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Abstract - With increasing deployment of satellite imaging 
systems, only a small fraction of collected data can be subject to 
expert scrutiny. We present and evaluate a two-tier approach to 
broad area search for signs of anthropogenic activities in high­
resolution commercial satellite imagery. The method filters image 
information using semantically oriented interest points by 
combining Harris corner detection and spatial pyramid 
matching. The idea is that anthropogenic structures, such as 
rooftop outlines, fence corners, road junctions, are locally 
arranged in specific angular relations to each other. They are 
often oriented at approximately right angles to each other (which 
is known as rectilinearity relation). Detecting the rectilinearity 
provides an opportunity to highlight regions most likely to 
contain anthropogenic activity. This is followed by supervised 
classification of regions surrounding the detected corner points as 
man-made vs. natural scenes. We consider, in particular, a search 
for anthropogenic activities in uncluttered areas. 

Visual attention; cueing; corner detection; spatial pyramid; 
man-made object detection; satellite imagery 

I. INTRODUCTION 

High resolution commercial satellite imagery provides a 
unique opportunity for geographic profiling of activities of 
interest. Imagery supplied by satellites, such as IKONOS, 
QuickBird, WorldView and GeoEye, reveals many details 
previously unobservable in satellite images. It has been shown 
that the new generation of commercial satellites is capable of 
making a useful contribution to a wide variety of applications, 
such as land use mapping [IS, 17], topographic mapping [4]", 
natural disaster assessment [181, change analysis [5, 21], 
detection of man-made objects [14]. 

Observations from space using high resolution commercial 
satellite imagery can be lIsed to detect "hot spots", containing 
combinations of man-made structures, surface disturbances, 
and contextual factors, which could be of interest. This can 
trigger a further scrutiny of locations found interesting. Such 
use of commercial imagery can result in substantial reductions 
in broad area search efforts, as well as can make relevant 
information available on a much timelier basis. It should be 
recognized that although there has been recent significant 
progress in genera l purpose image segmentation and object 
recognition, an automated broad area search for signs of 
anthropogenic activities in high-resolution satellite imagery 
remains a difficult probl'em. The main challenges to address are 
spatial and temporal transferability of search, non-conformities 

(such as signature suppression), and huge size of image data 
that should be processed in a reasonable amount of time for 
result to be of practical value. While exploitation of lower 
spatial resolution imagery (e.g. ASTER 15-m imagery) may be 
acceptable, when objects of interest constitute compact cluster 
of several hundred meters diameter, it is not always applicable. 
Therefore, to provide robust identification of "interesting" 
sites, it is necessary to develop tools that can also perform 
search in high resolution satellite imagery. 

The method put forth in this paper treats broad area search 
as a goal-driven visual attention problem. The intent is to 
reduce the amount of incoming image data to task-relevant 
parts of the image and direct subsequent processing to such 
image parts. These parts, regions of interest, are the locations 
of where object/site categorization and recognition are applied. 
This is in contrast with recognition approaches which look for 
objects of interest by applying all the computational resources 
uniformly across the whole image. Instead, visual attention is 
known for its capability to gate image information to most 
informative parts of the image [23]. Visual input is usually first 
decomposed into a set of general feature maps, such as 
intensity, color, orientation, which feed, in a bottom-up 
manner, into a master saliency map to identify most salient 
regions that stand out of the local image background [6, 7]. 
This is known as spotlight approach and it is based on 
Treisman's feature integration theory [19]. The type of 
performance which can be expected from models of this type, 
e.g. [6], critically depends on one factor: only object features 
explicitly represented in feature maps lead to pop-out. 

Recent advancements of spotlight approach include models 
which integrate top-down information, e.g., [12, 16,22], to bias 
bottom-up saliency computation in order to enhance saliency of 
areas of interest. The idea is that competiNon to gain visual 
attention occurs not only between individual features but also 
between object like entities, which are formed as a result of 
image segmentation. Therefore, one of main challenges of 
methods of this kind is the development of segmentation of 
object like entities. 

A different approach that employs visuall attention to 
narrow the focus for further processing was presented in [20]. 
The approach relies on bottom-up saliency-based attention 
model, as in [6]. Once the bottom-up analysis that is based on 
the integration of general feature maps identifies a set of most 
salient pixel patches, learning and recognition of objects are 
done using only the indentified patches. Both learning and 



recognItiOn use attributed interest points that are computed 
using Scale Invariant Feature Transform (SIFT) [10]. 

In this paper, we present a goal-driven cueing and 
recognition, where cueing is driven by task related features and 
object recognition is applied only to the regions identified by 
cueing. Instead of analyzing general features such as color, 
orientation and contrast, as in [20], we focus on features that 
are task related, such as corners. This has an advantage over the 
use of general features which can be useful for narrowing the 
search for man-made objects but do not necessarily carry any 
task relevant information. Therefore, it can lead to 
misdetection. We selected corners as indicators of 
rectilinearity, which provides an opportunity to highlight 
regions most likely to contain signs of anthropogenic activity. 
While this feature is general to recognize specific objects, we 
hypothesize that it contains enough information to pre-select 
regions most likely to contain a variety of man-made objects in 
different backgrounds. Then, preselected regions are processed 
by supervised classifier to categorize preselected regions as 
man-made vs. natural scenes. Categorization is based on the 
spatial pyramid matching approach [8] which has demonstrated 
a very good performance on several computer vision datasets. 
For evaluation we compare our two-tier approach against 
recognition without cueing. When recognition based on the 
spatial pyramid matching is used without cueing, it is 
subsequently applied to multiple locations across the whole 
image (which is known as a "sliding window" approach). 

The next two sections of the paper describe our approach 
and experimental results. The conclusions and discussion are 
stated in the fourth section. 

II. CORNER-BASED CUEING AND RECOGNITlON 

Our approach, CC-SPM, to broad area search consists of 
two major components: corner based cueing (CC) and 
recognition based on spatial pyramid matching (SPM). SPM 
based recognition follows corner detection and is applied to the 
rectangular image patches centered on the detected corner 
points. Overall goal is to achieve both high precision and recall 
by incorporating general domain related knowledge into the 
broad area search for man-made structures. 

Corner detection is based on the Harris corner detector [3]. 
The detection is done using the second moment matrix, also 
called the auto-correlation matrix, M. The matrix describes the 
gradient distribution in the local neighborhood of a point and it 
is defined by: 

M = G(a)*[ I ~ 
Ll y 

(I) 

where Ix> Iy are the local image derivatives and G(a) is the 
Gaussian kernel of scale a. We used the cornerness measure of 
Noble [13], C, which is defined as : 

C(x,y) = det(M)/(trace(M)+£), (2) 

where det(M) is the determinant of M and trace is the trace 
of M. Once the cornerness computed for each pixel, they are 
filtered by thresholding that eliminates all the pixels with 
cornerness values below the threshold. This threshold is 
selected in a semi-adaptive manner using pre-specified 
percentile of a set of pixel cornerness values . 

Image block of size 300x300 pixels, which approximately 
corresponds to the size of l80x 180 m, is created around each 
corner that is preserved by thresholding. These regions are then 
classified using the spatial pyramid matching approach [8]. 
This approach models image region (block) using 
representation similar to the bag of visual words scheme [2]. 
SPM constructs the image representation by iteratively 
partitioning the image block into increasingly fine rectangular 
sub-blocks and then concatenates histograms of SIFT 
descriptors found inside each sub-block (Fig. I). SIFT 
descriptors are computed for pixel patches of size 16x 16 pixels 
with spacing of 8 pixels. 

For a compact representation, a visual vocabulary is built 
by dustering SIFT descriptors using the k-means algorithm. 
The vocabulary size is determined by the number of clusters 
pre-specified for the k-means algorithm. Sizes for visual 
vocabularies can be an order of several hundreds and more and 
depend on problem at hand. 

Each cluster is treated as a word in the visual vocabulary. 
Counting number of occurrences of SIFT descriptors in each 
cluster results in histogram representation for each image 
block. This counting is done by comparing the SIFT 
descriptors to the cluster centers and associating every 
descriptor to that cluster to which the distance to its center is 
the minimal one. The resulting histograms are the bag of visual 
words representation for the image block and its partitions. 

Matching of image blocks is based on the weighted 
intersection of their integrated histograms, which are 
represented as long concatenated vectors of histograms 
corresponding to different resolutions and partitions for each of 
image blocks. The classifier that works with this bag of visual 
words representation is the support vector machine classifier 
(SYM). 

Level = 0 Level = I 

Figure I. An illustration of the spatial pyramid representalion using two 
levels of resolution. For each level of resolution and each partition feature 

histograms are constructed. 



III. EXPERIMENTAL RESULTS 

A. Data Preparation 

For training and evaluation, we used high-resolution 
commercial satellite imagery provided by Digital Globe and 
Google Earth. Spatial resolution of the images is - 0.6 m. 

For training SVM-based recognizer, we created a dataset of 
512 images, each image of size 300x300 pixels. The dataset 
contained images of two categories "natural" and "man-made" 
scenes. There were 300 images in the "man-made" category 
and 212 images in the "natural" category. Sample images from 
the training dataset are shown in Figs. 2 and 3. Accuracy of the 
SPM based classification on the training dataset was 96%. 

For evaluation, we used a set of ten high-resolution images; 
average image size is 1O,000x 10,000 pixels. Table I 
summarizes the evaluation dataset description. The images 
contained man-made structures in different landscapes, such as 
desert, mountains, forest and farm fields. Man-made structures 
varied from industrial facihties to residential areas . The dataset 
contained examples of man-made structures such as nuclear 
power plants, small villages, towns, mines. Because we focus 
on a search for anthropogenic activities in uncluttered areas 
(i.e . non-urban, remote), nine images were images of relatively 
uncluttered geographical areas. The last image is the image of 
an area with multiple man-made structures of different types, 
including residential housing. The motivation was to evaluate 
comer-based efficiency in the presence of man-made clutter. 

Man-made structures that were contained in ten images 
were manually labeled with polygonal shapes. These labels of 
man-made areas were used to test CC-SPM and SPM methods. 
The size of anthropogenic signs was approximately of 200x200 
m and larger. Therefore, the size of training images 
approximately matched the size of sites we looked for. Most of 
the created labels occupied areas 300x300 pixels and larger. 
To challenge the recognition and evaluate false negative rate, 
we also labeled several man-made areas as small as - 20 x20 m. 
Detection of man-made site was interpreted as true positive if 
area of the intersection of the image block (300 x300 pixels) 
recognized as man-made area and the labeled area was at least 
1% of the image block area. Such a low area threshold was 
used to counterbalance the fact that the recognizer was 
optimized for the detection of much larger areas, and it was not 
trained to recognize smal l man-made areas. 

B. Performance Evaluation 

The effectiveness of SPM and CC-SPM detection is 
evaluated by precision, recall and false negative rate. Precision, 
recall and false negative rate are defined as funct,ions of true 
positives (correct detections), false positives (incorrect 
detections) and false negatives (missed targets) as in 

Precision = NmTPs/(NmTPs+NmFPs), (3) 

Recall = NmTPs/(NmTPs+NmFNs), (4) 

FNR = NmFNs/NmTargets, (5) 

where NmTPs is the number of true positives, NmFPs is the 
number of false positives, FNR is the false negative rate, 
NmFNs is the number of false negatives and NmTargets is the 
number of man-made areas (labeled targets) in the image. 
Therefore, the precision shows how accurate the prediction of 
the target is and the recall shows the percentage of correctly 
detected targets with respect to the total number of targets. 
FNR, false negative rate, shows the percentage of the targets 
missed. 

Our results are reported with the comemess threshold that 
is equal to the 99.99-th percentile of the computed comemess 
for image pixels and recognition was done using image blocks 
of size 300x300 pixels. Feature vector was constructed with 
number of levels, that is equal to 3, and a vocabulary size, that 
is equal to 200. Training and classification were done with 
support vector machine classifier. The actual implementation of 
the SVM was done based on the libSVM software [I]. 

Table I shows the results obtained with SPM and CC-SPM 
approaches. SPM column corresponds to a "sliding window" 
approach, while CC-SPM column corresponds to the SPM­
based recognition focused on areas which were pre-selected by 
comer based cueing. In this table, the number of image blocks 
that were processed in the course of performing object 
detection is also shown. Recall that in the case of CC-SPM, the 
number of image blocks equals to the number of detected 
comers. As can be seen from the table, comer-based cueing 
increased the precision from 43.5% to 81.02%, while the recall 
changed from 96.85% to 90%. Therefore, the use of goal­
driven knowledge in the form of comers makes possible to 
achieve both high recall and high precIsIon. SPM 
complemented comer detection by classifYing comer 
surrounding regions as man-made vs. non man-made. Fig. 4 
shows examples of successful elimination of non-man-made 
areas surrounding the detected comers. It should be noted that 
high precision and recall were achieved by CC-SPM with the 
one seventh of the number of image blocks that were evaluated 
by "sliding window" approach employed by SPM. 

Analysis of the results obtained for individual images has 
revealed that the most difficult cases that decrease the precision 
are arrangement of man-made structures embedded in the 
mountain-like landscape. Figs. 5a illustrates false positive 
detection over the mountain landscape. We hypothesize that the 
reason is due to the presence of elongated ridge like structures 
that might seem as man-made structures for SPM-based 
recognition. Fig. 5b shows another example of false positive 
detected of desert-like landscape, where dried river beds might 
look like man-made structures as well. While the use of 
multiple scales (not only blocks of 300x300 pixels) can 
potentially improve the precision over the mountain landscape, 
the dried river bed might require a different approach. Fig. 6 
shows a comparison of the detection results obtained with SPM 
and CC-SPM methods. It is obvious that comer based cueing 
has drastically reduced the number of false positives in this 
case. 



Figure 2. Sample images of man-made areas used for trainmg man-made 
region recognition algorithm. 

Figure 3. Sample images of non man-made areas used for training man­
made region recognition algorithm. 
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TABLE l. DETECTION RESULTS 

SPATIAL CORNER-BASED 
PYRAMID CUEING FOLLOWED BY 
MATCHING SPATIAL PYRAMID 
(SPM) MATCHlNG(CC-SPM) 

NUMBER OF IMAGES IN THE 10 
DATASET 

AVERAGE IMAGE HEIGHT 10,313 
(PIXELS) 

AVERAGE IMAGE WIDTH 10,363 
(PIXELS) 

THE CHANCE PROBABILITY OF 6.929 
DETECTING MAN-MADE AREAS 
IN THE DATASET (x 100%) 

SIZE OF THE BLOCK (PIXELS) 300 x 300 

NUMBER OF 'IMAGE BLOCKS 28,456 3,950 
PROCESSED (FOR THE WHOLE 
DATASET) 

AVERGAGE PRECISION 43.508 81.02 
(x 100%) 

AVERAGE RECALL (x 100%) 96.855 90003 

AVERAGE FN R (x 100%) 11.158 40.113 

An important characteristic of broad area search for signs of 
anthropogenic activities is the false negative rate. As it can be 
seen from the table 1, the false negative rate increased 
approximately 3 times while going from SPM to CC-SPM. 
False negatives can be categorized into two groups: (I) 
misdetection by SPM (Fig. 5c), and (2) misdetection of comers 
(Fig. 5d). Misdetection by SPM is most frequently done for 
areas containing small clusters of man-made structures, such as 
the ones shown in Fig. 5c. This can be explained by the nature 
of feature vector that is used by SPM. The feature vector was 
built using SIFT descriptor, and can be thought as texture 
descriptor. Therefore, a search for small structures using such 
the descriptor with fixed scale might not be an optimal strategy. 

As it was expected, majority of false negatives are due to 
misdetection of comers either due to non-optimal setting of the 
comemess thresholding or lack of strong comers in man-made 
areas (Fig. 5d), such as road junctions in rural areas. Non­
optimal thresholding on comemess was particularly crucial in 
the case of the image containing multiple spatially separated 
man-made areas. In our dataset such image contained 
approximately 16.2% area occupied by 437 spatially separated 

man-made areas. Due to the thresholding, 617 comers were 
preserved for further analysis for SPM-based recognition. 
These comers did not hit all the labeled man-made areas. 
Performance achieved on that specific image was: Precision = 

96.11, Recall = 79.7 and FNR = 34.55. A simple lowering of 
the threshold does not work as it would result in more number 
of false positives over the mountain landscape, which is the 
most difficult case for SPM based recognition. A possible 
avenue for future research to address this problem is the 
integration of comemess directly into the feature vector. 

Overall, for the used dataset, the comer based cueing had 
problems for areas, which either do not have clearly expressed 
comer structures (e.g. electrk poles), have weak comers, or for 
the images cluttered with spatially separated man-made areas. 
Recognition using spatial pyramid matching had most 
problems for the areas that contained man-made like looking 
structures, such as mountain landscapes or desert landscape 
with dried river beds. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed and evaluated a two-tier 
approach to broad area search for signs of anthropogenic 
activities. Results from experiments on high-resolution (--O.6m) 
commercial satellite image data showed the potential 
applicability of this approach and its ability of achieving both 
high precision and recall rates. The main advantage of 
combining comer-based cueing with general object recognition 
is that the incorporation of domain specific knowledge even in 
its more general form, such as presence of comers, provides a 
useful cue to narrow the focus of search for signs of 
anthropogenic activities. Combination of comer based cueing 
with spatial pyramid matching addressed the issue of comer 
categorization. An important practical issue for further research 
is optimizing the balance between false positive and false 
negative rates. 

While the results presented in the paper are encouraging, 
the problem of an automated broad area search for signs of 
anthropogenic activities remains challenging. Logical extension 
of this work is to perform more experiments on a larger set of 
satellite imagery with manual labels tuned to specific 
appJication scenarios. Further research is necessary to optimize 
the balance of false negatives and false positives. The 
optimization of false alarms and false negative rate might be 
achieved via a number of steps. Goal-driven cueing should 
include tusing the outputs of several interest point detectors, 
such as different types of comer and recti linearity detectors, as 
well as detectors of other cues associated with anthropogenic 
activities, such as circularity, collinearity and curvilinearity. 
Such detectors can be built upon linear scale-space theory [9], 
e.g. Harris-Laplace comer detector [11]. Further research to 
improve supervised SPM-based classification might include 
extension of the feature vector by including attributes of goal­
driven interest points and/or attributes of pixel patch based on 
image pre-segmentation. 



Figure 4. Examples of successful classification of the areas surrounding the detected cotmers as nonman-made areas. Detected comers are shown with 
magenta "+". No areas are hightligthted because man-made areas were not detected. Image credit: ©Google Earth. 

(a) Example of false positive over the mountain landscape. 

(c) Example of false negative due to misclassification of areas surrounding the 
detected comers. 

(b) Example of false positive over the desert-like landscape. 

(d) Example of false negative due to misdetection of comers. 

Figure 5. Examples of false positives and false negatives. Detected comers are shown with magenta "+". Falsc positives are shighlighted with blue color. 
Areas surrounding the detected comers are misclassified by the spatial pyramid based recognizer. False negative (missed detections) regions are highlighted 
with red color. False negatives are due to: (I) misclassification of the areas surrounding the detected corners as shon in (c), or (2) misdetection of comers as 

shown in (d). Image credit: ©Digital Globe. 



Figure 6. 1I1ustration of how comer-based cueing reduces the number of false positives. \" row: detection results using SPM. 20d row: detection result using 
CC-SPM. Detected comers are shown with magenta "+". True positives are highlighted with green color, false positives are highlighted with blue color, cyan 

color is used to show the overlap between blocks corresponding to true positives and false positives. [mage credit: ©Digital Globe. 
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