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Abstract—Qualitative reasoning makes use of qualitative as-
sessments provided by subject matter experts to model factors
such as security risk. Confidence in a result is important and
useful when comparing competing results. Quantifying the con-
fidence in an evidential reasoning result must be consistent and
based on the available information. A novel method is proposed to
relate confidence to the available information uncertainty in the
result using fuzzy scts. Information uncertainty can be quantified
through measures of non-specificity and conflict. Fuzzy values
for confidence are established from information uncertainty
values that lie between the measured minimum and maximum
information uncertainty values.

I. INTRODUCTION

Logic gate trees are used to enumerate an exhaustive set
of possible scenarios for a system of interest. The identified
scenarios each share common states of interest; although, each
scenario has a distinct combination of values for these states
of interest. In many applications the available values for the
states are provided by subject matter experts (SME) and are
qualitative. Approximate reasoning (AR) has been used on
many engineering and control applications involving quali-
tative or imprecise data [17], [1], [12]. AR models emulate
expert judgments [ 4] and it has been used in conjunction with
logic gate models, using a series connected inferences, to draw
conclusions about a particular criterion of interest common
among all the identified scenarios. Bott et al. extended AR to
logic gate trees [2] which has been used to model security [7]
and risk [6], [3]. AR can be used to draw conclusions from
vague or imprecise representations of the states of interest
involved in the scenario. Similar to AR, evidential reasoning
(ER) is used with logic gate trees as an alternative approach
to draw conclusions about a certain aspect of a system;
however, ER is used when it is uncertain which qualitative
value represents the state of interest. One major difference
between the AR and ER-logic gate model approaches is in
the uncertainty quantificd.

The imprecision associated with describing a specific state
of interest z; qualitatively can be captured with the degree
of membership of z; in the fuzzy set while the uncertainty
associated with assigning z; to one qualitative value over
another can be captured through the expert’s degree of belief,
or basic evidence assignment that z; is a particular set [9].
AR-logic gate models use the degree of membership in fuzzy
sets in the inferences while ER-logic gate models use the
the expert’s degree of belief in the inferences. AR-logic

gate models produce simple results consisting of a vector of
qualitative set values and the degree of membership of z;
in each of the qualitative set values see Chavez et al. [4]. A
simple of example of a vector consisting of qualitative values
for economic consequences and their respective degree of
membership are as follows:

_ﬁ —
[verylow(0), low(0), medium(0), high(0.25), veryhigh(0.75)]

ER-logic gate models also produce results consisting of a
vector of qualitative set values; however, instead of the degree
of membership, the degree of belief of z; in each qualitative
set values is used. The uncertainty associated with imprecise
boundaries of the qualitative sets is not addressed in ER and
is discussed in Section II. Fuzzy ER has been proposed [20];
however, it does not quantify both assignment and linguistic
uncertainties present. This study refers collectively to both
AR and ER-logic gate models as qualitative reasoning models
and the reader is referred to Chavez et al. [4] for a broader
discussion on these qualitative models. Separate underpinings
are provided for the conflidence obtained using the AR and ER
models results.

An issue of concern for competing scenarios and their
vector results for a particular criterion of interest is the
confidence level associated with each vector result produced.
The confidence Icvel identificd here quantifics how belicvable
the result is based on the available data. It is similar to the
Bayesian statistical interpretation of confidence level [11], in
that it answers how believable the result is in containing the
true, based on the the available information. In this sense,
the confidence level is distinct from the frequentist statistical
interpretation of the confidence level which is associated with
the percentage of confidence intervals containing the true value
[18] and is based on a potentially infinite number of trials.
The desired confidence level associated with each vector result
should convey how believable is the result and should not have
a greater precision than the available data used to determine
the vector result; thus a qualitative value for confidence is
proposed in this study.

Lui and Lui [13] have proposed measures for the credibility
on fuzzy set values and Peng et al. [16] applied credibility




on fuzzy variables. They define credibility on fuzzy variables
as the expected value of a membership function of a fuzzy
set and is thus not relevant here. These approaches are not
applicable here, as the output of the AR-logic gate model is
focused on a specific resulting state represented qualitatively
using the degree of membership in each fuzzy set which
does not involve or include all the states included in the
entire fuzzy set. Therefore an approach is proposed in here
o obtain a measure ol confidence in the result from the
available uncertainty in the model. Chavez et al. [4] have
quantified the information uncertainty associated with either
an AR or ER-logic model results. The available uncertainty in
a result is related to confidence [5] and Chavez et al. suggested
that the greater the quantity of information uncertainty the
lower the confidence. However, Chavez et al. do not extend
the quantification of information uncertainty to a measure of
confidence. Their work is further developed here by relating
a qualitative measure of confidence to the measured quantity
of information uncertainty present in the vector result.

Before proceeding to the presentation of the proposed ap-
proach, a brief overview of both AR and ER-logic gate models
is provided in section II. In section III the methods used
to quantify information uncertainty in AR and ER-logic gate
results are presented followed by section IV which introduces
the proposed method used to determine the confidence level
from the measured information uncertainty in a vector result.
The proposed approach provides a novel means to quantify
confidence in a AR or ER-logic gate vector result which is
necessary for segregating and ranking competing scenarios.
The significance and findings of the proposed method are
discussed further in section V.

I1. QUALITATIVE METHODS

AR or ER methods are used in conjunction with logic gates
models to draw conclusions about a particular system whose
components, or contributing variables, states have various
possible qualitative values. A detailed discussion on the AR
and ER processes involved in obtaining the results is beyond
the scope of this paper and the reader is referred to [4], [7),
[3] for a thorough discussion. Only a brief overview of the
qualitative reasoning approaches is provided here. Qualitative
methods consist of two parts: (1) a logic gate model and (2)
an inference model. The function of a logic gate model (see
{2]) is to enumerate all the possible scenarios for the system
under investigation. While an inferential model (see [7)) is
created to draw conclusions about an outcome or criteria of
interest, z, such as risk, where each identified scenario has
a specific outcome state z;. Each scenario consists of several
connected states of interest,  and ¥, and the qualitative values
for each of the specific states of interest z;; and y; involved in
the scenario contributes to the value of z;. A simple inferential
model is used to draw conclusions about the value of z; from
the available qualitative values of z; and y; involved in a
particular scenario.

A. Approximate Reasoning

An AR model is a type of inferential model which uses rules
combined into a series of rule bases, developed from SMEs,
to draw conclusions from the available information. The
AR approach is primarily intended for systems consisting of
qualitative values, imprecisely or vaguely defined linguistic set
values, with the uncertainty referred to as fuzzy or linguistic
uncertainty. A fuzzy set is denoted as A and the boundary
of set is imprecise or fuzzy. The uncertainty associated with
describing x; imprecisely with A is captured using the degree
of membership of z; in A, u4(«;). AR approaches are simple
in that it is not necessary to define the fuzzy sets through the
entire membership function for each fuzzy set. The method
is simplified by only requiring the degree of membership for
the specific state of interest in each fuzzy set, which can be
elicited from the SME. If a specific state z; is a member of
the A, then this mapping is given by Equation I.

na(z:) €[0,1] M
The complement of A is defined in 2:
i=1—nz(z) (2

A simplified AR-logic gate tree model result is provided
here, For example, conclusions are drawn about security
risk for each scenario from the resulting imprecise values
for success likelihood and economic consequences. Each
scenario produces a specific outcome state for security risk
which is assessed using AR. The identified linguistic values
for security risk consist of “very low”, “low”, “medium”,
“high”, and “very high” while the vector result for security
risk for three competing scenarios was determined to be:

Scenario A: Security Risk [0, 0, 0.57, 0, 0]
Sceanrio B: Securnty Risk [0, 0, 0.75, 0.2, 0.1]
Scenario C: Security Risk [0, 0.15, 0.85, 0, 0]

The three scenarios produce a medium security risk
result and there is a different level of confidence associated
with each result.

B. Evidential reasoning

Alternatively, ER is focused on assignment uncertainty or
the uncertainty associated with assigning a z; to particular but
well defined linguistic sets, A. The SME’s degree of belief that
#; is a particular qualitative value captures the uncertainty
in assigning z; to a particular value and is referred to as
assignment uncertainty. The SME assigns ; to the linguistic
sets of the power set P(X), i.e. the set of all subsets of X,
and associates a degree of belief with each assignment. The
SME’s degree of belief that z; is a particular A; is called
the basic probability assignment or basic evidence assignment
bea. The uncertainty associated with imprecisely describing
a; linguistically is not quantified with the bea. The bea, (),
must satisfy the following boundary conditions:

m(Q) =0 (3




1=1,2,3--:.n
m(AJ) =1
A;EP(X)
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Equation 3 indicates that the bea assigned to the null set is
equal to 0 and Equation 4 indicates that the sum of all the
bea must equal 1. The bea is distinct from probability in
that it is not required to satisfy the excluded middle axioms
and it is defined on the P(X) rather than X [9]. The bea
used here does not involve the bea assigned to the entire
set but rather the bea that z; is a particular A;. For each
identified scenario, an ER-logic gate model produces a vector
result comprised of various A; and their associated bea for
the output state of interest z. As an example consider a
specific outcome state for three different scenarios which
is to be assigned a qualitative value for effectiveness of
physical inventory. For each scenario, there are four identified
linguistic values for effectiveness of physical inventory (from
left to right) not applicable, low, moderate, and excellent. In
each scenario, there is an associated bea with each linguistic
value. For example, three scenarios are provided to illustrate
the difference in the ER vector results.

Scenario 1:Effectiveness of phys. inventory[0, 0.1, 0.90, 0]
Scenario 2:Effectiveness of phys. inventory[0, 0.1, 0.85, 0.05]
Scenario 3:Effectiveness of phys. inventory[0, 0, 1.0, 0]

In which of the two scenarios can the decision makers
have the most confidence.

III. INFORMATION UNCERTAINTY

A logic gate tree combined with a qualitative reasoning
model produce numerous scenarios, each with an associated
vector result. A consistent means to segregate and compare
competing results is critical in areas such as asset allocation
for such areas as security risk assessment. Moreover, decision
makers are interested in the level of confidence associated with
each result. Chavez et al. [4] have proposed using information
uncertainty to compare qualitative reasoning vector results.
Information uncertainty is comprised of conflict and non-
specificity [9], both of which can be quantified in the vector
results [4].

Shannon f(irst addressed the quantification of information
uncertainty, or entropy, in 1948 [19]. His proposed measure
quantifies conflict involved in random uncertainty involving
probability. The importance of information uncertainty is
demonstrated with the following example. Consider a normal
die having six faces, all of which are equally likely to be
thrown, and there exists a six sided trick die with one side
being (wice as likely to be thrown as the remaining five sides.
The regular dic has a greater quantity of conflict than the trick
die because all sides are equally likely to occur in the regular
die. The trick die is less uncertain because one side is twice
as likely to be thrown as each of the remaining five; thus, one
can have more confidence in the trick die.

Klir and Wierman [10] extended Shannon’s measure of
conllict 10 evidence theory and Chavey et al. [4] further extends
the measure to vector results, i.e. z is A;. Conflict in an ER

veclor result is calculated using Equation 5, where R is the
resulting vector.

C(Rgr) = — Y ma,(z)logama, () (5)
j=1

Pal and Bezdek [15] provide an overview of the numerous
measures available to measure the conflict due to the fuzzy
uncertainty associated with a membership function of a fuzzy
set. Previous applications involving the quantification of infor-
mation uncertainty involved all the possible states, elements,
described by a particular fuzzy set and Chavez et al. extended
the quantification to situations involving one state described
linguistically using various fuzzy sets. Conflict in AR vector
result is calculated through Equations 6.

C(Rar) = =Y us (@)logau (2) + pg (z)logan 5 (2)

=1 (6)
Another type of information uncertainty, identified by Hart-
ley [8], is associated with the ambiguity in specifying the exact
solution and is referred to as the non-specificity [9]. This lack
of specificily is simply related to the number of available alter-
natives. Chavez ct al. proposcd a mcasure for non-specificity
in an AR or and ER vector result is thus quantified using
Equation 7 related to the number of alternatives,
N(R) = logz|R| (7
Where R is the number of linguistic sets in the resulting
AR or ER vector having a non-zero degree of membership or
non-zero bea, respectively.

A. Information Uncertainty in AR vector results

Consider the following simplified infecrence model involving
the expected economic consequences for a terrorist attack. A
series of connected inferences are used to determine aggregate
consequences from qualitative values for the identified states
in the scenario; likewise, the likelihood of successful attack
is determined from the identified states in the scenario. The
resulting economic consequences and the resulting likelihood
of a successful antack for each scenario are ultimately used to
draw conclusions about the risk. Figure | provides the degree
of membership values for the resulting states of antecedents,
likelihood of successful attack and economic consequences,
which are used to draw conclusions about the consequent,
expected risk. Equations 6 and 7 are used to quantify the
conflict and non-specificity associated with the AR vector
result. Note the linguistic values identified in Figure | are
not complements of one another.

C(Rar) = —(0.57 x10g20.57 + 0.43 » log,0.43 +
1xlogal + 1xlogyl +
1xlogal + 1xlogpl =

0.9868 (8)




Economic Consequences
{very Low, Low, Medlum, High, Very High}

[0, 0,0,0,1] Risk
{Very Low, Low, Medium, High, Very High)
Antecedents [0, 0, 0.57, 0,0]

{0, 0, 0,0.57,0.43, 0,0) Consequent

Effectiveness of Inventory Verification
{Negligible, Extremely Unlikely, Very Unilkely, Unitkely,
Somewhat Ukely, Ukely, Nearly Certain)

Fig. 1. Simplified Inferential AR Modci

Material Inventory Frequency

{NA, O Hy, Regularly, Contl Iy}
fo, 0.1, 0.3, 0] 1 of Physical y
_— {NA, Low, Moderate, Excelient)
Antecedents lo. 0.1, 0.9, 0}
[0 0 4 0] Consequent

Effectiveness of inventory Veriflcation
{NA, Low, Moderate, Excellent}

Fig. 2. Simplified Inferential ER Model

N(R) =log,|1| =0

B. Information Uncertainty in ER vector results

Consider the following ER inference involving the conse-
quence effectiveness of physical inventory for a facility which
will ultimately be used to determine the facility vulnerability.
The material inventory frequency and effectiveness of inven-
tory verification for each scenario are antecedents used to
determine the e¢ffectiveness of phyisical inventory. Figure 2
provides the degree of belief values for the states involved in
the antecedents which are used to determine the the degree
of belief for the consequent qualitative values describing the
resulting state. Equations 5 and 7 are used to quantify
the conflict and non-specificity associated with the ER vector
result.

C(Rar) = —(0.1 % 1l0g20.1 + 0.9 % log>0.9) = 0.4689

N(R) = logs|2| = 1.0

IV. Fuzzy CONFIDENCE

The correlation between a qualitative value of confidence
and the quantity of information uncertainty is developed in
this study. A consistent method is proposed which relates
confidence to the quantity of information uncertainty. Mea-
sured values of conflict and non-specifity arc correlated to
qualitative confidence values using maximum and minimum
potential values of information uncertainty. The conflict and
non-specificity values each characterize a unique aspect of
information uncertainty; however, in the case of a uniform
distribution, i.e. the beu values are each equivalent to I/n,

Non-specificity

nformatlon Uncertainty,

Fuzzy Membership Function

Confidence

Fig. 3. Relationship for Determining Confidence

conflict and non-specificity are equivalent [9]. Similarly, when
only one alternalive is possible, i.e. bea is equal to 1 for the
single alternative, the conflict and non-specificity are again
equivalent. This characteristic has led some researchers to
consider non-specificity as a special case of conflict; however,
this consideration is ill conceived as non-specificity quantifies
a diffcrent aspect than does conflict [9). An aggregatc uncer-
tainty quantification has been previously proposed [10], but
it is the intent of this swudy to segregate the two information
uncertainty metrics to maintain their individual significance.

Each competing scenario in a family of sceanrios share the
same possible qualitative values, i.e. the linguistic values VA,
Low, Moderate, and Excellent for Effectiveness of Physical
Inventory in Figure 2; thus, the maximum and minimum values
for conflict and non-specificity for the family of scenarios can
be determined. Similarly, the conflict and non-specificity for
each individual scenario vector result can also be calculated.
As illustrated in Figure 3 and described, here the measured
values ol conflict and non-gpecificity can then be related to
qualitative values for confidence.

Maximum conflict and non-specificity occur in an ER vector
result that contains equivalent bea values for each 7. qualitative
valucs in the vector. Minimum conflict and non-specificity
occur in an ER vector result with one possible qualitative
value having its bea equal to 1. Similarly, maximum conflict
and non-specificity in an AR result, with a resulting vector
consisting of non-complementary qualitative values, occurs
when each qualitative set in the vector has a degree of
membership equivalent to 0.5. The domain of AR vector
result may not necessarily include the linguistic set and its
complement and therefore it may not sum to 1. Whereas the
domain of an ER vector result is considered the power set
and should sum to 1. Equation 6 accounts for the degree of
membership of the state of interest in a particular linguistic set
and in its complement with maximum conflict produced when
there is 0.5 membership in both the linguistic set value and
its complement for all linguistic sets in the idenitifed domain.
Equation 9 is proposed as a means 10 relate the quantified




Fig. 4. Membership function for confidence

conflict and non-specificity to information uncertainty (IU). In
Equation 9 thc mcasurcd valucs for conflict and non-specificity
for each scenario are each normalized by their respective
maximum value for the family of scenarios which are then
summed into a combined measure.

C(R) N(R)
C(Rmaz) N(Rmaz)

An IU value of 0 is produced when there is no conflict or
non-spccificity in the result which is considercd the minimmum
IU value while the maximum IU value of 2 occurs when
both conflict and non-specificity have maximum value, These
values are used as the upper and lower bound values for the
confidence, see Figure 4, and they coufine the confidence
linguistic values Very High, High, Medium, Low, Very Low.
Figure 4 provides the membership functions on each of the
identified fuzzy qualitative valuc sets. The determined value
of TU for each scenario is mapped (o a specific value of
confidence which permits comparison of each scenario on
the level of confidence. The manner in which the resulting
information uncertainty, IU; and IU,, is mapped to confidence
is illustrated in Figure 4.

U(R) = (9)

A. Confidence in AR and ER results

The proposed approach is illustrated here using the AR and
ER vector results provided in Section II. Equations 6 and 7 are
used to calculate the conflict and non-specificity, respectively,
involved in the AR result for Scenarios A, B and C. The
maximum conflict and non-specificity present in the set of
scenarios is determined to be 5 and 2.322, respectively. Note,
the qualitative sets provided are not considered complemen-
lary ol one another. The resulting values for conflict, non-
specificity, and the associated IU, are provided in Table I while
the confidence associated with the determined IU is provided
in Table II. The resulting confidence vector is contained in the
linguistic sets [Very High, High, Medium, Low, Very Low]
and their respective degree of membership for the resulting
confidence state, determined from the IU and the confidence
membership functions, in each linguistic value is provided in
Table II along with the resulting linguistic value.

Equations 5 and 7 are used to calculate the conflict and non-
specificity, respectively, involved in the ER result for Scenarios
1, 2, and 3. The maximum conflict and non-specificity present
in the set of scenarios is determined to be 2 and 2, respectively,

TABLE [
CONFLICT, NON-SPECIFICITY AND RESULTING INFORMATION
UNCERTAINTY IN THE AR RESULTS.

Scenario Conflict | Non-Specificity [
Scenario A 0.986 0 0.197
Scenario B 2.002 1.585 1.083
Scenario C 1.220 1.000 0.675
TABLE I
INFORMATION UNCERTAINTY AND CONFIDENCE IN AR RESULTS.
Scenario U Confidence Vector Confidence
Scenario A | 0.197 | [0.606,0.394,0,0.0] | Very High to High
Scenario B 1.083 0,0,0.834,0.166,0] Medium
Scenario C | 0.675 10,0.65,0.35,0,0} High to Medium

which is produced when each qualitative value equivalent bea
values. Table III provides the conflict, non-specificity, and the
associated IU, while Table IV provides the resultant confidence
for Scenario 1, 2, and 3.

The results demonstrate the utility of relating qualitative
confidence levels to information uncertainty to compare com-
peting AR scenario results or ER scenario results. In the ER
example illustrated, (see Table III) the three scenarios result
in a mostly moderate qualitative value for the effectiveness of
physical inventory; however, there is an observable difference
in each resulting vector. A realistic comparison is not possible
without the use of information uncertainty which is related
to qualitative value of confidence for a more meaningful
comparison. In the case of the AR results, Table I, qualitative
values of conflict provided a useful means to compare the
competing scenarios.

V. CONCLUSION

This study provides a means to determine a qualitative
level of confidence for both AR or ER-logic gates model
vector results. The determined confidence values are used to
compare compeling scenarios and understand the influence
on the desired consequence or metric of interest, such as
risk. Moreover, the delermined confidence values can also be
used to compare the results for possible resource allocations
and used to reduce risk. Maximal and minimal potential
information uncertainty is easily identified in various AR and

TABLE 11
CONFLICT, NON-SPECIFICITY AND RESULTING INFORMATION
UNCERTAINTY FOR ER RESULTS

Scenario Conflict | Nen-Specificity U

Scenario 1 0.469 1.000 0.734

Scenario 2 0.748 1.585 1.166

Scenario 3 [1] 0 0
TABLE IV

INFORMATION UNCERTAINTY AND CONFIDENCE IN ER RESULTS.

Scenario [i4 Confidence Vector Confidence
Scenario 1 | 0.734 | [0,0.531,0.469,0,0] | High 1o Medium
Scenario 2 | 1.166 | [0,0,0.667.0.333,0] Medium
Scenario 3 0 [1,0,0,0,0] Very High




ER vector results and is related to minimal and maximal
confidence levels, respectively. A simple algorithm is pre-
sented to correlate the information uncertainty quantified in
a result to a fuzzy confidence value. A confidence value is an
extremely useful metric when comparing different scenarios
and it is easily understood by policy and decision makers
who require understandable yet defensible metrics. Due to the
absence of quantitative information, direct validation was not
pursued, future work will involve comparisons of the results
obtained using the proposed confidence metrics to rank the
results to those obtained from a SME ranking of the results.
The methods used to quantify information uncertainty do not
discern the difference between a vector result with a bimodal
distribution and one that is not bimodal. Vector results with a
bimodal distribution have signaled an error in the inference.
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