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Abstract

We present an approach for determining the linear stability of
steady states of PDEs on massively parallel computers. Linearizing
the transient behavior around a steady state leads to a generalized
eigenvalue problem. The eigenvalues with largest real part are cal-
culated using Arnoldi’s iteration driven by a novel implementation of
the Cayley transformation to recast the problem as an ordinary eigen-
value problem. The Cayley transformation requires the solution of a
linear system at each Arnoldl iteration, which must be done iteratively
for the algorithm to scale with problem size. A representative model
problem of 3D incompressible flow and heat transfer in a rotating disk
reactor is used to analyze the effect of algorithmic parameters on the
performance of the eigenvalue algorithm. Successful calculations of
leading eigenvalues for matrix systems of order up to 4 million were
performed, identi&ing the critical Grashof number for a Hopf bifur-
cation.
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I Introduction

Computing a numerical solution to the discretized Navier-Stokes equations

for system sizes of 0(104-105) is commonplace. Massively parallel computers
are demonstrating the ability to simulate fluid flow where the systems size is

0(106 – 107). However, the linear hydrodynamic stability of flows for these

latter systems sizes is typically not computed.

A standard approach used to determine the stability of the solution is via

a numerical time evolution of the discretized equations starting from a steady

state. Another approach is to linearize the equations about the steady state

and then compute several eigenvalues of a large-scale generalized eigenwdue

problem. This latter approach is the subject of the study.

Our interest is in characterizing the stability of complex three dimensional
systems with coupled fluid flow, heat transfer, and mass transfer. Hence we
are interested in the numerical solution of large scale generalized eigenvalue

problems for system sizes of n = 0(106). Because the solution of generalized
eigenvalue problem necessarily involves solving linear systems, sparse direct

methods are not a viable alternative. They possibly require 0(rz2) operations

plus a prohibitive amount of memory. Instead, this paper considers the use of

iterative methods for the linear solves on massively parallel machines. Along
with a scalable eigensolver, such an approach allows stability analysis to be

performed on large systems arising from 3D models.
\\Te present a large scale eigen~alue algorithm that allows us to determine

the linear stability of a representative problem of 3D incompressible flow

of heat transfer in a rotating disk reactor. While the steady flow for this
application is axisymmetric and can be computed with a 2D model, the sta-

bility of the flow to 3D disturbances is needed to confidently use the results

to design reactors. We carefully discuss the influence of the various alg-

rithmic parameters on the performance of the stability analysis. Successful
calculations were performed on this problem where the order of the matrix

eigenvalue problem was 4 million. Our algorithm identified a critical Grashof

number for a Hopf bifurcation, above which the reactor exhibits undesirable
flow behavior.

Our paper is organized as follows. Section 2 discusses the flow of heat
transfer in a rotating disk reactor and the computation of the steady state

solution. Section 3 formulates the eigenvalue problem used to compute the

stability of the steady state and describes in detail our numerical scheme

2
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for solving the large scale generalized eigenvalue problem using the Cayley

transformation. Section 4 discusses in detail some of the issues related to

using an iterative linear solver on parallel computers as part of the” eigen-
value calculation. Section 5 applies the linear stability analysis capability to

determine the critical Grashof number for a Hopf bifurcation. We summarize
our findins along with concluding remarks in section 6.

2 Steady Flow Problem

Much of the behavior in a nonlinear system can be uncovered by tracking

steady state solutions as they evolve with changes in system parameters.

In this section, we will describe our representative flow problem and our
calculation of the steady state solution. That we have computed a solution
to the steady state equations does not indicate whether the solution is stable
or unstable motivates the development of a linear stability analysis capability
for large-scale flow problems.

The rotating disk reactor (RDR) is a common system for growing high
quality thin films via chemical vapor deposition. A top view and cross sec-
tional view of the reactor configuration are shown in Figure 1. The reactor

consists of an outer cylindrical can and a smaller cylinder can inside, which
is rotating and heated on top. On this heated disk, the deposition occurs

via surface reactions. Plug flow enters the top circular area, passes over
the heated, rotating disk, and through then through annular region before
leaving the computational domain. Under certain conditions, the flow in the
reactor is well represented by the von Karman similarity solution for flow
over an infinite rotating disk [1], leading to very desirable growth conditions.

The rotating disk reactor is known from experiments and calculations to
exhibit flow instabilities-. This includes the formation of stable yet undesir-
able recirculation cells [1, 2, 3] as well as unsteady flows [4]. The steady state
behavior of this system can be uncovered by bifurcation analysis of steady
state flows [2, 5]. While these solutions are axisymmet ric and require just

2D calculations, the stability analysis must be able to detect instabilities to
non-axisymmetric states and so we have calculated the steady flow using a
full 3D model.

To provide the most general results, we study just the fluid flow and heat
transfer model (no mass transfer or reactions) and look at dimensionless

3
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Figure 1: Top view and cross section of rotating disk reactor for chemical
vapor deposition reactions. The surface elements shown correspond to a

94656 element mesh ofhexahedrons and 500215 unknowns.

.
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Table 1: The governing PDE’s for incompressible flow with heat transfer are
shown in dimensionless form, including the Navier-Stokes equations with the

Boussinesq approximation, the continuity equation, and a heat balance.

.

.

I Momentum I ~+v. vv= –VP + V2V + GrTez

Total Mass I V“v=o

Thermal Energy ~VzT~+v. VT=Pr

numbers, which are based on the assumptions of constant properties and the
Boussinesq approximation for buoyancy. For the calculations in this paper,
we have fixed the design parameters as shown in the figure, with L/l? = 1.0,

W/R = 1.2, and H/R = 1.0. The operating parameters in the model that

are also fixed for these calculations include the Rotational Reynolds number,

Re.~~ = (flR2)/v = 83.77 and the Prandlt number % = v/a= 1.0 where $2
is the rotation rate, v is the kkematic viscosity, and a is the thermal diffu-
sivity. The Reynolds number at the inlet is fixed at the matching condition,
which is the flow rate that would be drawn by an infinite disk rotating at

Rerot. The asymptotic value for the inlet velocity [4] of V = 0.884@ leads
to a inlet Reynolds number of Be = (2 RV)/v = 16.18. The final parameter

is the Grashof number, measuring the relative strength of buoyancy forces
to viscous forces. This parameter is varied at the end of the paper, but for

most calculations is held constant at Gr = (g@TR’)/v2 = 15000, where g

is the magnitude of gravity, j3 is the thermal expansion coefficient, and T is
the temperature difference between the heated disk and the inlet (with the
outer walls also being held at the inlet temperature).

The steady state Nav;er-Stokes equations with the Boussinesq approxima-
tion are solved along with the continuity equation for incompressible flows.

In addition, a heat equation with convective and conduction terms is solved.
The equations are shown in Table 1 and include the time dependent terms,
which are important for the formulation of the stability (eigenvalue) calcu-

lation.

The computational domain is discretized using a mesh of 94656 hexehe
dral elements, which corresponds to
with an unstructured mesh, as can

100043 nodes .- The circular area is paved
be seen from a top view in Figure l(a),
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whiIe the axial direction is structured, as seen in the cross-sectional view

in Figure 1(b). The mesh is partitioned with the Chaco graph partitioning
package [6], using a multi-level method and Kernihan-Lin refinement. The

mesh was partitioned into the same number of sub-domains as the number
of processors for the run, which was 250 for most of the calculations de-

scribed below. The calculations were performed on the Sandia-Intel Tflops

Computer [7].
The MPSalsal massively parallel, unstructured grid, reacting flow code is

used to solve for the steady state solution [8, 9]. This code has been success-

fully used to analyze flows and deposition profiles in chemical vapor deposi-
tion reactors [10, 11]. MPSalsa uses a Galerkin/Least-Squares method [12]

(GLS) to discretize the time-dependent Navier-Stokes equations of incom-
pressible fluid flow. This formulation incIudes a pressure stabilization term
so that the velocity components, temperature, and pressure fields can all be
represented with the same trilinear basis functions.

This discretization leads to a system of 500215 unknowns. The equations

are solved using a fully coupled Newton’s method [13] with an analytically
calculated Jacobian matrix. Within each iteration of Newton’s method, the
finite element residuals and Jacobian matrix are assembled in 2.0 seconds
when run on 250 processors. The linear solve is performed with the Aztec
package [14] using a GMRES iteration without restarts, row-sum matrix
scaling, and an ILU preconditioned with up to 7 levels of fill in. An average

GMRES solve required 80 iterations and 30 seconds (including the time to
construct the preconditioned) to reach a drop in the scaled residual of 0.007.

The steady state solution at Gr = 15000 was reached from a trivial initial
guess in 7 minutes using 2 consecutive steady state solves for increasing Gr.

A visualization of the steady state flow is shown in Figure 2. Several

streamlines are shown entering the top of the reactor, spiraling over the
disk, and exiting through the annular region. This calculation does not
give any information on the stability of the steady state solution to small
perturbations.

For the remainder the article, unless otherwise stated, all numerical ex-

periments on linear stability analysis algorithms are undertaken about the
above steady state calculation.

6



*

.

.

Figure 2: Visualization of the three-dimensional steady state flow solution.

Streamlines enter the top, pass over the heated disk, and leave through the
annular region.

3 Stability Analysis Calculation

~ Suppose that f(y, jT,p) = O represents the discretized non-linear system of
time-dependent Navier-Stokes equations modeling incompressible fluid flow
coupled with heat transport. If we linearize the equation

f(Y, i> P) = o

about the steady state (y., po) to smalI perturbations e~~z, we obtain the

generalized eigenvalue problem Jz = ABz where the Jacobian and mass
matrices are J = fY(Yo?%Po) and B = –f~(Yol 02 Po) respectively. we
denote the order of the matrices J and B by n. Because we use a GLS
discretization scheme, the generalized eigenvalue probIem can be written as

( L “)[J1=(WW–CT+G K (1)

where u is the vector of fluid velocity components and temperature un-
knowns, p is the pressure, M is the symmetric positive definite matrix of
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the overlaps of the finite element basis functions, N is an up-winded mass

matrix, L is the sum of the discretized diffusion, nonlinear convection and

any possible reaction operators, C is the discrete gradient, CT is the discrete
divergence operator, and G and K (pressure Laplacian) are stabilization

terms arising from the GLS.

The steady state is stable if Real(A) <0 for all the eigenvalues of (l).

Hence, computing approximations to the right-most eigenvalues determines
the stabiIity of the steady state.

3.1 Formulation of the Eigenvalue Problem

To compute the right-most eigenvalues, a shift-invert spectral transforma-
tion [15] is typically used to transform (1) into the standard eigenvalue prob-

lem

T.z = (J – CTB)-lBZ = 72, v = & (2)—

The above formulation maps the infinite eigenvalues of (1) (arising from
singular B) to zero. By selecting the pole CTnear the imaginary axis, the
right-most eigenvalues are mapped by T~ into those of largest magnitude.
However, because J and El are real matrices, we only allow a real u to keep the
computation in real arithmetic. Although a natural choice is to select a zero
pole, the resulting transformation might miss a Hopf bifurcation (complex
conjugate pair of eigenvalues that cross into the right half of the complex

plane). This occurs, for instance, when the distance to the Hopf bifurcation
is greater than the distance to other (perhaps stable) eigenvalues of (l). The
paper [16] discusses these issues in some detail.

The computational burden is in solving the linear set of equations with
aB)-l B. The standard approach is to use a sparsecoefficient matrix (J – .

direct solver to factor J–aB and then solve linear sets of equations. Although
this transformation maps the eigenvalues near the pole to those of largest
magnitude, the transformation also maps the eigenvalues far from the pole

to zero. Hence, the spectral condition number (the ratio of the largest to

smallest, in magnitude, eigenvalues) of T~ can be quite large. The resulting
linear systems will be difficult to solve because the rate of convergence with
an iterative method [17, 18] depends strongly upon the spectral condition
number.

8



A better conditioned linear set of equations is achieved when using a

generalized C.ayley [15] transformation

A–/%
Tcz = (J – CTB)-l(J – /JB)z = 72, 7 = ~. — (3)

We call p the zero of the Cayley transform. In contrast to shift-invert trans-

form, the Cayley transform maps any eigenvalues of (1) far from the pole

close to one. If we are able to select a pole c that is to the right of all the
eigenvalues (1) and choose p > a, then the smallest eigenwdue of T= is no

smaller than one (in magnitude). Moreover, by judiciously choosing the pole,
we can approximately bound the largest eigenvalue of T= (in magnitude) re-

sulting in a small (say order ten) spectral condition number.

The kast two paragraphs describe a delicate balancing act. On the one
one hand, the ability to compute the rightmost eigenvalues (A’s) requires that
the Cayley transformation map these values to y’s that are the largest (in

magnitude). Such a situation allows the eigensolver to perform well. On the
other hand, the iterative solver used to solve the linear systems arising from
the Cayley transformation is negatively impacted if the ratio of max(171) to

min( 171) (the spectral condition number of T=) is large.
We remark that although the Cayley and shift-invert spectral transfor-

mation both involve (J – CB)-l, the system of linear equations solved by

each transformation is distinct. Given a vector x, the Cayley system requires
the solution of

(J – CTB)V= (J - /LB)x (4)

so that v = Tcx. Instead, the shift-invert system solves (J – aB)v = Bx.
That the spectral condition number of the Cayley system can be tightly
bounded (via a careful choice of a and p) implies that the Cayley system
results in a better conditioned set of linear equations.

3.2 Solution oft he Eigenvalue Problem

We employ an implicitly restarted Arnoldi method (IRAM) as implemented

in the parallel implementation [19] of the ARPACK [20] to compute eigenval-
ues and eigenvectors of the generalized eigenvalue problem. We have slightly
modified the PARPACK subroutines pdnaupd and pdneupd to implement
the Cayley transformation. We refer the reader to [20] for full details about
the software and underlying algorithm.

9



Start PARPACK with the vector v = J-lBx where x is random vector. Select a pole
and zero for T=.

1.

2.

3.

4.

5.

Compute m iterations of Arnoldl’s method with T. using the starting vector
v. Compute m eigenvalues (the 8’s approximating the 7’s) of the order m
upper Hessenberg matrix constructed by PARPACK.

Map the 0’s to ~’s (approximations to the ~’s) via the inverse Cayley trans-
formation.

Exit if the k rightmost ~’s satisfy the user specified tolerance.

Implicitly restart Arnoldi’s method resulting in an updated starting vector v.

Update u and p using the current approximate eigenvalues.

Figure 3: Computing the leading eigenvalues of Jz = MzA using the Cayley

transformation and IRAM.

Figure 3 lists the scheme used for computing several (say k) right-most

eigenvalues of (l). A few remarks are in order. The starting vector is chosen
so that it does not contain any components [21] in the null-space of B. For
all the eigenvalue problems solved, the value of m = 24 was used. At step
2, the eigenvalues (0’s approximating y’s) of the m by m Hessenberg matrix
are mapped back to the system defined by (1) via the inverse Cayley trans-
formation resulting in approximations J’s. The eigensolver is terminated
when these k rightmost approximate eigenvalues satisfy the user specified

tolerance. The check that must be satisfied is I[J2– ~Biijl/l]B211where ii is
the associated approximate eigenvector. By implicitly restarting the Arnoldi

iteration, we compute a new starting vector for the subsequent run (step 1).

Implicitly restarting is an efficient and stable manner to restart Arnoldi’s
method so that storage requirements remain fixed for the computation. Fi-
nally, at step 5, the new pole and zero for the next Cayley transformation
are updated so that the spectral condition number of Tc is of order ten.

We remark that there are two iterations—an outer and an inner iteration.

The outer iteration is Step 1 of the algorithm listed in Figure 3. During each
of these outer iterations, there is an inner iteration used to solve the linear
set of equations (4) arising from applying T=. We use a GMRES iteration for

solving this linear set of equations. The next section discuss details associated
with the inner iteration. *.
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Thetwo parameterso and p in the Cayley transformation give a con-
siderable amount of flexibility over what eigenvalues will be located by the

ArnoIdi’s method, how accurately they will be calculated, and howexpen-

sive the calculation will be. The major consideration is the size of 1~1for
the eigenvalues ~ of interest. Eigenvalues A that are mapped to large l-yl
wiI1 emerge and quickly be approximated by Arnoldi’s method. We present

results that quantify the various trade-offs in picking these parameters while
preserving the spectral condition number of T..

A good choice for these parameters is for the right-most eigenvalues of
interest, Ai for i = 1: k, to have real parts that satisfy 2a – p < Real(A;) <
a < p. This implies that these Ji are mapped so that \7(&) { ~ 2 as long as

lImag(Ai)l is not large compared to a – Real(A;).

To illustrate how the Cayley transformation maps eigenvalues of the sys-
tem, we plot the magnitude of Cayley transformation in Figure 4. This figure
shows how ~ is mapped to 17I for fixed values of u = 20 and p = 80 and
four imaginary portions of A Note that as the real part of A decreases, 171
approaches one. The c and p values in this plot map the real eigenvalues in

the range of –40 < Real(A) <20 to magnitudes in the Cayley transformed
system of 171> 2, which is sufficiently well separated from the many eigen-
values near 17I = 1 for the eigensolver. For any real eigenvalues satisfying
Real(A) < –40, the Cayley transformation maps these eigenvalues so that
1 < 17(A)I <2. Hence, Arnoldi’s method will provide the best approxima-
tions to the eigenvalues satisfying 20 – p < Real(&) < a.

Figure 4 also indicates that eigenvalues with large imaginary parts are
mapped to small IT1. Therefore it is difficult to compute approximations to
eigenvalues with large imaginary parts. For instance an eigenvalue at O+ 502
might not be located if there are many eigenvalues with large l-y1, such as

near –5 + 02. This problem is resolved by increasing the Arnoldi space m
needed by PARPACK.

An appropriate choice of c, p, and the size of the Arnoldi space m is
therefore a tradeoff between two factors: selecting m large enough so that
the right-most eigenvalues A are reliably computed by the eigensolver and

avoiding large values of 171 so that the resulting linear systems can be effi-
ciently solved with preconditioned iterative methods.

.
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Figure 4: Plot of the transformation of the eigenvalues in the physical system
to those in the Cayley transformed system. The magnitude of the trans-

formed eigenvalue is plotted against the real part of A for three different
imaginary contributions to A.

4 Preconditioned Iterative Linear Solves

The computationally intensive part of the eigenvdue calculation is the lin-
ear solve with T= (inner iteration) that occurs during each outer iteration of
Arnoldi’s method. Since we are targeting very large problems and algorithms

that scale to thousands of processors, we are limited to preconditioned iter-
ative linear soives of distributed matrices. In this section we first discuss the
tolerances used for the linear solver and eigensolver, the details associated
with our use of Aztec [14] and the outcome of a mesh resolution study.

4.1 Error Tolerances

Figure 5 plots the residuals associated with three rightmost eigenvalues and

eigenvectors versus the convergence tolerance used for the linear solver. The
eigensolver residual error is defined as

(5)

12



.
where J and 2 are the computed eigenvalue and eigenvector approximations.

The residual contains the normalization with B2 because PARPACK nor-

malizes I[i!ill= 1 and so (5) is independent of the scaling of the data. The

linear solver uses the criterion

Ilb- ‘X.ill< ~
IIBvII

(6)

where A = J–crB and b = (J–pB)v from (4), and q is a tolerance parameter

that must be chosen. Here, v is the distributed unit vector provided by
PARPACK that is to be transformed via T= during the i-th (1 ~ i < m)

outer iteration and Xj is the approximate solution after j GMRES iterations
(the inner iteration).

In the experiment shown in Figure 5 we show the influence of q on the
eigensolver residual error 5. The residual error of the rightmost eigenvdue
pair (denoted by the solid line) stops decreasing q x 10-3. The residual

error of the next two eigenvalues stop decreasing when q x 10-6. Driving
the residual errors lower would require a Iarger Arnoldi space m or a different
choices of o and p. For the rest of the calculations in this section the linear
solver tolerance was fixed at q = 10-3.

A series of calculations are presented in Figure 6 to illustrate the trade-
offs in choosing a. The right-most eigenvalue of the steady state calculation
has real part equal to 0.3 and we set p = 80. As c is increased from 1 to
70, the maximum 171decreases (recall that max(]71) & approximately equal
to the spectral condition number of T=). This decrease is seen to corre-
spond directly to the decrease in the CPU time and memory requirements
for the linear solve, as measured by solution time and the average number

of GMRES iterations needed for a solve. However, as c is increased so do
the residuals (5). For this problem, a choice of a = 20 provides a balance
between efficiency and accuracy. The trends seen as a function of o point to
a remedy for systems where the preconditioned linear solver is not able to

reach the specified tolerance: increase o and p until the linear problem can
be solved and then increase the number of outer iterations needed by the
eigensolver (and therefore the number of linear solves required) until (5) is
sufficient Iy small for the rightmost eigenwdues.

13
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Figure 5: The error in the eigenvalue calculation for the three rightmost
eigenvalues is shown to be a function of the accept ante criterion of the iter-
ative linear solver. The eigensolver residual error and linear solver tolerance
is given in (5) and (6).
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Figure6: Themodel eigenwlue calculation isrepeated forseveral values of
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magnitude of the three largest complex 6 pairs, (b) the residual errors (5)

associated with the three largest complex 6 pairs in the transformed system,
(c) the time for the calculation, and (d) the average number of GMRES
it erat ions needed for each of the 24 linear solve are shown.
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4.2 Using Aztec

Another issue associated with preconditioned iterative solvers is the robust-
ness of the algorithm in reaching a specified tolerance. This includes the

access to, and selection of, an appropriate preconditioned and solution algo-
rithm. For the calculations in this paper, the Aztec linear solver library was

used *. An ILUT preconditioned with considerable fill-in was selected so that
the preconditioned required almost 4 times more memory than the matrix
itself. The preconditioned is computed only one time, and reused for each
iteration of Arnoldi’s method needed by the eigensolver.

Since Figure 6(d) shows that a few hundred GMRES iterations are pos-
sibly needed during each outer iteration, the numerical stability of the GM-

RES implementation becomes critical. Originally, a classical Gram-Schmidt
scheme was used for the orthogonalization, but the lack of numerical stabil-
ity prevented the GMRES algorithm from reaching the required tolerance.
Two alternative orthogonalization schemes were used successfully: two-step
classical Gram-Schmidt (CGS) and a modified Gram-Schmidt (MGS). The
CGS method uses two steps of orthogonalization (the second step is the cor-
rection for the possible loss of orthogonality of the Arnoldi basis vectors)
but the number of global communication points remains fixed (at two) in-
dependent of the GMRES iteration. On the other hand, the MGS scheme
requires i communications to orthogonalize i vectors (at GMRES iteration
i) but no additional floating point operations (flops). Both schemes reached

the specified tolerance and provided identical results in terms of the number
of GNIRES iterations needed.

There was a significant difference in the scalability of the two algorithms
as the number of processors was changed. The time required to perform a
single linear solve (using a pm-calculated preconditioned) was recorded with
the number of processors being varied from 100 to 1000. The message of this
calculation is clear when presenting the total CPU time (calculated as the
wall clock time multiplied by the number of processors) as shown in Figure

7. When the problem was run on 100 processors, the extra communications

required by MGS were slightly less expensive than the extra flops required
by the CGS algorithm. However, as the number of processors is increased, it

is seen that the communication time in MGS starts to dominate, while the
total CGS time remains relatively flat. At 1000 processors, the CGS routine

1http: //www.ca.sandia. gov/CRF/aztecl .html
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Figure 7: The parallel efficiency of two stable orthogonalization schemes in

the GMRES algorithm is compared. The extra communications of the Modi-

fied Gram-Schmidt (MGS) approach scale poorly with number of processors,
while the extra operations of the 2-step Classical Gram-Schmidt (CGS) ap-

proach scale well.

requires only about a quarter of the time of the MGS method.
The results in Figure 7 show that the two-step classical Gram-Schmidt

(CGS) scheme scales much better than the modified Gram-Schmidt (MGS)
scheme. It shouId be pointed out that the inter-processor communication

rate of the Sandia-Intel Tflop computer is very fast compared to more loosely

coupled parallel machines, where we would expect the difference to be more
dramatic and the crossover point (at around 175 processors for this case) to
occur at fewer processors.

.

4.3 Mesh Resolution

All the calculations previously discussed were carried out for a single finite
element mesh corresponding to just over a half million unknowns (see section

2). While we have shown above that the eigenvalues are accurate for this

given discretized system, a mesh resolution study verifies that these eigen-

values are good approximations to those of the continuous PDE modeI. The
results of such a study are shown in Table 2. The six eigenvalues with largest
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Table 2: Mesh resolution studies at Gr = 15000 on the six eigenvalues with
largest real parts. The coarse mesh results would indicate a stable solution,
but the finest mesh shows that two pairs of eigenvalues have positive real

parts.

Number of Unknowns First Elgenvalue Second Eigenvalue Third Elgenvalue ‘

.25 Million –0.08 k 25.33t –0.49 & 9.63z -1.44 & 5.96z

.50 Million 0.35 & 25.16z –0.05 & 9.502 -1.13 k5.91z
1 MNion 0.57 & 25.06z 0.21 & 9.36z -0.98 26.OIZ, , J

2 MNion I 0.73 A 25.02z I 0.39* 9.31Z -0.85 & 6.03a

4 MNon 0.84& 24.94a 0.50i 9.22a -0.78 + 6.08a, , 7

2D mesh 1.06 & 24.69z
.50 MNion

real parts at Gr = 15000 are shown for five successively finer meshes, each
doubling the number of unknowns of the previous. They range from 250
thousand to 4 million unknowns. A final calculation on a very fine 2D ax-
isymmetric mesh of 0.5 million unknowns was used to verify the first eigen
mode, which was determined to be axisymmetric through visualization of the

eigenvectors.
The parameter value was chosen to be near a Hopf bifurcation. What

we find is that while the coarsest mesh indicates a stable steady state, the

second coarsest mesh (which is used in all other computations in this paper)
shows one unstable eigenpairj and the three finest meshes predict that two
eigenvdues are unstable. While the change in the eigenvalues with successive
refinement is slowing, the values are still changing even when the number of
unknowns increases from 2 to 4 million unknowns.

We recall that the accuracy of the nonlinear steady state calculation and

of the linear solves within the eigensolver are additional sources of error that
may be influencing the convergence rate of the mesh resolution study. These
results imply that very fine meshes may be needed to pinpoint the exact

parameter value of a Hopf bifurcation in 3D problems. However, the fact
that the coarsest mesh is converging to the same physical modes implies that

the system’s behavior can be quickly explored with a relatively coarse mesh,

18
.



and the finer meshes are only needed to locate the parameter values to a

higher degree of accuracy.

For the finest mesh, the steady state soIution was reached from a trivial
guess in three continuation steps in the Gr number, using 2.5 hours of CPU
time on 1024 processors. The eigenvalues where calculated in under 5 hours,
where each linear solve required about 12 minutes. The linear soIves used the

ILUT preconditioned with a fill-in factor of 8 and an average of 825 GMRES

iterations.

5 Reactor Analysis

In this section we apply the linear stability analysis capability that has
been presented above. Experiments have shown that the desirable non-
recirculating flow in the rotating disk reactor can go unstable to periodic
oscillations [4]. It is important during reactor design to be able to locate
this instability. With that goal in mind, the steady-state solution branch
was tracked using first-order continuation and the leading eigenvalues were

calculated at each step. The calculations were performed on the standard
mesh corresponding to half a million unknowns.

Figure 8 shows how the six eigenvalues that have largest real part at

Gr = 15000 evolve from Gr = 1000O to Gr = 16000. By interpolating
between the symbols to where the curves cross the imaginary axis, the first
Hopf bifurcation is seen to occur near 14800, the second just above 15000
and a third near 15500. By including the trends seen in the mesh resolution
study in Table 2, where the systems became less stable with more refined
meshes, we can extrapolate that with a finer mesh the first Hopf bifurcation
would fall in the range Gr = 14000 — 14500.

The eigenvectors associated with these largest eigenwdues are the pertur-
bations that will not get damped out if the Hopf bifurcation has occurred.
Visualization of the eigenvectors gives information to the designers that could
be used to modify the reactor design or operation to delay the onset of these

unwanted instabilities. Since the instabilities involve oscillations between the

real and imaginary parts of the eigenvector, each of which corresponds to a
three-dimensional flow field, it was not possible to produce satisfactory still

pictures for this publication. What the visualization found was that the first
Hopf bifurcation is an axisymmetric state with a toroidal roll cell. The os-
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Figure 8: The tracking of the six largest eigenwdues as a function of param-
eter indicate a Hopf bifurcation near 14800.
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cillation is the roll cell being forced out by a counter-rotating roll cell. The

second Hopf bifurcation breaks symmetry with a mode 1 instability, with
a single large roll cell over the disk that rotates in time. The third Hopf
bifurcation is a mode 2 symmetry breaking, where there is up-flow in two

quadrants of the disk and down-flow in the two others. Againj this flow
structure precesses around reactor in time. It is interesting that the modes

O, 1, and 2 symmetry breakings occur at nearly the same conditions. While
this problem couId have been solved using a two-dimensional model with an

axisymmetric formulation and complex arithmetic for the non-axisymmetric

modes, the methods were developed as a general 3D capability. And since
Cartesian coordinates were used to model the system, the fact that the so-

lution was axisymmetric did not simpIify the calculations in any way.

6 Summary and Conclusions

A massively parallel code for calculating steady-states of incompressible and
reacting flows has been linked to a library for calculating selected eigenval-
ues using PARPACK for the purpose of linear stability analysis. A novel

implementation of the Cayley transform has been presented and analyzed
for an example of 3D flow and heat transfer in a rotating disk CVD reactor.
This implementation allows control over the spectral condition number of
the linear system that must be solved during each step Arnoldi’s iteration
used by P_ARPACK making it particularly well suited for use with scalable
iterative linear solvers.

By using sophisticated linear algebra algorithms and software for iterative
solutions of large, sparse, distributed matrices, we were able to calculate sev-

eral rightmost eigenvalues for linearized systems corresponding to 4 million
unknowns and 530 million nonzero matrix entries on 1024 parallel processors.

The stability of the flow in the rotating disk reactor was analyzed as a
function of the Grashof number, Gr. The desirable flow field was found to go
unstable in the range of Gr = 14000 – 14500 after extrapolating the results
to finer meshes. While this flow goes unstable to an axisymmetric mode,
there are mode 1 and mode 2 instabilities that go unstable at slightly higher
values of Gr.

We have shown that determining the linear stability of steady state solu-
tions arising from discretization of 3D incompressible flow PDE’s is possible.
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We have also demonstrated the potential impact by locating a flow instability

in an engineering system that can be used to interpret certain experimental

results and guide the design of the next generation, scale-up reactors.
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