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Development of a Sub-Scale Dynamics Model for Pressure Relaxation of 
Multi-Material Cells in Lagrangian Hydrodynamics 

Alan K. Harrisonl,a, Mikhail 1. Shashkov l, Jimmy FungI, James R. Kamm2, and Thomas R. Canfield I 

I Los Alamos National Laboratory 
2 Sandia National Laboratories 

Abstract. We have extended Ihe Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. 
Volume exchange between two materials is based on the interface area and a notional interface translation veloc­
ity, which is derived from a lineruized Riemann solution. We have extended the model to cells with any number 
of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise 
interactions. 1n multiple dimensions. we rely on interface reconstruction to provide interface areas and orienta­
tions, and centroids of material polygons. [n order to prevent unphysicaUy large or unmanageably small material 
volumes, we have used a flux-corrected transport (FCf) approach to limit the pressure-driven part of the volume 
exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. 
We also report on Lagrangian test calculations. comparing them with others made using a mixed-zone closure 
model due to Tipton. and with corresponding calculations made with only single-material cells. We find that 
in some cases. the SSD model more accurately predicts the state of material in mixed cells. By compating the 
algebraic forms of both models. we identify similar dependencies on state and dynamical variables. and propose 
explanations for the apparent higher fidelity of the SSD model. 

1 Introduction 

Multimaterial ALE and Lagrange calculations may need to 
account for mixed cells, which contain multiple pure ma­
terials meeting at one or more interfaces within the cell. In 
this case a closure model is required to partition the cell 
volume and internal energy. Absent such a model. the vari­
ables associated with the mesh are generally insufficient to 
detennine that partition uniquely. 

We have extended the Subscale Dynamics (SS D) clo­
sure model [1 ,2] to multiple dimensions and enabled it to 
handle any number of materials in a cell. We have imple­
mented it in one and two dimensions in the Lagrange/ALE 
hydrocode FLAG [3). We compare below the perfonnance 
of the SSD model with a well-known closure model due to 

Tipton [4-71 , as a lso implemented in FLAG. Finding con­
siderable similarity as well as some significant differences 
between the two, we discuss the reasons for this in tenns 
of the equations defining both models . 

2 Description of Closure Models 

2.1 Notation 

Let V be the volume of a single computational cell. Then 
within that cell. material i has volume Vi. volume fraction 
J; = Vi/V. mass density Pi. pressure Pi, sound speed Ci and 
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compliance (bulk modulus) Bi = Pic'f. Superscripts denote 
instants or intervals within the timestep from In to In+l; to 
wit. superscript 0 denotes time In, + is In+I/2. I is In+l; and 
a and b refer to the intervals from In to In+I/2 and from In to 
In+I, respectively. 

2.2 Sub-Scale Dynamics (SSD) model 

The sub-scale dynamics (SSD) model. inspired by the work 
of Delov and Sadchikov [8], Goncharov and Yanilkin [9] 
and Barlow [10] , estimates the material volume changes 
based on interface motion, using a Riemann solution for 
velocity. We have extended the model to cells with any 
number of materials . computing the pressure-difference­
driven volume and energy change of each material as the 
algebraic sum of painvise interactions. In multiple dimen­
sions, we use interface reconstruction to provide interface 
areas. A few of the swept volumes are depicted as rect­
angles in Figure I. where S ik is the area of the interface 
between materials i and k. The corresponding interface ve­
locity (directed from i to k) is 

Pi - Pk 
(I) 

so the swept volumes are 

a 0 0 !'J.I b 0 
Fik = S ik uik "2 Fik = S ik u~ !'J.I (2) 
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Fig. 1. A single mixed cell: material polygons and exchange vol­
umes of the SSD model. 

Then the new material volumes at In+I/2 (predictor step) 
and 1,,+1 (corrector) 

v+ = vo + t. VO

d + t. Va I I I, I,p 

VI = VO + t. Vhd + t. Vh 
I I I, I,p 

(3) 

result from changes 

t.Vla.b) = ..ot.Vlo.h) (4) 
I,d ii 

due to dilation (or compression) of the entire zone, and 
increments 

t. Vla.b) = '\' t. Via. b) = '\' cia. b) F1a.bJ' (5) 
I,p L...J Ik L...J Ik Ik 

k k 

resulting from pressure differences between materials. The 
limiters C):·b) E [0, I] multiplying the swept volumes in 
the last expression will be defined below. 

During the corrector step, internal energies are also up­
dated by adding work terms 

E/ - E? = p7 t.Vi~d - I p~t.v~ (6) 
k 

in terms of the Riemann pressure 

WiPi + WkPk + t.Uik 
Pik = Wi + Wk 

(7) 

in which we define an averaging weight Wi = I j(PiCi) and 
a normal velocity difference t.Uik = (Ui - Uk) . nib where 
Uj is the velocity at the centroid of material i, and nik is the 
unit normal to the interface, directed from ito k. 

It is necessary to limit material volume changes; 
physics requires that Vi+ ::; V+, and for numerical stabil­
ity we desire that f/ ~ f~ for some number f E [0, I] 
(taken equal to 0.25 in our calculations). This is achieved 
by computing the limiters in equation (5) in an FCT-like 
way. For the predictor step, 

pir = I F~ 
k:F,,>O 

p;o = I IF~I 
k:Fik<O 

if pjhi./O) > 0 

if pjhi,/O) = 0 

(8) 

(9) 

(10) 

if F~ > 0 

if F~ < 0 
(11 ) 

The corrector-step limiters C~ are computed in the same 

way, replacing V+ --> Vi, F~ --> F~ and C~k --> C~. 

2.3 Tipton model 

A simple heuristic to motivate the Tipton closure model is 
that if we linearize equations of state as 

PCP, s) = p(po, s) + B(P - Po), B '= opjopis (12) 

we can solve for the equilibrium pressure and volume frac­
tions in the cell. In order to prevent instantaneous relax­
ation to pressure equilibrium, the model uses a rescaled 
compliance 

Di = Bi(1 +~) 
Cit.1 

(13) 

in which the second parenthesized term is motivated by 
artificial-viscosity-like considerations, and L is a charac­
teristic length scale (width) of the computational cell. For 
this model is it useful to define the averaging weight Wi = 
;; j Di and mean rescaled compliance and pressure 

LWp p=--'-' 
LWi 

Then the predictor step (as implemented in FLAG) is 

(14) 

(15) 

where a is a stability parameter::; 1, and the result is lim­
ited so that It..m ::; 0.25~. 

The corrector step could be done by computing t.!;b as 
in (15), based on the updated material state pt, D7- How­
ever, for efficiency reasons the implementation in FLAG 
simply approximates t.!;b = 2t.!;a. 

Internal energy is updated by adding the work 

(16) 

done by a zonal-average effective pressure at In+I/2 

(17) 

Note that Tipton's model uses no subcell geometrical in­
formation. 

3 Test Problems 

3.1 Expanding Bubble 

We have tested the SSD model in the FLAG hydrocode 
(which also contains the Tipton model). Figure 2, colored 
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Fig. 2. Expanding bubble calculation, colored by specific energy. 

by specific internal energy, shows 2D Lagrange calcula­
tions of an expanding gas bubble surrounded by lower­
pressure gas. We made SSD and Tipton model calculations 
on a regular rectangular mesh with premixed cells at the 
bubble surface, while the pie mesh pertains to a calcula­
tion with no mixed cells. We see that the SSD model pre­
dictions are similar to those of the unmixed calculation, 
and possibly a little better than those of the Tipton model. 

3.2 Test with a Three-material Zone 

We would expect the SSD model to treat cells contain­
ing three or more materials better than the Tipton model 
does; in such a cell, there are so many possible geometri­
cal arrangements of materials and interfaces that a model 
that lacks sub cell geometrical infonnation has little hope 
of doing the right thing. Figure 3 shows a physically one­
dimensional shock tube calculation , in which the left ma­
terial is set up as two different materials with identical 
properties and initial states. The problem includes a three­
material cell and a large number of two-material cells. A 
short time into the calculation, we see that the SSD model 
(Figure 4) has allowed all the vertical interfaces to advance 
to the right by the same distance, thus appropriately main­
taining planar symmetry. The Tipton model (in Figure 5) 
breaks that symmetry. For comparision, we have also run 
the same problem without multi material cells (Figure 6). 

3.3 Two-material Shock Tube Problems 

We also investigated how the two closure models compare 
in two-material cells. For clarity, we used Lagrangian cal­
culations of physically one-dimensional problems to inves­
tigate this. One serup was the Sod shock rube, containing 
gamma-Jaw gases with gamma values and initial condi­
tions as given in Table I . In another setup, we replaced 
the Jow-pressure gas with a Griineisen-Iaw fluid [I J] with 
properties typical of copper; details are shown in Table 2. 
(We shall refer to this problem as the "Cu" shock tube 

I 
---------- --

Fig. 3. Initial mesh (central portion), two-material shock tube set 
up as three materials. Yellow lines are reconstructed interfaces, 
not mesh edges. 

I 

I -- -- - - --- - -
I 

Fig. 4. SSD model calculation, two-material shock tube set up as 
three materials. 

Fig. 5. Tipton model calculation, two-material shock tube set up 
as three materials. 

Fig. 6. Unmixed calculation, two-material shock tube set up as 
three materials. 

problem.) Both shock rube problems were run in Lagrange 
mode in three different ways-with no mixed zones and 
no closure model ("clean"), and with mixed zones at the 
interface, with both closure models. The initial mesh for 
the Sod problems is shown in Figure 7. 

The Sod shock rube calculations with the Tipton clo­
sure model became unstable and halted with a tangled 
mesh. To improve stability, model parameter a was de­
creased from 1 to 0.5 and finally to 0.25 before the prob-

Table 1. Initial conditions for Sod shock tube problem (CGS 
units). 

y-Law Gas I y-Law Gas 2 

y = 2. 

P = I. 
e = 2.5 
p = 2.5 

y = 1.4 

P = 0.125 
e = 2. 
P = 0.1 

Table 2. Initial conditions for shock tube problem with 
Griineisen-Iaw fluid (CGS units). 

y-Law Gas 

'Y = 2. 
p=1. 
e = 2.5 
p=2.5 

GrUneisen-Law Fluid 

y = 1.96 c, = 3.835e-6 
P = 8.93 kJ = 1.372 
e = D. k2 = 1.751 

Po = 8.93 k) = 5.642 
To = 294 
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Fig. 7. Central section of initial mesh for Sod shock tube prob­
lems. For the "clean" calculations, the yellow rectangle encloses 
two unmixed zones. For the closure model calculations, it is a 
single two-material zone. Figures 8-10 show the state of the ma­
terials in that rectangle as functions of time. 
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Fig. 8. Pressure at interface in Sod shock tube versus time, in 
y-law gases I (left plot) and 2 (right plot). 
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Fig. 9. Density at interface in Sod shock tube versus time, in y­
law gases I and 2. 
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Fig. 10. Specific energy at interface in Sod shock tube versus 
time, in y-Iaw gases I and 2. 

lem would run to completion. In the "Cu" shock tube runs, 
it was not necessary to decrease a. 

Time histories of pressure, density and specific energy 
for the Sod problem are shown in figures 8-10. For the 
clean calculations, the state of the zones adjoining the in­
terface are plotted. For the mixed calculations, the state of 
each material in a mixed zone are shown. (In all calcula­
tions that ran to completion, the four zones on one side of 
the interface, or straddling it for mixed runs, had identical 
histories.) We see from Figure 8 that all completed cal­
culations attained the same equilibrium pressure, but the 

2.5 
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2.0 ~ 
I.' V 
1.. -\-____ ----~ 

0.00 0.05 

Fig. 11. Pressure at interface in "Cu" shock tube versus time, in 
y-Iaw gas (left plot) and Cu-like fluid (right plot). 
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Fig. 12. Density at interface in "Cu" shock tube versus time, in 
y-Iaw gas and Cu-like fluid. 
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Fig. 13. Specific energy at interface in "Cu" shock tube versus 
time, in y-Iaw gas and Cu-like fluid . 

approach to equilibrium differed. Regarding the clean cal­
culation as likely the most accurate, the SSD model was 
more accurate than the Tipton model. and the latter be­
came less accurate as a was decreased to attain stability. 
Similar conclusions follow from the results for density and 
energy, although the material 2 equilibrium density and en­
ergy may be a little better in the Tipton model calculation. 

Figures 11-13 show the results of the "Cu" shock tube 
problem. As before, the SSD model is closer than Tipton's 
model to the "clean" results. For this shock tube, the Tip­
ton model does not get the right density and energy even 
in the late-time limit. We speculate that this poorer perfor­
mance (compared with the Sod problem) may be due to the 
fact that the Griineisen-Iaw pressure is not proportional to 
density [II]. In fact, Tipton's model predicts a mechani­
cally impossible pressure in the Griineisen material in the 
two-material zone. We can see this in Figure 14, which 
shows mesh plots of the central region of each of the three 
"Cu" shock tube calculations, colored by pressure. Figure 
15 shows pressure as a function of time in both sections 
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Fig. 14. Central portion of meshes from "Cu" shock tube cal­
culations at t = 0.01, colored by pressure. Material interfaces 
are in magenta. Black boxes enclose two-material cells at the in­
terface . to which two cells of the clean calculation correspond. 
Note that the Tipton model has underestimated the pressure of 
the Griineisen material in the two-material cells. White rectan­
gles refer to Figure 15. 

of the two-material cell and the two single-material cells 
to the left and right of that cell (or, for the clean calcu­
lation, three cells on each side of the material interface). 
We see that the Griineisen material in a two-material zone 
maintains for a considerable period a lower pressure than 
either the ,,-law gas to its left in the same cell or the pure 
Griineisen material in the cell on its right-even though 
it started with a pressure intermediate between those two 
neighboring pressures. This is mechanically impossible. 
However, the SSD model does not exhibit this anomaly; 
it matches the clean calculation well. 

4 Algebraic Comparison of Closure Models 

We would like to understand the differences in behavior 
between the Tipton and SSD models-but upon compar­
ing model philosophies, let alone equations, it is not clear 
why the two models should have any similarities at all. Tip­
ton's model is based on the pressure equilibrium state, and 
deliberately relaxes toward it, while the SSD model has no 
notion of the pressure equilibrium state. The Tipton model 
depends explicitly on the preexisting material volume frac­
tions within each cell, while the SSD model does not even 
refer to them. On the other hand, the SSD model uses inter­
face areas and orientations and the velocities of individual 
materials (by interpolating mesh velocity to the centroid of 
each material polygon), and estimates interface velocities. 
The Tipton model knows nothing of material velocities or 
the geometry or motion of the interfaces. How can such 
dissimilar models behave similarly at all? 

4.1 Volume Relaxation 

In order to facilitate algebraic comparison of the models, 
we note that the Tipton model volume change can be ex­
pressed in the form (3) if we approximate L\ Vb = 2L\ va 
and neglect L\ Vb L\it. Then the zone-dilation and pressure­
driven terms are 

===-r'~ 
,,""-_____ -> "' ....... ___ ~__> LJ d .. n 

.. .It (101 0;(12 0.03 0.04 Q.M 0.00 OAl 0.0l o.os O~ 0-01 om 0.03 Q.<K 0.(/6 

Fig. 15. Pressure versus time for material near interface in "Cu" 
shock tube, for material at positions indicated by white rectan­
gles in Figure 14. Traversing a white rectangle from left to right 
corresponds to plot colors magenta -+ red -+ green -+ blue. In 
the Tipton plot, the position of the green curve below all the oth­
ers shows that the predicted state of the Gliineisen material in the 
mixed zone is unphysical for many cycles. 

b [)O b 
L\v.

d 
= - ,;{),o',.V 

I. DO); 
1 

( 18) 

( 19) 

Clearly, both models will give the same material volumes 
at 1"+1 /2 if they have the same values of ,o',.Vr,d and ,o',.Vr,p ' 

The volume changes ,0',. Vrd due to zone dilation are given 
by equations (4) and (18), so those quantities will be of 
the same order of magnitude, and approximately equal if 
the materials in the zone have roughly equal scaled com­
pliances D;, that is, roughly equal compliances and sound 
speeds [see Eqn. (13)]. It remains to understand the term 
,0',. vtp that accounts for pressure-driven exchange of vol­
umes between materials. 

Consider a cell containing only two materiah, the most 
common situation requiring closure modeling. We simplify 
the comparison by observing that the timestep must be 

. bounded by the Courant limit, so the second parenthesized 
term in (13) dominates the first. If we neglect the first term, 
the pressure-driven volume change in the Tipton model be-
comes 

2 va pO pO 
,0',. Vb = _ _ I - 2 ,0',.1 

l.p a LO p?dI + p~,~ 
if 7f 

(20) 

while for the SSD model we get 

(21 ) 

We find that both expressions give the volume change as 
a product of a dimensionless number of the order of one, 
an area, the pressure difference divided by a combination 
of state variables, and the timestep. Thus, in this approx­
imate treatment of the two-material case, the differences 
in pressure relaxation between the two models boil down 
to differences in the first three of those factors (since the 
fourth, ,0',.1, is the same for both models). 

The initial, dimensionless , factor is Ct2 in the SSD 
model; this is unity unless FCT-like limiting is required, in 
which case it is between 0 and 1. The corresponding factor 
in Tipton'S model is 2/a, which is never less than 2. This 
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is presumably one reason why we found the initial rate of 
volume relaxation in the Tipton model calculations to be 
greater than that of the SSD model, and why it increased 
with decreasing a (Figure 9). 

The area factor is the interface area S?2 in the SSD 
model , consistent with the picture that the interface sweeps 
out a volume I'!. VIJ as it moves through space. However, I.p 

the area factor VO / LO in the Tipton model is simply the 
cell volume divided by a characteristic length of the cell 

(Lo = ...;vo in two-dimensional FLAG calculations), which 
may be regarded as an order-of-magnitude approximation 
to the interface area. Lacking all information about subcell 
geometry, the Tipton model can do no better than this. 

The third factor, depending on the states of the two ma­
terials, is remarkably similar between the two models. One 
difference is that the SSD model depends on the predictor­
step state at In+1/2, while the Tipton model uses the state at 
In; this is due to the way the latter model was implemented, 
as described earlier. The other difference is the appearance 
of volume fractions in the Tipton denominator. If the vol­
ume fractions are about equal, the Tipton expression looks 
very much like the SSD expression. 

Note that in the Tipton model, if J? « I, then I'!. Vf.p -

J?, which is useful in avoiding the unphysical result Vi < 
O. It is due to the lack of this desirable feature that the SSD 
model requires limiters Cik. 

4.2 Energy Partition 

In both models, the energy partition among materials is 
specified by a pdV work expression. Here again the Tipton 
model suffers from a lack of information about the internal 
structure of the zone, and is forced to use a single effective 
pressure (17) in its work calculation (16). The SSD model 
uses a more plausible work calculation (6) in which the 
volume dilation term for each material uses that material's 
pressure, and the pairwise volume exchange terms each use 
the corresponding pairwise Riemann pressure. 

5 Conclusions 

The sub-scale dynamics model has been extended to treat 
mixed cells with any number of materials, and to mul­
tiple dimensions. FCT-like limiters have been introduced 
for robustness and stability. The model has been imple­
mented and tested in FLAG, and found to give results 
comparable to and in some cases superior to those of Tip­
ton's model. Although its derivation from interface geom­
etry and dynamics is very different from the approach to 
pressure equilibrium that motivates the Tipton model, we 
have found close algebraic correspondence between the 
two. models as applied to two-material cells. Their anal­
ogous form explains the observed Similarity between SSD 
and Tipton model calculations. Nevertheless, to the extent 
that interface reconstruction faithfully represents subcell 
morphologies, and the Riemann solution, subcell dynam­
ics, the SSD model expressions are better suited to predict 

the resulting state of the cell. The Tipton model relies on 
overall cell properties (area, pressure) as surrogates for the 
subcell information it lacks. 

In the Tipton model, p is a weighted mean of material 
pressures (see Eq. 14), and we have expressed the Riemann 
pressure (7) in the SSD model in a similar way. One differ­
ence between models emerges from a comparison of the 
weight factors used in those means. The SSD weight Wi 
depends only on material states, implying that the inter­
face moves as if it separated two infinite media. The aver­
aging weight Wi in the Tipton model depends explicitly on 
volume fraction, implying that every interface can "feel" 
the extent of the materials it separates. As we noted above, 
this should enable the Tipton model to avoid "overshoots" 
when one volume fraction is very small. On the other hand, 
when each material has a volume comparable to the cell 
volume, the interface should not detect the far boundaries 
of the materials within a Courant-limited timestep. In most 
cases, we expect this issue to confer an advantage on the 
SSD model. 

Clearly there is much more to be understood about 
these models , and closure modeling in general. The test 
calculations presented here indicate strengths and weak­
nesses to be explored further. By extending the algebraic 
analysis , we should be able to isolate and understand 
model dependence on single phenomena and independent 
variables. In addition, we must study the SSD model in 
ALE hydro, which is the most common environment re­
quiring closure modeling. 
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