (R is the effective resistance) [65]. By this approach,

they numerically obtained a figure of merit FOM = 2.5 for a fishnet structure at 484 nm

wavelength, which is 5 times larger than the best result at 784 nm. Zhou also suggested [66] a

strong coupling between the fishnet functional layers can move the real part of the negative n

away from the region with the high imaginary part of n so that one can obtain a high FOM

value. This effect can also be seen in the experiment [28]. Guney et al. suggested [67] geometry

tailoring to avoid the corners and sharp edges can lead to loss reductions.

Although losses can be reduced by geometry optimization discussed previously, achieving

a significant enough loss reduction by further design optimization still appears out of reach.

So far, the most promising way to reduce losses is incorporation of gain into metamaterial

designs, first proposed by Ramakrishna and Pendry [68]. There are some issues necessary to

be discussed here:

1. Quenching effect from contact with metals [69, 70].
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This quenching effect, in nature, is the photon-phonon interaction, which transfers elec-

tromagnetic energy non-radiatively to lattice vibrations and thus increases the loss of

gain oscillators. So, it makes radiation less efficient. Experimentally, it has been shown

the losses can be compensated in structures with metal-layer or metal-nanoparticle in-

clusions by organic semiconductor gain [12, 71, 72]. So, it is applicable to use gain to

compensate the losses in the metamaterial nanostructures. In our simulations, gain and

metal are separated by a dielectric spacer to avoid this effect.

2. Small amplification coefficients in bulk gain.

As discussed in section 1.2.5, the losses in NIMs are so large that its absorption coefficient

(α > 3×104 cm−1) can be even larger than the band-to-band absorption of typical direct-

gap semiconductors. Based on the assumption that the bulk gain coefficient is needed, it

looks difficult to compensate the losses with gain, because it is not so easy to achieve the

gain coefficient of this magnitude. Scientists [73] have shown what matters is the effective

gain coefficient of the combined system instead of its bulk gain counterpart. Due to the

strong local-field enhancement near metallic nanostructures, the effective gain coefficient

can be substantially larger than the bulk gain.

3. Nonlinearity of gain.

The gain is nonlinear and its behavior depends on the optical intensity of the external

incident light. Instead of naively forcing negative imaginary parts of the local gain

material’s response function to produce unrealistic strictly linear gain, we model the

gain material using a semi-classical four-level atomic system and use a full-vectorial

finite-difference time-domain approach to self-consistently couple the evolution of the

occupation densities in the gain medium to Maxwell’s equations. Nonlinearity, gain

saturation, and Purcell effect are inherent in our model.

Many theoretical studies have been conducted on the loss compensation of optical meta-

materials with gain in a variety of gain models [68, 74–83] and have shown the losses can
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be effectively compensated by gain. Recently, experimental progress has been made by some

groups [84, 85], though some results are questioned.

1.4 Overview and Layout

The field of metamaterials has seen spectacular experimental progress in recent years and

has been pushed into optical wavelengths. Optical metamaterials enables more exciting appli-

cations, including, but not limited to, superlens and all optical fast data processing. However,

almost all these envisioned applications are limited by the huge loss of optical metamateri-

als. So far, the large intrinsic losses have become the major obstacle in the development of

metamaterials. So, there is a need to address these losses. This thesis shows my effort in this

topic.

A popular numerical tool for metamaterials is the finite-difference time-domain (FDTD)

method, which discretizes Maxwell’s equations in space and time. In Chapter 2, I give an

introduction on this approach used in our numerical simulations. I discuss in detail the model-

ing of various materials used in the study of metamaterials, including lossy dielectrics, Lorentz

media, gain materials and perfectly matched layer (PML). The gain is described by a generic

four-level atomic system. Using this model, the FDTD approach can self-consistently couple

the evolution of the occupation densities in the gain to Maxwell’s equations. A parallel com-

putational scheme is also presented to reduce the computation time and increase the effective

usage of locally available resources. The errors at the discontinuous dielectric interface from

the FDTD algorithm are analyzed by Taylor series expansions for 2D case. For the plane wave

source, the total-field/scattered field (TF/SF) technique is used. Formulations in 2D case are

presented. The detailed FDTD algorithms are given in appendix A.

Indefinite media are materials for which not all principal components of the permittivity

and permeability tensors have the same sign. In Chapter 3, I design three-dimensional (3D)

optical metallic nanowire media with different structures and numerically demonstrate that

they can be homogeneous effective indefinite anisotropic media by showing that their dispersion

relations are hyperbolic. For a finite slab, a nice fitting procedure is exploited to obtain the
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dispersion relations from which the effective permittivities are retrieved. Because the negative

permittivity comes from the metallic background, no resonance is needed. Hence, the losses

are comparatively small. The negative group refraction and pseudo focusing are observed. The

pseudo focusing for the real 3D wire medium agrees very well with the homogeneous medium

having the effective permittivity tensor of the wire medium. Studies also show that in the

long-wavelength limit, the hyperbolic dispersion relation of the 3D wire medium can be valid

even for evanescent modes, which may have important applications in super-resolution.

In Chapter 4, the self-consistent computational scheme presented in Chapter 2 is applied on

systems of a dispersive metallic photonic metamaterial coupled to a gain material incorporated

into the nanostructure. The lasing and nonlinear behaviors for gain slabs and a 1D layered

metamaterial system alternating the layers of NIMs and gain materials are first studied. I

also study the loss compensations at optical frequencies for various 2D and 3D metamaterial

structures combined with gain, including a 2D lattice of resonant square cylinders embedded

in layers of gain material, a lattice of 2D split ring resonators (SRRs) with gain material

embedded into the gaps, a fishnet structure with gain embedded in-between two metal layers

and an array of 3D SRRs with a gain layer underneath. Transmission, reflection, and absorption

data as well as the retrieved effective parameters are presented. Studies show the losses can be

effectively compensated by the electric gain in the studied cases. The effective gain coefficient

of the combined system can be much larger than its bulk gain counterpart due to the strong

local-field enhancement.
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CHAPTER 2. THE FINITE DIFFERENCE TIME DOMAIN METHOD

FOR ELECTROMAGNETICS

2.1 Introduction

The finite difference time domain (FDTD) method is rapidly becoming one of the most

popular numerical computational methods for the solution of electromagnetic problems since it

was first proposed by Yee in 1966 [86]. Due to the reduction of computing costs, the simplicity

of the method and high modeling capabilities of treating complex geometries, its popularity is

still growing. In addition, the extensions and enhancements to the method are continuously

being proposed and published, which makes it more appealing.

For researchers in the area of metamaterials, the FDTD method is an essential and widely

used simulation tool to quantify the electromagnetic properties of metamaterials. Nowadays

there are lots of commercial FDTD software packages available for purchase in the market. And

there are also some free software packages. However, the conventional FDTD software usually

can not deal with all possible scenarios. Furthermore, the needs of research often demand the

flexibility to modify the FDTD algorithms by access to the source codes, which is not offered

by existing software packages. Hence, this prevents us from handling many problems of interest

which fall beyond the capabilities of these existing packages.

To better understand the propagation of electromagnetic waves in metamaterials, I devel-

oped a modified FDTD algorithm suitable for modeling electromagnetic metamaterials. The

FDTD code is capable of handling lossy dielectrics, lossy metals, dispersive media, left-handed

materials (LHM), anisotropic materials and nonlinear active materials. The Maxwell’s equa-

tions are discretized on a grid (Yee cell) both in time and space with a standard leap-frog

in time, staggered grid scheme [86–88]. The electric field grid offsets both spatially and tem-
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porally from the magnetic field grid so that the present fields throughout the computational

domain can be obtained in terms of the past fields [86–88]. In section 2.2, I present the FDTD

electromagnetic formulations on modeling lossy dielectrics, Lorentz media, nonlinear active

materials and perfectly matched layer (PML) absorbing media. A complete 3D FDTD update

algorithm is given in appendix A. To simulate resonant phenomena like surface modes and

finite size effects, large systems and high resolutions are necessary, however, this increases the

computation resource requirements. One solution is to use parallel computation to solve a

computational problem, which distributes the computing load into multiple CPUs, and hence

reduces computation time. In section 2.3, a detailed parallel computation scheme is presented.

In section 2.4, schemes on how to deal with the material interfaces are presented through error

analysis. Finally, the 2D total-field/scattered-field (TF/SF) formulation used to realize an

incident plane wave source is presented in section 2.5.

2.2 Material Modeling

2.2.1 Lossy dielectrics

For linear, nondispersive lossy dielectrics with dielectric constant ε and conductivity σ, the

Maxwell’s equations can be written as follows:

∇×E = −µ0∂H/∂t, (2.1)

∇×H = εε0∂E/∂t + σE + Js, (2.2)

where Js is electric source current density.

2/1−lH

2/1−l
sJ lE

2/1+lH

2/1+l
sJ 1+lE

t

Figure 2.1 Schematic of the leap-frog scheme.

Using the leap-frog scheme [86–88] (see Figure 2.1), the central difference approximation
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and the notation El = E(l∆t), Hl = H(l∆t) and Jl
s = Js(l∆t) (∆t is the time increment,

assumed uniform over the observation interval), Eqs. 2.1 and 2.2 can be written in time-discrete

form,

Hl+1/2 = Hl−1/2 − ∆t

µ0
∇×El, (2.3)

El+1 =
1− σ∆t/2εε0

1 + σ∆t/2εε0
El +

∆t/εε0

1 + σ∆t/2εε0

(
∇×Hl+1/2 − Jl+1/2

s

)
. (2.4)

2.2.2 Lorentz media

Lorentz media are a very important class of material dispersions for FDTD modeling, which

are typically characterized by the following dispersive permittivity,

ε(ω) = ε∞ +
ω2

ep

ω2
p − iωΓe − ω2

. (2.5)

Using time-domain auxiliary differential equation (ADE) method [87], the FDTD formulation

for Lorentz media is developed below.

In time domain, Ampere’s law can be expressed as

∇×H(t) = ε0 ε∞
∂E(t)

∂t
+

∂P(t)
∂t

, (2.6)

where P(t) is the electric polarization associated with the Lorentz resonance and the electric

displacement field D is written as D = ε0ε∞E+P. The goal of the ADE technique is to develop

a simple time-stepping scheme for P(t) which can be updated synchronously with Eq. 2.6. For

a monochromatic time harmonic electric field E = E(ω)e−iωt, we have P(ω) = ε0χe(ω)E(ω),

where χe(ω) is the susceptibility function and obtained for Lorentz media from Eq. 2.5 as

follows,

χe(ω) =
ω2

ep

ω2
p − iωΓe − ω2

. (2.7)

Then,

P(ω) =
ε0ω

2
ep

ω2
p − iωΓe − ω2

E(ω), (2.8)
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ω2
pP(ω)− iωΓeP(ω)− ω2P(ω) = ε0ω

2
epE(ω). (2.9)

Conveniently exploiting the differentiation theorem for the Fourier transform, we perform an

inverse Fourier transformation of each term of Eq. 2.9:

∂2P(t)
∂t2

+ Γe
∂P(t)

∂t
+ ω2

pP(t) = ε0ω
2
epE(t). (2.10)

Eq. 2.10 can be written in a finite difference expression in time as follows,

Pl+1 − 2Pl + Pl−1

(∆t)2
+ Γe

Pl+1 −Pl−1

2∆t
+ ω2

pP
l = ε0ω

2
epE

l. (2.11)

Rewrite Eq. 2.11, we obtain

Pl+1 = αePl + βePl−1 + ηeEl, (2.12)

where

αe =
2− ω2

p(∆t)2

1 + Γe∆t/2
, (2.13a)

βe = −1− Γe∆t/2
1 + Γe∆t/2

, (2.13b)

ηe =
ε0ω

2
ep(∆t)2

1 + Γe∆t/2
. (2.13c)

The polarization current can be written as Jp = ∂P/∂t, then the time discretized form is

Jl+1/2
p =

Pl+1 −Pl

∆t
. (2.14)

Now, we can evaluate Eq. 2.6 at time step l + 1/2:

∇×Hl+1/2 = ε0ε∞

(
El+1 −El

∆t

)
+ Jl+1/2

p . (2.15)
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Rewrite Eq. 2.15, we obtain the following explicit time-stepping expression for the E field,

El+1 = El +
∆t

ε0ε∞

(
∇×Hl+1/2 − Jl+1/2

p

)
. (2.16)

For the H field, the time update expression is the same as Eq. 2.3. The ADE-FDTD algorithm

for modeling a Lorentz medium needs to store P for two time-steps.

A special case of Lorentz media is the Drude dispersion, which has the resonance frequency

ωp = 0 in Eq. 2.5. Also Eq. 2.10 can be simplified as a first-order derivative equation by

taking ωp = 0 and Jp = ∂P/∂t, which brings us an advantage that we directly get Jp and only

need to store Jp for one time-step, and hence save the memory. For the electric polarization

current update algorithm in time-discrete form, we have it as follows,

Jl+1/2
p =

1− 0.5Γe∆t

1 + 0.5Γe∆t
Jl−1/2

p +
ε0ω

2
ep∆t

1 + 0.5Γe∆t
El. (2.17)

Similarly, for its magnetic counterpart of electric Lorentz dielectrics, it has magnetic perme-

ability,

µ(ω) = µ∞ +
ω2

mp

ω2
p − iωΓm − ω2

. (2.18)

Then, we can express Faraday’s law in the time domain as

∇×E = −µ0µ∞
∂H
∂t

− ∂M
∂t

, (2.19)

where M is the magnetic polarization. Following the similar procedure with electric Lorentz

media, we can have the explicit time-stepping formulation for the magnetic polarization M,

Ml+3/2 = αmMl+1/2 + βmMl−1/2 + ηmHl+1/2, (2.20)

where

αm =
2− ω2

p(∆t)2

1 + Γm∆t/2
, (2.21a)
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βm = −1− Γm∆t/2
1 + Γm∆t/2

, (2.21b)

ηm =
µ0ω

2
mp(∆t)2

1 + Γm∆t/2
. (2.21c)

Similar to Eq. 2.14, the magnetic polarization current Km is written as Km = ∂M/∂t and its

time-discrete form is

Kl
m =

Ml+1/2 −Ml−1/2

∆t
. (2.22)

Then the time-discrete form for Faraday’s law is

Hl+1/2 = Hl−1/2 − ∆t

µ0µ∞

(
∇×El + Kl

m

)
. (2.23)

Similarly, the corresponding magnetic Drude model when the resonance frequency ωp = 0 in

Eq. 2.18 has the magnetic current update algorithm as follows,

Kl+1
m =

1− 0.5Γm∆t

1 + 0.5Γm∆t
Kl

m +
µ0ω

2
mp∆t

1 + 0.5Γm∆t
Hl+ 1

2 . (2.24)

2.2.3 Nonlinear active materials

In our model of active materials, the gain atoms are embedded in host medium and de-

scribed by a generic four-level system [81–83, 89–91], as shown in Figure 2.2. All quantities

including the fields and occupation numbers are tracked at each point in space and take into

account energy exchange between gain atoms and fields, external pumping and non-radiative

decays [89]. Electrons are pumped by an external mechanism from the ground state level (N0)

to the third level (N3). After a short lifetime τ32, they quickly relax into the metastable second

level (N2). The second level (N2) and the first level (N1) are called as the upper and lower

lasing levels, respectively. Electrons can transfer both radiatively (spontaneous and stimulated

emissions) and non-radiatively from the upper to the lower lasing level. At last, they trans-

fer quickly and non-radiatively from the first level (N1) to the ground state level (N0). The

energies of ground state and the third level are E0 and E3. In optical pumping mechanism,

electrons are raised from the ground state level (N0) to the third level (N3) by an external
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Figure 2.2 Schematic of the four-level atomic system model.

electromagnetic wave with the pumping frequency ωb = (E3 − E0)/h̄. The local intensity

of the pumping EM wave varies with the position and determines the pumping rate at each

point. The lifetimes and energies of the upper and lower lasing levels are τ21, E2 and τ10, E1,

respectively. The center frequency of the radiation is ωa = (E2 − E1)/h̄. The total electron

density, N0(t = 0) = N0(t) + N1(t) + N2(t) + N3(t), does not vary with the time.

The time-dependent Maxwell’s equations are given by

∇×E = −∂B/∂t (2.25a)

∇×H = εεo∂E/∂t + ∂P/∂t, (2.25b)

where B = µµoH and P =
∑

i=a,b Pi is the electric polarization density of the gain material.

(Pa is the induced electric polarization density on the atomic transition between the upper

(N2) and lower (N1) lasing levels, and Pb is between the ground state level (N0) and the third

level (N3).) The induced electric polarizations behave as harmonic oscillators and couple to

the local E field, which is propagated by Maxwell’s equations. The polarization density Pi(r, t)

obeys locally the following equation of motion [89],

∂2Pi(t)
∂t2

+ Γi
∂Pi(t)

∂t
+ ω2

i Pi(t) = −σi∆Ni(t)E(t) (i = a, b), (2.26)

where Γi is the linewidth of the atomic transition ωi, σi is the coupling strength of Pi to the
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electric field, and ∆Na(r, t) = N2(r, t) − N1(r, t) and ∆Nb(r, t) = N3(r, t) − N0(r, t) are the

population inversions that drive the polarizations. From Eq. 2.26, it can be easily derived

[89] that the atomic response of gain atoms has a Lorentz lineshape and is homogeneously

broadened. The occupation numbers at each spatial point vary according to the following rate

equations,

∂N3

∂t
=

1
h̄ωb

E · ∂Pb

∂t
− N3

τ32
, (2.27a)

∂N2

∂t
=

N3

τ32
+

1
h̄ωa

E · ∂Pa

∂t
− N2

τ21
, (2.27b)

∂N1

∂t
=

N2

τ21
− 1

h̄ωa
E · ∂Pa

∂t
− N1

τ10
, (2.27c)

∂N0

∂t
= − 1

h̄ωb
E · ∂Pb

∂t
+

N1

τ10
, (2.27d)

where 1
h̄ωi

E · ∂Pi
∂t (i = a, b) is the induced radiation rate or excitation rate depending on its

sign.

Instead of using an external EM wave to optically pump electrons from the ground state

level (N0) to the third level (N3), we can simplify this process in Eqs. 2.27a and 2.27d by

pumping electrons with a homogeneous pumping rate Γpump, which is proportional to the

optical pumping intensity in an experiment. This simplification is valid only if the gain slab

is thin and the gain of the laser is low, because the real pumping rate depends on the local

optical intensity and should be a function of position. We will discuss this in more detail in

Chapter 4. Based on this simplification, we can have the rate equations as follows,

∂N3

∂t
= ΓpumpN0 −

N3

τ32
, (2.28a)

∂N2

∂t
=

N3

τ32
+

1
h̄ωa

E · ∂Pa

∂t
− N2

τ21
, (2.28b)

∂N1

∂t
=

N2

τ21
− 1

h̄ωa
E · ∂Pa

∂t
− N1

τ10
, (2.28c)

∂N0

∂t
=

N1

τ10
− ΓpumpN0. (2.28d)

Correspondingly, we only need to consider the electric polarization density Pa(r, t) on the

atomic transition between N2 and N1 in Eqs. 2.25 and 2.26.
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Assuming the three electric oscillators along x, y and z directions are independent and

taking the leap-frog scheme in time, we can find the explicit time-stepping expression for the

driven oscillators in Eq. 2.26,

P l+1
aj =

2− ω2
a(∆t)2

1 + Γa∆t/2
P l

aj −
1− Γa∆t/2
1 + Γa∆t/2

P l−1
aj +

σa(∆t)2

1 + Γa∆t/2

(
N l

1j −N l
2j

)
El

j , (2.29a)

P l+1
bj =

2− ω2
b (∆t)2

1 + Γb∆t/2
P l

bj −
1− Γb∆t/2
1 + Γb∆t/2

P l−1
bj +

σb(∆t)2

1 + Γb∆t/2

(
N l

0j −N l
3j

)
El

j , (2.29b)

where j = x, y, z, denoting the corresponding component in each direction. N0j , N1j , N2j , and

N3j are the occupation numbers in different levels for the corresponding independent electric

gain oscillator in j direction. For the simplification using a homogeneous pumping rate, we

only need to update Pa. The electric polarization current can be written as Jp = ∂P/∂t. Then

we can have the following time-discrete forms,

Jl+1/2
p =

Pl+1
a −Pl

a

∆t
+

Pl+1
b −Pl

b

∆t
(Optical pumping), (2.30a)

Jl+1/2
p =

Pl+1
a −Pl

a

∆t
(Homogeneous pumping rates). (2.30b)

Using the electric polarization current Jp = ∂P/∂t, Eq. 2.25 can be discretized in time,

Hl+1/2 = Hl−1/2 − ∆t

µ0µ
∇×El, (2.31a)

El+1 = El +
∆t

εε0

(
∇×Hl+1/2 − Jl+1/2

p

)
. (2.31b)

The driven oscillators are coupled to the rate equations by the population inversions ∆N .

Following the leap-frog scheme in time, the rate equations Eq. 2.27 for optical pumping can

be written in a time-discrete form,

N l+1
3j −N l

3j

∆t
=

1
h̄ωb

El+1
j + El

j

2
P l+1

bj − P l
bj

∆t
−

N l+1
3j + N l

3j

2τ32
, (2.32a)

N l+1
2j −N l

2j

∆t
=

N l+1
3j + N l

3j

2τ32
+

1
h̄ωa

El+1
j + El

j

2
P l+1

aj − P l
aj

∆t
−

N l+1
2j + N l

2j

2τ21
, (2.32b)

N l+1
1j −N l

1j

∆t
=

N l+1
2j + N l

2j

2τ21
− 1

h̄ωa

El+1
j + El

j

2
P l+1

aj − P l
aj

∆t
−

N l+1
1j + N l

1j

2τ10
, (2.32c)
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N l+1
0j −N l

0j

∆t
= − 1

h̄ωb

El+1
j + El

j

2
P l+1

bj − P l
bj

∆t
+

N l+1
1j + N l

1j

2τ10
, (2.32d)

where j = x, y, z. Upon collecting like terms, we can obtain the explicit time-stepping relation

for occupation numbers,

N l+1
3j =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3j +
1

2h̄ωb

1
1 + ∆t/2τ32

(
El+1

j + El
j

) (
P l+1

bj − P l
bj

)
, (2.33a)

N l+1
2j =

1−∆t/2τ21

1 + ∆t/2τ21
N l

2j +
1

2h̄ωa

1
1 + ∆t/2τ21

(
El+1

j + El
j

) (
P l+1

aj − P l
aj

)
+

1
1 + ∆t/2τ21

∆t

2τ32

(
N l+1

3j + N l
3j

)
, (2.33b)

N l+1
1j =

1−∆t/2τ10

1 + ∆t/2τ10
N l

1j −
1

2h̄ωa

1
1 + ∆t/2τ10

(
El+1

j + El
j

) (
P l+1

aj − P l
aj

)
+

1
1 + ∆t/2τ10

∆t

2τ21

(
N l+1

2j + N l
2j

)
, (2.33c)

N l+1
0j = N l

0j −
1

2h̄ωb

(
El+1

j + El
j

) (
P l+1

bj − P l
bj

)
+

∆t

2τ10

(
N l+1

1j + N l
1j

)
. (2.33d)

For the simplification using a homogeneous pumping rate, Eqs. 2.33b and 2.33c keep the same,

and Eqs. 2.33a and 2.33d are changed to the following,

N l+1
3j =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3j +
∆t

1 + ∆t/2τ32
ΓpumpN

l
0j , (2.34a)

N l+1
0j = (1− Γpump∆t) N l

0j +
∆t

2τ10

(
N l+1

1j + N l
1j

)
. (2.34b)

Note: from the FDTD update algorithms for the occupation numbers in Eqs. 2.33 and 2.34,

we can see the update of these occupation numbers should be done in the following order: N3,

N2, N1 and N0.

2.2.4 Perfectly matched layer (PML) absorbing boundary conditions

In numerical simulations, lots of geometries of interest are defined in “open” regions where

the spatial domain of the computed field is unbounded in one or more dimensions. Due to the

limitation of time and computation resources, it is impossible to handle such an unbounded

region problem directly. So there is a need to introduce an absorbing boundary condition (ABC)
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at the outer lattice boundary to simulate the extension of the FDTD computation domain to

infinity.

There are two different categories for absorbing boundaries: one is derived from differential

equations, such as Mur’s [87, 92] and Liao’s [87, 93] absorbing boundary conditions; another

one is actually not a real “boundary” condition, instead, it terminates the outer boundary

of the space lattice by surrounding the computation domain with a lossy, reflectionless ma-

terial which damps the outgoing fields [87]. In the second category, the perfectly matched

layer (PML) technique shows much more accuracy than other ABCs. It’s only a few lattice

thick, reflectionless to all impinging waves (arbitrary incidence and polarization) over their full

frequency spectrum and highly absorbing. Here we present the PML technique proposed by

J. P. Berenger [94], who derived a novel split-field formulation of Maxwell’s equations where

each vector field component is split into two orthogonal components [87, 94].

For 3D case, the six electric and magnetic field components yield 12 subcomponents, de-

noted by Exy, Exz, Eyx, Eyz, Ezx, Ezy, Hxy, Hxz, Hyx, Hyz, Hzx and Hzy in Cartesian

coordinates. Using these subcomponents, we have 3D time-domain Maxwell’s equations for

Berenger’s split-fields [87, 94],

(
ε

∂

∂t
+ σy

)
Exy =

∂Hz

∂y
, (2.35a)(

ε
∂

∂t
+ σz

)
Exz = −∂Hy

∂z
, (2.35b)(

ε
∂

∂t
+ σz

)
Eyz =

∂Hx

∂z
, (2.35c)(

ε
∂

∂t
+ σx

)
Eyx = −∂Hz

∂x
, (2.35d)(

ε
∂

∂t
+ σx

)
Ezx =

∂Hy

∂x
, (2.35e)(

ε
∂

∂t
+ σy

)
Ezy = −∂Hx

∂y
, (2.35f)(

µ
∂

∂t
+ σ∗y

)
Hxy = −∂Ez

∂y
, (2.35g)(

µ
∂

∂t
+ σ∗z

)
Hxz =

∂Ey

∂z
, (2.35h)(

µ
∂

∂t
+ σ∗z

)
Hyz = −∂Ex

∂z
, (2.35i)
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(
µ

∂

∂t
+ σ∗x

)
Hyx =

∂Ez

∂x
, (2.35j)(

µ
∂

∂t
+ σ∗x

)
Hzx = −∂Ey

∂x
, (2.35k)(

µ
∂

∂t
+ σ∗y

)
Hzy =

∂Ex

∂y
, (2.35l)

where we have the following relations:

Ex = Exy + Exz, (2.36a)

Ey = Eyx + Eyz, (2.36b)

Ez = Ezx + Ezy, (2.36c)

Hx = Hxy + Hxz, (2.36d)

Hy = Hyx + Hyz, (2.36e)

Hz = Hzx + Hzy (2.36f)

and the parameters σx, σy, σz, σ∗x, σ∗y and σ∗z are electric and magnetic conductivities.

J. P. Berenger has shown that any outgoing waves from the inner lossless isotropic medium

can penetrate without reflection into these unphysical absorbing layers and get highly absorbed,

independent of the frequency and the angle of incidence, if the absorbing media satisfy the

following matching conditions[87, 94]:

a. at a normal-to-w (w = x, y, z) PML interface in the FDTD lattice, the parameter pair

(σw,σ∗w) satisfies σ∗w/µ = σw/ε and all other (σw,σ∗w) pairs are zero. The permittivity ε and

permeability µ of PML should be the same as the inner medium;

b. in a corner region, the PML is provided with each matched (σw,σ∗w) pair that is assigned

to the overlapping PMLs forming the corner. So, PML media located in dihedral-corner

overlapping regions have two nonzero and one zero (σw,σ∗w) pairs. And PML media located in

trihedral-corner overlapping regions have three nonzero (σw,σ∗w) pairs.

The time-discrete form of Eq. 2.35 can be easily obtained by applying the central difference

approximation to the temporal and spatial partial differential operator. Please see appendix
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A for the update FDTD algorithms in detail.

Theoretically, reflectionless wave transmission can occur across a PML interface regardless

of the local step-discontinuity in σ and σ∗ in continuous media. However, in FDTD or any

discrete representation of Maxwell’s equations, due to the numerical artifacts caused by spatial

discretization, the step-discontinuities in σ and σ∗ at the PML surface can lead to significant

discretization error that is manifested as a spurious reflection. To reduce this reflection error,

J. P. Berenger proposed to spatially grade the conductivity profile along the normal axis

[87, 88, 94]. Here we use a polynomial grading of the PML loss with depth x [87, 88, 95],

σx = (x/d)mσx,max, (2.37)

where σx,max = − (m+1) ln[R(0)]
2ηd , d is the thickness of PML, and η is the EM impedance in inner

medium and R[0] is the desired reflection error. Eq. 2.37 increases the value of σx from zero

at x = 0, the PML surface, to σx,max at x = d, the outer boundary of PML. Typically, it has

been found that m in the range between 3 and 4 is almost optimal for many FDTD simulations

[87, 88, 95–98].

Although J. P. Berenger’s split-field PML is very robust and efficient for the termination of

FDTD lattices, it can not absorb evanescent waves [96, 99–102]. For wave-structure interaction

problems, evanescent fields are usually present in the region of interest. Hence the numerical

reflection of evanescent fields may lead to significant numerical errors. In some circumstances,

it can even result in numerical instability. One way to prevent this problem is to place the PML

sufficiently far away from the structure such that the evanescent waves have sufficiently decayed.

This method requires a lot of computation resources. Another way is to take improved/novel

PML techniques [96, 100–102], which allow a substantial absorption of evanescent waves such

that the structure-PML separation can be much shorter.
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2.3 The Parallel Computation Scheme

In plasmonics and metamaterials, resonant problems like surface modes and finite size

effects are a very important region of interest. To study these problems, large systems and high

resolutions are necessary, which may cost a lot of memories and computation time. However,

the size of memory for each CPU is limited by the operating system. To mitigate this problem,

parallel computation is used, which distributes the computing load into multiple CPUs, and

hence increases the available computation space (e.g., 256 million grid cells on 64 CPUs for

a 2D case in our cluster) and reduces computation time. As a result, local resources can be

effectively used.
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Figure 2.3 Schematic of the parallel computation scheme.

The capability of the parallel computation for FDTD simulations is due to the intrinsic

characteristic of the update algorithms which only need the fields in the neighboring Yee

cells. Figure 2.3 shows our parallel computation scheme for FDTD simulations. The FDTD

computation domain is split into many blocks and each is assigned to one CPU. Each CPU runs

serially the same update algorithms inside the block and communicates every time-step with

its neighboring CPUs to send and receive field data in the block edges. Technically, for edge

data communications, each computation block/domain is extended by a foreign edge buffer,the

gray area shown in Figure 2.4. The update only runs in the domain interior (blue area) and

the field data in the inner edge zone are sent to the foreign edge buffers of its neighboring

domains. The foreign edge buffer receives and stores the field data from neighboring domain

inner edge zones, which can be used in updating the fields in the inner edge zone of the domain
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itself.

define
inner edge zone

extend
computational domain
by foreign edge buffer

domain
interior

(node private)

each
node

Figure 2.4 Illustration of the extension of each computation domain by a
foreign edge buffer to communicate the edge field data.

The message passing between different nodes in our code is realized by using the MPI

library as the communication layer. Here we have to pay attention to the message passing

order between nodes, because having improper message passing order can cause “deadlock”

of the code implementation. As an example shown in Figure 2.5, the implementation of A

needs to wait for the completion of D, however, D needs to wait for B. Meanwhile, B needs to

wait for C and C needs to wait for A. Then the implementation falls in a “deadlock” and can

not continue. It is also not good to have all the nodes send/write the message first and then

receive/read the message, because sending the message out needs the buffer allocation from

Process 0 Process 1

A.  Receive a message 
from Process 1

B.  Receive a message 
from Process 0

C.  Send a message to 
Process 1

D.  Send a message to 
Process 0

Figure 2.5 Improper message passing order leading to deadlock.
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OS and if OS can not provide sufficient buffers, then the sending can not be finished.

“white”
node

“black”
node

Figure 2.6 The communication scheme between neighboring nodes.

To safely communicate between nodes, we divide the split computation domain into “white”

nodes and “black” nodes (see Figure 2.6), where the “black” ones send/write first while the

“white” ones receive/read first. As an example, to communicate the field data in the vertical

edges of the split computation domain in Figure 2.3, we alternate the blocks with the “white”

node and the “black” node in the horizontal direction, i.e., the nodes in even columns are

“white” nodes, while those in odd columns are “black” nodes. First the “black” nodes send

the field data in the right vertical edges to the ”white” nodes, which receive the data and

store them in the left sides of their foreign edge buffers. Then the “black” ones send the left

vertical edge data and the “white” ones store them in the right sides of the foreign edge buffers.

After that, the even and odd columns exchange the color and repeat the same procedure. As

a result, all vertical edge data are passed to their corresponding neighboring nodes. For the

horizontal edge data, the communication can be done by repeating the above procedure. To

communicate the field data in the corners, we can alternate the blocks either in the horizontal

direction or the vertical direction, then the “black” nodes send the corner field data clockwisely

to their diagonal neighboring nodes and the “white” nodes receive these data clockwisely and

store them in the corresponding corners of the foreign buffers. For 3D case, we can follow the

similar procedure to finish the edge data communication in three dimensions. The difference

is that we need to communicate the data for 6 face edges, 12 dihedral corners and 8 trihedral

corners in 3D case.
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For a computation domain split into m blocks and each with n×n×n cells, the computation

time can be given by

tp ∝ n3 + 12n2 + 24n, (2.38)

where n3 comes from the FDTD updates in the block interior and 12n2 + 24n comes from the

edge field data communication. In the serial computation, the computation time is ts ∝ m ·n3.

From these two computation times, we can obtain the ratio of them to measure how effective

the parallel computation is,
tp
ts

=
1 + 12/n + 24/n2

m
. (2.39)

Eq. 2.39 shows the relative overhead of edge communications is roughly inversely proportional

to linear dimension n and the parallel computation gets more effective with increasing n. For

a large enough subdomain size, the relative overhead of edge communications is very small so

that we can still have high effective parallel computations with only moderate fast switched

network interconnect. In real implementations, the block may not be a cube. In order to

reduce the relative overhead of edge communications and keep the parallel computation highly

effective, we have to have the block as cubic as possible.

2.4 Error Analysis at Material Interfaces

Generally, we use the Taylor series expansion to determine the order of accuracy of FDTD

algorithms. As known, a second-order accuracy can be obtained for the spatially-extended

space derivative operators in the regular Yee scheme, which assume the materials are homo-

geneous, at least within the extent of their stencil. However, due to the inhomogeneity of the

coefficients in Maxwell’s equations, this full accuracy can not be realized across discontinuous

material interfaces and will be degraded to first order [103]. In this section, the error analysis

is presented for the regular Yee scheme at dielectric interfaces in 2D case.
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Figure 2.7 Illustration of Yee grids in the TM case. In the light blue and
green area, the dielectric constants are ε1 and ε2, respectively.
Both of them have the permeability µ = µ0. The red line at the
position x = xmat is the material interface. The Yell cell size is
h× h.

2.4.1 TM case

Here we define the TM modes as the modes with the field components Ex, Ey and Hz only.

To simplify the discussion, we have the material interface aligned with the electric field link

of the Yee cell, as shown in Figure 2.7. This can also have an advantage that the continuity

of the tangential field components can be guaranteed along the interface. For the sake of the

discussion, we introduce two sets of fields, (E(k), H(k)) with k = 1, 2, representing the solutions

in the two different material regions (see Figure 2.7). These two solutions are connected by the

boundary conditions that the tangential field components are continuous across the interface.

We also assume the interface has the dielectric constant ε2 and the solution (E(2), H(2)). (The

choice of the dielectric constant and solution at the interface will not change the error analysis

result.) Then, Ampere’s law at the material interface can be expressed as follows,

−ε2
∂E

(2)
y

∂t

∣∣∣∣
x=x+

mat

=
∂H

(2)
z

∂x

∣∣∣∣
x=x+

mat

, (2.40)
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where x+
mat = xmat + ε and ε is an infinitesimal positive number. The spatially discretized form

of Eq. 2.40 in a regular Yee scheme is given by

−ε2
∂E

(2)
y

∂t

∣∣∣∣
x+
mat

=
H

(2)
z (xmat + h/2)−H

(1)
z (xmat − h/2)

h
. (2.41)

We define the error τEy as the difference between the space derivative of Hz with respect to x

and its corresponding discrete form, i.e.,

τEy =
H

(2)
z (xmat + h/2)−H

(1)
z (xmat − h/2)

h
− ∂H

(2)
z

∂x

∣∣∣∣
x=x+

mat

. (2.42)

Exploiting the Taylor series expansion method, we can expand Eq. 2.42 as follows,

τEy =
1
h

(
H(2)

z

∣∣∣∣
x=x+

mat

−H(1)
z

∣∣∣∣
x=x−mat

)
+

1
2

(
∂H

(1)
z

∂x

∣∣∣∣
x=x−mat

− ∂H
(2)
z

∂x

∣∣∣∣
x=x+

mat

)

+
h

8

(
∂2H

(2)
z

∂x2

∣∣∣∣
x=x+

mat

− ∂2H
(1)
z

∂x2

∣∣∣∣
x=x−mat

)
+ O(h2), (2.43)

where x−mat and x+
mat refer to one-sided derivatives from the left and the right of the material

interface, respectively. Consider the boundary conditions at the interface, we have the following

equations,

E(1)
y

∣∣∣∣
x=x−mat

= E(2)
y

∣∣∣∣
x=x+

mat

, (2.44a)

H(1)
z

∣∣∣∣
x=x−mat

= H(2)
z

∣∣∣∣
x=x+

mat

. (2.44b)

Taking the first-order time derivative on both sides of Eq. 2.44a and combining it with Ampere’s

law −ε
∂Ey

∂t = ∂Hz
∂x , we obtain

1
ε1

∂H
(1)
z

∂x

∣∣∣∣
x=x−mat

=
1
ε2

∂H
(2)
z

∂x

∣∣∣∣
x=x+

mat

. (2.45)
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Substituting Eqs. 2.44b and 2.45 into Eq. 2.43, yields

τEy =
1
2

(
ε1

ε2
− 1

)
∂H

(2)
z

∂x

∣∣∣∣
x=x+

mat

+ O(h). (2.46)

One recovers a locally constant term as the leading local error, implying that the first-order

global convergence can be expected [104].

If we assign an effective permittivity ε = (ε1 + ε2)/2 to the material interface, we can

recover local first-order accuracy. Here, we define the error as

τEy =
2

ε1 + ε2

H
(2)
z (xmat + h/2)−H

(1)
z (xmat − h/2)

h
− 1

ε2

∂H
(2)
z

∂x

∣∣∣∣
x=x+

mat

. (2.47)

Using the Taylor series expansion method and combining with Eqs. 2.44b and 2.45, yields

τEy =
h

4(ε1 + ε2)

(
∂2H

(2)
z

∂x2

∣∣∣∣
x=x+

mat

− ∂2H
(1)
z

∂x2

∣∣∣∣
x=x−mat

)
+ O(h2). (2.48)

The local truncation error is of O(h), which is sufficient to achieve global second-order conver-

gence [104].

For the magnetic field Hz, we have Faraday’s law as follows,

µ0
∂H

(1)
z

∂t

∣∣∣∣
x=xmat−h/2

=
∂E

(1)
x

∂y

∣∣∣∣
x=xmat−h/2

− ∂E
(1)
y

∂x

∣∣∣∣
x=xmat−h/2

. (2.49)

Consider the second term of R.H.S in Eq. 2.49 (the discrete space derivative of the first term

does not cross the interface and then has the second-order accuracy), we can have the error as

τHz =
E

(2)
y (xmat)− E

(1)
y (xmat − h)

h
− ∂E

(1)
y

∂x

∣∣∣∣
x=xmat−h/2

. (2.50)

Taking the Taylor series expansion method for the last two terms at the R.H.S. with respect

to x = xmat, we can obtain

τHz =
1
24

∂3E
(1)
y

∂x3

∣∣∣∣
x=x−mat

h2 + O(h3). (2.51)
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The second-order accuracy for the magnetic field Hz close to the material interface is achieved.

2.4.2 TE case
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Figure 2.8 Illustration of Yee grids in the TE case. All others are the same
as Figure 2.7.

The TE modes are defined as the modes with the field components Ez, Hx and Hy only.

Similar to the TM case, we have two sets of fields (E(k), H(k)) (k = 1, 2) in the two different

dielectric materials and have the interface aligned with the link of the TE Yee cell, as shown

in Figure 2.8. At the interface, Faraday’s law can be expressed as follows,

µ0
∂H

(2)
y

∂t

∣∣∣∣
x=x+

mat

=
∂E

(2)
z

∂x

∣∣∣∣
x=x+

mat

. (2.52)

And its spatially discretized form is

µ0
∂H

(2)
y

∂t

∣∣∣∣
x=x+

mat

=
E

(2)
z (xmat + h/2)− E

(1)
z (xmat − h/2)

h
. (2.53)

Analogous to the TM case, we define the error τHy as

τHy =
E

(2)
z (xmat + h/2)− E

(1)
z (xmat − h/2)

h
− ∂E

(2)
z

∂x

∣∣∣∣
x=x+

mat

. (2.54)
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Exploiting the Taylor series expansion method, Eq. 2.54 can be expressed as

τHy =
1
h

(
E(2)

z

∣∣∣∣
x=x+

mat

− E(1)
z

∣∣∣∣
x=x−mat

)
+

1
2

(
∂E

(1)
z

∂x

∣∣∣∣
x=x−mat

− ∂E
(2)
z

∂x

∣∣∣∣
x=x+

mat

)

+
h

8

(
∂2E

(2)
z

∂x2

∣∣∣∣
x=x+

mat

− ∂2E
(1)
z

∂x2

∣∣∣∣
x=x−mat

)
+ O(h2). (2.55)

Taking the procedure similar to the TM case, we can use the boundary condition E
(2)
z

∣∣∣∣
x=x+

mat

=

E
(1)
z

∣∣∣∣
x=x−mat

, and the equation ∂E
(1)
z

∂x

∣∣∣∣
x=x−mat

= ∂E
(2)
z

∂x

∣∣∣∣
x=x+

mat

given by the boundary condition

H
(2)
y

∣∣∣∣
x=x+

mat

= H
(1)
y

∣∣∣∣
x=x−mat

and Faraday’s law, to simplify Eq. 2.55, and yields

τEy =
h

8

(
∂2E

(2)
z

∂x2

∣∣∣∣
x=x+

mat

− ∂2E
(1)
z

∂x2

∣∣∣∣
x=x−mat

)
+ O(h2). (2.56)

Better than the TM case, the local first-order accuracy is achieved, implying the the global

second-order convergence can be expected [104]. But if the interface is between two different

magnetic materials, the first derivative of Ez with respect to x is not continuous across the

interface, i.e., ∂E
(1)
z

∂x

∣∣∣∣
x=x−mat

6= ∂E
(2)
z

∂x

∣∣∣∣
x=x+

mat

. Instead, analogous to Eq. 2.45, we can have the

following equation from Faraday’s law,

1
µ1

∂E
(1)
z

∂x

∣∣∣∣
x=x−mat

=
1
µ2

∂E
(2)
z

∂x

∣∣∣∣
x=x+

mat

. (2.57)

Thus, similar to the TM case, we can obtain a locally constant term as the leading local error,

and it can also be reduced to first order by assigning an effective permeability µ = (µ1 +µ2)/2

to the interface.

Similar to Hz in the TM case, Ez in the TE case can also have the second-order accuracy,

τEz =
1
24

∂3H
(1)
y

∂x3

∣∣∣∣
x=x−mat

h2 + O(h3). (2.58)
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2.5 The Total-field/Scattered-field Technique

The total-field/scattered-field (TF/SF) formulation can realize a plane-wave source with-

out the difficulties caused by using either hard sources or the initial-condition approach [87,

105, 106]. In this section, the 2D formulation of TF/SF method is presented. In the real world,

metamaterials are truncated and finite, but it is always interesting and useful to study an infi-

nite metamaterial, which can provide sufficient information about the problem at hand. Most

numerical researches in metamaterials only study the normal incidence case of an infinite-long

metamaterial slab extended by the periodic boundary condition. In this case, the generation of

the plane wave only needs 1D formulation, which is just a special case of the 2D formulation.

By using the TF/SF method, the scattering amplitudes of the metamaterial structure are easy

to obtain.

2.5.1 Ideas

The TF/SF formulation comes from the linearity of Maxwell’s equations and the assump-

tion that the physical total electric and magnetic field Etotal and Htotal can be decomposed in

the following manner:

Etotal = Einc + Escatt, (2.59a)

Htotal = Hinc + Hscatt, (2.59b)

where Einc and Hinc are the incident-wave fields and assumed to be known at all points of

the computation space lattice at all time-steps [87]. Escatt and Hscatt are the scattered-wave

fields, which are initially unknown. For linear materials, the finite-difference operations of the

Yee algorithm can be applied with equal validity to the incident field, the scattered field and

the total field due to the linearity of Maxwell’s equations [87]. This property allows zoning

the Yee space lattice into two distinct regions [87] (see Figure 2.9): Region 1, where the total

fields are assumed to be stored in the computer memory; Region 2 (surrounding Region 1),

where instead of the total fields, the scattered fields are assumed to be stored. Region 1 and
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2 are separated by a nonphysical virtual surface which connects the fields in each region. The

connecting condition generates the incident wave.

In Region 1, the Yee algorithm operates on the total fields, including the incident wave and

the scattered wave. The structure we are interested in is embedded in this region.

In Region 2, the Yee algorithm operates on the scattered fields only. The outer boundary of

Region 2 is terminated by the PML absorbing boundary condition, which absorbs the scattered

fields and simulates the lattice extending to infinity.

PML

Region 2: Scattered fields

Region 1: Total fields 

Interacting 
structure

Connecting 
surface and 
plane wave 
source

Figure 2.9 Illustration of the TF/SF zoning in the computation space do-
main.

2.5.2 Two-dimensional formulation

As we know, the FDTD spatial difference is operated on the total fields and the scattered

fields in Region 1 and Region 2, respectively. When this operation is taken across the connecting

surface, which constitutes the interface of these two regions, there arises an inconsistency

problem since the need to use the fields in the neighboring Yee cell for the spatial difference

enforces us to perform an arithmetic difference between the scattered- and total-field values.

In this section, we present how to solve this inconsistency in the virtual connecting surface

[87, 105, 106].

a. TE case (only Hx, Hy and Ez present)

Using the Yee cell for the 2D TE case,which is shown in Figure 2.10, the update formula
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for the TE case in non-dispersive media are completely valid when all field components are

the total-field components (or the scattered fields). But when we need to get the components

on the interface, we have to take the spatial difference across the interface. Since the fields

in Region 1 are assumed to be total fields, whereas the fields in Region 2 are assumed to be

scattered fields, there arises a problem of consistency. For example, the update formulas for

Ez is as follows:

El+1
z (i, j) = El

z(i, j) +
∆t

ε0∆x

[
H

l+ 1
2

y (i +
1
2
, j)−H

l+ 1
2

y (i− 1
2
, j)
]

− ∆t

ε0∆y

[
H

l+ 1
2

x (i, j +
1
2
)−H

l+ 1
2

x (i, j − 1
2
)
]
, (2.60)

where we use the notation defined in Eq. A.1. When it is on the bottom interface where

the total-field components Ez, total and Hy, total are located (see Figure 2.10), from Eq. (2.60)

we need to know Hx, total|i,j0+1/2 and Hx, total|i,j0−1/2 to time-step the Ez, total|i, j0 components

(indicated by circled dots in Figure 2.10). Clearly, the former Hx is known since (i, j0 +1/2) is

in Region 1 where the total fields are stored. But (i, j0− 1/2) is located in Region 2 where the

scattered fields are stored, so only Hx, scatt|i,j0−1/2 is available. Then from the values stored in

memory, we will get

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

r r r r
r r r r
r r r r
r r r r

e e e ee
e
e
ee e e ee

e
e
e

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

h
h
h
h h h h h

h h h h h
h
h
h

-
J
J
J
Ĵ
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At the left interface (i = i0, j = j0, · · · , j1),

El+1
z (i0, j) =

{
El+1

z (i0, j)
}
− ∆t

ε0∆x
H

l+ 1
2

y,inc(i0 − 1/2, j)
︸                       ︷︷                       ︸

assumed known correction term

(37)

At the right interface (i = i1, j = j0, · · · , j1),

El+1
z (i1, j) =

{
El+1

z (i1, j)
}

+
∆t
ε0∆x

H
l+ 1

2
y,inc(i1 + 1/2, j)

︸                       ︷︷                       ︸
assumed known correction term

(38)

For the Hx and Hy components, we can get the following using the analogous
manner with Ez:
Outside the bottom interface of Region 1 ( j = j0 − 1/2; i = i0, · · · , i1)

Hl+1/2
x (i, j0 − 1/2) =

{
Hl+1/2

x (i, j0 − 1/2)
}

+
∆t
µ0∆y

El
z,inc(i, j0) (39)

Outside the top interface of Region 1 ( j = j1 + 1/2; i = i0, · · · , i1)

Hl+1/2
x (i, j1 + 1/2) =

{
Hl+1/2

x (i, j1 + 1/2)
}
− ∆t
µ0∆y

El
z,inc(i, j1) (40)

Outside the left interface of Region 1 (i = i0 − 1/2; j = j0, · · · , j1)

Hl+1/2
y (i0 − 1/2, j) =

{
Hl+1/2

y (i0 − 1/2, j)
}
− ∆t
µ0∆x

El
z,inc(i0, j) (41)

Outside the right interface of Region 1 (i = i1 + 1/2; j = j0, · · · , j1)

Hl+1/2
y (i1 + 1/2, j) =

{
Hl+1/2

y (i1 + 1/2, j)
}

+
∆t
µ0∆x

El
z,inc(i1, j) (42)

9

Figure 2.10 The Yee grid for the 2D TE case. The solid line indicates the
interface between Region 1 (inside) and Region 2 (outside),
which is aligned with Ez components. The incident field data
are required for Hx and Hy in the Yee cells surrounding the
interface, and Ez at the interface.
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El+1
z,total(i, j0) = El

z,total(i, j0) +
∆t

ε0∆x

[
H

l+ 1
2

y,total(i +
1
2
, j0)−H

l+ 1
2

y,total(i−
1
2
, j0)

]
− ∆t

ε0∆y

[
H

l+ 1
2

x,total(i, j0 +
1
2
)−H

l+ 1
2

x,scatt(i, j0 −
1
2
)
]
. (2.61)

This is obviously inconsistent. To solve this problem, we use

Htotal = Hinc + Hscatt (2.62)

in the valid update formulas. Then we have

El+1
z,total(i, j0) = El

z,total(i, j0) +
∆t

ε0∆x

[
H

l+ 1
2

y,total(i +
1
2
, j0)−H

l+ 1
2

y,total(i−
1
2
, j0)

]
− ∆t

ε0∆y

[
H

l+ 1
2

x,total(i, j0 +
1
2
)−H

l+ 1
2

x,total(i, j0 −
1
2
)
]

= El
z,total(i, j0)︸ ︷︷ ︸

stored in memory

+
∆t

ε0∆x

[
H

l+ 1
2

y,total(i +
1
2
, j0)−H

l+ 1
2

y,total(i−
1
2
, j0)

]
︸ ︷︷ ︸

stored in memory

− ∆t

ε0∆y

[
H

l+ 1
2

x,total(i, j0 +
1
2
)−H

l+ 1
2

x,scatt(i, j0 −
1
2
)
]

︸ ︷︷ ︸
stored in memory

+
∆t

ε0∆y
H

l+ 1
2

x,inc(i, j0 −
1
2
)︸ ︷︷ ︸

assumed known

. (2.63)

For simplicity, we write it as

El+1
z (i, j0) =

{
El+1

z (i, j0)
}

+
∆t

ε0∆y
H

l+ 1
2

x,inc(i, j0 −
1
2
).︸ ︷︷ ︸

assumed known correction term

(2.64)

Here, the bracket denotes that the generic Ez time-stepping operations of Eq. 2.60 can be done

before adding the incident-wave correction term (we will use the bracket for the correction

formula of other field components with the similar definition). After first applying the generic

Ez time-stepping at all Ez locations in the grid, we can do this correction at the interface Ez

grid point. In this way, we do not need to break up the Ez time-stepping loop.

The remaining Ez components located on other Region-1 and Region-2 interfaces can be
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treated in an analogous manner to solve the inconsistency problem. The operations are as

follows:

At the top interface between Region 1 and Region 2 (j = j1, i = i0, · · · , i1),

El+1
z (i, j1) =

{
El+1

z (i, j1)
}
− ∆t

ε0∆y
H

l+ 1
2

x,inc(i, j1 +
1
2
).︸ ︷︷ ︸

assumed known correction term

(2.65)

At the left interface (i = i0, j = j0, · · · , j1),

El+1
z (i0, j) =

{
El+1

z (i0, j)
}
− ∆t

ε0∆x
H

l+ 1
2

y,inc(i0 − 1/2, j).︸ ︷︷ ︸
assumed known correction term

(2.66)

At the right interface (i = i1, j = j0, · · · , j1),

El+1
z (i1, j) =

{
El+1

z (i1, j)
}

+
∆t

ε0∆x
H

l+ 1
2

y,inc(i1 + 1/2, j).︸ ︷︷ ︸
assumed known correction term

(2.67)

For the Hx and Hy components, we can get the following equations using the analogous

manner with Ez:

Outside the bottom interface of Region 1 (j = j0 − 1/2, i = i0, · · · , i1)

H l+1/2
x (i, j0 − 1/2) =

{
H l+1/2

x (i, j0 − 1/2)
}

+
∆t

µ0∆y
El

z,inc(i, j0). (2.68)

Outside the top interface of Region 1 (j = j1 + 1/2, i = i0, · · · , i1)

H l+1/2
x (i, j1 + 1/2) =

{
H l+1/2

x (i, j1 + 1/2)
}
− ∆t

µ0∆y
El

z,inc(i, j1). (2.69)

Outside the left interface of Region 1 (i = i0 − 1/2, j = j0, · · · , j1)

H l+1/2
y (i0 − 1/2, j) =

{
H l+1/2

y (i0 − 1/2, j)
}
− ∆t

µ0∆x
El

z,inc(i0, j). (2.70)



42

Outside the right interface of Region 1 (i = i1 + 1/2, j = j0, · · · , j1)

H l+1/2
y (i1 + 1/2, j) =

{
H l+1/2

y (i1 + 1/2, j)
}

+
∆t

µ0∆x
El

z,inc(i1, j). (2.71)

b. TM case

Taking the Yee grid and the connecting surface as Figure 2.11 and using the manner

analogous to the 2D TE case, we can have the correction formula:

At the bottom interface of Region 1 (j = j0 + 1/2, i = i0 + 1/2, · · · , i = i1 − 1/2)

H l+1/2
z (i+1/2, j0+1/2) =

{
H l+1/2

z (i+1/2, j0+1/2)
}
− ∆t

µ0∆y
El

x,inc(i + 1/2, j0).︸ ︷︷ ︸
assumed known correction term

(2.72)

At the top interface of Region 1 (j = j1 − 1/2, i = i0 + 1/2, · · · , i = i1 − 1/2)
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Figure 2.11 The Yee grid for the 2D TM case. The solid line indicates the
interface between Region 1 (inside) and Region 2 (outside),
which is aligned with the magnetic field components. The
incident field data are required for Hz at the interface, and Ex

and Ey in the Yee cells surrounding the interface.

H l+1/2
z (i+1/2, j1−1/2) =

{
H l+1/2

z (i+1/2, j1−1/2)
}

+
∆t

µ0∆y
El

x,inc(i + 1/2, j1).︸ ︷︷ ︸
assumed known correction term

(2.73)
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At the left interface of Region 1 (i = i0 + 1/2, j = j0 + 1/2, · · · , j = j1 − 1/2)

H l+1/2
z (i0 + 1/2, j + 1/2) =

{
H l+1/2

z (i0 + 1/2, j + 1/2)
}

+
∆t

µ0∆x
El

y,inc(i0, j + 1/2).︸ ︷︷ ︸
assumed known correction term

(2.74)

At the right interface of Region 1 (i = i1 − 1/2, j = j0 + 1/2, · · · , j = j1 − 1/2)

H l+1/2
z (i1 − 1/2, j + 1/2) =

{
H l+1/2

z (i1 − 1/2, j + 1/2)
}
− ∆t

µ0∆x
El

y,inc(i1, j + 1/2).︸ ︷︷ ︸
assumed known correction term

(2.75)

For the Ex and Ey components, we have the following correction formula:

Outside the bottom interface of Region 1 (j = j0, i = i0 + 1/2, · · · , i1 − 1/2)

El+1
x (i + 1/2, j0) =

{
El+1

x (i + 1/2, j0)
}
− ∆t

ε0∆y
H

l+1/2
z,inc (i + 1/2, j0 + 1/2). (2.76)

Outside the top interface of Region 1 (j = j1, i = i0 + 1/2, · · · , i1 − 1/2)

El+1
x (i + 1/2, j1) =

{
El+1

x (i + 1/2, j1)
}

+
∆t

ε0∆y
H

l+1/2
z,inc (i + 1/2, j1 − 1/2). (2.77)

Outside the left interface of Region 1 (i = i0, j = j0 + 1/2, · · · , j1 − 1/2)

El+1
y (i0, j + 1/2) =

{
El+1

y (i0, j + 1/2)
}

+
∆t

ε0∆x
H

l+1/2
z,inc (i0 + 1/2, j + 1/2). (2.78)

Outside the right interface of Region 1 (i = i1, j = j0 + 1/2, · · · , j1 − 1/2)

El+1
y (i1, j + 1/2) =

{
El+1

y (i1, j + 1/2)
}
− ∆t

ε0∆x
H

l+1/2
z,inc (i1 − 1/2, j + 1/2). (2.79)

2.5.3 Calculation of the incident field

Assume the plane wave is propagating with a wavevector kinc that is oriented at the angle

φ relative to the +x-axis of the FDTD grid. Referring to Figure 2.12, we can get the first grid
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1O
2O

3O
4O

Region 1

Figure 2.12 Illustration of the incident wave impinged on Region 1 from
four different directions. In each direction, Region 1 has a
different first contacted grid point by the incident wavefront.

point in Region 1 (it will be set as origin) contacted by the incident wavefront for various φ:

O1 : 00 < φ ≤ 900

O2 : 900 < φ ≤ 1800

O3 : 1800 < φ ≤ 2700

O4 : 2700 < φ ≤ 3600

(2.80)

Assume rcomp is the position vector from the origin O to the location of the field vector

component of interest, it can be given by

rcomp = (icomp − io)x̂ + (jcomp − jo)ŷ. (2.81)

It is clear that Einc and Hinc can be calculated at any grid location using an analytical expres-

sion for the space-time behavior of the incident wave if its position vector is provided. But it

will need a large amount of computer arithmetic and be pretty time-consuming. To reduce the

burden, we use an approach based upon a table look-up procedure [87].

We assume that an auxiliary one-dimensional source FDTD grid is placed along the incident

wavevector so that origin O of Region 1 which we get from Eq. 2.80 coincides with Einc(m0)

(TE case) or Hinc(m0 + 1/2) (TM case) (m0 is the space-step number in the source grid), one

of the E/H-field components of the source grid. The idea is to use the linear source grid with
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the same space step ∆, time step ∆t and time-step number l as the main computation lattice,

to calculate the incident fields in free space [87]. In this manner, the source grid generates a

look-up table for the incident fields. With the delay distance d (d = k̂inc · rcomp, where k̂inc is

the unit wavevector) for a point in the main space lattice, the incident fields at this point can

be obtained by interpolation [87].

This procedure requires computation of the incident-wave time dependence at only a single

point on the source grid [87], the hard source at m0 − 2:

El
inc(m0 − 2) = E0g(l∆t), (2.82)

where g is an arbitrary time function.

The FDTD update algorithms for the linear source grid are as follows:

El+1
inc (m) = El

inc(m) +
∆t[

ṽp(φ=00)
ṽp(φ)

]
ε0∆

(
H

l+1/2
inc (m− 1/2)−H

l+1/2
inc (m + 1/2)

)
, (2.83)

H
l+1/2
inc (m + 1/2) = H

l−1/2
inc (m + 1/2) +

∆t[
ṽp(φ=00)

ṽp(φ)

]
µ0∆

(
El

inc(m)− El
inc(m + 1)

)
, (2.84)

where the factor ṽp(φ = 00)/ṽp(φ) is the ratio of numerical phase velocities in the TE and

TM grids and slightly less than 1, hence, with the introduction of this factor as a multiplier

of both µ0 and ε0,the numerical wave propagation in the grid gets slightly faster. To get

ṽp(φ = 00)/ṽp(φ), here we have ṽp(φ = 00) [87],

ṽp(φ = 00) =
ω

k̃
=

π

Nλ sin−1

[
1
S sin

(
π S
Nλ

)]c, (2.85)

where S = c∆t/∆ and Nλ = λ0/∆ (suppose ∆x = ∆y = ∆). ṽp(φ) can be obtained from the

following numerical dispersion relation for two dimensional wave propagation:

1
S2

sin2
(

π S

Nλ

)
= sin2

(
∆ · k̃ cos φ

2

)
+ sin2

(
∆ · k̃ sinφ

2

)
. (2.86)
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For any φ, the wavevector k̃ can be obtained by applying the Newton’s method iterative

procedure to Eq. 2.86 [87]:

k̃icount+1 = k̃icount −
sin2(Ak̃icount) + sin2(Bk̃icount)− C

A sin(2Ak̃icount) + B sin(2Bk̃icount)
, (2.87)

where A,B, and C are coefficients given by

A =
∆ · cos φ

2
, B =

∆ · sinφ

2
, C =

1
S2

sin2
(

π S

Nλ

)
. (2.88)

Then ṽp can be given by
ṽp

c
=

2π

k̃finalicountλ0

. (2.89)

To obtain the incident fields at any given point in the main computation lattice, we will

linearly interpolate the field values in the source grid [87]. For convenience, we use IFIX(r) to

denote the largest integer in the real number r.

For TE case, we have the interpolation equations for an E-field located at position rcomp

with the delay distance d:

d′ = d− IFIX(d), (2.90a)

El
inc(d) = (1− d′) · El

inc(m0 + IFIX(d)) + d′ · El
inc(m0 + IFIX(d) + 1). (2.90b)

For a magnetic field located at d, we have similar equations

d′′ = d + 1/2, (2.91a)

d′ = d′′ − IFIX(d′′), (2.91b)

H
l+1/2
inc (d) = (1− d′) ·H l+1/2

inc (m0 − 1/2 + IFIX(d′′))

+d′ ·H l+1/2
inc (m0 + 1/2 + IFIX(d′′)). (2.91c)

With the above interpolation equations, we can obtain the incident field components used to



47

implement the correction formula,

El
z,inc(d) = El

inc(d), (2.92a)

H
l+1/2
x,inc (d) = H

l+1/2
inc sinφ, (2.92b)

H
l+1/2
y,inc (d) = −H

l+1/2
inc cos φ. (2.92c)

For TM case, we can obtain the interpolation equations for a magnetic field located at the

delay distance d:

d′ = d− IFIX(d), (2.93a)

H
l+1/2
inc (d) = (1− d′)H l+1/2

inc (m0 + IFIX(d) + 1/2)

+d′H
l+1/2
inc (m0 + IFIX(d) + 3/2). (2.93b)

For the electric field located at the delay distance d, we have

d′′ = d + 1/2, (2.94a)

d′ = d′′ − IFIX(d′′), (2.94b)

El
inc(d) = (1− d′)El

inc(m0 + IFIX(d′′))

+d′ · El
inc(m0 + IFIX(d′′) + 1). (2.94c)

The incident field components used to implement the correction formula are

H
l+1/2
z,inc (d) = H

l+1/2
inc (d), (2.95a)

El
x,inc(d) = −El

inc sinφ, (2.95b)

El
y,inc(d) = El

inc cos φ. (2.95c)
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CHAPTER 3. OPTICAL ANISOTROPIC METAMATERIALS:

NEGATIVE REFRACTION AND FOCUSING

3.1 Introduction

Recently, negative index materials (NIMs) and photonic crystals (PCs) are receiving more

and more attention because of their extraordinary optical properties such as near field focusing,

subwavelength imaging, and negative refraction [1–3, 107–115]. As first proposed, these NIMs

have the permittivity, ε, and the permeability, µ, simultaneously negative, which are achieved

by overlapping electric and magnetic resonances. But the double resonance scheme also causes

large resonance losses and technical difficulties in design and fabrication. In addition to nega-

tive index materials, both theoretical and experimental studies show the properties of negative

refraction and subwavelength imaging can also occur in some uniaxially anisotropic media,

which can have lower losses and be easier to fabricate [51–61].

For a particular anisotropic medium, where the permittivity component (ε⊥) along the di-

rection perpendicular to the interface is negative, while all other permittivity and permeability

components are positive, it has a hyperbolic dispersion relation as follows:

k2
⊥

|ε‖| µ
−

k2
‖

|ε⊥| µ
= ω2, (3.1)

where the definitions for ε⊥, ε‖, k⊥ and k‖ are shown in Figure 3.1(b). Figure 3.1(a) schemat-

ically shows how negative refraction works in this particular anisotropic medium. The group

velocity can be calculated by vg = ∇kω(k), which implies that the direction of group velocity

(energy flow) would be normal to the equifrequency surface (EFS) and in the direction where

ω is increasing. The conservation of k‖ indicates two possible solutions in the medium, but the
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Figure 3.1 (a) Top graph: Circular equifrequency surfaces (EFS) for vac-
uum and isotropic media. Bottom graph: Equifrequency sur-
faces for vacuum (circle) and negative anisotropic refraction me-
dia (hyperbolic relation). (b) The definitions for k⊥, k‖, ε⊥, and
ε‖ used in our simulations.

correct one can be determined by causality — the refracted group velocity should point away

from the interface, as shown in Figure 3.1(a). From Figure 3.1(a), we can also see that for

an isotropic medium, the circular equifrequency surface forces the refracted phase and group

velocities to lie in the same line — antiparallel for a negative index medium, while parallel for

a positive index medium. For an anisotropic medium with a hyperbolic dispersion relation,

they do not lie in the same line any more except for the case when k‖ = 0. To be normal to the

hyperbolic curves and satisfy the requirement of pointing away from the interface coming from

the causality, the refracted group velocity has to undergo a negative refraction, which causes

the expected focusing. (Note that the refracted phase velocity for an anisotropic medium still

has a positive refraction.)

A lot of work has been done in anisotropic metamaterials, both experimentally [53, 56]

and theoretically [51, 52, 54, 55, 57–61]. Liu and Zhang [61] derived the hyperbolic disper-

sion only theoretically in the Maxwell-Garnett approximation. Although they showed negative

refraction and pseudo focusing in numerical simulations, they did not obtain the actual disper-

sion relation from the realistic simulated metamaterial nor did they demonstrate the effective

medium behavior from realistic simulations. There is a need to demonstrate that the hyper-
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bolic dispersion survives all the way up to the evanescent waves, which is essential for potential

super-resolution. Silveirinha et al.[54], apart from analytical calculations, also did not demon-

strate the hyperbolic dispersion of the simulated metamaterial. They only showed the near-field

imaging (channeling), which occurs for the special case of a very flat dispersion. Yao et al. [56]

did experimental work (negative refraction for small angles only and no dispersion relation was

obtained from the experiments), and Wangberg et al. [55] presented analytical work based on

the Maxwell-Garnett approximation. Most of the previous theoretical and numerical work on

anisotropic metamaterials is done on homogeneous materials, where the hyperbolic dispersion

relation given by Eq. 3.1 is used.

In this chapter, we use realistic simulations for three-dimensional (3D) wire media and

metal-dielectric superlattices to establish directly that the hyperbolic dispersion relation is

valid up to evanescent modes in the long-wavelength limit and then retrieve the effective

permittivity. A fitting procedure is exploited to get the dispersion relation from the field

distributions obtained from full-wave numerical simulations of realistic structures. The imaging

for a homogeneous slab with the effective permittivity shows very good agreement with the

realistic structure. (All simulations about this homogeneous effective anisotropic medium are

done by comsol multiphysics, an electromagnetic (EM) solver based on the finite element

method.) We have three significant contributions to the field of anisotropic metamaterials: (1)

the numerically obtained dispersion relations, (2) the demonstration of the effective medium

behavior that works with evanescent incident modes and (3) our unique method to obtain

the dispersion relations, different from the usual retrieval procedure based on inverting the

scattering amplitudes.

3.2 Superlattice of Metallic-air Layers

Before discussing our results on 3D wire media, simulations are performed for a superlattice

of metallic layers with ε = −4 and air layers with ε = 1 as shown in Figure 3.1(b). These

simulations are done to check the applicability of our idea that one can obtain negative refrac-

tion and focusing in anisotropic media. Our simulation results show the existence of negative
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(a) (b)

(c) (d)

Figure 3.2 Material parameters of the metallic layers: ε = −4, µ = 1;
working frequency f = 0.5 GHz; space period of metallic layers
is 0.06 m; width of metallic layers is 0.02 m. (a) The mag-
netic field distribution of the group negative refraction in the
metallic-air layers array slab for a transverse magnetic Gaussian
beam with an incident angle of 300. The white line indicates the
ray-tracing result. (b) A ray-tracing diagram showing that the
rays coming from a line source are refocused by an anisotropic
medium slab with the effective permittivity ε tensor of our sim-
ulated metallic-air layers array slab. (c) The magnetic field
distribution of the pseudo focusing of our simulated metallic–
plates array slab with a line source placed 1.25 m from the
interface, which launches a cylindrical transverse magnetic po-
larized wave. The thickness and the width of the metallic-air
layers array slab are 2.4 m and 6 m, respectively. (d) The mag-
netic field distribution of the pseudo focusing in a homogeneous
anisotropic slab with the effective permittivity of our simulated
metallic-air layers array slab (ε‖ = 1.7293, ε⊥ = −0.7907).
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refraction in Figure 3.2(a) and pseudo-focusing in Figure 3.2(c). The focusing simulation is

compared with the ray-tracing diagram (Figure 3.2(b)) and the imaging of a homogeneous

anisotropic slab with the effective permittivity extracted from the dispersion relation of the

metallic-air superlattice (Figure 3.2(d)). The effective parameters for ε‖ and ε⊥ are obtained

by extracting k from the field distribution of a plane wave incidence inside the slab and then

fitting with the hyperbolic dispersion given by Eq. 3.1. The details for obtaining the effective

parameters ε‖ and ε⊥ will be discussed below. One can see the pseudo focusing for the real

metallic-air superlattice agrees very well with the homogeneous medium.

3.3 Obtained Numerical Dispersion Relations

To check if the wire medium constitutes our desired homogeneous effective anisotropic

medium, it is straightforward to obtain its numerical dispersion relation first. For this purpose,

we exploit a fitting procedure to extract k from the phase propagation. In the long wavelength

limit, electromagnetic metamaterials should behave like a homogeneous medium. When a

plane wave incidents on a homogeneous slab with an incident angle θi, it forms a stationary

wave inside the slab instead of a traveling wave because of the reflections at the two interfaces.

Since k⊥ represents the field variation in the perpendicular direction, we can take a cross-

section along this direction and analytically obtain the field distribution in the cross-section

by considering the multireflections inside the slab as follows:

F (y) =
A

1− r2 e−2 α de2 i k⊥ d

[
e−α (y−y0)ei [k⊥ (y−y0)+θ]

+r eα (y−y0−2d)e−i [k⊥ (y−y0−2d)−θ]
]
. (3.2)

Here y is the position in the perpendicular direction within the cross section, F (y) is the field at

the position y, A and θ are the field amplitude and the field phase, respectively, at the starting

point of the cross-section in the perpendicular direction y = y0 (i.e., the location of the first

interface of the slab), α is the decay factor of the homogeneous slab, k⊥ is the perpendicular

component of the wave vector k, d is the thickness of the slab, and r is the reflection coefficient
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at the two interfaces.

By fitting the numerically obtained field distribution along the perpendicular direction

in a cross-section with the theoretical formulas above, we can obtain the k⊥ inside the wire

medium slab for an incident plane wave with an incident angle, θi. For k‖, we can easily get

k‖ = k0 sin θi from the incident angle θi, since k‖ is conserved across the interfaces, where

k0 is the wavevector in the background. Consequently, we can have the numerical dispersion

relation of the wire medium by obtaining k‖ and k⊥ for different incident angles.

H

)(ε k ⊥⊥

)(ε k ||||

(a) (b)

Figure 3.3 (a) Schematic of 3D metallic wires embedded in a dielectric
matrix. (b) The magnetic field distribution for the negative re-
fraction in a 3D gold-wire square-lattice medium with vacuum
background and the wavelength λ = 700 nm. The incident
plane wave has transverse magnetic polarization and an inci-
dent angle of 450. The permittivity ε for gold is taken from ex-
perimental data [116]: ε = −15.5931 + i 1.2734 at λ = 700 nm.
The radius, the length of gold wires, and the lattice constant
are 16, 1532 and 70 nm, respectively. The white arrow indicates
the direction of power flow.

The minimum mean square fit does, in effect, average the field distribution on length scales

small compared to the fitted effective wavelength. So the effective parameters are obtained for

the averaged macroscopic field. The choice of the cross-section for the fit is arbitrary, but the

results are practically independent on the location of the cross-section.
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3.4 3D Anisotropic Wire Medium

The first structure for the 3D anisotropic wire medium in the optical region (Figure 3.3

(a)) is a 3D gold-wire square lattice with the wire radius, r = 16 nm, and the lattice constant,

a = 70 nm, in vacuum. Figure 3.3 (b) shows that the group negative refraction occurs when

a plane wave with the wavelength, λ = 700 nm, and the transverse magnetic polarization,

incidents on our simulated slab with an incident angle of 450, while the phase velocity still

undergoes a positive refraction. Pseudo focusing can also be seen from Figure 3.4, where the

transverse magnetic polarized wave with the wavelength, λ = 700 nm, coming out from a line

source, is focused inside the simulated slab and then refocused on the other side of the slab.

Figure 3.4 The magnetic field distribution of the pseudo focusing in a
3D gold-wire square-lattice medium with a line source placed
884 nm away from the interface, which launches a cylin-
drical transverse magnetic polarized wave at the wavelength
λ = 700 nm. The permittivity of gold is the same as in Fig-
ure 3.3. The background is vacuum. The radius, length of gold
wires, and the lattice constant are 16, 2732 and 70 nm, respec-
tively. The white arrow indicates the direction of power flow.

When the geometric parameters, the wire radius r = 16 nm, and the lattice constant a =

70 nm, are much smaller than the vacuum wavelength, λ = 700 nm, of the incident EM wave,
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the 3D wire medium can be considered as a homogeneous effective medium [117–119]. The

numerical dispersion relation of this 3D gold-wire square lattice medium is obtained and shown

in Figure 3.5. The effective permittivities, ε⊥ = −1.9082+ i 0.2391 and ε‖ = 1.4455+ i 0.0044,

are obtained by fitting the numerical dispersion data into the hyperbolic dispersion relation

[Eq. 3.1]. The fitted curve (dashed line) shows that the fitting is pretty good and the simulated

metamaterial does have a hyperbolic dispersion relation.
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Figure 3.5 The numerical dispersion relation data from the simulation
(solid circles) and the fitted hyperbolic curve (dashed line). All
parameters are the same as in Figure 3.4, except the length of
gold wires which is 1500 nm. Note that all k components here
are normalized by k0, where k0 = ω/c. The inset shows, as
a typical example, the field distribution for θi = 300 fitted by
Eq. 3.2.

We have also used the Maxwell-Garnett equations [118, 119] to obtain the effective ε⊥ and

ε‖ at λ = 700 nm for different filling ratios for the square lattice of metallic wires. In Figure 3.6,

we present the fitted results for ε‖ and ε⊥ for different radii, while keeping the lattice constant

unchanged. We use the following expressions for ε‖ and ε⊥ from the Maxwell-Garnett theory:

ε‖ = εd

[
(1 + f)εm + (1− f)εd

(1− f)εm + (1 + f)εd

]
, (3.3)

ε⊥ = fεm + (1− f)εd, (3.4)

where f is the filling ratio of the metal, and εm and εd are the permittivities of metal and
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Figure 3.6 The effective permittivity ε⊥ and ε‖ calculated from Maxwell–
Garnett equations (solid lines) and numerical simulations
(squares) for different wire radii. The simulated medium is a
3D square lattice silver wire medium in vacuum with the lattice
constant a = 20 nm. The wavelength is λ = 700 nm. The per-
mittivity of silver at λ = 700 nm is εsilver = −20.4373+i 1.2863,
taken from experimental data [116].

dielectric, respectively. Notice that the effective values of ε⊥ and ε‖ agree reasonably well with

our fitting procedure. This is due to the effect that the vacuum wavelength, λ = 700 nm, is

much larger than the lattice constant and the radius of the metallic wires. In other cases, the

effective parameters given by Eqs. 3.3 and 3.4 do not agree with our fitting procedure.

For comparison, we replace this 3D gold-wire square lattice medium slab with a homo-

geneous anisotropic slab with the fitted effective parameters ε‖ = 1.4455 + i 0.0044 and

ε⊥ = −1.9082 + i 0.2391. (All other parameters are the same, such as the thickness and

the width of the slab, the source and the distance between the source and the first interface,

etc.) The simulation results for the magnetic field distribution and magnetic field intensity are

shown in Figure 3.7. One can see that both of them have very good agreements between the

homogeneous slab and the 3D wire medium. The excellent agreement proves again that our

simulated 3D gold-wire square-lattice metamaterial indeed behaves as an effective medium,

which has a hyperbolic dispersion relation and our fitting procedure works very well.

To be experimentally feasible, the second structure we examine is a hexagonal-lattice struc-

ture composed of silver wires in the alumina background. Figure 3.8 shows the magnetic field
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7 (a) The magnetic field distribution of the focusing simulation for
the simulated 3D gold-wire square lattice anisotropic medium
slab, with the source 884 nm away from the first interface.
(b) Same as (a), but for a homogeneous anisotropic slab with
the fitted effective parameters ε‖ = 1.4455 + i 0.0044 and
ε⊥ = −1.9082 + i 0.2391. (c) and (d) are the same as (a)
and (b), respectively, but for the magnetic field intensity distri-
bution. (e) – (h) are the same as (a) – (d), respectively, except
the source is 442 nm away from the first interface. All material
parameters are the same as in Figure 3.4.
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(a) (b)

Figure 3.8 The magnetic field distribution in a 3D silver-wire hexagonal
lattice medium slab with the alumina background. The inci-
dent plane wave has the transverse magnetic polarization and
the wavelength in vacuum λ = 700 nm. (a) Normal incidence.
(b) At an incident angle of 300. The white arrow indicates
the direction of power flow. The hexagonal lattice constant
a, the radius r, and the length l of silver wires are 120 nm,
30 nm and 1700 nm, respectively. The permittivities of silver
and alumina at the wavelength in vacuum λ = 700 nm are
εsilver = −20.4373 + i 1.2863 and εAl2O3 = 3.1, respectively,
taken from experimental data [116].

distributions along a cross-section perpendicular to the magnetic field for two different incident

angles (00 and 300). For the incident angle θ=300 case (Figure 3.8(b)), one can see that the

group velocity (white arrow) undergoes a negative refraction inside the simulated medium.

A substantial decay in the perpendicular direction for the magnetic field and the power flow

exists for both of these two different incident angles (Figures 3.8(a) and 3.8(b)), since the lossy

metallic wires have a very high filling ratio in this particular wire medium.

By the same fitting procedure, the numerical dispersion relation for the 3D silver-wire

hexagonal lattice medium can also be obtained and is shown in Figure 3.9(a). The lowest
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four points are used to fit with a hyperbolic dispersion curve and the effective permittivity

tensor is ε‖ = 5.3653 + i 0.0708 and ε⊥ = −2.9188 + i 0.4571. One can see the large k‖

points deviate from the fitted curve, even though the lowest four points are fitted very well.

This occurs because we have a small wavelength/spatial period ratio of around 3.3 in alumina,

which causes the breakdown of the homogeneous effective medium approximation in the large

k‖ region.
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Figure 3.9 The numerical dispersion (solid circles) and the fitted dispersion
curve (dashed line) of 3D silver-wire hexagonal-lattice media in
the alumina background. (a) The lattice constant a = 120 nm
and the radius of silver wires r = 30 nm. (b) The lattice con-
stant a = 30 nm and the radius of silver wires r = 12 nm.
k‖ ≤ k0 corresponds to the propagating modes in the back-
ground, while k‖ > k0 corresponds to the evanescent modes.
All other parameters are the same as in Figure 3.8. Note that
all k components are normalized by k0, where k0 =

√
εω/c and

ε is the permittivity of alumina.

To extend the “good fitted” region to a larger k‖ range, where the numerical disper-

sion points can fit well into a hyperbolic dispersion curve, we reduce the hexagonal-lattice

constant and the radius of silver wires to smaller values a = 30 nm and r = 12 nm, re-

spectively, while keeping all other parameters the same as before, so we can have a much

higher wavelength/spatial period ratio of around 13. The fitted numerical dispersion rela-

tion is shown in Figure 3.9(b). The lowest ten points, which are propagating modes (i.e.,
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k‖ ≤ k0, where k0 =
√

εω/c and ε is the permittivity of alumina), are used to fit with a hyper-

bolic dispersion curve. The obtained effective permittivities are ε‖ = 22.1505 + i 1.4693 and

ε⊥ = −13.7714+i 0.6882. If we use Eqs. 3.3 and 3.4, the Maxwell-Garnett effective permittivi-

ties are given by ε‖ = 25.8371+ i 2.0791 and ε⊥ = −10.5614+ i 0.7466, which do not agree well

with our fitting parameters. Maxwell-Garnet equations are an approximation, in particular,

known to fail completely for the usual wire metamaterials in the microwave regime. Here, we

include the comparison of the effective parameters derived directly from the simulated field

distribution with those in the Maxwell-Garnet approximation to show that for high frequency

(low permittivity) and “thick” wires the Maxwell-Garnet approximation becomes good and

can be used to guide design. (The reason for this is the domination of the electron mass over

the magnetic effective mass for the electrons geometrically confined to the wires at near optical

length scales and frequencies.) In Figure 3.9(b), one can also see that the numerical dispersion

relation data from our fitting procedure are fitted very well into a hyperbolic dispersion curve,

even for those large k‖ points, where k‖ > k0. The latter are evanescent modes in air (and

even in the alumina background of the wire medium), which are converted into propagating

modes inside the slab and only attenuated by the losses of the effective medium. These modes

preserve the information contained in the high spatial frequencies across the anisotropic slab

and are essential for super-resolution applications.

3.5 Conclusions

We present two anisotropic metamaterials that demonstrate negative refraction and focus-

ing. The first system is a superlattice of the metal-dielectric structure and the second system

is (3D) metallic wires embedded in a dielectric matrix. We first obtain the numerical dis-

persion relation for the two cases by simulating the eigenmodes of the realistic system. The

hyperbolic dispersion relation is obeyed in both cases, where the effective permittivities have

opposite signs in the two propagation directions. Our simulations of the realistic structures, as

well as the homogeneous simulations, show the negative refraction for all incident angles and

demonstrate the focusing. The metallic nanowires can be valid for the evanescent modes in the
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dielectric background by having a large wavelength/spatial period ratio, which has important

applications in super-resolution.

In conclusion, we numerically demonstrate that a homogeneous effective indefinite anisotropic

medium can be realized by a 3D nanowire medium at the optical frequency region, which can

have a negative refraction and pseudo focusing. We also present a nice fitting procedure by

which we can obtain the numerical dispersion relation of our 3D wire medium and then retrieve

its effective permittivity tensor. Meanwhile, we demonstrate that the hyperbolic dispersion

relation of the 3D nanowire medium can be valid for the evanescent modes in the background

by having a large wavelength/spatial period ratio (i.e., in the long wavelength limit), which

may have important applications in super-resolution.
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CHAPTER 4. SELF-CONSISTENT CALCULATIONS OF

METAMATERIALS WITH GAIN

4.1 Introduction

The field of metamaterials [6, 7] is driven by fascinating and far-reaching theoretical visions

such as, e.g., perfect lenses [2], invisibility cloaking [36, 37], and enhanced optical nonlinearities

[39, 40]. This emerging field has seen spectacular experimental progress in recent years [5–10].

Yet, losses are orders of magnitude too large for the envisioned applications. For some applica-

tions, such as perfect absorbers [120–122], the loss is not a problem. Although some indefinite

materials, such as the metallic wire medium, can reduce the losses by avoiding the resonances,

most metamaterials are constituted by an array of resonators. To reduce the large resonance

losses, there are two basic approaches. One approach to reduce the metamaterial losses to

some extent is by geometric tailoring of the metamaterial designs [28, 64, 66, 67]. An efficient

method to geometrically reduce the losses in metamaterials is by increasing the inductance,

L, to the capacitance, C, ratio [64], and avoid corners and sharp edges in metamaterials [67].

Another method to reduce losses is to move the real part of the negative index of refraction, n,

away from the maximum of Im(n) (close to the resonance) [28, 66] by strongly coupled meta-

materials. However, achieving significant enough loss reduction by further design optimization

appears to be out of reach. Thus, the second approach, incorporation of active media (gain)

into metamaterial designs, might come as a cure. The dream would be to simply inject an

electrical current into the active medium, leading to gain and hence to compensation of the

losses. One important issue is not to assume the metamaterial layer and the gain medium

layer are independent from one another [68, 72, 74–79, 123]. So, experiments on such intricate

active nanostructures do need guidance by theory via self-consistent calculations [80–83] (using



63

the semi-classical theory of lasing) for realistic gain materials that can be incorporated into

or close to dispersive media to reduce the losses at THz or optical frequencies. The need for

self-consistent calculations stems from the fact that increasing the gain in the metamaterial,

the metamaterial properties change, in turn changes the coupling to the gain medium until

a steady-state is reached. A specific geometry to overcome the severe loss problem of optical

metamaterials and to enable bulk metamaterials with negative magnetic and electric response

and controllable dispersion at optical frequencies is to interleave active material layers with

the passive metamaterial lattice.

For reference, the best fabricated negative-index material operating at around 1.4 µm wave-

length [29] has shown a figure of merit, FOM = −Re(n)/Im(n) ≈ 3, where n is the effective

refractive index. This experimental result is equivalent to an absolute absorption coefficient of

α = 3×104 cm−1, which is even larger than the absorption of typical direct-gap semiconductors

such as, e.g., GaAs (where α = 104 cm−1). So it looks difficult to compensate the losses with

this simple type of analysis, which assumes that the bulk gain coefficient is needed. However,

the effective gain coefficient, derived from self-consistent microscopic calculations, is a more

appropriate measure of the combined system of metamaterial and gain. Due to pronounced

local-field enhancement effects in the spatial vicinity of the dispersive metamaterial, the ef-

fective gain coefficient can be substantially larger than its bulk counterpart. With regard to

experiments to reduce losses in metamaterials, one needs to use semiconductor gain (quantum

dots or wells) and not use dye molecules [84], which photo-bleach rapidly. Semiconductor

gain enables long-term use and can be conceptually pumped by electrical injection. This is

crucial, as applications based on optically-pumped structures do not appear to be realistic in

the long run. However, to check if losses in metamaterials can be reduced experimentally,

one can try exploratory experiments under conditions of optical pumping. While early models

[68, 74, 123–125] using simplified gain-mechanisms such as explicitly forcing negative imagi-

nary parts of the local gain material’s response function produce unrealistic strictly linear gain,

our self-consistent approach presented below allows for determining the range of parameters

for which one can realistically expect linear amplification and linear loss compensation in the
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metamaterial [80–82]. The approximation in these earlier models can effectively be obtained

in our approach by assuming a constant population inversion in Eq. 2.26, i.e., a population

inversion given by an “average field”. To fully understand the coupled metamaterial-gain sys-

tem, we have to deal with time-dependent wave equations in metamaterial systems by coupling

Maxwell’s equations with the rate equations of electron populations describing a multi-level

gain system in semi-classical theory [89].

In this chapter, we aim to to apply a detailed computational model to the problem of

metamaterials with gain, which is described by a generic four-level atomic system (see section

2.2.3 in Chapter 2). The total electron density of gain materials is chosen to be N0(t =

0) = 5.0× 1023 /m3 and the lifetimes of the third, second and first levels, τ32, τ21 and τ10 are

chosen 5 × 10−14, 5 × 10−12 and 5 × 10−14 s, respectively. The coupling strength σa of the

atomic transition between the second level (N2) and the first level (N1) is chosen 10−4 C2/kg,

however, its linewidth Γa and center frequency ωa may vary for different simulations. For

optical pumping, the center frequency ωb, the linewidth Γb and the coupling strength σb of the

atomic transition between the ground state level (N0) and the third level (N3) are 4π×1014 Hz,

2π × 10× 1012 Hz and 5× 10−6 C2/kg, respectively. In order to solve the behavior of the gain

materials in the electromagnetic fields numerically, the finite-difference time-domain (FDTD)

method is utilized [81–83, 87, 88, 90, 91]. The initial condition is that all electrons are in the

ground state and all electric, magnetic and polarization fields are zero. Then the electrons are

pumped from N0 to N3 optically or with a homogeneous pumping rate Γpump. The system

begins to evolve according to the Maxwell’s equations, rate equations and driven oscillator

equations. In section 4.2, we verify that our code agrees well with simple soluble models (gain

material only). In addition, our code is applied to 1D gain slab and 1D superlattice of gain

and negative index layers. The results for the lasing and nonlinear behaviors are presented.

In section 4.3, loss compensation in 2D metamaterials is considered. Results are presented for

a square lattice of Lorentz dielectric cylinders with layers of gain material and a 2D split ring

resonator (SRR) with gain material inclusion. The losses can be compensated by gain and

lasing (spasing) is achieved in our numerical simulations. In sections 4.4 and 4.5, the gain is
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Figure 4.1 Schematic of gain material slab (shown in orange). The slab
width w takes different values in the cases we have examined.

embedded in two different realistic metamaterials — a fishnet structure and an array of 3D

SRRs. The simulation results show the large resonance losses can be effectively compensated by

the inclusion of gain in these realistic metamaterials due to the strong local field enhancement.

4.2 Lasing and Nonlinear Behaviors in Gain Materials and Metamaterials

Incorporated with Gain

4.2.1 Gain material only

To understand the lasing behavior of gain material, we first study a gain material slab

surrounded by vacuum (shown in Figure 4.1). The center frequency ωa and the linewidth Γa of

the transition between N1 and N2 are chosen 100 and 5 THz, respectively. And the discrete time

and space steps are chosen to be ∆t = 1.67× 10−17 s and ∆x = 1.0× 10−8 m, respectively. We

generate a continuous wave (CW) at the frequency ωb (200 THz) and let it propagate through

the gain slab, and then we calculate the reflected and transmitted waves and implement the

Fourier transforms to see if there is lasing and how much power is emitted around 100 THz —

the emission frequency ωa between N1 and N2. First we start with a very low input power

Pin for the incident CW wave, but no lasing happens, then we increase the input power till it

reaches the lasing threshold, for which the system starts to have lasing and we can see a small

peak at the emission frequency 100 THz in the Fourier transforms of reflected and transmitted



66

0 0.5 1 1.5 2 2.5 3

x 10
4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

5

Time(2π/ω
a
)

E
le

ct
ric

 fi
el

d 
of

 tr
an

sm
itt

ed
 w

av
e 

(V
/m

)

(a)

0 50 100 150 200 250 300 350 400
10

1

10
2

10
3

10
4

10
5

Frequency (THz)

S
tr

en
gt

h 
of

 e
le

ct
ric

 fi
el

d 
(V

/m
)

(b)

0 0.5 1 1.5 2 2.5 3

x 10
4

−3

−2

−1

0

1

2

3
x 10

5

Time(2π/ω
a
)

E
le

ct
ric

 fi
el

d 
of

 tr
an

sm
itt

ed
 w

av
e 

(V
/m

)

(c)

0 50 100 150 200 250 300 350 400
10

1

10
2

10
3

10
4

10
5

Frequency (THz)

S
tr

en
gt

h 
of

 e
le

ct
ric

 fi
el

d 
(V

/m
)

(d)

0 0.5 1 1.5 2 2.5 3

x 10
4

−4

−3

−2

−1

0

1

2

3

4
x 10

5

Time(2π/ω
a
)

E
le

ct
ric

 fi
el

d 
of

 tr
an

sm
itt

ed
 w

av
e 

(V
/m

)

(e)

0 50 100 150 200 250 300 350 400
10

1

10
2

10
3

10
4

10
5

Frequency (THz)

S
tr

en
gt

h 
of

 e
le

ct
ric

 fi
el

d 
(V

/m
)

(f)

Figure 4.2 The transmitted waves and their corresponding Fourier trans-
forms for different input powers. (a), (c) and (e) are the
transmitted waves for input power Pin = 79.6, 90.7 and
120.6 W/mm2, respectively. (b), (d) and (f) are same as (a),
(c) and (e), respectively, but for the Fourier transforms of the
transmitted waves. The gain slab width w = 100 nm and the
bandwidth Γa of the atomic transition between N1 and N2 is
5 THz.
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waves, i.e., low power emitted around the emission frequency ωa. If we keep increasing the

input power, the peak will get higher and the emitted power will get larger. Figure 4.2 shows

the transmitted waves and their corresponding Fourier transforms for three different input

powers at the gain slab w = 100 nm. We can see there is no lasing (Figure 4.2(a)) when the

input power is low (Pin = 79.6 W/mm2) and there is only one peak for the pumping frequency

in its Fourier transform(Figure 4.2(b)). When the input power Pin = 90.7 W/mm2, the system

starts lasing (Figure 4.2(c)) and a small peak appears at the frequency 100 THz (Figure 4.2(d)).

If we increase the input power to a higher value Pin = 120.6 W/mm2, the lasing gets stronger

(Figure 4.2(e)) and the peak for the emission frequency gets higher (Figure 4.2(f)), i.e., more

power emitted around the emission frequency ωa. We have calculated the emitted power at

the emission frequency ωa versus the input power at the pumping frequency ωb for the same

gain slab system. As shown in Figure 4.3, we can see that there is a sharp rise in the emission

around Pin ≈ 90.7 W/mm2, which corresponds to the lasing threshold for this system. Below

the threshold, there is no lasing.
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Figure 4.3 The powers emitted at the emission frequency ω = ωa (100 THz)
for different input powers at the pumping frequency ω = ωb

(200 THz). All parameters of this system are same as Figure 4.2.

We also notice that the lasing time (the time when the system starts lasing) varies according

to the input power. Figure 4.4 shows the detailed results for the lasing time versus the input
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power with the slab widths w = 100, 250 and 500 nm. We can see the lasing time decreases as

the input power increases because the system pumps the electrons at a higher rate from the

ground state level to higher levels and then reaches the population inversion between N1 and

N2 in a shorter time. For a fixed input power, one can see the lasing time decreases as the gain

slab width gets larger. This occurs because more input energy is absorbed and then converted

to lasing by the wider gain slab.
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Figure 4.4 The lasing times for different input powers at the pumping fre-
quency ωb (200 THz). The gain slab width w = 100, 250 and
500 nm, respectively. All other parameters are same as Fig-
ure 4.2.

As the input wave propagates inside the gain slab, it will decay due to the absorption

from the gain material at the pumping frequency ωb (see Figure 4.5). Thus the pumping rate,

which is determined by the local input optical intensity, is inhomogeneous inside the gain slab.

But for a thin gain material layer, the electric field of the input wave can be approximately

treated as homogeneous, thus we can simplify the pumping process between N0 and N3 by

using a homogeneous pumping rate Γpump. For a very thin gain slab w = 100 nm, simulations

are done with a homogeneous pumping rate and the results for the power emitted around the

emission frequency ωa versus the pumping rate are plotted in Figure 4.6. Comparing with

Figure 4.3, where the electrons are optically pumped, we can see they are very similar. For a
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Figure 4.5 The amplitude of the input EM wave inside the gain slab as a
function of the position. The gain slab width w = 1000 nm and
the input power Pin = 92.3 W/mm2. All other parameters are
same as Figure 4.2.

fixed output power such as Pout = 7.56 W/mm2, we can find the corresponding input power

Pin = 120.6 W/mm2 in Figure 4.3 and the corresponding pumping rate Γpump = 9.3× 109 s−1

in Figure 4.6. Then we do simulations for optical pumping case with the input power Pin =

120.6 W/mm2 and for the homogeneous pumping rate case with the pumping rate Γpump =

9.3 × 109 s−1. The graphs of the occupation numbers as a function of time are plotted in

Figure 4.7 for both cases. One can see that they are almost the same. This verifies that

the homogeneous pumping rate simplification is valid for a thin gain slab. In our following

simulations, we will use this simplification because the gain slab widths in our structures are

very thin (w <= 50nm).

4.2.2 Negative index material (NIM) embedded in layers of gain

As the first simple model system, we will discuss a one-dimensional metamaterial system

which consists of layers of negative index material (NIM) and gain material, as shown in

Figure 4.8, to see if we can compensate the losses of the metamaterials associated with the

NIMs by the amplification provided by the gain material layers and how the system starts

lasing. The gain material and the discrete time and space steps are the same as section 4.2.1.
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Figure 4.6 The powers emitted at the emission frequency ω = ωa (100 THz)
for different pumping rates. The gain slab width w = 100 nm
and the bandwidth of the atomic transition between N1 and N2

is 5THz.

We first let a narrow band Gaussian pulse of a given amplitude go through the metamaterial

without gain, and we calculate the transmitted signal emerging from the metamaterial system,

which also has a Gaussian profile but its amplitude is much smaller than that of the incident

pulse due to the losses of NIM layers. Then we introduce the gain into the system and start

increasing the pumping rate. The amplitude of the transmitted signal gets larger and we

can find a critical pumping rate, for which the transmitted pulse is of the same amplitude

as the incident one. Since the gain material itself is nonlinear, we increase the amplitude

of the incident Gaussian pulse for a fixed pumping rate to see how high we can go in the

strength of the incident electric field and still have the full compensation of the losses, i.e., the

transmitted signal equals the incident signal, independent on the signal strength. In this region

we have compensated loss and still have linear response of the metamaterial. The shape of the

transmitted signal is only affected by the dispersion but not dependent on the signal strength.

For a three-layer system (NIM - gain material - NIM), we have calculated the transmission

versus the strength of the electric field of the incident signal for several pumping rates close

to the critical pumping rate Γpump = 4.70× 109 s−1, as shown in Figure 4.9. We find it has a

linear response within a very broad range up to incident electric field of 103 V/m. If we use
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Figure 4.7 The normalized occupation numbers as a function of time. The
gain slab width w = 100 nm and the gain bandwidth of the
atomic transition between N1 and N2 is 5THz. (a) The elec-
trons are optically pumped by an input EM wave with input
power Pin = 120.6 W/mm2 and (b) the electrons are pumped
with a homogeneous pumping rate Γpump = 9.3 × 109 s−1. Oc-
cupation numbers N0, N1, N2 and N3 are normalized by the
total electron density Ni [Ni = N0(t = 0) = 5.0× 1023 /m3].
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Figure 4.8 The negative index material (blue) embedded in layers of gain
material (orange). The number of layers, the permittivity and
permeability of NIM are taken different values for different cases
we have examined. The width for both NIM and gain material
is w = 50nm. The gain bandwidth is 5 THz.
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Figure 4.9 The transmission vs. signal amplitude for the loss-compen-
sated metamaterial of a three-layer system (NIM - gain material
- NIM) with gain bandwidth of 5 THz, for different pumping
rates Γpump. Γpump is increased from 4.0 × 109 s−1 (lowest) to
5.5 × 109 s−1 (highest) in steps of 1.0 × 108 s−1. The material
parameters for NIM are ε = µ = −1 + 2 i. The metamaterial
response is linear in a very wide range. When the loss-com-
pensated transmission reaches exactly unity, the pumping rate
Γpump = 4.70 × 109 s−1, which is called the critical pumping
rate. For incident fields stronger than 104 V/m the metamate-
rial behaves nonlinearly.

19 layers of Figure 4.8, the critical pumping rate is 1.98× 109 s−1, which is even smaller than

half of the three-layer case, and the linear regime becomes narrower and drops faster than the

3-layer case for higher strength of incident electric field (shown in Figure 4.10). To include the

nonlinearity of gain material for strong incident signal, it is necessary to do a self-consistent

calculation using FDTD method.

As an example, we have also studied the three-layer system with different losses, to see how

much Γpump we need to compensate the losses. Figure 4.11 shows there exists a linear relation

between the critical pumping rate and the imaginary part of the refractive index n of NIMs.

We have also numerically calculated the susceptibilities of the gain material to see if it

really has a Lorentz lineshape. We first let a Gaussian pulse of a given amplitude (10 V/m)

propagate through the metamaterial system and calculate the time-domain electric polarization
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Figure 4.10 The transmission vs. signal amplitude for the loss-compen-
sated metamaterial of Figure 4.8 with gain bandwidth of 5 THz
at the critical pumping rates Γpump = 1.98×109 s−1. The ma-
terial parameters for NIM are same as Figure 4.9. For incident
fields stronger than 103 V/m this metamaterial becomes non–
linear.

P(r, t) and the local electric field E(r, t). Then we implement the Fourier transforms to obtain

the frequency-domain polarization and electric fields and calculate the frequency-dependent

susceptibility by using the equation χ′(ω) + iχ′′(ω) = P (ω)/ε0E(ω). Simulations are done

for both 3 and 19 layers and results are compared with the analytic results calculated using

the equations [89] χ′ = −χ′′0∆x/(1 + ∆x2) and χ′′ = χ′′0/(1 + ∆x2) with ∆x = 2(ω − ωa)/Γa

and χ′′0 = −σa∆N/(ε0ωaΓa), where ∆N = N2 − N1. As shown in Figure 4.12, we find that

the numerical susceptibilities are the same as the analytic ones and they do have a Lorentz

lineshape.

To understand the lasing behavior of the metamaterial system, we increase the pumping

rate to provide more gain from the gain material. We found the amplification of the incident

signal gets larger and at last the system starts lasing till the pumping rate reaches a certain high

value. Figure 4.13(a) shows the lasing behavior at the pumping rate Γpump = 1.5 × 1010 s−1

and there appears a peak at the emission frequency 100THz in the corresponding Fourier

transform (Figure 4.13(b)).

If we use real metal layers instead of negative index materials, we can not compensate the

losses of the metals. The reason is that the permittivity ε for metals is large and negative and
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Figure 4.11 The critical pumping rates for different imaginary parts of the
refractive index n of NIMs. The structure is a three-layer
system (NIM - gain material - NIM) and ε = µ for NIMs.
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Figure 4.12 The numerical and analytical results for the susceptibilities of
gain materials as a function of frequency. (a) a three-layer
system (NIM - gain material -NIM) at the critical pumping
rate Γpump = 4.7×109 s−1. (b) a 19-layer system of Figure 4.8
at the critical pumping rate Γpump = 1.98× 109 s−1.
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Figure 4.13 (a) The time-dependent electric field of the transmitted wave
for a three-layer system (NIM - gain material - NIM) and (b)
the corresponding Fourier transform in frequency domain for
the lasing in (a). The pumping rate Γpump = 1.5× 1010 s−1.

we’ll have large reflections due to the impedance mismatch.

4.2.3 Conclusions

We have performed numerical simulations on one dimensional gain material system by using

FDTD method. The system starts lasing when the input reaches over the lasing threshold.

For greater input power/a wider gain slab, the lasing is faster. Comparisons were done for

a gain material slab between the optical pump method and its homogeneous pumping rate

simplification and results show that this simplification can be valid for a thin gain slab.

A one-dimensional metamaterial system consisted of layers of negative index material

(NIM) and gain material is also studied using FDTD method. We numerically show the

losses of NIM can be compensated by the amplification of the gain material layers. The non-

linear behaviors are studied by increasing the amplitude of the incident Gaussian pulse for

a fixed pumping rate. There is a relatively wide range of input signal amplitudes where the

NIM-gain system behaves linearly. When the amplitudes get higher, the system becomes non-

linear, due to the nonlinearity of the gain material itself. It is necessary to have self-consistent

calculations to determine the signal range where we can expect a linear response. Further, if

we have strong signals, so that we are in nonlinear regime, or we want to study lasing, the
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self-consistent calculation is needed. We also show the critical pumping rate, for which the

loss-compensated transmission reaches exactly unity, has a linear relation with the imaginary

part of the refractive index n of NIMs. In addition, we verified our FDTD code by comparing

the numerically calculated susceptibility of the gain material and its analytical counterpart,

and studied the lasing behavior of the NIM-gain system by increasing the pumping rate.

4.3 Loss Compensation in 2D Metamaterials

In section 4.2.2, we simply force the permittivity and the permeability of the metamaterial

to be negative to have an unrealistic negative index material. In this section, we consider

two-dimensional (2D) metamaterial systems to emulate the resonant elements in a realistic

metamaterial.

a

×

E

k

H
wL

wg

Figure 4.14 One layer of gain material (orange) embedded in a square lat-
tice of dielectric square cylinders (blue) that have a Lorentz
behavior. The dielectric constant of the cylinders is given by
ε = 1 + ω2

p/(ω2
p − 2iωγ − ω2), where the resonance frequency

fp = ωp/2π = 100 THz and γ = 2πf , and f takes different
values in the cases we have examined. The dimensions are
a = 80nm, wL = 40nm, and wg = 30nm.

4.3.1 One layer of gain material embedded in a square lattice of Lorentz dielectric

cylinders

The first system is consisted of one layer of gain material and two layers of dielectric wires

that have a Lorentz-type resonant electric response to emulate the electric resonator, such as
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Figure 4.15 (a) The retrieved results for the real and the imaginary parts
of the effective permittivity ε with gain and without gain. Be-
low compensation, t = 0.89; gain and Lorentz bandwidths are
20 THz and 5THz, respectively. (c) and (e) are same as (a),
but for the loss compensated case (t = 1) and the overcompen-
sated case (t = 1.34), respectively. (b), (d) and (f) are same
as (a), (c) and (e), respectively, except with gain bandwidth
5 THz and Lorentz bandwidth 20THz.
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cut-wires, as shown in Figure 4.14. The center radiation frequency of the gain material is

100 THz. And the discrete time and space steps are 8.33 × 10−18 s and 5.0 × 10−9 m, respec-

tively. We first study the three-layer system with the full width at half maximum (FWHM)

5 THz for Lorentz dielectric (i.e., f = 2.5 THz) and 20 THz for gain. The transmission, T , the

reflection, R, and the absorption, A = 1 − T − R, as a function of frequency for the system

are obtained in the propagation direction. With the introduction of gain, the absorption at

the resonance frequency of 100 THz decreases and reaches 0 at a certain pumping rate. So the

gain compensates the losses. If we continue increasing the gain, i.e., the pumping rate, the

system gets overcompensated and the absorption becomes negative. To see how the losses of

the emulated resonators get compensated by the gain, we exploit the usual retrieval proce-

dure based on inverting the scattering amplitudes [126] to obtain the effective permittivities ε

without gain and with gain. Figure 4.15(a), (c) and (e) show the retrieved results for the real

and the imaginary parts of the effective permittivities ε of the system for the below compen-

sation, loss-compensated, and overcompensated cases, respectively, together with the effective

permittivity without gain. The retrieved results for ε without gain have exactly the Lorentz

shape but the amplitude of the real and the imaginary parts of ε is a factor of 4 less than

the Lorentz formula for the square cylinders. This is due to the filling ratio of the square

cylinders in the unit cell. Due to the loss compensation from the gain material, one can see the

imaginary part of the effective permittivity gets lower as the gain increases. Below compensa-

tion, its value at the resonance frequency of 100THz is positive, while it’s zero and negative

for the loss-compensated and overcompensated cases, respectively. Notice that we can have

Re(ε) ≈ 2 with Im(ε) ≈ 0 at 98 THz and Re(ε) ≈ −1 with Im(ε) ≈ 0 at 101 THz for the below

compensation case (Figure 4.15(a)). For the loss-compensated case (Figure 4.15(c)), we have

Re(ε) ≈ 1 with Im(ε) ≈ 0 at the resonance frequency 100 THz, which is just same as vacuum

and makes no sense for us. For the overcompensated case (Figure 4.15(e)), the imaginary part

of the effective permittivity ε is negative within all the frequency range.

Second, we study the three-layer system with the FWHM of gain smaller than Lorentz

dielectric, where the bandwidths for gain and Lorentz dielectric are 5THz and 20 THz (i.e.,
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f = 10THz), respectively. The introduction of gain develops a peak at the resonance frequency

of 100THz for the transmission while the absorption has a dip. The retrieved results for the real

and the imaginary parts of the effective permittivities ε without gain and with gain are plotted

in Figure 4.15(b), (d) and (f) for the three different cases discussed above. Similar to the first

case we examined where the loss bandwidth is smaller than the gain, the imaginary part of

the effective permittivity ε gets smaller due to the gain. The difference is we get interesting

results for the overcompensated case instead of the below compensation case, where we can

have Re(ε) ≈ 0 with Im(ε) ≈ 0 at 97THz and Re(ε) ≈ 2.1 with Im(ε) ≈ 0 at 103THz.

So for both the two systems, one can obtain a lossless metamaterial with positive or negative

Re(ε), either below compensation or over compensation. In Figure 4.15 we also have plotted

the sum of Im(ε) without gain and the imaginary part of εg, the dielectric function of the gain

material. One can see the imaginary part of ε of our total system with gain is equal to the

sum of Im(ε) and Im(εg). This is unexpected because there is no coupling between the Lorentz

dielectric and the gain. This is indeed true for the 2D Lorentz dielectric cylinders, because they

have a continuous shape like a solenoid and the gain material slabs have zero depolarization

field. Different from finite length wires [hence a three-dimensional (3D) problem] where the

dipole interactions between Lorentz wires and gain material are dominated by the near field

O(1/r3), the interaction for infinite length wires is only via the propagating field O(ω ln |kr|),

and much weaker. That’s why the Lorentz wires and the gain material are approximately

independent in our 2D simulations. So there is a need for a true 3D simulation to solve

this problem and obtain different behaviors. However, the 3D simulation is computationally

excessively demanding.

Like the layered system in section 4.2.2, if we keep increasing the pumping rate, i.e., the

gain, at last both of the two systems will have lasing. For example, when the pumping rate

reaches Γpump = 3.2×1010 s−1, the three-layer system with gain bandwidth 5 THz and Lorentz

bandwidth 20 THz starts lasing — the system itself has a coherent self-sustained steady output.
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Figure 4.16 Geometry for a unit cell of the square SRR system with
gain embedded in the gap (orange). The dimensions are
a = 100 nm, l = 80nm, t = 5nm, d = 5nm and w = 15nm.

4.3.2 2D split ring resonators (SRRs) with gain material inclusions

To avoid the decoupling problem in section 4.3.1 and still limit our simulations in a 2D

model, we consider a 2D split ring resonator (SRR) as a more realistic and also more relevant

model, where the relevant polarization is across the finite SRR gap and therefore the coupling

to the gain material is dipole-like. In Figure 4.16, we show the geometry for the unit cell of the

SRR system with the gain material embedded in the gap. The dimensions of the SRR are chosen

such that the magnetic resonance frequency of the SRR overlaps with the emission frequency

(100 THz) of the gain material. The discrete time and space steps are chosen 8.33 × 10−19 s

and 1.0 × 10−9 m, respectively. Due to the strong electric field inside the gap, there will be

strong coupling between the SRR and the gain material. We also want to see if the losses of

the magnetic response can be compensated by the electric gain.

Simulations are done for one layer of the square SRR with gain bandwidth of 20 THz.

Figure 4.17(a) shows the retrieved results for the real and the imaginary parts of the effective

permeability µ, with gain (pumping rate Γpump = 1.0×109 s−1) and without gain. One can see

that with the introduction of gain, the gain undamps the magnetic resonance of the SRR and

the weak and broad resonant effective permeability µ of the lossy SRR becomes strong and

narrow. The FWHM with gain is 2.61 THz, while the FWHM without gain is 5.85 THz, which is

more than twice larger than the former. Notice that in the off-resonance range in Figure 4.17(a),



81

85 90 95 100 105 110 115
−10

−5

0

5

10

15

20

Frequency (THz)

P
er

m
ea

bi
lit

y 
µ

5.85 THz

2.61 THz

Re(µ) with gain
Im(µ) with gain
Re(µ) w/o gain
Im(µ) w/o gain

(a)

85 90 95 100 105 110 115
0

1

2

3

4

5

6

7

8

9

Frequency (THz)

In
de

x 
of

 r
ef

ra
ct

io
n 

n

Re(n) with gain
Im(n) with gain
Re(n) w/o gain
Im(n) w/o gain

(b)

Figure 4.17 The retrieved results for the real and the imaginary parts of (a)
the effective permeability µ and (b) the corresponding effective
index of refraction n, with and without gain for a pumping
rate Γpump = 1.0×109 s−1 and the SRR system of Figure 4.16.
The gain bandwidth is 20 THz. Notice that the width of the
magnetic resonance with gain is 2.61 THz.

we can obtain the effective permeability µ with a smaller imaginary part with the introduction

of the gain, which means the magnetic loss is compensated by the electric gain. Figure 4.17(b)

shows the retrieved results for the real and the imaginary parts of the corresponding effective

index of refraction n, with and without gain. Note that for a lossless SRR, n is purely real away

from the resonance except in a small band above the resonance where it’s purely imaginary due

to the negative µ. At the frequency of 96THz, slightly below the resonance (Figure 4.17(b)),

the imaginary parts of the index of refraction n without and with gain are 1.36 and 0.754. Then

we can find the effective extinction coefficient without gain is α = (ω/c)Im(n) ≈ 2.74×104 cm−1

and the one with gain is α ≈ 1.52× 104 cm−1. And hence the effective amplification coefficient

of the gain in the combined system is α ≈ −1.22 × 104 cm−1, which is much larger than the

amplification α ≈ −9.2 × 102 cm−1 for the bulk gain material [89] at the given pumping rate

Γpump = 1.0 × 109 s−1. This is due to the strong local electric field enhancement in the gap

of the resonant SRR. While we have the incident electric field 10 V/m, the induced electric

field in the gap is around 450 V/m. Taking the observed field enhancement factor around 45

in the gap of SRR, the energy produced by the gain in the gap is around 12 times larger
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than from the homogeneous bulk gain material in the size of the unit cell, which agrees well

with the factor around 15 between the simulated SRR effective medium and the homogeneous

gain medium. If we continue increasing the pumping rate, the magnetic resonance becomes

narrower (0.96 THz for pumping rate Γpump = 1.8× 109 s−1). When the pumping rate reaches

Γpump = 1.9 × 109 s−1, the metamaterial system gets overcompensated and the imaginary

part of the effective permeability µ at the resonance frequency gets flipped down and becomes

negative. If we increase the pumping rate even more (around Γpump = 5.0× 109 s−1), the SRR

system starts lasing [73, 127].
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Figure 4.18 The retrieved results for the real and the imaginary parts of the
effective permeability µ with and without gain for a pumping
rate Γpump = 8.0 × 108 s−1 and the SRR system where the
SRR is surrounded by gain. The gain bandwidth is 20 THz.
Notice that the width of the magnetic resonance with gain is
1.60 THz, narrower than Figure 4.17(a).

Instead of having the gain in the gap of SRR, we also have done simulations on the SRR

system where the gain is surrounding around the SRR. The retrieved results for the real and

the imaginary parts of the effective permeability µ without gain and with gain for a given

pumping rate Γpump = 8.0×108 s−1 are plotted in Figure 4.18. Due to the larger gain filling in

the unit cell, the coupling between the gain material and the SRR gets stronger and the losses

of SRR are easier to be compensated. Compared with the case with the gain in the gap only,

the effective permeability µ of the simulated SRR system in Figure 4.18 can have stronger and

narrower resonance (FWHM = 1.6 THz) even with lower pumping rate. Similar to the previous
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case, the magnetic resonance becomes stronger and narrower (0.7 THz at Γpump = 1.0×109 s−1)

as we increase the pumping rate, and the system gets overcompensated so that the magnetic

resonance peak gets flipped down when the pumping rate reaches Γpump = 1.1 × 109 s−1. It’s

also easier for this system to have lasing [73, 127], which is observed when the pumping rate

is ≈ Γpump = 2.5× 109 s−1.

4.3.3 Conclusions

Numerical simulations have been done for 2D metamaterial systems — a square lattice

of Lorentz dielectric cylinders with layers of gain material and a 2D SRR with gain material

inclusion. The results show that the losses of 2D metamaterials can be compensated by the

gain material.

For the 2D Lorentz dielectric wire lattice, there is no coupling between the Lorentz dielec-

tric wires and the gain material, due to the infinite length of the wires, which leads to zero

depolarization field in the gain material. This is unexpected and implies the need for a true

3D simulation for this problem.

The 2D SRR has the relevant polarization across its gap and therefore can strongly couple

to the gain embedded in its gap. Two SRR systems with different gain inclusions were studied

in the linear region of the gain. We have demonstrated that the magnetic losses of the SRRs

can be easily compensated by the electric gain by investigating the retrieved permeability and

index of refraction. The magnetic resonance gets stronger and narrower with the pumping rate

increasing. The pumping rate needed to compensate the losses is much smaller than the bulk

gain material due to the strong local field enhancement in the gap of the SRRs. The losses of

the SRR surrounded by gain can be easier to be compensated than the SRR with gain in the

gap only due to more coupling with the gain. Provided that the pumping rate is high enough,

the metamaterial nanostructures can have lasing.
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4.4 Overcoming Losses with Gain in Fishnet Metamaterials

In section 4.3, the loss compensation of 2D metamaterials is studied, however, the re-

alistic metamaterial structure is in three dimensions. So there is a need to study the loss

compensation of 3D metamaterials to guide the experimentalists to seek new 3D metamate-

rial designs. As the first example, we present numerical results for loss compensation of the

fishnet structure at optical frequencies. This is important, because the experimentalists in the

metamaterial community are working on compensating the losses by introducing gain in the

fishnet metamaterials [84].

4.4.1 Geometric dimensions of the fishnet structure

 

 

                 
 

za

xa

ya

xw yw

s

t

t

gh
(z) k

(x) E (y) H

Figure 4.19 Schematic of the unit cell of the fishnet structure with the
parameters marked on it. The geometric parameters are
ax = ay = 860 nm, az = 200 nm, wx = 565 nm, wy = 265 nm,
s = 50 nm, t = 30 nm and hg = 20nm. The thicknesses of the
metal (silver) and gain layer are t and hg, respectively, and
the dielectric constant of the spacer, MgF2, is 1.9. These pa-
rameters were used on simulations [Ref. [128]] and experiments
[Ref. [28]].

In Figure 4.19, we show the unit cell of the fishnet structure. The size of the unit cell

along the propagation direction is az. az is larger than the sum of the thickness of the metal

and the dielectric layers 2t + s, where t and s are thicknesses of the metal and the dielectric

layers, respectively. Notice the propagation direction is perpendicular to the plane of the

fishnet with the electric and magnetic fields along the x and y directions, respectively. All

retrieved effective parameters are for this particular incident direction and field polarization.
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Consider two configurations, one without gain and one with gain (see inset of Figure 4.19).

In the configuration with gain, we have introduced two thin dielectric layers of thickness,

(s− hg)/2, close to the metallic structure, so the gain medium will not be close to the metal,

then quenching will be avoided. The dimensions of the fishnet structure [28, 128] are chosen

such that the magnetic resonance wavelength at λ = 2000 nm, which can overlap with the

peak of the emission of the gain material. The full width at half maximum (FWHM) of the

gain material is 20 THz and the pumping rate, Γpump, changes from 0 to 6.9× 108 s−1. In the

FDTD calculations, the discrete time and space steps are chosen to be ∆t = 8.0× 10−18 s and

∆x = 5.0× 10−9 m.

4.4.2 Transmission T , reflection R, and absorption A spectra and retrieval results
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Figure 4.20 The (a) transmission, (b) reflection, and (c) absorption as a
function of wavelength for different pumping rates.

In Figure 4.20, we plot the transmission, T = |t|2, reflection, R = |r|2, and absorption,

A = 1−T −R versus wavelength for different pumping rates (t and r are the transmission and

reflection amplitudes, respectively). Notice the wavelength dependence of T and R for different

pumping rates away from the resonance wavelength, λ = 2000 nm, are the same. Below the res-

onance wavelength, T increases with the pumping rate and above the resonance wavelength, T

decreases with the pumping rate. The reflection R, below the resonance wavelength, decreases

with the pumping rate and above the resonance wavelength, it increases with the pumping rate.

Notice in Figure 4.20(a), T without gain has a very weak resonance, and once the pumping

rate increases, the transmission clearly shows the resonance behavior. The same can be seen in

the experiments that can use gain materials to compensate the losses in fishnet metamaterials.
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In Figure 4.20(c), we plot the absorption, A, as a function of wavelength for different pumping

rates. Notice, as we increase the pumping rate, the absorption decreases and finally at the

pumping rate of 6.6×109 s−1, the gain overcompensates the losses and the absorption becomes

negative. In Figure 4.21(a), we plot the retrieved results of the real and imaginary parts of

the magnetic permeability, µ, with and without gain, for normal incidence and the particular

field polarization in Figure 4.19. As gain increases, the Re(µ) becomes steeper at the reso-

nance wavelength and the Im(µ) becomes much narrower when increasing the pumping rate

and the losses are compensated by the gain material. In Figure 4.21(b), we plot the retrieved

results for the effective index of refraction n, with and without gain. The Re(n) becomes more

negative after gain is introduced and the Im(n) also drops significantly close to the resonance.

At λ = 1976 nm, the Re(n) changes from -2.25 to -2.82 with a pumping rate of 5.0 × 108 s−1

and the Im(n) drops from 1.58 to 0.54 (Fig. 3b). In Figure 4.21(c), we plot the FOM versus

the wavelength for different pumping rates. Notice, the FOM becomes very large (of order of

102) with the pumping rates. Comparing Im(n) slightly below the resonance at λ = 1976 nm,

we find the effective extinction coefficient α = ω
c Im(n) ≈ 5.0 × 104 cm−1 without gain and

α ≈ 1.7 × 104 cm−1 with gain (Γpump = 5.0 × 108 s−1). Hence, an effective amplification of

α = −3.3× 104 cm−1. This is much larger (of the order of 30) than the expected amplification

α ≈ −1.3 × 103 cm−1 for the gain material at the given pumping rate of 5.0 × 108 s−1. The

difference can be explained by the field enhancement in the fishnet metamaterial.

4.4.3 Kramers-Kronig relations for metamaterials with gain

There are theoretical debates [129–133] if it is possible to obtain low loss metamaterials with

negative refractive index, n. They have used the Kramers-Kronig (KK) relations and we would

like to verify that Kramers-Kronig relations work with and without gain. In addition, we need

to compare the numerically-retrieved effective permeability, µ, shown in Figure 4.21(a), with

the calculation of µ, based on the Kramers-Kronig relations. In Figure 4.22(a), we plot the real

and imaginary parts of the effective permeability, µ, and the results from the Kramers-Kronig

relations for the pumping rate of Γpump = 5.0× 108 s−1. The excellent agreement between the
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Figure 4.21 The retrieved results for the real (solid lines) and the imaginary
(dashed lines) parts of (a) the effective permeability, µ, and (b)
the corresponding effective index of refraction, n, without and
with gain for different pumping rates. (c) The figure-of-merit
(FOM) as a function of wavelength for different pumping rates.
The gain bandwidth is 20THz.

results obtained from the standard retrieval method [126] and the Kramers-Kronig approach

verifies KK relations work for metamaterials coupled with gain too. KK relations are valid

for passive materials and the deduction of KK relations is based on the assumption that the

response function of materials is analytical in the upper complex plane of frequency. For

strong active materials, there are poles in the upper plane and one must modify the KK

relations by reversing the signs of KK relations [133]. In Figure 4.22(b), we plot the Re(µ) and

Im(µ) obtained by the retrieval method and by the modified KK relations for the pumping

rate Γpump = 6.9 × 108 s−1. For this pumping rate the Im(µ) becomes negative and we have

overcompensated at the resonance frequency of 150THz. As one can see from Figure 4.22(b),

KK relations work well for strongly active materials.

4.4.4 Conclusions

We have proposed and numerically solved a self-consistent model incorporating gain in

the 3D fishnet dispersive metamaterial. We show numerically that one can compensate the

losses of the fishnet metamaterial. We have presented results for T , R, and A without and

with gain for different pumping rates. Once the pumping rate increases, both T and R show

a resonance behavior. We have retrieved the effective parameters for different pumping rates

and the losses are compensated with gain. Kramers-Kronig relations of the effective parameter
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Figure 4.22 The real and imaginary parts of the retrieved effective perme-
ability, µ, and the results from the Kramers-Kronig relations
for pumping rates (a) Γpump = 5.0 × 108 s−1 (below compen-
sation) and (b) Γpump = 6.9× 108 s−1 (overcompensated).

are in excellent agreement with the retrieved results with gain. The figure-of-merit (FOM)

with gain increases dramatically and the pumping rate needed to compensate the loss is much

smaller than the bulk gain. This aspect is due to the strong local-field enhancement inside the

fishnet structure.

4.5 Overcoming Losses with Gain in 3D SRR Metamaterials

4.5.1 Geometric dimensions of 3D SRR metamaterials

Except the fishnet structure, we also have studied the loss compensation of 3D SRR meta-

materials with gain. Our collaborators in Karlsruhe are doing experiments to compensate

the losses of such kind of metamaterial structures with semiconductor quantum wells. Fig-

ure 4.23(a) shows a layered structure where the SRR is fabricated on a GaAs-gain-GaAs

sandwich substrate. The GaAs layer between the SRR and gain is introduced to avoid the

quenching effect. The incident wave propagates along the y direction parallel to the SRR plane

and has the magnetic field perpendicular to that plane. The unit cell size along the propaga-

tion direction is a. In z direction, the unit cell size is h, which is larger than h1 +h2 +h3 +hs,

where h1, h2, h3 and hs are the thicknesses of the bottom GaAs layer, the gain layer, the GaAs

spacing layer, and the SRR, respectively. Along the unit cell boundaries in x and z directions,
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periodic boundary conditions are enforced to simulate the infinite periodic structure. All the

dimensions are chosen to have the magnetic resonance overlap with the emission frequency of

100 THz of the gain material. For comparison, we also introduce another gain configuration

(see Figure 4.23(b)), where the gain is embedded in the gap of the SRR instead of a layer

underneath. The dimensions keep the same as Figure 4.23(a). In the FDTD simulations, the

discrete time and space steps are chosen to be ∆t = 2.0× 10−18 s and ∆x = 2.5× 10−9 m.
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Figure 4.23 (a) One unit cell for the silver-based SRR structure (light blue)
with the gain layer underneath. The dielectric constants ε

for GaAs (yellow) and gain (red) are 11 and 2, respectively.
The whole structure is in vacuum background (light gray).
The dimensions are a = 250 nm, l = 160 nm, h = 80 nm,
h1 = 15 nm, h2 = h3 = 10 nm, h4 = 45 nm, hs = 25 nm,
w = 40nm and d = 20nm. (b) same as (a) except the gain is
embedded in the SRR gap with ε = 1 and the gain layer in (a)
is replaced by a dielectric layer (ε = 2) (blue).

4.5.2 Numerical simulations and discussions

In this section, we apply three different pumping schemes on the gain layer shown in

Figure 4.23(a): (1) the gain is isotropic and pumped with a homogeneous pumping rate, (2)

the gain is isotropic but has a shadow cast by the SRR where the gain is off, elsewhere it

has a homogeneous pumping and (3) the gain is anisotropic, i.e., it is only pumped in one

selected direction. The linewidths of the magnetic resonances for different pumping rates are

investigated to see if the gain can effectively reduce the magnetic losses. Simulation results

show that the homogeneously pumped isotropic gain can significantly reduce the losses, while
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the other two schemes do have contributions to loss compensation but are not so efficient. The

electric field distributions in the cross-section of the gain layer (xy plane) are plotted to explain

the big difference in loss compensation among the three different gain pumping schemes. Since

the GaAs layer (ε = 11) has much higher dielectric constant than the gain (ε = 2) in this

structure, the electric field may be bounded in the spatial vicinity of the high dielectric layer,

then the interaction between the gain material and the SRR may be affected. We have also

done simulations for different gain background dielectric constants to see how it affects the loss

compensation. Results show that for anisotropic gain, the gain dielectric background does not

significantly change the loss compensation.

4.5.2.1 Isotropic gain
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Figure 4.24 The retrieved results for the real and imaginary parts of the
effective permeability µ, with and without gain, for the gain
configuration shown in Figure 4.23(a). For the case with gain,
the pumping rate Γpump = 1.5× 109 s−1.

We first let a wide band Gaussian pulse of a given amplitude go through one layer of the

SRR structure shown in Figure 4.23(a) and calculate the transmission T , the reflection R, and

the absorption A = 1− T − R, as a function of frequency in the propagation direction. With

the introduction of gain, the absorption near the resonance frequency f = 100 THz decreases

and the transmission increases. To investigate the loss reduction of the magnetic resonators,

we plot the retrieved effective permeabilities µ without gain and with gain by inverting the

scattering amplitudes [126, 134] in Figure 4.24. One can see the gain undamps the magnetic
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Figure 4.25 The real (solid) and imaginary (dashed) parts of I/(ηω2E)
as a function of frequency for different pumping rates. (a)
For the structure with a gain layer below the SRR, shown in
Figure 4.23(a). (b) For the structure with the gain in the SRR
gap as shown in Figure 4.23(b). Notice that the resonance is
getting stronger and narrower as the pumping rate increases.

resonance of the SRR and the resonant effective permeability µ of the SRR becomes much

stronger and narrower compared to the case without gain. However, due to the periodicity

effect, the strong magnetic resonance in Figure 4.24 gets misshapened [134], which causes the

difficulty in measuring the linewidth of the magnetic resonance. The periodicity effect itself is

inherent in the retrieval procedure. To distinguish the magnetic resonance of the SRR from the

periodicity effect of the structure, we directly calculate the resonant current (i.e., the magnetic

moment) flowing around the split ring, so we do not need to go through the retrieval procedure.

Consider the SRR as a simple LCR circuit model, we can have the following equation,

L
dI

dt
+
∫

Idt

C
+ IR = εemf , (4.1)

where L, C and R are the effective inductance, capacitance and resistance of the SRR, respec-

tively, and I is the current flowing in the SRR and εemf is the induced electromotive force.

From Faraday’s law, εemf = −dΦ/dt = iAµ0ωH = iAω
c E. (Φ is the magnetic flux through the

SRR, A is the area enclosed by SRR, and c is the speed of light in vacuum.) Then we can
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obtain the expression with Lorentz resonance shape,

I

ηω2E
= − 1

ω2 − ω2
0 + iγω

, (4.2)

where η, ω0, and γ are A/(cL), 1/
√

LC, and R/L, respectively. The detailed results are plotted

in Figure 4.25(a) for the structure shown in Figure 4.23(a). One can see the current resonances

have very nice Lorentz line shapes. As the pumping rate increases, the resonance is stronger

and narrower. The full width at half maximum (FWHM) reaches 2.5 THz when the pumping

rate Γpump = 2.8 × 109 s−1, which is a significant loss reduction compared with the FWHM

without gain (FWHM = 6.4 THz). So the gain compensates the losses. In addition, we also

calculate I/(ηω2E) vs. frequency curves for the gain configuration shown in Figure 4.23(b)

to compare the efficiency of the loss compensation for these two different gain configurations.

The results are shown in Figure 4.25(b). One can see the structure with gain in the SRR

gap needs less gain (i.e., smaller pumping rate) to reach the same FWHM of the resonance

than the case with gain underneath the SRR. For example, the latter structure needs the

pumping rate Γpump = 2.8 × 109 s−1 to have FWHM = 2.5 THz while the former only needs

the pumping rate Γpump = 1.5 × 109 s−1. It is straightforward because of the strong local

electric field enhancement in the SRR gap. Though the loss compensation for the structure

with a gain layer underneath the SRR is not so efficient as the case with the gain in the

SRR gap, the results in Figure 4.25(a) still show that the magnetic losses can be significantly

reduced, especially if we push the pumping rate to a high value.

We also have studied the normal incidence case where the direction of propagation is

perpendicular to the SRR plane and the electric field is parallel to the gap bearing side of

the SRR, such that the electric field can couple to the electric dipole in the gap and induce

the magnetic resonance [135, 136]. We want to see if the losses can be compensated by the

gain layer underneath the SRR for the normal incidence. With this incidence direction, the

unit cell size in the propagation direction is h, which is much smaller than the wavelength λ,

so the resonance is far below the Brillouin zone edge and then there is no periodicity effect.

Figure 4.26 plots the retrieved effective permittivity ε, with and without gain. Both of them
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Figure 4.26 The retrieved results for the real and imaginary parts of the
effective permittivity ε, with and without gain, for the nor-
mal incidence in Figure 4.23(a). For the case with gain, the
pumping rate Γpump = 1.0× 109 s−1.

have a very nice Lorentz line shape. Without gain, the resonance is broad and weak, and the

FWMH is 3THz. With the introduction of gain, the resonance gets stronger and narrower, and

the FWHM reduces to a much smaller value, 0.92 THz. So the gain effectively compensates

the losses of the SRR for normal incidence.

4.5.2.2 Isotropic gain with a shadow of the SRR

z x

y

HE

k

Figure 4.27 Top view of the gain layer in Figure 4.23(a) when a shadow
(blue) is cast by the SRR structure. The gain goes away in the
shadow, while in other area (red) it is homogeneously pumped.

So far, the gain material in our simulations is pumped by a homogeneous pumping rate
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Γpump. This is an ideal case. Consider the case in experiments that we incident an external

electromagnetic pumping wave on the structure from the top in Figure 4.23(a) to optically

pump the electrons from level 0 to level 3, there is a shadow in the gain layer cast by the

SRR structure, where the gain is pumped by a much lower rate. As a simplified model, we

turn off the gain in the area which lies directly under the SRR to simply emulate the shadow

of the SRR structure, while we still keep a homogeneous pumping rate Γpump in other gain

area (see Figure 4.27). In Figure 4.28(a), we plot I/(ηω2E) as a function of frequency in

this case. Compared with the case without the shadow in the gain layer (Figure 4.25(a)), the

resonance gets much weaker and broader (FWHM = 5.7 THz and 5.4 THz for the pumping

rates Γpump = 1.0×109 s−1 and 1.5×109 s−1, respectively). This shows the gain in the shadow

area plays an important part in the loss compensation.
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Figure 4.28 The real (solid) and imaginary (dashed) parts of I/(ηω2E) as
a function of frequency for different pumping rates. (a) For
the structure with a shadow in the gain layer cast by the SRR.
(b) For the structure where the gain is pumped in y direction
only (see the coordinate system in Figure 4.23(a)).

4.5.2.3 Anisotropic gain

The gain taken in our simulations above is the isotropic gain material, which is equally

pumped in all directions. The realistic gain, such as semiconductor quantum dots/wells, can

be anisotropic, i.e., it can only couple to the external field in a certain direction. In our following

simulations we take into considerations one gain material which is only pumped in y direction.
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It means the gain only couples to the electric field in y direction. The corresponding I/(ηω2E)

vs. frequency curves for different pumping rates are plotted in Figure 4.28(b). One can see the

resonances are also much broader than the case with homogeneously pumped isotropic gain.

So the loss compensation is less efficient.

4.5.2.4 Explanation of the differences among the three pumping schemes
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Figure 4.29 The electric field amplitude distribution at the resonance fre-
quency in the cross-section of the gain layer (xy plane in Fig-
ure 4.23(a)) for different components: (a) Ex, (b) Ey and (c)
Ez. The area enclosed by the black line is the projection of the
SRR in the gain layer. The electric field is calculated without
gain.

To see why these three gain pumping schemes are so different in the loss compensation, we

have calculated the electric field amplitude distribution in the cross-section of the gain layer

(xy plane in Figure 4.23(a)). The detailed results are plotted in Figures 4.29(a)-4.29(c). One

can see the x component of electric field, Ex, is very weak while the other two components,

Ey and Ez, are relatively strong. So we can ignore the gain contribution by Ex and focus on

the gain from the coupling with Ey and Ez. Notice that Ey is bounded in the area right below

the SRR gap (Figure 4.29(b)) while Ez mainly has a significant value in the projection of the

SRR in the gain layer (Figure 4.29(c)). This characteristic of the field amplitude distribution

leads to almost no contribution by Ez when we have a shadow in the gain layer since there is

no gain in that area. Similarly, the gain contribution by Ez goes away for the anisotropic gain
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because the gain only couples with the y component of the electric field, Ey. This fact explains

the big difference between the homogeneously pumped isotropic gain case and the other two

gain pumping schemes.

4.5.2.5 The effect of the dielectric background of gain
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Figure 4.30 The imaginary parts of I/(ηω2E) as a function of frequency for
different background dielectric constants of the gain material,
which is only pumped in y direction. For the case with gain,
the pumping rate is Γpump = 1.5×109 s−1. Note the resonance
enhancements by the gain are almost the same.

Since there is a high contrast between the dielectric constants of the GaAs (ε = 11) and gain

(ε = 2) layers, the electromagnetic fields may be bounded in the high dielectric layer. In this

section, we will discuss the effect of the dielectric background of gain on the loss compensation.

In Figure 4.30, we plot the detailed results for the imaginary parts of I/(ηω2E) as a function

of frequency, with and without gain, for the background dielectric constants of the gain layer

εg = 2, 5 and 11. The gain is anisotropic and only couples to the electric field in y direction.

We can see the resonance frequency shifts down as the dielectric constant increases. This is

expected since the effective capacitance increases with the increment of the dielectric constant.

To effectively compensate the losses, we scale the emission frequency to overlap with the

corresponding resonance frequencies and then pump with the same rate Γpump = 1.5×109 s−1.

We can see from Figure 4.30 that the resonance enhancements are almost the same for different
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background dielectric constants of the gain.
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Figure 4.31 The electric field amplitude distributions for different back-
ground dielectric constants of the gain material (εg = 2, 5 and
11) at their corresponding resonance frequencies, in a yz plane
crossing the middle of the gap bearing side of the SRR. (a)
Ey and (b) Ez. The area enclosed by the dashed black line
indicates the position of the gain layer. The electric field is
calculated without gain.

To explain this, we plot the electric field amplitude distributions in a plane crossing the

middle of the gap bearing side of the SRR in Figure 4.31, for εg = 2, 5 and 11, respectively. The

Ex component is ignored since it is very weak as show in Figure 4.29(a). From Figure 4.31(a),

we can see the field amplitude distribution of Ey, the only component which couples to the gain,

does not change much in the gain layer as the gain background dielectric constant changes.

Although there is a bounding effect on the fields, the y component of the electric field, Ey,

does not substantially decay in such a very narrow gain layer (10 nm) neighboring to the high

dielectric GaAs layer. The main change in the electric field is the z component of the electric

field, Ez, decreases in the gain layer as the gain background dielectric constant, εg, increases,

as shown in Figure 4.31(b). This is due to the continuity of the normal component of the

electric displacement across the interface if there is no free charge accumulation. Hence the

normal component of the electric field is inversely proportional to the dielectric constant. The
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change of Ez does not affect the loss compensation due to no coupling between the gain and

Ez. If the gain can couple to Ez, such as the isotropic gain, the background dielectric constant

of the gain will significantly affect the loss compensation.

4.5.3 Conclusions

We have numerically studied the loss compensation of the silver-based SRR structure with

a gain layer underneath. Numerical results show that the losses of the SRR can be effectively

compensated by the gain layer for both the parallel and perpendicular incidences. For the

perpendicular incidence, the electric field of the incident wave is parallel to the gap bearing

side of the SRR. Three different gain pumping schemes are applied in the simulations and the

efficiencies of their corresponding loss compensations are studied by investigating the linewidth

of the magnetic resonance. To avoid the distortion of the Lorentz resonant lineshape in the

retrieved permeability, µ, due to the periodicity effect, the resonant current in the SRR is

calculated and then the linewidth of the magnetic resonance is obtained. The homogeneously

pumped isotropic gain can significantly reduce the magnetic losses, though it is less efficient

in the loss compensation compared to the case with the gain in the SRR gap. The other two

schemes, (1) a shadow is cast in the gain layer by the SRR and the gain goes away over that

region and (2) the gain is anisotropic and only couples to the electric field in y direction, are

much less efficient in the loss compensation compared to the isotropic gain case, due to no

interactions between Ez and the gain in these two schemes. We have also studied the effect

of the background dielectric of gain. As the gain background dielectric constant increases,

the electric component parallel to the interface does not change much in a very narrow layer

neighboring the high dielectric layer, instead, the normal component significantly changes due

to the continuity of the normal component of the electric displacement across the interface.

The change in the electric field will only affect the loss compensation for the gain which couples

to the electric field in the normal direction. For the gain pumped in the parallel direction only,

the background dielectric of the gain does not make much difference.
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CHAPTER 5. SUMMARY

The field of metamaterials has made great progress towards real applications in the last

decade. However, the envisioned applications are limited by the huge intrinsic losses of meta-

materials. Reducing the losses of metamaterials has become a big challenge in the research of

metamaterials. This thesis shows my theoretical studies in the loss reduction. There are two

approaches presented for reducing the losses of metamaterials.

One approach is to avoid the electric and magnetic resonances and hence reduce the losses.

By this approach, 3D metallic nanowire media with different structures are designed at the

optical frequency region and it is numerically demonstrated that they can be homogeneous

effective indefinite anisotropic media by showing their dispersion relations are hyperbolic. For

a finite slab, a nice fitting procedure is exploited to obtain the dispersion relations, from which

the effective permittivities are retrieved. The pseudo focusing for the real 3D wire medium

agrees very well with the homogeneous medium having the effective permittivity tensor of the

wire medium. Studies also show that in the long wavelength limit, the hyperbolic dispersion

relation of the 3D wire medium can be valid even for evanescent modes, which may have

important applications in super-resolution.

Another approach is to incorporate the gain in the metamaterial system. It is the most

promising and also more generic way to reduce the losses of metamaterials because for other

methods, such as geometry optimization, the loss is still orders of magnitude too large for the

envisioned applications. The gain material is modeled by a generic semi-classical four-level

atomic system and a computational scheme is presented, which allows for a self-consistent

treatment of a dispersive metallic photonic metamaterial coupled to a gain material incor-

porated into the nanostructure. Simulations are done for the loss compensations of 1D-3D
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metamaterials with gain and results show the losses of the dispersive metamaterial structures

presented in this thesis can be compensated by gain.

In 1D case, the lasing and nonlinear behaviors are studied for gain slabs and a 1D meta-

material system consisted of layers of negative index material and gain material. A critical

pumping rate exists for compensating the loss of the metamaterial. For a fixed pumping rate,

there is a relatively wide range of signal amplitudes for which the loss compensated metama-

terial still behaves linearly. At higher amplitudes, nonlinearities arise due to gain depletion.

It is necessary to have self-consistent calculations to determine the signal range where we can

expect a linear response. Further, if we have strong signals, so that we are in nonlinear regime,

or we want to study lasing, the self-consistent calculation is needed.

In 2D case, simulations are done for a lattice of resonant square cylinders embedded in

layers of gain material and split ring resonators with gain material embedded into the gaps.

Transmission, reflection, and absorption data as well as the retrieved effective parameters are

presented. It is numerically shown the magnetic losses of the SRR can be compensated by

the electric gain and the effective gain amplification coefficient of the combined system can be

much larger than the bulk gain due to the strong local field enhancement.

In 3D case, a fishnet structure and an array of SRRs are studied. The fishnet structure

has a magnetic resonance at the wavelength of 2000 nm. It is numerically shown that one

can compensate the losses of the fishnet metamaterial by the gain. Simulation results for

the transmission, T , reflection, R, and absorption, A, are presented. With the introduction

of gain, T and R show a strong resonance behavior. The effective index of refraction, n,

and permeability, µ, are presented for different pumping rates and clearly show the losses are

compensated with gain and the magnetic resonance becomes stronger with the gain. The figure-

of-merit (FOM) FOM = |Re(n)/Im(n)| is calculated from the retrieved n. It dramatically

increases with gain. Due to the strong local-field enhancement, the pumping rate needed to

compensate the losses is much smaller than the bulk gain. Kramers-Kronig relations are verified

by comparing the numerically retrieved permeability, µ, with the calculation of µ, based on the

Kramers-Kronig relations. They can work very well for strongly active materials. The array of
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SRRs are fabricated on a GaAs-gain-GaAs sandwich substrate and has the magnetic resonance

at 100THz. Three different pumping schemes are applied on the gain: (1) isotropic gain, (2)

isotropic gain with a shadow cast by the SRR where the gain goes away, and (3) anisotropic

gain which only couples to the electric field component parallel to the gap bearing side of the

SRR. For the isotropic gain, the gain can effectively compensate the magnetic losses of the SRR

for both the parallel incidence and the perpendicular incidence which electrically couples to

the SRR. To avoid the distortion of the Lorentz lineshape in the retrieved permeability, µ, due

to the periodicity effect, the resonant current in the SRR is calculated. Loss compensation is

investigated by comparing the linewiths of the current resonances for different pumping rates.

The isotropic gain with a shadow and the anisotropic gain have similar results and are not so

effective in the loss compensation as the isotropic gain, though both of them do compensate the

losses of the SRR. This is due to no interactions between the gain and the electric component

normal to the SRR plane in these two schemes. The effect of the background dielectric of gain

is also studied. The background dielectric of gain mainly affects the electric field normal to

the SRR plane, so it does not affect the loss compensation of the anisotropic gain, but does

affect the loss compensation of the isotropic gain.
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APPENDIX A. THE 3D FDTD UPDATE ALGORITHM
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Figure A.1 Schematic of the Yee cell used in discretizing the space.

The Maxwell’s equations are spatially discretized on the Yee cell shown in Figure A.1, where

the magnetic field dual grid diagonally shifts a vector (∆x/2, ∆y/2, ∆z/2) from the electric

field grid. Here, ∆x, ∆y, and ∆z are the lattice space increments in the x, y, and z coordi-

nate directions, respectively. Based on this spatial discretization, we show in this appendix

the detailed 3D FDTD update algorithm for a system composed of lossy dielectrics, Drude

metals and gain materials. To simulate the extension to infinity, the two ends perpendicular

to y direction are terminated by PML absorbing boundary conditions. On the boundaries

perpendicular to x and z directions, periodic boundary conditions are enforced. To apply the

TF/SF technique to generate a normal incidence plane wave, we choose two interfaces perpen-

dicular to y direction j = jL and j = jR to connect the total and scattered fields, and they are

aligned with the electric field components Ex and Ez. We denote a space point in a uniform,

rectangular lattice as (i, j, k) = (i∆x, j∆y, k∆z). Further, we denote any function u of space
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and time at a discrete point in the grid and time as

ul(i, j, k) = u(i∆x, j∆y, k∆z, l∆t). (A.1)

The fields are updated in the following order:

1. Update the magnetic field components Hx, Hy, and Hz

In the lossy dielectric, Drude metal and gain material regions,

H l+1/2
x (i, j +

1
2
, k +

1
2
) = H l−1/2

x (i, j +
1
2
, k +

1
2
)

+
∆t

µ

(
El

y(i, j + 1
2 , k + 1)− El

y(i, j + 1
2 , k)

∆z

−
El

z(i, j + 1, k + 1
2)− El

z(i, j, k + 1
2)

∆y

)
, (A.2)

H l+1/2
y (i +

1
2
, j, k +

1
2
) = H l−1/2

y (i +
1
2
, j, k +

1
2
)

+
∆t

µ

(
El

z(i + 1, j, k + 1
2)− El

z(i, j, k + 1
2)

∆x

−
El

x(i + 1
2 , j, k + 1)− El

x(i + 1
2 , j, k)

∆z

)
, (A.3)

H l+1/2
z (i +

1
2
, j +

1
2
, k) = H l−1/2

z (i +
1
2
, j +

1
2
, k)

+
∆t

µ

(
El

x(i + 1
2 , j + 1, k)− El

x(i + 1
2 , j, k)

∆y

−
El

y(i + 1, j + 1
2 , k)− El

y(i, j + 1
2 , k)

∆x

)
. (A.4)

In the PML region, where the matching condition σ∗/µ = σ/ε has been used,

H l+1/2
xy (i, j +

1
2
, k +

1
2
) =

1− σy∆t/2ε

1 + σy∆t/2ε
H l−1/2

xy (i, j +
1
2
, k +

1
2
)− ∆t/∆yµ0

1 + σy∆t/2ε

·
[
El

z(i, j + 1, k +
1
2
)− El

z(i, j, k +
1
2
)
]
, (A.5)
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H l+1/2
xz (i, j +

1
2
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1
2
) =

1− σz∆t/2ε

1 + σz∆t/2ε
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1
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[
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1
2
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1
2
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]
, (A.6)
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1
2
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1
2
, k +

1
2
) + H l+1/2

xz (i, j +
1
2
, k +

1
2
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1
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]
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1
2
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1
2
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zx (i +
1
2
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1
2
, k) + H l+1/2

zy (i +
1
2
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1
2
, k). (A.13)

2. Apply the TF/SF technique, and make corrections for Hx and Hz

First we define Einc is oriented with an angle θ (00 ≤ θ < 1800) relative to +z axis as shown

in Figure A.2. And we have the source position at j = 0 in the source grid and then have the

interfaces j = jL and j = jR coincide with Einc(jL) and Einc(jR), respectively. The incident
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field components needed to implement the correction formula are as follows,

El
z,inc(i, jL, k +

1
2
) = El

inc(jL) cos θ, (A.14a)

El
z,inc(i, jR, k +

1
2
) = El

inc(jR) cos θ, (A.14b)

El
x,inc(i +

1
2
, jL, k) = −El

inc(jL) sin θ, (A.14c)

El
x,inc(i +

1
2
, jR, k) = −El

inc(jR) sin θ. (A.14d)

2a. Make Hx corrections
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Figure A.2 Schematic of the 3D FDTD computation space and the polar-
ization of the incident fields.

At the left interface j = jL,
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At the right interface j = jR,
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2b. Make Hz corrections
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At the left interface j = jL,
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At the right interface j = jR,
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3. Update Hinc in the source grid generating look-up table

The source grid is terminated with a 1D PML and σ = 0 outside the PML region.
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]
. (A.19)

4. Update the polarizations P and current J

In the gain material region:

a. Pumped with a homogeneous pumping rate:
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b. Optical pumping:

In this case, the updates of Pa keep the same as the pumping rate case, but we need to do

additional updates for Pb, and the updates for the polarization current is changed.
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In the Drude metal region,
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px (i +
1
2
, j, k)

+
ε0ω

2
epx∆t

1 + 0.5Γex∆t
El

x(i +
1
2
, j, k), (A.32)

J
l+ 1

2
py (i, j +

1
2
, k) =

1− 0.5Γey∆t

1 + 0.5Γey∆t
J

l− 1
2

py (i, j +
1
2
, k)

+
ε0ω

2
epy∆t

1 + 0.5Γey∆t
El

y(i, j +
1
2
, k), (A.33)

J
l+ 1

2
pz (i, j, k +

1
2
) =

1− 0.5Γez∆t

1 + 0.5Γez∆t
J

l− 1
2

pz (i, j, k +
1
2
)

+
ε0ω

2
epz∆t

1 + 0.5Γez∆t
El

z(i, j, k +
1
2
). (A.34)



109

5. Update the electric field components Ex, Ey and Ez

Here J is the polarization current Jp in gain materials and Drude metals and the source

current in lossy dielectrics.

In the lossy dielectric, gain material and Drude metal regions,

El+1
x (i +

1
2
, j, k) =

1− σx∆t/2εx

1 + σx∆t/2εx
El

x(i +
1
2
, j, k)

+
∆t/εx

1 + σx∆t/2εx

(
H

l+1/2
z (i + 1

2 , j + 1
2 , k)−H

l+1/2
z (i + 1

2 , j − 1
2 , k)

∆y

−
H

l+1/2
y (i + 1

2 , j, k + 1
2)−H

l+1/2
y (i + 1

2 , j, k − 1
2)

∆z

−J
l+ 1

2
x (i +

1
2
, j, k)

)
, (A.35)

El+1
y (i, j +

1
2
, k) =

1− σy∆t/2εy

1 + σy∆t/2εy
El

y(i, j +
1
2
, k)

+
∆t/εy

1 + σy∆t/2εy

(
H

l+1/2
x (i, j + 1

2 , k + 1
2)−H

l+1/2
x (i, j + 1

2 , k − 1
2)

∆z

−
H

l+1/2
z (i + 1

2 , j + 1
2 , k)−H

l+1/2
z (i− 1

2 , j + 1
2 , k)

∆x

−J
l+ 1

2
y (i, j +

1
2
, k)
)

, (A.36)

El+1
z (i, j, k +

1
2
) =

1− σz∆t/2εz

1 + σz∆t/2εz
El

z(i, j, k +
1
2
)

+
∆t/εz

1 + σz∆t/2εz

(
H

l+1/2
y (i + 1

2 , j, k + 1
2)−H

l+1/2
y (i− 1

2 , j, k + 1
2)

∆x

−
H

l+1/2
x (i, j + 1

2 , k + 1
2)−H

l+1/2
x (i, j − 1

2 , k + 1
2)

∆y

−J
l+ 1

2
z (i, j, k +

1
2
)
)

. (A.37)

In the PML region,

El+1
xy (i +

1
2
, j, k) =

1− σy∆t/2ε

1 + σy∆t/2ε
El

xy(i +
1
2
, j, k) +

∆t/∆yε

1 + σy∆t/2ε
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·
[
H l+1/2

z (i +
1
2
, j +

1
2
, k)−H l+1/2

z (i +
1
2
, j − 1

2
, k)
]
, (A.38)

El+1
xz (i +

1
2
, j, k) =

1− σz∆t/2ε

1 + σz∆t/2ε
El

xz(i +
1
2
, j, k)− ∆t/∆zε

1 + σz∆t/2ε

·
[
H l+1/2

y (i +
1
2
, j, k +

1
2
)−H l+1/2

y (i +
1
2
, j, k − 1

2
)
]
, (A.39)

El+1
x (i +

1
2
, j, k) = El+1

xy (i +
1
2
, j, k) + El+1

xz (i +
1
2
, j, k). (A.40)

El+1
yz (i, j +

1
2
, k) =

1− σz∆t/2ε

1 + σz∆t/2ε
El

yz(i, j +
1
2
, k) +

∆t/∆zε

1 + σz∆t/2ε

·
[
H l+1/2

x (i, j +
1
2
, k +

1
2
)−H l+1/2

x (i, j +
1
2
, k − 1

2
)
]
, (A.41)

El+1
yx (i, j +

1
2
, k) =

1− σx∆t/2ε

1 + σx∆t/2ε
El

yx(i, j +
1
2
, k)− ∆t/∆xε

1 + σx∆t/2ε

·
[
H l+1/2

z (i +
1
2
, j +

1
2
, k)−H l+1/2

z (i− 1
2
, j +

1
2
, k)
]
, (A.42)

El+1
y (i, j +

1
2
, k) = El+1

yz (i, j +
1
2
, k) + El+1

yx (i, j +
1
2
, k). (A.43)

El+1
zx (i, j, k +

1
2
) =

1− σx∆t/2ε

1 + σx∆t/2ε
El

zx(i, j, k +
1
2
) +

∆t/∆xε

1 + σx∆t/2ε

·
[
H l+1/2

y (i +
1
2
, j, k +

1
2
)−H l+1/2

y (i− 1
2
, j, k +

1
2
)
]
, (A.44)

El+1
zy (i, j, k +

1
2
) =

1− σy∆t/2ε

1 + σy∆t/2ε
El

zy(i, j, k +
1
2
)− ∆t/∆yε

1 + σy∆t/2ε

·
[
H l+1/2

x (i, j +
1
2
, k +

1
2
)−H l+1/2

x (i, j − 1
2
, k +

1
2
)
]
, (A.45)

El+1
z (i, j, k +

1
2
) = El+1

zx (i, j, k +
1
2
) + El+1

zy (i, j, k +
1
2
). (A.46)

6. Make Ex and Ez corrections over the connecting interfaces (TF/SF method)
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The incident field components needed to implement the correction formula for Ex and Ez,

H
l+1/2
z,inc (i +

1
2
, jL −

1
2
, k) = H

l+1/2
inc (jL −

1
2
) sin θ, (A.47a)

H
l+1/2
z,inc (i +

1
2
, jR +

1
2
, k) = H

l+1/2
inc (jR +

1
2
) sin θ, (A.47b)

H
l+1/2
x,inc (i, jL −

1
2
, k +

1
2
) = H

l+1/2
inc (jL −

1
2
) cos θ, (A.47c)

H
l+1/2
x,inc (i, jR +

1
2
, k +

1
2
) = H

l+1/2
inc (jR +

1
2
) cos θ. (A.47d)

Implement the correction formula for Ex and Ez as follows,

6a. Make Ex corrections

At the left interface j = jL,

El+1
x (i +

1
2
, jL, k) =

{
El+1

x (i +
1
2
, jL, k)

}
− ∆t

∆yε0
H

l+1/2
z,inc (i +

1
2
, jL −

1
2
, k). (A.48)

At the right interface j = jR,

El+1
x (i +

1
2
, jR, k) =

{
El+1

x (i +
1
2
, jR, k)

}
+

∆t

∆yε0
H

l+1/2
z,inc (i +

1
2
, jR +

1
2
, k). (A.49)

6b. Make Ez corrections

At the left interface j = jL,

El+1
z (i, jL, k +

1
2
) =

{
El+1

z (i, jL, k +
1
2
)
}

+
∆t

∆yε0
H

l+1/2
x,inc (i, jL −

1
2
, k +

1
2
). (A.50)

At the right interface j = jR,

El+1
z (i, jR, k +

1
2
) =

{
El+1

z (i, jR, k +
1
2
)
}
− ∆t

∆yε0
H

l+1/2
x,inc (i, jR +

1
2
, k +

1
2
). (A.51)

7. Update Einc in the source grid generating look-up table

El+1
inc (j) =

1− σ∆t/2ε0

1 + σ∆t/2ε0
El

inc(j)
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− ∆t

ε0∆y

1
1 + σ∆t/2ε0

[
H

l+1/2
inc (j +

1
2
)−H

l+1/2
inc (j − 1

2
)
]
. (A.52)

8. Update the occupation numbers N0, N1, N2, and N3

8a. Update the occupation number N3

(1). Pumped with a homogeneous pumping rate:

N l+1
3x (i +

1
2
, j, k) =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3x(i +
1
2
, j, k)

+
∆t Γpump,x

1 + ∆t/2τ32
N l

0x(i +
1
2
, j, k), (A.53)

N l+1
3y (i, j +

1
2
, k) =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3y(i, j +
1
2
, k)

+
∆t Γpump,y

1 + ∆t/2τ32
N l

0y(i, j +
1
2
, k), (A.54)

N l+1
3z (i, j, k +

1
2
) =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3z(i, j, k +
1
2
)

+
∆t Γpump,z

1 + ∆t/2τ32
N l

0z(i, j, k +
1
2
). (A.55)

(2). Optical pumping:

N l+1
3x (i +

1
2
, j, k) =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3x(i +
1
2
, j, k)

+
1

2h̄ωb

1
1 + ∆t/2τ32

[
El+1

x (i +
1
2
, j, k) + El

x(i +
1
2
, j, k)

]
·
[
P l+1

bx (i +
1
2
, j, k)− P l

bx(i +
1
2
, j, k)

]
, (A.56)

N l+1
3y (i, j +

1
2
, k) =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3y(i, j +
1
2
, k)

+
1

2h̄ωb

1
1 + ∆t/2τ32

[
El+1

y (i, j +
1
2
, k) + El

y(i, j +
1
2
, k)
]

·
[
P l+1

by (i, j +
1
2
, k)− P l

by(i, j +
1
2
, k)
]
, (A.57)
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N l+1
3z (i, j, k +

1
2
) =

1−∆t/2τ32

1 + ∆t/2τ32
N l

3z(i, j, k +
1
2
)

+
1

2h̄ωb

1
1 + ∆t/2τ32

[
El+1

z (i, j, k +
1
2
) + El

z(i, j, k +
1
2
)
]

·
[
P l+1

bz (i, j, k +
1
2
)− P l

bz(i, j, k +
1
2
)
]
. (A.58)

8b. Update the occupation number N2

N l+1
2x (i +

1
2
, j, k) =

1−∆t/2τ21

1 + ∆t/2τ21
N l

2x(i +
1
2
, j, k)

+
1

2h̄ωa

1
1 + ∆t/2τ21

[
El+1

x (i +
1
2
, j, k) + El

x(i +
1
2
, j, k)

]
·
[
P l+1

ax (i +
1
2
, j, k)− P l

ax(i +
1
2
, j, k)

]
+

1
1 + ∆t/2τ21

∆t

2τ32

[
N l+1

3x (i +
1
2
, j, k) + N l

3x(i +
1
2
, j, k)

]
, (A.59)

N l+1
2y (i, j +

1
2
, k) =

1−∆t/2τ21

1 + ∆t/2τ21
N l

2y(i, j +
1
2
, k)

+
1

2h̄ωa

1
1 + ∆t/2τ21

[
El+1

y (i, j +
1
2
, k) + El

y(i, j +
1
2
, k)
]

·
[
P l+1

ay (i, j +
1
2
, k)− P l

ay(i, j +
1
2
, k)
]

+
1

1 + ∆t/2τ21

∆t

2τ32

[
N l+1

3y (i, j +
1
2
, k) + N l

3y(i, j +
1
2
, k)
]
, (A.60)

N l+1
2z (i, j, k +

1
2
) =

1−∆t/2τ21

1 + ∆t/2τ21
N l

2z(i, j, k +
1
2
)

+
1

2h̄ωa

1
1 + ∆t/2τ21

[
El+1

z (i, j, k +
1
2
) + El

z(i, j, k +
1
2
)
]

·
[
P l+1

az (i, j, k +
1
2
)− P l

az(i, j, k +
1
2
)
]

+
1

1 + ∆t/2τ21

∆t

2τ32

[
N l+1

3z (i, j, k +
1
2
) + N l

3z(i, j, k +
1
2
)
]
. (A.61)

8c. Update the occupation number N1

N l+1
1x (i +

1
2
, j, k) =

1−∆t/2τ10

1 + ∆t/2τ10
N l

1x(i +
1
2
, j, k)
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− 1
2h̄ωa

1
1 + ∆t/2τ10

[
El+1

x (i +
1
2
, j, k) + El

x(i +
1
2
, j, k)

]
·
[
P l+1

ax (i +
1
2
, j, k)− P l

ax(i +
1
2
, j, k)

]
+

1
1 + ∆t/2τ10

∆t

2τ21

[
N l+1

2x (i +
1
2
, j, k) + N l

2x(i +
1
2
, j, k)

]
, (A.62)

N l+1
1y (i, j +

1
2
, k) =

1−∆t/2τ10

1 + ∆t/2τ10
N l

1y(i, j +
1
2
, k)

− 1
2h̄ωa

1
1 + ∆t/2τ10

[
El+1

y (i, j +
1
2
, k) + El

y(i, j +
1
2
, k)
]

·
[
P l+1

ay (i, j +
1
2
, k)− P l

ay(i, j +
1
2
, k)
]

+
1

1 + ∆t/2τ10

∆t

2τ21

[
N l+1

2y (i, j +
1
2
, k) + N l

2y(i, j +
1
2
, k)
]
, (A.63)

N l+1
1z (i, j, k +

1
2
) =

1−∆t/2τ10

1 + ∆t/2τ10
N l

1z(i, j, k +
1
2
)

− 1
2h̄ωa

1
1 + ∆t/2τ10

[
El+1

z (i, j, k +
1
2
) + El

z(i, j, k +
1
2
)
]

·
[
P l+1

az (i, j, k +
1
2
)− P l

az(i, j, k +
1
2
)
]

+
1

1 + ∆t/2τ10

∆t

2τ21

[
N l+1

2z (i, j, k +
1
2
) + N l

2z(i, j, k +
1
2
)
]
. (A.64)

8d. Update the occupation number N0

(1). Pumped with a homogeneous pumping rate:

N l+1
0x (i +

1
2
, j, k) = (1− Γpump,x∆t)N l

0x(i +
1
2
, j, k)

+
∆t

2τ10

[
N l+1

1x (i +
1
2
, j, k) + N l

1x(i +
1
2
, j, k)

]
, (A.65)

N l+1
0y (i, j +

1
2
, k) = (1− Γpump,y∆t)N l

0y(i, j +
1
2
, k)

+
∆t

2τ10

[
N l+1

1y (i, j +
1
2
, k) + N l

1y(i, j +
1
2
, k)
]
, (A.66)
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N l+1
0z (i, j, k +

1
2
) = (1− Γpump,z∆t)N l

0z(i, j, k +
1
2
)

+
∆t

2τ10

[
N l+1

1z (i, j, k +
1
2
) + N l

1z(i, j, k +
1
2
)
]
. (A.67)

(2). Optical pumping:

N l+1
0x (i +

1
2
, j, k) = N l

0x(i +
1
2
, j, k)− 1

2h̄ωb

[
El+1

x (i +
1
2
, j, k) + El

x(i +
1
2
, j, k)

]
·
[
P l+1

bx (i +
1
2
, j, k)− P l

bx(i +
1
2
, j, k)

]
+

∆t

2τ10

[
N l+1

1x (i +
1
2
, j, k) + N l

1x(i +
1
2
, j, k)

]
, (A.68)

N l+1
0y (i, j +

1
2
, k) = N l

0y(i, j +
1
2
, k)− 1

2h̄ωb

[
El+1

y (i, j +
1
2
, k) + El

y(i, j +
1
2
, k)
]

·
[
P l+1

by (i, j +
1
2
, k)− P l

by(i, j +
1
2
, k)
]

+
∆t

2τ10

[
N l+1

1y (i, j +
1
2
, k) + N l

1y(i, j +
1
2
, k)
]
, (A.69)

N l+1
0z (i, j, k +

1
2
) = N l

0z(i, j, k +
1
2
)− 1

2h̄ωb

[
El+1

z (i, j, k +
1
2
) + El

z(i, j, k +
1
2
)
]

·
[
P l+1

bz (i, j, k +
1
2
)− P l

bz(i, j, k +
1
2
)
]

+
∆t

2τ10

[
N l+1

1z (i, j, k +
1
2
) + N l

1z(i, j, k +
1
2
)
]
. (A.70)
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