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Relating Confidence to Measured Information 
Uncertainty in Qualitative Reasoning 

Gregory Chavez, Dave Zerkle, Brian Key, Daniel Shevitz 
Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 

Email: gregchavez@lanl.gov 

Abstract-Qualitative reasoning Jllilkes use of qualitative as­
sessments provided by subject matter experts to model facwrs 
such as security risk. Confidence in a result is important and 
useful when comparing competing results. Quantifying the con­
fidence in an evidential reasoning result must be consistent and 
based on the available information. A novel method is proposed to 
relate confidence to the available information uncertainty in the 
result using fuzzy sets. Information uncertainty can be quantified 
through measures of non-specificity and conflict. Fuzzy values 
for confidence are established from information uncertainty 
values that lie between the measured minimum and maximum 
information uncertainty values. 

I. INTRODUCTWN 

logic gate trees are used to enumerate an exhaustive set 
of possible scenarios for a system of interest. The identified 
scenarios each share common states of interest; although, each 
scenario has a distinct combination of values for these states 
of interest. In many applications the available values for the 
states are provided by subject matter experts (SME) and are 
qualitative. Approximate reasoning (AR) has been used on 
many engineering and control applications involving quali­
tative or imprecise data '[ 17], [I], [12]. AR models emulate 
expert j udgments [14] and it has been used in conjunction with 
logic gate models, using a series connected inferences, to draw 
conclusions abmll a particular criterion of interest common 
among all thc identirled scenarios. Bott et al. extended AR to 
logic gate trees [2] which has been used to model security [7] 
and risk [6], [3]. AR can be used to draw conclusions from 
vague or imprecise representations of the states of interest 
involved in the scenario. Similar to AR, evidential reasoning 
(ER) is used with logic gate trees as an alternative approach 
to draw conclusions about a certain aspect of a system; 
however, ER is used when it is uncertain which qualitative 
value represenl~ the state of interest. One major difference 
between the AR and ER-Iogic gate model approaches is in 
thc unccrtainty quantHied. 

Thc imprecision associated with describing a specific state 
of interest Xi qualitatively can be captured with the degree 
of membership of :ri in the fuzzy set while the uncertainty 
associated with assigning Xi to one qualitative value over 
another can be captured through the expert's degree of belief, 
or basic evidence assignment that Xi is a particular set [9]. 
AR-Iogic gate models use the degree of membership in fuzzy 
sets in the inferences whi 'le ER-Iogic gate models use the 
the ex pert's degree of belief in the inferences. AR-Iogic 

gate models produce simple results consisting of a vector of 
qualitative sel values and the degree of membership of Xi 

in each of the qualitative set values see Chavez et al. [4]. A 
simple of example of a vector consisting of qualitative values 
for economic consequences and their respective degree of 
membership are as follows: 

[verylow(O), low(O), medium(O) , high(0.25), veryhigh(0.75)] 

ER-Iogic gate models also produce results conslstmg of a 
vector of qualitative set values; however, instead of the degree 
of membership, the degree of belief of Xi in each qualitative 
set values is used. The uncertainty associated wilh imprecise 
boundaries of the qualitative sets is not addressed in ER and 
is discussed in Section n. Fuzzy ER has been proposed [20]; 
however, it does not quantify both assignment and linguistic 
uncertainties present. This study refers collective,ly to both 
AR and ER-Iogic gate models as qualitative reasoning models 
and the reader is referred to Chavez et al. !4] for a broader 
discussion on these qualitative models. Separate underpinings 
are provided for the confidence obtained using the AR and ER 
models resul ls. 

An issue of concern for competing scenarios and their 
vector results for a particular criterion of interest is the 
confidence level associated with each vector result produced. 
Thc confidence level identificd hcre quantifies how believable 
the result is based on the available data. It is similar to the 
Bayesian statistical interpretation of confidence level [II], in 
that it answers how believable the result is in containing the 
true, based on the the avaiJable information. In this sense, 
the confidence level is distinct from the frequentist statistical 
interpretation of the confidence level which is associated with 
the percentage of confidence intervals containing the true value 
[18] and is based on a potentially infinite number of trials. 
The desired confidence level associated with each vector result 
should convey how believable is the result and should not have 
a greater precision than the available data used to determine 
the vector result; thus a qualitative value for confidence is 
proposed in this study. 

Lui and Lui [13] have proposed measures for the credibility 
on fuzzy set values and Peng et al. [16] applied credibility 



on fuzzy variables. They define credibility on fuzzy variables 
as the expected value of a membership function of a fuzzy 
set and is thus not relevant here . These approaches are not 
applicable here, as the outpUt of the AR-logic gate model is 
fucused un a specific resulting state represented qualitatively 
using the degree of membership in each fuzzy set which 
does not involve or include all the states included in the 
entire fuzzy set. Therefore an approach is proposed in here 
to ubtain a measure uf cunfidence in the result from the 
available uncertainty in the model. Chavez et al. [4] have 
quantified the infonnation uncertainty associated with either 
an AR or ER-Iogic model results. The available uncertainty in 
a result is related tu confidence [5] and Chavez et al. suggested 
that the greater the quantity of information uncertainty the 
lowcr thc confidencc. Howevcr. Chavez et al. do not extend 
the quantificatiun uf informatiun uncertainty to a measure uf 
confidence. Their work is further developed here by relating 
a qualitative measure of confidence tu the measured quantity 
of information uncertainty present in the vector result. 

Before proceeding to the presentation of the proposed ap­
proach, a brief overview of both AR and ER-Iogic gate models 
is provided in section II . In section III the methods used 
to quantify information uncertainty in AR and ER-Iogic gate 
results are presented followed by section IV which introduces 
the proposed method used to determine the confidence level 
from the measured information uncertainty in a vector result. 
The proposed approach provides a novel means to quantify 
confidence in a AR or ER-Iogic gate veetur result which is 
necessary for segregating and ranking competing scenarios . 
The significance and findings of the proposed method are 
discussed further in section V. 

II. QUALITATIVE METHODS 

AR or ER methods are used in conjunction with logic gates 
models to draw conclusions about a particular system whose 
components, or contributing variables, states have various 
possible qualitative values . A detailed discussion on the AR 
and ER processes involved in obtaining the results is beyond 
the scope of this paper and the reader is referred to [4), [7), 
[3) for a thorough discussion . Only a brief overview of the 
qualitative reasoning approaches is provided here . Qualitative 
methods consist of two parts: (I) a logic gate model and (2) 
an inference model. The function of a logic gate model (see 
(2)) is to enumerate all the possible scenarios for the system 
under investigation. While an inferential model (see [7)) is 
created to draw conclusions about an outcome or criteria of 
interest, Z , such as risk, where each identified scenario has 
a specific uutcome state Zi . Each scenario consists of severaJ 
connected states of interest, x and y, and the qualitative values 
for each of the specific states of interest Xi and Yi involved in 
the scenario contributes to the value of Zi . A simple inferential 
model is used to draw conclusions about the value of Zi from 
the available qualitative values of Xi and Yi involved in a 
paIlicular scenario. 

A. Approximale Reasolling 

An AR model is a type of inferential model which uses rules 
combined into a series of nile bases, developed from SMEs, 
to draw conclusions from the available infonnation. The 
AR approach is primarily intended for systems consisting of 
qualitative values, imprecisely or vaguely defined ling~isti~ s~t 
values, with the uncertainty referred to a~ fuzzy or itngUlstlc 
uncertainty. A fuzzy set is denoted as A and the boundary 
of set is imprecise or fuzzy. The uncertainty associated with 
describing Xi imprecisely with A is captured using the degree 
of membership of Xi in A, ~.~ (:t;) . AR approaches are simple 
in that it is not necessary to define the fuzzy sets through the 
entire membership function for each fuzzy set. The method 
is simplified hy only requiring the degree of memhership for 
the specific state of interest ill each fuzzy set, which can be 
elicited from the SME. If a specific state Xi is a member of 
the A, then this mapping is given by Equation I. 

~A(X;) E [0, 1] 

The complement of A is defined in 2: 

~A = 1 - ~.4(Xi) 

(I) 

(2) 

A simplified AR-Iogic gate tree model result is provided 
here. For example, conclusions are drawn about security 
risk for each scenario from the resulting imprecise values 
for success likelihood and economic consequences. Each 
scenario produces a specific outcome state for security risk 
which is assessed using AR. The identified linguistic values 
fOl" security risk consist of "very low", "low", "medium", 
"high", and "very high" while the vector result for security 
risk for three competing scenarios was determined to be: 

Scenario A: Security Risk [0, 0, 0 .57, 0, 0) 
Sceanrio B: Security Risk [0,0,0.75,0.2,0.1) 
Scenario C: Security Risk [0, 0.15, 0.85, 0, 0] 

The three scenarios produce a medium security risk 
result and thcre is a different level of confidcncc associatcd 
with each result. 

8 . Evidenlial reasoning 

Alternatively, ER is focused on assignment uncertainty or 
the uncertainty associated with assigning a Xi to particular but 
well defined linguistic sets, A. The SME's degree of belief that 
:1:; is a particular qualitative value captures the uncertainty 
in assigning Xi to a particular value and is referred to as 
assignment uncertainty. The SME assigns Xi to the linguistic 
sets of the power set P(X), i.e. the set of all subsets of X, 
and associates a degree of belief with each assignment. The 
SME's degree of belief that Xi is a particular Aj is called 
the basic probability assignment or basic evidence assignment 
bea. The uncertainty associated with imprecisely describing 
:1;-; linguistically is not quantified with the bea. The bea. (m). 
must satisfy the following boundary conditions: 

m(0) = 0 (3) 



j=1,2,3"',n 

2: m(Aj) = 1 (4) 

AjEP(X) 

Equation 3 indicates that the bea assigned to the null set is 
equal to 0 and Equation 4 indicates that the sum of all the 
bea must equal 1. The bea is distinct from probability in 
that it is not required to satisfy the excluded middle axioms 
and it is defincd on thc P(X) rather than X [9],. The bea 
used here does not involve the bea assigned to the entire 
set but rather the bea that Xi is a particular A j . For each 
identified scenario, an ER-Iogic gate model produces a vector 
result comprised of various Aj and their associated bea for 
the output state of interest z. As an example consider a 
specific outcome state for three di fferent scenarios which 
is to be assigned a qualitative value for effectiveness of 
phy.\·ical inventory. For ea(;h s(;enario. there are four identified 
linguistic values for effectiveness of physical inventory (from 
left to right) not applicable, low, moderate, and excellent. In 
each scenario, there is an associated bea with each linguistic 
value. For example, three scenarios are provided to illustrate 
the difference in the ER vector results. 
Scenario 1 :Effectiveness of phys. inventory[O, 0.1, 0.90, 0] 
Scenario 2:Effectiveness of phys. inventory[O, 0.1, 0.85, 0.05] 
Scenario 3:Effectiveness of phys. inventory[O, 0, 1.0, 0] 

In which of the two scenarios can the decision makers 
have the most confidence. 

III. INFORMATION UNCERTAINTY 

A logic gate tree combined with a qualitative reasoning 
model produce numerous scenarios, each with an associated 
vector result. A consistent means to segregate and compare 
competing results is critical in areas such as asset allocation 
for such areas as security risk assessment. Moreover, decision 
makers are interested in the level of confiden(;e associated with 
each result. Chavez et al. [4] have proposed using information 
uncertainty to compare qualitative reasoning vector results. 
Information uncertainty is comprised of conflict and non· 
specificity (9], both of whi(;h can be quantified in the vector 
results [4]. 

Shannon first addre.~sed the quantification of information 
uncertainty, or entropy, in 1948 (19]. His proposed measure 
quantifies conflict involved in random uncertainty involving 
probability. The importance of information uncertainty is 
demonstrated with the following example. Consider a normal 
die having six faces , all of which are equalJy likely to be 
thrown, and there exists a six sided trick die with one side 
being twi(;e as likely to be thrown as the remaining five sides. 
The regular die has a greater quantity of conflict than the trick 
die because all sides are equally likely to occur in the regular 
die. The trick die is less uncertain because one side is twice 
as likely to be thrown as each of the remaining five; thus. one 
can havc more confidence in the Irick die. 

Klir and Wierman [10] extended Shannon's measure of 
conJlicL LO evidence theory and Chavez et al. [4] further extends 
the measure to vector results, i.e. x is A j . Conflict in an ER 

vector result is calculated using Equation 5, where R is the 
resulting vector. 

n 

C(RER) = - L mAj (x)/092mAj (x) (5) 
j=1 

Pal and Bezdek [15] provide an overview of the numerous 
measures available to measure the conflict due to the fuzzy 
uncertainty associated with a membership function of a fuzzy 
set. Previous applications invol.ving the quamifi(;ation of infor­
mation uncertainty involved all the possible states, elements, 
described by a particular fuzzy set and Chavez et aJ. extended 
the quantification to situations invo,lving one state described 
Iinguistical.ly using various fuzzy sets. Conflict in AR vector 
result is calculated through Equations 6. 

n 

C(RAR) = - 2: J.LA. (X)/092J.LA, (x) + J.LA-,(X)/Og2J.LA,(X) 
i=l 

(6) 
Another type of information un(;ertainty. identified by Hart­

ley [8], is associated with the ambiguity in specifying the exact 
solution and is referred to as the non-specificity [9] . This lack 
of specificity is simply related to the number of available alter­
natives. Chavez ct a!. proposcd a measure for non-specificity 
in an AR or and ER vector result is thus quantified using 
Equation 7 related to the number of alternatives. 

(7) 

Where R is the number of linguistic sets in the resulting 
AR Or ER vector having a non-zero degree of membership or 
non-zero bea, respectively. 

A. Information Uncertainty in AR vector results 

Consider the foHowing simplified infcrence model invo'lving 
the expected economic consequences for a terrorist attack. A 
series of connected inferences are used to determine aggregate 
consequences from qualitative values for the identified states 
in the scenario; likewise, the likelihood of successful attack 
is determined from the identified states in the scenario. The 
resulting economic consequences and the resulting likelihood 
of a successful al/ack for each scenario are ultimately used to 
draw conclusions about the risk. Figure I provides the degree 
of membership values for the resulting states of antecedents, 
likelihood of successful attack and economic consequences, 
which are used to draw conclusions about the consequent, 
expected risk. Equations 6 and 7 are used to quantify the 
conflict and non-specificity associated with the AR vector 
result. Note the linguistic values identified in Figure I are 
not complements of one another. 

C(RAR) = -(0.57", /0920.57 + 0.43 '" /0920.43 + 
1 '" /0921 + 1 '" /0921 + 
1 '" /0921 + 1 '" /0921 = 

0.9868 (8) 



Economic Consequences 
(Very low, Low, Medium, HI&h. Very Hl.J:h) 

10, 0,0,0, 1) RiSk 
(Vtry lOW, Low. Medium. Hich. Very HI,h) 

Antecedents 10, 0, 0.57, 0,01 

10, 0, 0,0.57,0.43, 0,0) Consequent 

EtteC1fvtoneu of In'ltentory VerlnCJitlon 
(Ne,UJlble, b1.remely UnUkely. Very Unlikely, UnUkety. 

Somewhat Uq.ty, Ukety, Nearty uruln) 

rig. I. Simplified Inferenlial AR Model 

Materialln~ntory Frequency 
INA, Occa.slonalty. Rqularly. Continuously} 

10, 0.1, 0.9,01 

Anteudents 

[0,0,1.01 

EffeC1lvenes.s of Inventory VerlncaUon 
INA, Low, Mod,rote, Excellenl] 

EffeC1lveneu of Physltillnventory 
INA, low. Mode,,"e, E.uell,nl] 

10, 0.1. 0.9, 0) 

Consequent 

Fig. 2. Simplified [nferelllial ER Mode[ 

B. In/ormation Uncertainty in ER vector results 

Consider the following ER inference involving the conse­
quence effectiveness oj' physical illventory for a facility which 
will ultimately be used to determine the facility vulnerability. 
The material inventory freq/lency and effectiveness of inven­
tory veri/u-'atioll for each scenario are antecedents used to 
determine the effectiveness of phyisica/ invelltory. Figure 2 
provides the degree of belief values for the states involved in 
the antecedents which are used to determine the the degree 
of belief for the consequent qualitative values describing the 
resulting state. Equa'l,ions 5 and 7 are used to quantify 
the contlici and non-specificity associated with the ER vector 
result. 

C(RAR ) = -(0.1 * [o,f]20.1 + 0.9 * [Og20.9) = 0.4689 

IV. Fuzzy CONFIDENCE 

The correlation between a qualitative value of confidence 
and the quantity of information uncertainty is developed in 
this study. A consistent method' is proposecl which relates 
confidence to the quantity of information uncertainty. Mea­
sured values of conflict and non-specifity are correlated to 
qualitative confidence values using maximum and minimum 
potential values of ilnformation uncertainty. The conflict and 
non-specificity values each characterize a unique aspect of 
information uncertai'nty; however, in the case of a uniform 
distribution, i.e. the bea values are each equivalent to lin, 

nformatlon Uncertainty 

FUll Membe hi Function 

Fig. 3. Relationship for Determining Confidence 

conflict and non-specificity are equivalent [9). Similarly, when 
only one alternative is possible, i.e. bea is equal to I for the 
single aJternative, t.he confl ict and non-specificity are again 
equivaJent. This characteristic has led some researchers to 

consider non-specificity as a special case of conflict; however, 
this consideration is ill conceived as non-specificity qmantifies 
a different aspect than does conHict [9). Afl aggregate uncer­
tainty quantification has been previously proposed [(0), but 
it is the intent of this study to segregate the two iflformation 
uncertainty metrics to maintain Iheir individual significance. 

Each competing scenario in a family of scearuios share the 
same possible qualitative values, i.e. the linguistic values NA, 
Low, Moderate, and Excellent for Effectiveness of Physical 
Inventory in Figure 2; thus, the maximum and minimum values 
for conflict and non-specificity for the family of scenarios can 
be determined. Similarly, the conflict and non-specificity for 
each individual scenario vector result can also be calculated. 
As illustrated in Figure 3 and described, here the measured 
vallues of conflict and non-specificity can then be related to 
qualitative values for confidence. 

Maximum conflict and non-specificity occur in an ER vector 
result Ihat contains equivalent bea values for each n qualitative 
valucs in the vlXtor. Minimum conlliet and non-specificity 
occur in an ER vector result with one possible qualitative 
value having its bea equal to I. Similarly, maximum conflict 
and non-speci ticity in an AR result, with a resulting vector 
consisting of non-complementary quali lative values, occurs 
when each qualitative set in the vector has a degree of 
membership equivalent to 0.5. The domain of AR vector 
result may not necessarily include the linguistic set and its 
complement and the refore it may not sum to 1. Whereas the 
domain of an ER vector result is considered the power set 
and should sum to I. Equation 6 accounts for the degree of 
membership of the Slate of interest in a particular linguistic set 
and in its complement with maximum conflict produced when 
there is 0.5 membership in both the linguistic set value and 
its complement for all linguistic sets in the idenitifed domain. 
Equation 9 is proposed as a means to relate the quantified 



Very High Very Low 

~~+-~----~----~----~~IU 

Fig. 4. Membership fun~tion for confidence 

contlict and non-specificity to infonnation uncertainty (IU). In 
Equation 9 the measured values for conflict and non-specificity 
for each scenario are each normalized by their respective 
maximum value for the family of scenarios which are then 
summed into a combined' measure. 

(9) 

An IU value of 0 is produced when there is no contlict or 
non-specificity in the result which is considered the minimum 
IU value while the maximum IU value of 2 occurs when 
both conflict and non-specificity have maximum value. These 
values are used as the upper and lower bound values for the 
confidence, see Figure 4, and they confine the confidence 
linguistic values Very HiXh, HiXh, Medium, Low, Very Low. 
Figure 4 provides the membership functions on each of the 
identified fuzzy qualitative value sets. The determined value 
of IU for each scenario is mapped to a specific value of 
confidence which permits comparison of each scenario on 
the level of confidence. The manner in which the resulting 
infonnation uncel1ainty, IU j and IU2, is mapped to confidence 
is illustrated in Figure 4. 

A. Confidence ill AR and ER results 

The proposed approach is illustrated here using the AR and 
ER vector results provided in Section ll. Equations 6 and 7 are 
used to calculate the conflict and non-specificity, respectively, 
involved in the AR result for Scenarios A, Band C. The 
maximum contlict and non-specificity present in the set of 
scenarios is determined to be 5 and 2.322, respectively. Note, 
the qualitative sets provided are not considered complemen­
tary of one another. The resulting values for conflict, non­
specificity, and the associated IU, are provided in Table I while 
the confidence associated with the determined IU is provided 
in Table II. The resulting confidence vector is contained in the 
linguistic sets IVery High, High, Medium, Low, Very Low] 
and their respective degree of membership for the resulting 
confidence state, determined from the IU and the confidence 
membership functions, in each linguistic value is provided in 
Table II along with the resulting linguistic value. 

Equations 5 and 7 are used to calculate the conflict and non­
specificity, respectively, involved in the ER result for Scenarios 
1, 2, and 3. The maximum conflict and non-specificity present 
in the set of scenarios is determined to be 2 and 2, respectively, 

TABLE 1 

CONFLICT, NON-SPECIFICITY AND RESULTING INFORMATION 
UNCERTAINTY IN THE AR RESULTS. 

Scenario 1 Conj/ici Non·Specijicily IV I 

Sc~nario A '-0.986 0 0.197 
, 

I 

Scenario B 1 2.002 1.585 1.083 i 

Scenario C 1.220 1.000 0.675 I 

TABLE II 
INFORMATION UNCERTAINTY AND CONFIDENCE IN AR RESULTS. 

Scenario IV i Crmfidenl'e Vee",r Confidenl'e 
Scenario A 0.197 [0.606,0.394,0,0.01 Very High to High 
Scenario B 1.083 10,0,0.834,0.166,0] Medium 
Scenario C 0.675 [0,0.65,0.35,0,0] High to M~dium 

which is produced when each qualitative value equivalent bea 
values. Table III provides the conflict, non-specificity, and the 
associated IU. while Table IV provides the resultant confidence 
for Scenario I, 2, and 3. 

The results demonstrate the utility of relating qualitative 
confidence levels to information uncertainty to compare com­
peting AR scenario results or ER scenario results. In the ER 
example illustrated, (see Table Ill) the three scenarios result 
in a mostly moderate qualitative value for the effectiveness of 
physical inventory; however, there is an observable difference 
in each resulting vector. A realistic comparison is not possible 
without the use of information uncertainty which is related 
to qualitative value of confidence for a more meaningful 
comparison. In the case of the AR results, Table I, qualitative 
values of conflict provided a useful means to compare the 
competing scenarios. 

V. CONCLUSION 

This study provides a means to determine a qualitative 
lcvel of confidence for both AR or ER-Iogic gates model 
vector results. The determined confidence values are used to 
compare competing scenarios and understand the influence 
on the desired consequence or metric of interest, such as 
risk. Moreover, the determined confidence values can also be 
used to compare the results for possible resource allocations 
and used to reduce risk. Maximal and minimal potential 
information uncertainty is easily identified in various AR and 

TABLE III 
CONFLICT, NON-SPECIFICITY AND RESULTING INFORMATION 

UNCERTAINTY FOR ER RESULTS 

Scenario Conf/iel N(JIl-Spel'ijiciry I IV 
Scenario I 0.469 1.000 I 0.734 
Scenario 2 0.748 1.585 I. 1.166_ 
Scenario 3 0 0 I 0 

TABLE IV 

I NFORMATION UNCERTAINTY AND CONFIDENCE IN ER RESULTS. 

Scenario IV CUllfidellce VeClor Confidence 
Scenario I 0.734 l0-,Q,531 ,O.469.0,OJ High to Medium 
Scenario 2 I 1.166 lO,0,O.667.0.333.0] Medium 
Scenario 3 0 [l,O,O,O,OJ Very High 



ER vector results and is related to minimal and maximal 
confidence levels, respectively. A simple algorithm is pre­
sented to correlate the information uncertainty quanlified in 
a result to a fuzzy confidence value. A confidence value is an 
extremely useful metric when comparing different scenarios 
and it is easily understood by policy and decision makers 
who require understandable yet defensible metlics. Due to the 
absence of quantitative information, direct validation was not 
pursued, future work will involve comparisons of the results 
obtained using the proposed confidence metrics to rank the 
results to those obtained from a SME ranking of the results. 
The methods used to quantify information uncertainty do not 
discern the difference between a vector result with a bimodal 
distribution and one that is not bimodal. Vector results with a 
bimodal distribution have signaled an error in the inference. 
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