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Abstract — With increasing deployment of satellite imaging
systems, only a small fraction of collected data can be subject to
expert scrutiny. We present and evaluate a two-tier approach to
broad area search for signs of anthropogenic activities in high-
resolution commercial satellite imagery. The method filters image
information using semantically oriented interest points by
combining Harris corner detection and spatial pyramid
matching. The idea is that anthropogenic structures, such as
rooftop outlines, fence corners, road junctions, are locally
arranged in specific angular relations to each other. They are
often oriented at approximately right angles to each other (which
is known as rectilinearity relation). Detecting the rectilinearity
provides an opportunity to highlight regions most likely to
contain anthropogenic activity. This is followed by supervised
classification of regions surrounding the detected corner points as
man-made vs. natural scenes. We consider, in particular, a search
for anthropogenic activities in uncluttered areas.

Visual attention; cueing; corner detection; spatial pyramid;
man-made object detection; satellite imagery

1. INTRODUCTION

High resolution commercial satellite imagery provides a
unique opportunity for geographic profiling of activities of
interest. Imagery supplied by satellites, such as IKONOS,
QuickBird, WorldView and GeoEye, reveals many details
previously unobservable in satellite images. It has been shown
that the new generation of commercial satellites is capable of
making a useful contribution to a wide variety of applications,
such as land use mapping [15, 17], topographic mapping [4],
natural disaster assessment [18], change analysis [5, 21],
detection of man-made objects [14].

Observations from space using high resolution commercial
satellite imagery can be used to detect "hot spots", containing
combinations of man-made structures, surface disturbances,
and contextual factors, which could be of interest. This can
trigger a further scrutiny of locations found interesting. Such
use of commercial imagery can result in substantial reductions
in broad area search efforts, as well as can make relevant
information available on a much timelier basis. It should be
recognized that although there has been recent significant
progress in general purpose image segmentation and object
recognition, an automated broad area search for signs of
anthropogenic activities in high-resolution satellite imagery
remains a difficult problem. The main challenges to address are
spatial and temporal transferability of search, non-conformities

(such as signature suppression), and huge size of image data
that should be processed in a reasonable amount of time for
result to be of practical value. While exploitation of lower
spatial resolution imagery (e.g. ASTER 15-m imagery) may be
acceptable, when objects of interest constitute compact cluster
of several hundred meters diameter, it is not always applicable.
Therefore, to provide robust identification of “interesting”
sites, it is necessary to develop tools that can also perform
search in high resolution satellite imagery.

The method put forth in this paper treats broad area search
as a goal-driven visual attention problem. The intent is to
reduce the amount of incoming image data to task-relevant
parts of the image and direct subsequent processing to such
image parts. These parts, regions of interest, are the locations
of where object/site categorization and recognition are applied.
This is in contrast with recognition approaches which look for
objects of interest by applying all the computational resources
uniformly across the whole image. Instead, visual attention is
known for its capability to gate image information to most
informative parts of the image [23]. Visual input is usually first
decomposed into a set of general feature maps, such as
intensity, color, orientation, which feed, in a bottom-up
manner, into a master saliency map to identify most salient
regions that stand out of the local image background [6, 7].
This is known as spotlight approach and it is based on
Treisman’s feature integration theory [19]. The type of
performance which can be expected from models of this type,
e.g. [6], critically depends on one factor: only object features
explicitly represented in feature maps lead to pop-out.

Recent advancements of spotlight approach include models
which integrate top-down information, e.g., [12, 16, 22], to bias
bottom-up saliency computation in order to enhance saliency of
areas of interest. The idea is that competition to gain visual
attention occurs not only between individual features but also
between object like entities, which are formed as a result of
image segmentation. Therefore, one of main challenges of
methods of this kind is the development of segmentation of
object like entities.

A different approach that employs visual attention to
narrow the focus for further processing was presented in [20].
The approach relies on bottom-up saliency-based attention
model, as in [6]. Once the bottom-up analysis that is based on
the integration of general feature maps identifies a set of most
salient pixel patches, learning and recognition of objects are
done using only the indentified patches. Both learning and



recognition use attributed interest points that are computed
using Scale Invariant Feature Transform (SIFT) [10].

In this paper, we present a goal-driven cueing and
recognition, where cueing is driven by task related features and
object recognition is applied only to the regions identified by
cueing. Instead of analyzing general features such as color,
orientation and contrast, as in [20], we focus on features that
are task related, such as corners. This has an advantage over the
use of general features which can be useful for narrowing the
search for man-made objects but do not necessarily carry any
task relevant information. Therefore, it can lead to
misdetection. We selected comers as indicators of
rectilinearity, which provides an opportunity to highlight
regions most likely to contain signs of anthropogenic activity.
While this feature is general to recognize specific objects, we
hypothesize that it contains enough information to pre-select
regions most likely to contain a variety of man-made objects in
different backgrounds. Then, preselected regions are processed
by supervised classifier to categorize preselected regions as
man-made vs. natural scenes. Categorization is based on the
spatial pyramid matching approach [8] which has demonstrated
a very good performance on several computer vision datasets.
For evaluation we compare our two-tier approach against
recognition without cueing. When recognition based on the
spatial pyramid matching is used without cueing, it is
subsequently applied to multiple locations across the whole
image (which is known as a “sliding window” approach).

The next two sections of the paper describe our approach
and experimental results. The conclusions and discussion are
stated in the fourth section.

II.  CORNER-BASED CUEING AND RECOGNITION

Our approach, CC-SPM, to broad area search consists of
two major components: comer based cueing (CC) and
recognition based on spatial pyramid matching (SPM). SPM
based recognition follows corner detection and is applied to the
rectangular image patches centered on the detected corner
points. Overall goal is to achieve both high precision and recall
by incorporating general domain related knowledge into the
broad area search for man-made structures.

Corner detection is based on the Harris corner detector [3].
The detection is done using the second moment matrix, also
called the auto-correlation matrix, M. The matrix describes the
gradient distribution in the local neighborhood of a point and it
is defined by:

I, I.1,], (n

M = G(o)*
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where /,, 1, are the local image derivatives and G(g) is the
Gaussian kernel of scale 0. We used the cornemness measure of
Noble [13], C, which is defined as:

C(x,y) = det(M)/(trace(M)+e), )

where det(M) is the determinant of M and trace is the trace
of M. Once the cornerness computed for each pixel, they are
filtered by thresholding that eliminates all the pixels with
cornerness values below the threshold. This threshold is
selected in a semi-adaptive manner using pre-specified
percentile of a set of pixel cornerness values.

Image block of size 300x300 pixels, which approximately
corresponds to the size of 180x180 m, is created around each
corner that is preserved by thresholding. These regions are then
classified using the spatial pyramid matching approach [8].
This approach models image region (block) using
representation similar to the bag of visual words scheme [2].
SPM constructs the image representation by iteratively
partitioning the image block into increasingly fine rectangular
sub-blocks and then concatenates histograms of SIFT
descriptors found inside each sub-block (Fig. 1). SIFT
descriptors are computed for pixel patches of size 16x16 pixels
with spacing of 8 pixels.

For a compact representation, a visual vocabulary is built
by clustering SIFT descriptors using the k-means algorithm.
The vocabulary size is determined by the number of clusters
pre-specified for the k-means algorithm. Sizes for visual
vocabularies can be an order of several hundreds and more and
depend on problem at hand.

Each cluster is treated as a word in the visual vocabulary.
Counting number of occurrences of SIFT descriptors in each
cluster results in histogram representation for each image
block. This counting is done by comparing the SIFT
descriptors to the cluster centers and associating every
descriptor to that cluster to which the distance to its center is
the minimal one. The resulting histograms are the bag of visual
words representation for the image block and its partitions.

Matching of image blocks is based on the weighted
intersection of their integrated histograms, which are
represented as long concatenated vectors of histograms
corresponding to different resolutions and partitions for each of
image blocks. The classifier that works with this bag of visual
words representation is the support vector machine classifier
(SVM).
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Figure 1. An illustration of the spatial pyramid representation using two
levels of resolution. For each level of resolution and each partition feature
histograms are constructed.



III. EXPERIMENTAL RESULTS

A. Data Preparation

For training and evaluation, we used high-resolution
commercial satellite imagery provided by Digital Globe and
Google Earth. Spatial resolution of the images is ~0.6 m.

For training SVM-based recognizer, we created a dataset of
512 images, each image of size 300x300 pixels. The dataset
contained images of two categories “natural” and “man-made”
scenes. There were 300 images in the “man-made” category
and 212 images in the “natural” category. Sample images from
the training dataset are shown in Figs. 2 and 3. Accuracy of the
SPM based classification on the training dataset was 96%.

For evaluation, we used a set of ten high-resolution images;
average image size is 10,000x10,000 pixels. Table |
summarizes the evaluation dataset description. The images
contained man-made structures in different landscapes, such as
desert, mountains, forest and farm fields. Man-made structures
varied from industrial facilities to residential areas. The dataset
contained examples of man-made structures such as nuclear
power plants, small villages, towns, mines. Because we focus
on a search for anthropogenic activities in uncluttered areas
(i.e. non-urban, remote), nine images were images of relatively
uncluttered geographical areas. The last image is the image of
an area with multiple man-made structures of different types,
including residential housing. The motivation was to evaluate
corner-based efficiency in the presence of man-made clutter.

Man-made structures that were contained in ten images
were manually labeled with polygonal shapes. These labels of
man-made areas were used to test CC-SPM and SPM methods.
The size of anthropogenic signs was approximately of 200200
m and larger. Therefore, the size of training images
approximately matched the size of sites we looked for. Most of
the created labels occupied areas 300x300 pixels and larger.
To challenge the recognition and evaluate false negative rate,
we also labeled several man-made areas as small as ~20x20 m.
Detection of man-made site was interpreted as true positive if
area of the intersection of the image block (300300 pixels)
recognized as man-made area and the labeled area was at least
1% of the image block area. Such a low area threshold was
used to counterbalance the fact that the recognizer was
optimized for the detection of much larger areas, and it was not
trained to recognize small man-made areas.

B.  Performance Evaluation
The effectiveness of SPM and CC-SPM detection is

evaluated by precision, recall and false negative rate. Precision,
recall and false negative rate are defined as functions of true

positives (correct detections), false positives (incorrect
detections) and false negatives (missed targets) as in
Precision = NmTPs/(NmTPs+NmFPs), 3)

Recall = NmTPs/(NmTPs+NmFNs), 4

FNR = NmFNs/NmTargets, (5)

where NmTPs is the number of true positives, NmFPs is the
number of false positives, FNR is the false negative rate,
NmFNs is the number of false negatives and NmTargets is the
number of man-made areas (labeled targets) in the image.
Therefore, the precision shows how accurate the prediction of
the target is and the recall shows the percentage of correctly
detected targets with respect to the total number of targets.
FNR, false negative rate, shows the percentage of the targets
missed.

Our results are reported with the cornerness threshold that
is equal to the 99.99-th percentile of the computed cornerness
for image pixels and recognition was done using image blocks
of size 300x300 pixels. Feature vector was constructed with
number of levels, that is equal to 3, and a vocabulary size, that
is equal to 200. Training and classification were done with
support vector machine classifier. The actual implementation of
the SVM was done based on the libSVM software [1].

Table 1 shows the results obtained with SPM and CC-SPM
approaches. SPM column corresponds to a “sliding window”
approach, while CC-SPM column corresponds to the SPM-
based recognition focused on areas which were pre-selected by
corner based cueing. In this table, the number of image blocks
that were processed in the course of performing object
detection is also shown. Recall that in the case of CC-SPM, the
number of image blocks equals to the number of detected
corners. As can be seen from the table, corner-based cueing
increased the precision from 43.5% to 81.02%, while the recall
changed from 96.85% to 90%. Therefore, the use of goal-
driven knowledge in the form of corners makes possible to
achieve both high recall and high precision. SPM
complemented corner detection by classifying comner
surrounding regions as man-made vs. non man-made. Fig. 4
shows examples of successful elimination of non-man-made
areas surrounding the detected corners. It should be noted that
high precision and recall were achieved by CC-SPM with the
one seventh of the number of image blocks that were evaluated
by “sliding window” approach employed by SPM.

Analysis of the results obtained for individual images has
revealed that the most difficult cases that decrease the precision
are arrangement of man-made structures embedded in the
mountain-like landscape. Figs. 5a illustrates false positive
detection over the mountain landscape. We hypothesize that the
reason is due to the presence of elongated ridge like structures
that might seem as man-made structures for SPM-based
recognition. Fig. 5b shows another example of false positive
detected of desert-like landscape, where dried river beds might
look like man-made structures as well. While the use of
multiple scales (not only blocks of 300x300 pixels) can
potentially improve the precision over the mountain landscape,
the dried river bed might require a different approach. Fig. 6
shows a comparison of the detection results obtained with SPM
and CC-SPM methods. 1t is obvious that corner based cueing
has drastically reduced the number of false positives in this
case.



Figure 2. Sample images of man-made areas used for training man-made Figure 3. Sample images of nonman-made areas used for training man-
region recognition algorithm. made region recognition algorithm.



TABLE 1. DETECTION RESULTS
SPATIAL CORNER-BASED
PYRAMID CUEING FOLLOWED BY
MATCHING | SPATIAL PYRAMID
(SPM) MATCHING(CC-SPM)
NUMBER OF IMAGES IN THE 10
DATASET
AVERAGE IMAGE HEIGHT 10,313
(PIXELS)
AVERAGE IMAGE WIDTH 10,363
(PIXELS)
THE CHANCE PROBABILITY OF 6.929
DETECTING MAN-MADE AREAS
IN THE DATASET (*100%)
SIZE OF THE BLOCK (PIXELS) 300 x 300
NUMBER OF IMAGE BLOCKS 28,456 3,950
PROCESSED (FOR THE WHOLE
DATASET)
AVERGAGE PRECISION 43.508 81.02
(x100%)
AVERAGE RECALL (x100%) 96.855 90.003
AVERAGE FN R (x100%) 11.158 40.113

An important characteristic of broad area search for signs of
anthropogenic activities is the false negative rate. As it can be
seen from the table 1, the false negative rate increased
approximately 3 times while going from SPM to CC-SPM.
False negatives can be categorized into two groups: (1)
misdetection by SPM (Fig. 5c¢), and (2) misdetection of corners
(Fig. 5d). Misdetection by SPM is most frequently done for
areas containing small clusters of man-made structures, such as
the ones shown in Fig. 5c. This can be explained by the nature
of feature vector that is used by SPM. The feature vector was
built using SIFT descriptor, and can be thought as texture
descriptor. Therefore, a search for small structures using such
the descriptor with fixed scale might not be an optimal strategy.

As it was expected, majority of false negatives are due to
misdetection of corners either due to non-optimal setting of the
cornerness thresholding or lack of strong corners in man-made
areas (Fig. 5d), such as road junctions in rural areas. Non-
optimal thresholding on comerness was particularly crucial in
the case of the image containing multiple spatially separated
man-made areas. In our dataset such image contained
approximately 16.2% area occupied by 437 spatially separated

man-made areas. Due to the thresholding, 617 corners were
preserved for further analysis for SPM-based recognition.
These comers did not hit all the labeled man-made areas.
Performance achieved on that specific image was: Precision =
96.11, Recall = 79.7 and FNR = 34.55. A simple lowering of
the threshold does not work as it would result in more number
of false positives over the mountain landscape, which is the
most difficult case for SPM based recognition. A possible
avenue for future research to address this problem is the
integration of cornerness directly into the feature vector.

Overall, for the used dataset, the corner based cueing had
problems for areas, which either do not have clearly expressed
corner structures (e.g. electric poles), have weak corners, or for
the images cluttered with spatially separated man-made areas.
Recognition using spatial pyramid matching had most
problems for the areas that contained man-made like looking
structures, such as mountain landscapes or desert landscape
with dried river beds.

1V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and evaluated a two-tier
approach to broad area search for signs of anthropogenic
activities. Results from experiments on high-resolution (~0.6m)
commercial satellite image data showed the potential
applicability of this approach and its ability of achieving both
high precision and recall rates. The main advantage of
combining corner-based cueing with general object recognition
is that the incorporation of domain specific knowledge even in
its more general form, such as presence of corners, provides a
useful cue to narrow the focus of search for signs of
anthropogenic activities. Combination of corner based cueing
with spatial pyramid matching addressed the issue of corner
categorization. An important practical issue for further research
is optimizing the balance between false positive and false
negative rates.

While the results presented in the paper are encouraging,
the problem of an automated broad area search for signs of
anthropogenic activities remains challenging. Logical extension
of this work is to perform more experiments on a larger set of
satellite imagery with manual labels tuned to specific
application scenarios. Further research is necessary to optimize
the balance of false negatives and false positives. The
optimization of false alarms and false negative rate might be
achieved via a number of steps. Goal-driven cueing should
include fusing the outputs of several interest point detectors,
such as different types of corner and rectilinearity detectors, as
well as detectors of other cues associated with anthropogenic
activities, such as circularity, collinearity and curvilinearity.
Such detectors can be built upon linear scale-space theory [9],
e.g. Harris-Laplace corner detector [11]. Further research to
improve supervised SPM-based classification might include
extension of the feature vector by including attributes of goal-
driven interest points and/or attributes of pixel patch based on
image pre-segmentation.



Figure 4. Examples of successful classification of the areas surrounding the detected cotrners as nonman-made areas. Detected corners are shown with
magenta “+”. No areas are hightligthted because man-made areas were not detected. Image credit: ©Google Earth.

(c) Example of false negative due to misclassification of areas surrounding the (d) Example of false negative due to misdetection of corners.
detected corners.

Figure 5. Examples of false positives and false negatives. Detected corners are shown with magenta “+”. Falsc positives are shighlighted with blue color.
Areas surrounding the detected corners are misclassified by the spatial pyramid based recognizer. False negative (missed detections) regions are highlighted
with red color. False negatives are due to: (1) misclassification of the areas surrounding the detected corners as shon in (c), or (2) misdetection of corners as

shown in (d). Image credit: ©Digital Globe.



Figure 6. lllustration of how corner-based cueing reduces the number of false positives. 1% row: detection results using SPM. 2™ row: detection result using
CC-SPM. Detected corners are shown with magenta “+”. True positives are highlighted with green color, false positives are highlighted with blue color, cyan
color is used to show the overlap between blocks corresponding to true positives and false positives. [mage credit: ©Digital Globe.
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