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Abstract

Starting from concrete AdS/CFT dual pairs, one can introduce ingredients which
produce cosmological solutions, including metastable de Sitter and its decay to non-
accelerating FRW. We present simple FRW solutions sourced by magnetic flavor branes
and analyze correlation functions and particle and brane dynamics. To obtain a holo-
graphic description, we exhibit a time-dependent warped metric on the solution and
interpret the resulting redshifted region as a Lorentzian low energy effective field theory
in one fewer dimension. At finite times, this theory has a finite cutoff, a propagating
lower dimensional graviton and a finite covariant entropy bound, but at late times the
lower dimensional Planck mass and entropy go off to infinity in a way that is dominated
by contributions from the low energy effective theory. This opens up the possibility of
a precise dual at late times. We reproduce the time-dependent growth of the number
of degrees of freedom in the system via a count of available microscopic states in the
corresponding magnetic brane construction.
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1 Introduction: keeping it real

At present we lack a complete theoretical framework for cosmology. One approach to this
problem is to try to organize cosmology holographically, building on the success of the
AdS/CFT correspondence. Doing so is not trivial for a number of reasons related to the
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tendency of cosmological solutions to mix with each other and the absence of a simple timelike
boundary. Dynamical gravity, or an integration over metrics, is part of the putative lower-
dimensional dual in various attempts so far to generalize the AdS/CFT correspondence to
cosmology and describe a complete set of observables; this includes dS/CFT [1] at least as
it is interpreted in [2],1 dS/dS [4] and FRW/CFT [5]. Despite the lower dimensional gravity,
the formulation of a significant part of the system in terms of a large matter sector is a
nontrivial step, one which has recently been put on more solid footing microscopically [6].
Nonetheless it is important to understand whether a more precise formulation might exist.

The structure of UV complete cosmological solutions will likely be useful in answering
this question.2 In this paper, we present and analyze concrete cosmological solutions which
are sourced by a generic ingredient – magnetic flavor branes – used to uplift AdS/CFT
systems [7] to cosmology. With sufficiently many magnetic flavor branes, no nonsingular
static solutions exist, but time-dependent solutions do exist which are nonsingular at late
times; these solutions are nonsingular at all times if obtained from a bubble nucleation
process. (Another interesting class of dynamical F-theory solutions was studied in the earlier
work [8], which emphasized the point that no physical restriction on the number of 7-branes
exists once the generic possibility of time dependence is included.) We will introduce a
holographic interpretation of this class of solutions, employing the following basic strategy.

First, we find a warped metric on our spacetime and interpret the two highly redshifted
regions in terms of a pair of low energy effective theories. This is a generalization of the
observation in [4] that metastable d-dimensional de Sitter spacetime is a warped compactifi-
cation with two throats and propagating (d−1)-dimensional gravity.3 This line of reasoning
of course goes back to the original arguments [10, 11] that the highly redshifted core region
of a stack of branes should be equivalent to a field theory, since it represents low energy
degrees of freedom decoupled from the ambient Planck scale. We verify that particles are
stable in the infrared region, though color branes out on their approximate Coulomb branch
propagate up the throat. We call this phenomenon “motion sickness”; as we will discuss
later on it is not fatal.

The next step is to compute the (d− 1)-dimensional Newton constant: this reveals that
the (d − 1)-dimensional graviton decouples at late times, in a way analogous to a Randall-
Sundrum theory with the “Planck brane” taken off to infinity. This, and the growth of the
entropy at late times [12], is consistent with the possibility of an ultimately precise holo-
graphic dual decoupled from gravity. Although gravity decouples in this promising manner,
we will see that the way the field theory induces a growing Planck mass is through a rapidly

1For this example, there may at least be a subset of observables which correspond to a precise non-
gravitational CFT as described in [2], where the CFT computes the wavefunction of the universe. However,
this wavefunction is a functional of the metric which one must ultimately integrate over. See the recent work
[3] for more discussion of this question.

2In the somewhat analogous context of black hole physics, study of concrete string theoretic examples
led to microstate counts and ultimately the AdS/CFT correspondence.

3More recently, a description in terms of two CFTs coupled to gravity was motivated in another way by
[9].
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growing number of degrees of freedom, rather than via a growing cutoff on the effective field
theory. That is, the system at late times behaves like a theory which is holographic and
non-gravitational, but with a finite cutoff for the dual theory. Cutoff quantum field theory
is in principle well defined, but many questions remain about its detailed implementation in
gauge/gravity duality.4

In fact, we find a nontrivial match between the time-dependent number of degrees of
freedom in the (d − 1)-dimensional dual theory, computed using the gravity side in three
different ways, with an estimate of the number of available microscopic degrees of freedom on
the magnetic flavor branes responsible for the uplift to cosmology. The states we count are
drawn from the infinite algebras discussed in [14], cut off at finite time by backreaction and
topological consistency criteria. As we will describe below, as currently formulated this count
is consistent with basic group-theoretic requirements, but is not fully derived. It is subject to
two assumptions about unknown quantities – the first is a plausible conjecture made but not
proved in [14], and the second regards the number of charged matter representations which
arise. With these assumptions, our count consistently reproduces the gravity-side result
in a general class of solutions in different dimensions in a way that appears nontrivial, and
generalizes the parametric microscopic estimate of the dS entropy of [6] to FRW cosmologies.
These results seem rather encouraging, and motivate further study of time-dependent field
theories with sufficiently many magnetic flavors to provide candidate duals for cosmological
solutions.

Our formulation of the holographic dual as a Lorentzian-signature field theory (or ef-
fective field theory) maintains standard reality and unitarity properties; in particular the
number of degrees of freedom in the matter sector is a positive real number. There are
other interesting approaches to de Sitter or FRW holography which define the dual on a
spacelike (Euclidean) surface, and it would be interesting to study the relation between
these different formulations.5 It may be useful to note, however, that because of the ulti-
mate requirement of integrating over metrics, the argument for defining the theory on the
boundary of the spacetime does not trivially generalize from AdS to dS or FRW solutions.
Microscopically, large-radius de Sitter solutions in string theory do not arise as a simple
continuation of AdS solutions, which turns the flux imaginary in the Freund-Rubin solu-
tion. The physically consistent metastable dS solutions that are known arise instead by
uplifting AdS solutions with a more complicated collection of stress-energy sources. As we
will see, defining a Lorentzian-signature dual via our warped metric does not a priori force
us to forego a complete dual description: our warped solution decompactifies at late times,
somewhat analogously to Randall-Sundrum with the Planck brane removed to infinity.

Another basic motivation for this work is to further develop our understanding of the
structure of time-dependent and cosmological solutions in string theory. We compute correla-

4There has been interesting recent progress in relating radial slices to RG scale in AdS/CFT [13], but
the detailed dictionary remains to be understood, and is subject to various important subtleties such as the
fact that different types of gravity-side particles have different relationships between their energy and their
radial position.

5In particular, an interesting approach to a concrete example of dS/CFT can be found in [15].
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tion functions of massive and massless particles in our geometry; the latter requires a careful
treatment of pseudotachyon modes [16]. The structure of these correlation functions should
tell us much more about holography on our solutions, the detailed analysis of which we leave
for future work. One intriguing feature is that the two-point function of Kaluza-Klein modes
is a power law, rather than exponential.

This paper is organized as follows: In the next section we present FRW solutions sourced
by magnetic flavor branes uplifting Freund-Rubin compactifications. We exhibit a warped
metric on the solution, indicating a low energy sector corresponding to an effective field
theory. In Section 3, we show that particles remain stably in the throat at late times, and
color branes move up the throat. This theory is cut off and coupled to gravity at finite times,
but the Planck mass and the number of degrees of freedom go off to infinity at late times
in a manner that is dominated by contributions of the warped region, raising the possibility
that the dual completes to a precise non-gravitational theory in this limit. We compute the
number of field theoretic degrees of freedom in several macroscopic ways in Sections 2 and
4.2, and also present, in Section 4.1, a count of brane degrees of freedom which agrees with
the macroscopic predictions given certain assumptions. In Section 5, we study the two-point
correlation functions of scalar fields in our solutions, in the massive and massless cases; a
full derivation is relegated to Appendix A. Finally, we conclude in Section 6, and outline
directions for future study.

2 FRW solution sourced by magnetic flavor branes

We would like to understand whether FRW cosmology in d dimensions, which occurs for
example after decays of metastable de Sitter, admits a (d− 1)-dimensional holographic dual
description. Our strategy is to look for a warped metric on the FRW solutions derived from
uplifted AdS/CFT solutions in string theory. We then interpret the infrared region of the
warped metric – the region of strong gravitational redshift – in terms of a dual effective field
theory (EFT). Finally, we analyze whether the EFT might become a self-contained quantum
field theory (QFT) in the far future, since the entropy bound and the (d − 1)-dimensional
Planck mass go to infinity in that limit.

2.1 Magnetic flavor branes

The simplest AdSd/CFTd−1 dual pairs arise from Freund-Rubin compactifications on a pos-
itively curved Einstein manifold Y stabilized by flux. These can be understood as the
near-horizon backreacted solution obtained from color branes placed at the tip of a cone C
with base Y .

We will uplift to cosmological solutions by adding heavy branes which reverse the sign
of the curvature of Y . Consider first the AdS5 × S5 solution of type IIB string theory, with
the S5 viewed as a Hopf fibration over a base CP2 (there are many similar examples with
S5 replaced by a more general Einstein space Y ). As discussed in [7], there is a natural
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ingredient which competes with the internal curvature: (p, q) 7-branes at real codimension
two on the CP2, wrapping the Hopf fiber circle and extended along AdS5. Such branes can be
described using F-theory [17], which geometrizes the varying axio-dilaton, and one finds that
36 7-branes are required to exactly cancel the curvature of the CP2. Similarly, 24 7-branes
are required to exactly cancel the curvature of a CP1, which arises as the base of the Hopf
fibration in examples with a compactification on S3, such as AdS3 × S3 × T 4. In the latter
case, alternatively one can use “stringy cosmic 5-branes”[18, 19], elliptic fibrations with the
torus fiber coming from the T 4. See for instance [6], where SC5-branes together with other
ingredients are used to cancel the curvature of CP1.

Let us denote the elliptic fibration over the base B = CPm – the CPm with 7-branes at
real codimension two – by B̂, and the entire uplifted compactification by Ŷ . Parameterize
the number n of 7-branes or stringy cosmic branes in all cases by defining a quantity

∆n ≡ n− nflat (2.1)

such that ∆n = 0 corresponds to a flat uplifted base B̂.

In the AdS case ∆n < 0, such configurations including their backreaction on the geometry
can be described relatively simply using F-theory. On the field theory side, these systems
have magnetic flavors, arising in the brane construction from (p, q) strings stretching between
D3-branes and the (p, q) 7-branes [20, 21].

Bringing 7-branes together in a time-independent manner generically introduces singu-
larities. For sufficiently few 7-branes, it is understood how these singularities are resolved
physically, giving enhanced symmetries and/or light matter fields. In a gauged linear sigma
model (i.e. toric) description of the geometry of the elliptic fibration, singularities appear as
additional branches in the target space [22]. A criterion for physically resolved singularities
of these static solutions [7] is that the central charge of the additional branch be less than
that of the main target space of the sigma model. In this case, one may formulate a brane
construction with 7-branes intersecting at the tip of a cone, at which the color branes are
placed.

This geometry and the backreacted solutions were described in [23, 7]. Its salient features
are captured by the five dimensional theory obtained by compactifying on S5 and adding
the potential energy of the 7-branes. The effective potential in 5D Einstein frame is

U ∼M5
5 (RfR

4)−2/3

(
R2
f

R4
+

∆n

R2
+

N2
c

R8R2
f

)
(2.2)

where Rf

√
α′ is the size of the fiber circle S1

f , and R
√
α′ is the size of the uplifted base B̂.

The first term is from the metric flux of the S1 fiber, and the second is the net contribution
of the internal curvature and seven-branes. In this F-theory setting there is generically no
global mode of gs. There are additional scalar fields from 7-brane moduli, which are relatively
flat as discussed in [7]. A simple case to consider is one in which the dilaton is fixed at an
SL(2,Z) invariant point, via the mechanisms discussed in [23]. The third term comes from
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Nc units of 5-form flux corresponding to the color branes. The middle term will concern us
most in this work; it comes from the 7-brane sources.

The 7-branes wrap AdS5 × S1
f times a two-cycle in the base, and in the dimensionally

reduced theory we do not keep track of their positions in the compact directions. As reviewed
in [7], the geometrical understanding [17] of 7-branes as an elliptic fibration makes it possible
to calculate their leading contribution to the curvature, and hence to the potential energy
(2.2). One can study the geometry by realizing it as the target space of a gauged linear sigma
model [22]. In this description, the beta function for the size of the negatively curved internal
space has the same scaling but opposite sign as in the case of a CPm, by an amount ∆n
that depends on the number of 7-branes. The deformations of the 7-brane configuration are
superpotential terms in the sigma model and are intrinsically lighter. We can for convenience
focus on configurations where the string coupling has been fixed at gs ∼ 1, enforced by
appropriate combinations of 7-branes; it is also interesting to consider the orientifold limit
[24]. The static solutions with ∆n < 0 are then described by minima of (2.2) [7].

Bringing ∆n ≥ 0 branes together in a static configuration leads to singularities which
violate the above condition for allowed singularities, with the central charge of the singular
branch being larger than that of the main target space. From the point of view of the de-
scription (2.2), ∆n ≥ 0 leads to a decompactification limit. Moreover, in such a configuration
the states that transform under the infinite algebras realized on (p, q) 7-branes [14], which
are broken for separated 7-branes, appear to come down to zero mass. These effects hint
that an infinite set of degrees of freedom may ultimately be involved in formulating physics
in the generic case of ∆n > 0, and we will return to this point after developing a controlled
gravitational description of uplifted solutions.

In general, we should allow for time-dependent backreacted solutions [8]. As we will ex-
plain shortly, the 7-branes need not come together anywhere at late times, and in appropriate
examples (such as [6]). An initial singularity may be avoided by matching to a Coleman-de
Luccia tunneling process in the past (as described in Appendix A), though we will in any
case focus on the late time physics in the present work.

2.2 Solution and warping

Let us now introduce our solutions for ∆n > 0. It is interesting to analyze this class of
solutions both from a ten-dimensional perspective and using the d-dimensional description
obtained by compactification on the uplifted space Ŷ . Below, we will exhibit a precise 10d
solution, but let us begin with the d-dimensional description.

In the case d = 5, we have an effective potential (2.2) for the scalar fields R and Rf .
With ∆n > 0, the 7-branes overcompensate the contribution of the curvature to the effective
potential, so they turn the base CP2 into a net negatively curved space B̂, whose curvature
scales with R as if it were a hyperbolic space. All terms in the potential (2.2) are positive in
this case, and we look for time-dependent solutions where the radii evolve with time (along
with the FRW scale factor a(t) in the d-dimensional theory).
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As we will see momentarily, the d-dimensional FRW equations along with the equations
of motion for the scalar fields R and Rf admit a time-dependent solution where at late
times R and the scale factor expand with time, and the fiber circle Rf remains constant.
The dominant term in the potential energy (2.2) in this solution is the term proportional
to ∆n/R2, since the others decay more quickly at large R and fixed Rf . In particular, the
5-form flux corresponding to the color branes is very subdominant at late times. We will
make contact with this in Section 3, when analyzing the dynamics of color branes in our
solutions.

Specifically, we find the scale factor a(t) ∝ t, while R ∝ t3/7 and Rf approaches a
constant. The mass of a KK mode on the uplifted base is

mKK ∼
nKK
R
× M5

(R4Rf )1/3
∝ nKK

t
(2.3)

where the second factor here is the conversion to Einstein frame. This means that, as in the
original examples of AdS/CFT [10], there is no hierarchy between the internal dimensions
and the curvature scale in d dimensions. It is likely possible to use the method developed in
[7] to obtain a hierarchy of scales, but as we will see shortly our solution is very simple in
10 dimensions.

These scalings can be obtained self-consistently by noting that in this limit the dominant
contribution to the energy is given by the 7-branes and curvature, while the fluxes dilute
faster. The FRW equations become

4
ä

a
= −28

3

Ṙ2

R2
+

2

9
M2

5 (R4Rf )
−2/3 ∆n

R2

12
ȧ2

a2
+ 12

K

a2
=

28

3

Ṙ2

R2
+

2

3
M2

5 (R4Rf )
−2/3 ∆n

R2
. (2.4)

Here K is the spatial curvature of the FRW metric. Looking for a solution of the form
a(t) = ct, the first equation gives

R(t) =

(
7M5

3
√

42

∆n1/2

R
1/3
f

)3/7

t3/7 . (2.5)

Plugging in the second equation yields K = −1 (i.e. an open FRW solution) and c2 = 7/3
with a(t) = ct. Note that there will also be a dynamical equation for Rf (t); however,
analyzing this equation of motion shows that it is self-consistently frozen in place in the
regime above. This and other features of the solution will be very clear in the 10d solution
we will present shortly. Numerical studies of the equations of motion for a(t), R(t), and
Rf (t) show that the solution above is an attractor for a range of initial conditions.

Let us now analyze the 10d solution. So far we have focused on (p, q) 7-branes, but
similar considerations apply more generally to FRW cosmologies sourced by other branes
realized as elliptic fibrations, such as stringy cosmic 5-branes. More generally, other types of
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sources may be involved. For example, in decay from the metastable dS3 solution in [6], the
uplifting contribution arises in part from stringy cosmic 5-branes but also from other sources
such as NS5-branes. In general, it is interesting to consider the FRW phase corresponding to
the leading source at late times. The elliptic fibrations we consider here are natural sources
which contribute to the curvature at leading order, and we will continue to focus on this case
here.

We then consider a d-dimensional FRW spacetime and an internal space that can be
described as a Hopf fibration over a base CPm. As we argued before, as far as the evolution
of the size R of the base goes, the uplifted base B̂ (the elliptic fibration over CPm) behaves like
a hyperbolic space H2m of real dimension 2m. Compactifying on this, we find the following
Ricci-flat string-frame metric, which is hence a vacuum solution of Einstein’s equation:

ds2
s = −dt2s +

t2s
c2
dH2

d−1 +
t2s
ĉ2
dB̂2

2m + dx2
f , (2.6)

where c2 = (d+ 2m− 2)/(d− 2), ĉ2 = (d+ 2m− 2)/(2m− 1), and

dH2
d−1 = dχ2 + cosh2 χdH2

d−2 (2.7)

is the metric on a noncompact, unit hyperboloid of dimension d−1. dB̂2
2m is the metric on our

uplifted, negatively curved compact base space of dimension 2m. Although in this work we
are concerned with generic configurations with ∆n > 0 branes uplifting AdS/CFT solutions,
the solution above also describes the dynamics of a compactification on S1×H2m/Γ, a circle
times a compact hyperbolic space. In that case, the dilaton is meaningful (as oppposed to
in F-theory); nevertheless, since our solution is Ricci-flat in 10d string frame, the dilaton is
not sourced in this solution.

In this solution we only included the effects of the flavor branes. In the ∆n < 0 case
of AdS/CFT, the flux corresponding to color branes plays a leading role in the backreacted
solution. However, in the present case at late times the flux dilutes away and is subdominant,
as we emphasized above. Furthermore, since the contribution from the metric flux (first term
in (2.2)) can also be neglected and the fiber size becomes constant at late times, we have
approximated the fiber direction by an S1 factor in the geometry.6 In some cases, there may
be additional transverse dimensions (such as the T 4 in models based on AdS3 × S3 × T 4),
which we suppressed in the metric (2.6).

Let us now compactify down to d dimensions. The volume of the compactification man-
ifold Ŷ is

Vol(Ŷ ) ∝ RfR
2m ∝ t2ms , (2.8)

6Although the metric flux is subdominant in the solution, it does affect the topology; in particular the
fiber circle remains contractible. This feature will play a role in our count of brane degrees of freedom in
Section 4.1. The nontrivial fibration of the circle is a feature of the AdS/CFT dual pair which we are uplifting
to FRW cosmology, so the metric flux may be an important element even though its energetic contribution
is subdominant. More generally, it would be interesting to develop a holographic duality for the solution
without any metric flux.
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where we have not kept track of time-independent coefficients and have used R ∼ ts from
(2.6). Going to the d-dimensional Einstein frame

g
(d)
µν,E =

(
Vol(Ŷ )M8

10

Md−2
d

)2/(d−2)

g(d)
µν,s, (2.9)

we get an FRW metric of the form

ds2
E = −dt2 + c2t2dH2

d−1 , (2.10)

where

c2 =
d+ 2m− 2

d− 2
, t ∝ tc

2

s . (2.11)

Cases of particular interest are uplifts of AdS5 × S5, with c2 = 7/3 (d = 5, m = 2) and
uplifts of AdS3× S3× T 4, with c2 = 3 (d = 3, m = 1). This reproduces the results obtained
using the d-dimensional theory: R(t) ∝ t1/c

2
, in agreement with (2.5).

Since c > 1, the scale factor is expanding faster than in curvature dominated FRW (a.k.a.
flat spacetime in Milne coordinates). In general, ∆n > 0 corresponds to c > 1, and we will
find it very useful to contrast our results for c > 1 with the case of flat space (c = 1).
Our holographic interpretation will apply consistently for c > 1, and will not apply to flat
spacetime.

We may change variables by setting

t = (η2 − w2)c/2 , χ =
1

2
log

η + w

η − w
, (2.12)

and the metric (2.10) becomes

ds2 = c2(η2 − w2)c−1
(
dw2 − dη2 + η2dH2

d−2

)
. (2.13)

This metric exhibits warping for c > 1, which corresponds to ∆n > 0. We want to understand
the spectrum and dynamics of degrees of freedom that are redshifted to low energies.

It is useful to consider a closely related time coordinate tUV = ηc, giving metric

ds2 = c2
(
t
2/c
UV − w

2
)c−1

dw2 +

(
1− w2

t
2/c
UV

)c−1 (
−dt2UV + c2t2UV dH

2
d−2

)
. (2.14)

On the UV slice w = 0, we have tUV = t. In this metric the warp factor

f(w, tUV ) ≡
(

1− w2

t
2/c
UV

)(c−1)/2

(2.15)

and the metric component gww depend only weakly on the coordinate time at late times:∣∣∣∣∂tUV
f

∂wf

∣∣∣∣ ∼ ∣∣∣∣∂tUV
gww

∂wgww

∣∣∣∣ ∼ t
−(1−1/c)
UV → 0 as tUV →∞ (2.16)
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where in the last equivalence we have evaluated a point at constant warp factor, i.e. constant
w/t

1/c
UV . This is not a covariant quantity, but neither is the redshifted energy and the small

value of the ratio (2.16) may simplify some calculations at late times.

There are other ways of writing the FRW spacetime as a warped product metric: as
a simple example, we may pass to the conformal time T = 1

c
log(tUV /`) in the (d − 1)-

dimensional theory, where ` is an arbitrary length scale. We can absorb the scale factor ctUV
(in d− 1 dimensions) into the warp factor and write the warped metric as

ds2 = c2(`2/ce2T − w2)c−1dw2 + c2`2e2cT

(
1− w2

`2/ce2T

)c−1

(−dT 2 + dH2
d−2). (2.17)

The dual theory now lives on a static (non-expanding) space R×Hd−2. This is similar to the
AdS/CFT correspondence written on global vs. Poincaré slicing, or other slicings with an
expanding or static hyperboloid [25]. These various slicings describe a dual theory living on
different spacetimes. In our case, a complication is the presence of time-dependent couplings
and (in general) a time-dependent metric for the field theory. Furthermore, since the dual
theory is not conformal, the conformal transformation that removes the factor e2cT also
modifies the running couplings, as we discuss in Section 2.5. Other, more general slicings
may lead to even more complicated dual descriptions: for instance, using Gaussian normal
coordinates starting from a central spatial slice (hyperbolic or otherwise) gives different w-
dependences in the temporal and spatial warp factors. Although we will stick to the simpler
example given above in this work, it would be interesting to consider the existence of dual
theories for more general slicings.

Again, using the warped metric given above, we wish to determine what light (meaning
energy � bulk Planck mass Md) degrees of freedom there are. Given a region of strong
gravitational redshift, i.e. a region of light states in our gravity solutions, the system may
have a right to a field theory description as in the low energy regime of the usual AdS/CFT.

The proper time interval between two events of coordinate interval ∆tUV is

∆T (w, tUV ) = ∆tUV

(
1− w2

t
2/c
UV

)(c−1)/2

. (2.18)

This redshift factor is, of course, 1 for c = 1 (flat spacetime), and for c > 1 it is smaller
than 1. This indicates gravitational redshift for probes of proper energy ∼ 1/∆T (fixed in
units of the d-dimensional Planck mass Md). Energies of such probes are redshifted down
by a factor of f(w, tUV ) defined in (2.15). As we mentioned above, this is time-dependent
as well as dependent on the “radial” scale w, but its w dependence is stronger (2.16). Slices
of constant w/tUV

1/c are then slices of constant scale. In terms of the coordinates given in
(2.12), this corresponds simply to slices of constant χ.

This effect arises in the absence of any flux, suggesting that the flavor branes (or more
generally the geometry they source) support dynamical degrees of freedom in the EFT re-
gion.7

7In some examples of AdS/CFT obtained by color branes probing the tip of a cone, there are closed
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It is important to note that basic degrees of freedom such as KK modes, oscillating closed
strings, 7-7 strings and junctions, D-branes, and so on do not have fixed masses in units of
Md. Their masses depend on t = (t

2/c
UV − w2)c/2, leading to t

2/c
UV − w2 dependence in ∆T

in (2.18). This is analogous to radially-dependent masses in AdS/CFT.8 For KK modes on
the uplifted base, KK and winding modes on the fiber, strings, and 7-7 strings/junctions we
obtain respectively

mKK ∝
1

t
, mf ∝ mstr ∝

1

t1−1/c2
, m77 ∝

1

t1−2/c2
. (2.19)

We will analyze their dynamics in Section 3. For our examples, the specific values for the
exponents are, respectively, −1, −4/7, −1/7 for m = 2, d = 5, and −1, −2/3, −1/3 for
m = 1, d = 3.

2.3 Planck mass in d− 1 dimensions and its decoupling at late times

As in Randall-Sundrum theory (RS) [26], we can compute the (d − 1)-dimensional Newton
constant GN,d−1 by dimensionally reducing on the w direction. This yields

1

GN,d−1

≡Md−3
d−1 ∼Md−2

d

∫ t
1/c
UV

0

dw
√
−g̃g̃tUV tUV (2.20)

∼Md−2
d

∫ t
1/c
UV

0

dw

(
1− w2

t
2/c
UV

) (d−2)(c−1)
2

t
1−1/c
UV ∼Md−2

d tUV . (2.21)

where by g̃µν we mean the factors that appear in the d-dimensional metric but not in the
(d − 1)-dimensional metric. Thus at finite times, we have a warped compactification with
propagating (d−1)-dimensional gravity as in the dS/dS correspondence [4], but as tUV →∞
gravity decouples.

This raises the possibility of a more precise field theory dual in the far future. A simple
but nontrivial test of this possibility is the following. In a general warped compactification
[27], a diverging (d− 1)-dimensional Planck mass can arise in (at least) two ways:

(1) A leading contribution may come from the warped throat (the effective field theory), as
in RS with a Planck brane moving off to infinity. In this case, as the Planck brane goes off to
infinity the holographic dual becomes a pure QFT decoupled from gravity, i.e. the effective
field theory completes to a full QFT.

string moduli at the tip, for example ones corresponding to Fayet-Iliopoulos terms. The question was raised
in those examples of whether these modes are dynamical. There, the fact that the cone itself was unwarped
supports the conclusion that the FI term is a parameter, not a field. In more general cases such as ours,
however, the answer may be different.

8For example, in AdS/CFT compactified on a circle, momentum modes on the circle become radially-
dependent masses for which the redshift factor precisely cancels out, and there are many other examples one
could consider.
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(2) Instead, in a more general warped compactification the leading contribution may come
from the volume of the compactification manifold, with the warped throat subdominant. In
this case, the effective field theory does not complete to a full QFT which captures the full
system.

Let us check which of these possibilities is realized in our system. First, let us elaborate
on the behavior (1) above in the case of RS. This consists of an AdS5 spacetime

ds2 =
r2

R2
AdS

(
−dt2 + d~x2

)
+
R2
AdS

r2
dr2 (2.22)

up to a finite radial scale rUV . The 4-dimensional Planck mass M4 is given by dimensionally
reducing on the radial direction:

M2
4 ∼M3

5

∫ rUV

0

dr
√
−g̃g̃tt ∼M3

5

r2
UV

RAdS

∼ Ñdof,AdSΛ2
c,RS (2.23)

In the last relation here, which indicates that the Planck mass is induced by the field theory
degrees of freedom, we used that the central charge of the field theory scales like Ñdof,AdS ∼
M3

5R
3
AdS [28] and that the energy scale of the cutoff is Λc,RS = rUV /R

2
AdS.

For our purposes, it will be useful to belabor this result in the following way. First, let
us break up the calculation (2.23) into two pieces: the integral over r from 0 to ε rUV , and
the rest of the integral from ε rUV to rUV , where ε is a fixed constant between 0 and 1. This
separates an IR contribution r < ε rUV (corresponding to energies below ε rUV /R

2
AdS) from a

UV contribution for r > ε rUV , using an arbitrary reference scale ε rUV /R
2
AdS that is fixed in

terms of the UV cutoff as we increase rUV . The ratio of the two contributions is a constant
as the Planck brane moves off to infinity. In particular, the infrared region continues to
contribute a leading piece to the 4-dimensional Planck mass.

Let us analyze the same question in our FRW case. First, define a scale M∗ dividing the
UV and IR regions of our throat via

M∗
MUV

≡ ε ⇒ w∗ = t
1/c
UV

√
1− ε2/(c−1) . (2.24)

In terms of this, we can work out the ratio of UV to IR contributions to the Planck mass
(2.21), obtaining

UV

IR
=

∫√1−ε2/(c−1)

0
dy(1− y2)(d−2)(c−1)/2∫ 1√

1−ε2/(c−1)
dy(1− y2)(d−2)(c−1)/2

= constant . (2.25)

Thus our setup behaves similarly to case (1), raising the possibility of a pure field theory
dual capturing the FRW physics at late times.
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2.4 Covariant entropy bound

An important quantity that characterizes a field theory is its number of degrees of freedom.
For example, if we cut off a theory with a lattice, we require some number Ñdof of degrees
of freedom per lattice point to define it. That is, we denote the number of field theoretic
degrees of freedom by Ñdof. We would like to understand this quantity in our putative
holographic theory, generalizing the analysis given in [28]. There, an infrared cutoff on
the radial coordinate in AdS was related to a UV cutoff in the corresponding QFT. Even
in ordinary AdS/CFT this UV cutoff is not understood very precisely, however: it is not
literally a lattice cutoff since it does not break the isometries of the space on which the field
theory lives, and the UV/IR relation works differently for different types of probes on the
gravity side. However, gravitational calculations of the entropy of thermal states and of the
central charges in the field theory reproduce the behavior expected from an identification
of Ñdof with the number of degrees of freedom per lattice point, and we may revert to that
language.

We will compute the time dependence of this quantity in several distinct ways in the
present work, including a count of available states on the magnetic flavor branes, obtaining
the same answer. On the gravity side, a measure of the number of degrees of freedom is given
by the covariant entropy bound [29] on the entropy passing through an observer’s past light
sheet. As emphasized in [12], for FRW solutions (unlike the metastable de Sitter phase) the
entropy bound grows to infinity at late times.

Let us work this out explicitly in our solution. We start by choosing a spherically sym-
metric set of coordinates on (2.10)

ds2
E = −dt2 + c2t2

(
dr2

1 + r2
+ r2dΩ2

d−2

)
. (2.26)

Consider an observer at the origin (r = 0) in our space at time t0. The past light cone of
this observer is foliated by spheres of size ρ = r(t)ct, where r(t) is determined by∫ r

0

dr√
1 + r2

= −
∫ t

t0

dt

ct
⇒ r(t) =

1

2

[(
t0
t

)1/c

−
(
t

t0

)1/c
]
. (2.27)

For c > 1, the sphere grows to a maximal size ρmax ∝ t0 and then begins to shrink (because
of the contraction of the FRW universe) as we go back in time.

The conjectured entropy bound [29] is given by the area of this maximal sphere in Planck
units. From this we obtain, substituting the time t0 of the observer by t,

S ∼Md−2
d td−2. (2.28)

(For c = 1, the sphere never reaches a maximal size, but instead keeps growing, indicating
a diverging entropy bound even at finite time.) In our case, the entropy going to infinity at
late times also suggests the possibility of a precise dual of our FRW phase when t→∞; this
jibes with the infinite warped throat we develop at late times in our solution.
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2.5 Basic relations among parameters

We are now in a position to list some basic relations between several quantities in our system:
the (d − 1)-dimensional Planck mass, the number of field theoretic degrees of freedom Ñdof

in the effective field theory (EFT), and the cutoff Λc of the EFT. These relations will enable
us to solve for their dependence on time tUV . We will derive Ñdof independently using
the quasilocal stress tensor below in §4.2, obtaining the same result for its dynamics as is
predicted by the simple considerations of this section.

First, since the (d−1)-dimensional Planck mass is largely induced by the field theory (as
we just found in the previous subsection), we have the relation

Ñdof Λd−3
c ∼ 1

GN,d−1

≡Md−3
d−1 ∼Md−2

d tUV (2.29)

where Λc is the cutoff of our effective field theory.

In our (d − 1)-dimensional theory, we expect a nontrivial quantum energy density. If
we assume that this is an order one fraction of the source of Hubble expansion in the dual,
we obtain a second relation comes from the Friedmann equation in the (d− 1)-dimensional
theory:

H2
d−1 =

1

t2UV
∼ ÑdofΛ

d−1
c GN,d−1. (2.30)

Here Hd−1 = 1/tUV is Hubble in the (d − 1)-dimensional theory obtained by dimensional
reduction on w in (2.14).

Putting these together, we find

Ñdof ∼Md−2
d td−2

UV , Λc ∼
1

tUV
. (2.31)

This result is consistent with the entropy discussed in the last subsection if we assume the
basic relation

S ∼ ÑdofΛ
d−2
c Vold−2 (2.32)

where Vold−2 ∼ td−2
UV is the volume of space in the dual theory. The result (2.31) is also

consistent with the result for Ñdof below in (4.2).

It is also possible to define the theory on a non-expanding lattice using the coordinatiza-
tion (2.17), where the (d−1)-dimensional theory lives on R×Hd−2. In this case a calculation
analogous to (2.21) gives

ÑdofΛ
d−3
c ∼ 1

GN,d−1

∼Md−2
d `e(d−2)cT ∼ Md−2

d td−2
UV

`d−3
. (2.33)

In this case, the Friedmann equation requires that

0 = H2
d−1 = GN,d−1ρ+

1

`2
(2.34)
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where ` is the curvature scale of the hyperbolic spatial slices. One implication of this is that
the energy density must compensate the time dependence in the Newton constant. If we
assume again that the energy density is of order ÑdofΛ

d−1
c , we obtain the relation

GN,d−1ÑdofΛ
d−1
c ∼ 1

`2
(2.35)

In this case, we then get

Ñdof ∼Md−2
d td−2

UV , Λc ∼ constant. (2.36)

Again, this agrees with the covariant entropy bound and with the independent derivation
of Ñdof we find below in (4.2). Note that the cutoffs in (2.31) and (2.36) are related by a
conformal rescaling: to obtain the effective field theory on R×Hd−2, we have to remove the
overall factor e2cT in (2.17) by a conformal transformation. This should be compared with the
corresponding term in (2.14) where there is no such factor. Since our theory does not have a
conformal symmetry, this conformal transformation changes the running coupling constants
and other scale dependent quantities. We can see this explicitly in that the gravitational
coupling GN,d−1 is different in the two cases.

For both slicings, the final result agrees with the scaling (2.28) from the covariant entropy
bound, since at late times t ∼ tUV . Thus if we think of the cutoff as a lattice cutoff, the
system builds up entropy by accumulating degrees of freedom per lattice point, rather than by
increasing the number of lattice points. In Section 4.1 we will provide an independent count
of Ñdof using the magnetic brane construction, finding that the infinite store of degrees of
freedom on our ∆n > 0 set of 7-branes, cut off by backreaction criteria, precisely reproduces
this behavior. As described above, these results are consistent with the possibility of a
complete non-gravitational field theory dual at late times, albeit one with a finite cutoff for
the field theory. The growth of Ñdof is consistent with this interpretation: in a field theory
with time-dependent masses and couplings, the number of degrees of freedom below a fixed
cutoff scale will generically change with time. In our case, it increases rapidly.

3 Dynamics of particles and branes

So far, we have presented our d-dimensional cosmological solution, exhibited a warped met-
ric on it, and derived basic properties of its (d − 1)-dimensional description, a candidate
holographic dual. In this section we study the motion of particles and branes in our geom-
etry. Their motion in the highly redshifted (infrared) region is related to the long distance
dynamics of the putative holographic dual. For simplicity we will consider the d = 5 case;
general dimensionalities d can be studied in a similar fashion.

Our goals are twofold. First, we would like to better understand the role of the color
sector in our theory, given that the 5-form flux is subdominant in the solution and warping
arises without it. Secondly, we want to check whether the infrared degrees of freedom in
the highly redshifted (warped) throat are stable. In general, it would be interesting to
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understand what additional criteria – beyond the presence of strong warping – might need
to be satisfied in order to obtain a holographic dual capturing the low energy degrees of
freedom (see [30] for some earlier discussion of this question). One natural physical criterion
is that the strength and variation of the warp factor be such that light particles remain in
the warped region.9

The results are as follows: color branes (D3-brane domain walls) are not stable in the IR
region of our warped geometry, but particles (massive (2.19) and massless) do remain in the
infrared region. These facts can be seen in a simple way from the original metric (2.6) (they
follow equivalently from a similar analysis using the warped metric).

In the case d = 5, m = 2, the 10-dimensional string frame metric is (2.6)

ds2 = −dt2s +
t2s
c2

(dχ2 + cosh2 χdH2
3 ) +

t2s
c2
dB̂2

4 + dx2
f , (3.1)

where dH2
3 is the metric on a unit 3-dimensional hyperbolic space H3 and c2 = 7/3. As

mentioned above, slices of constant scale in our warped metric (2.14) translate into slices of
constant χ, and the two infrared regions correspond to large |χ|.

The isometries of the 4-dimensional hyperboloid, and the corresponding conserved mo-
menta, imply that particles that start moving out in the χ direction continue propagating
to larger |χ| as time goes on. Massless particles head toward null infinity, traveling on null
geodesics dχ = c dts/ts, so that

χmassless(ts) = c log(ts/t0). (3.2)

Massive particles at a fixed point on H3 are governed by the Born-Infeld action

Smassive = −
∫
dtsm(ts)

√
1− χ̇2t2s/c

2 (3.3)

where the particle mass m(ts) can depend on time in our system. In particular, the string-
frame counterparts of (2.19) are:

mKK,s ∝
1

ts
, mstr,s ∝ mf,s ∝ 1 , m77,s ∝ ts . (3.4)

The conserved momentum is

p =
δL
δχ̇

=
m(ts)χ̇t

2
s/c

2√
1− χ̇2t2s/c

2
. (3.5)

A particle at fixed χ = χ0 (with χ̇ = 0 initially) stays at χ0; a particle moving toward the
bottom of either throat continues to do so as ts →∞. We can solve for χ̇ using (3.5), giving

χ̇ =
cp

ts
√
p2 +m(ts)2t2s/c

2
. (3.6)

9We thank D. Marolf and J. Polchinski for this suggestion.
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From this we see that in all cases (3.4), χ̇→ 0 at late times.

At this point we should note that the two-dimensional slice of the spacetime traced out by
t and χ (at a fixed point on the H3) is simply flat space, with metric −dt2 + c2t2dχ2. In that
subspace alone, the low energy region we are defining is a version of a Rindler horizon. Since
c > 1 the spacetime is not flat overall, and the curvature affects generic particle trajectories
and quantum mechanical wave packets, but a classical calculation of test particle trajectories
does not sense this effect.

We get the same result, of course, by working directly in the d-dimensional warped
metric given above. There, to analyze particle dynamics we solve the equations of motion
for a particle with a mass of the form m(η, w) ∼ (η2−w2)κ (with κ given by (2.19) for some
of the basic particles in our system). In our solution, this is obtained by varying the action

Smassive = −
∫
dη m(η, w) c(η2 − w2)(c−1)/2

√
1− (dw/dη)2. (3.7)

At late η, this yields a solution of the form

w = c1η +
c2

ηb
(3.8)

with b = 2κ+ (c− 1). In the examples discussed above (KK modes, closed strings, and 7-7
strings) b ≥ −1, with equality occurring for the case of KK modes. Again, this means that
such particles stay in the infrared region we just defined if they start out there. Note that
when transformed back into regular coordinates t, χ, the subleading piece is important to
allow the particles to propagate in time.

A D3-brane, on the other hand, experiences a force pushing it up the warped throat. Its
Born-Infeld action in 10d string frame is of the form

SD3 ∼ −T3

∫
dts

(
ts
c

)3

cosh3 χ
√

1− χ̇2t2s/c
2, (3.9)

where T3 is the D3-brane tension. The cosh3 χ factor introduces a force pushing the brane
to smaller values of |χ|. It is straightforward to verify, as we will do momentarily, that as a
result of this force the D3-branes come up the throat. We will call this phenomenon “motion
sickness.”10

Let us start from (3.1) in the dimensionless conformal time t̃ = c log(ts/`), where ` is an
arbitrary length scale. The equation of motion that follows from the DBI action is

d

dt̃

(
e4t̃/c cosh3 χ

χ′√
1− χ′2

)
+ 3e4t̃/c cosh2 χ sinhχ

√
1− χ′2 = 0 , (3.10)

where we took the D3-brane position to depend on time only, and here χ′ ≡ dχ/dt̃ represents
the derivative with respect to the conformal time.

10This is a relative of Fermi seasickness, though the term “Technicolor Yawn” [31] most colorfully illustrates
the connection between this class of phenomena and warped throats.
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Deep in the IR of either of our warped throats (e.g. the one with χ� 1), (3.10) can be
reduced to a first order differential equation for χ′. Integrating this equation reveals that
after some time (t̃ > 1) the probe D3-brane propagates up the throat and escapes from the
IR region, reaching the UV slice χ = 0 within a finite time.11 It is interesting to note that
it takes longer and longer for the branes to escape to this slice at later and later times ts:
from (3.9), we have |χ̇| < c/ts.

Let us remark briefly on the significance of the motion sickness and its time dependence,
which should provide useful clues as to the nature of the dual theory. Firstly, it is worth
recalling that motion of color sector eigenvalues up the throat occurs in some familiar ex-
amples of AdS/CFT. One example is the case of N = 4 supersymmetric Yang-Mills theory
on a compact negatively curved space [25, 32], where the eigenvalues are subject to a neg-
ative quadratic potential. This theory is unitary, because the eigenvalues take forever to
get to infinity. The system is properly treated by putting the eigenvalues in a scattering
state. Another example is Fermi seasickness [33], where finite density effects draw color
branes up the warped throat. If one cuts off these theories by embedding them in a warped
compactification then the effect would take a finite time as long as the Planck mass is finite.

A new element in the present case is that the magnetic branes support some warping
by themselves, and the color sector is subdominant in the solution. As we have just seen,
particles stay down the warped throat created by the magnetic branes, suggesting that the
holographic dual may be built from degrees of freedom living on them.

Altogether, there are two reasons motion sickness does not appear to be fatal in our
system: (i) the fact that there is an infrared region in the absence of the color D3-branes, and
(ii) the fact that even in familiar examples of gauge/gravity duality where the color branes
are responsible for all the warping, unitarity is not necessarily sacrificed in the presence of a
potential which pushes color branes toward the UV. There are two approaches one can take:
(1) eject the offending color branes (treating the color sector as negligible, since the flavor
branes provide warping anyway), or (2) wait it out (keeping the color branes in the game,
since the instability takes longer at larger ts).

In particular, in trying to better understand the field theory dual it may remain useful
to think about starting with a color sector in place, since the ejection of the branes takes
longer and longer as ts → ∞. As we will see in the next section, however, the number of
degrees of freedom is well accounted for by junction states living on the 7-branes themselves.

4 Degrees of freedom in FRW holography

In Section 2 we found that the covariant entropy bound and the number of degrees of
freedom per lattice point in the holographic dual grow as td−2. Now we will suggest a
microscopic explanation for this time-dependent growth in terms of states associated to 7-7

11If we set up the system with some 5-form flux (rather than starting with explicit D3-branes), it would
be interesting to determine whether, and at what rate, D3-branes are nucleated. The analysis in this section
shows that once present, color branes do not remain in the warped region for all time.
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strings and string junctions. These are natural candidates to account for the growing Ñdof,
because bringing together ∆n > 0 (p, q) 7-branes in a static way leads to infinite dimensional
algebras [14] that are realized on light states. We make this counting and the assumptions
which go into it precise in Section 4.1.

In the gravity side, the magnetic flavor branes lead to warping and to an IR region, as
we discussed in the previous sections. In the AdS/CFT correspondence, a warped geometry
produces a nontrivial quasilocal stress tensor that can be used to compute the CFT energy
momentum tensor and the central charge. In Section 4.2 we generalize this method to
cosmological solutions. This provides an independent calculation of Ñdof that agrees with
the microscopic count and with the results in §2.5).

4.1 A microscopic count of degrees of freedom in FRW holography

In this paper we are focusing on quantities we can calculate under control in our gravity
solutions, determining from them various basic features of the putative cutoff field theory
dual. This includes several independent computations showing that the number of field
theoretic degrees of freedom grows with time as Ñdof ∝ td−2

UV . In this section, we will seek a
microscopic accounting of these states. In general, such a count is not guaranteed to work in
any simple way; even in systems with a weak coupling limit and a large number of unbroken
supercharges, Ñdof generally suffers corrections in going from weak to strong coupling. For
example, the two are related by a factor of 3/4 in the N = 4 super Yang-Mills theory, and
by a more nontrivial interpolation in other examples. Nonetheless, it is interesting to ask
whether any natural count of states reproduces the parametric behavior of Ñdof in a given
example.

Rather than going to weak coupling, one may trade fluxes for branes, turning on the
corresponding scalar fields, and study the microstates which are evident in that phase [34].
For example, in the N = 4 super Yang-Mills theory if we go out on the Coulomb branch
by introducing Nc explicit D3-brane domain walls, the N2

c degrees of freedom of the dual
gauge theory become more manifest. In that example, of course, the D3-branes source the
warping, accounting for the low energy sector that indicates the existence of the field theory
dual [10].

In our solutions, the 7-branes source warping in themselves. As with flavor branes in
AdS/CFT, they do not come together in the backreacted solution (our time dependent
solution), but in the corresponding (singular) static solution they intersect at a point (where
the color branes are placed in the brane construction). Since they source some warping
(like color branes normally do), there is a possibility that there are fundamental degrees of
freedom of the dual theory that live on their intersection. Since they dominate at late times
(and since the color branes suffer from motion sickness), they may account for the lion’s
share of Ñdof. We will explore this possibility in this section, finding rather encouraging
results.

Consider string and string junction states stretching between 7-branes. For the generic
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case of ∆n > 0, there is an infinite dimensional algebra generated by these junctions [14].12 If
the fiber circle were not contractible, they could also a priori carry arbitrarily large momen-
tum and winding quantum numbers around that direction. However, they ultimately back
react on the geometry, the fiber circle is ultimately contractible, and Kaluza-Klein momenta
are cut off by the giant graviton effect [36], so at any finite time only finitely many states are
available. In this section, we will estimate the total number of degrees of freedom Ñdof at
late times by counting junctions up to a cutoff determined by backreaction and topology. We
will be concerned with the t-dependence of Ñdof, and will not keep track of time-independent
factors.13 The resulting count of brane degrees of freedom will precisely match the behavior

Ñdof ∼ td−2
UV (4.1)

found above from macroscopic considerations (2.31). As we will describe below, this state-
ment is based on two assumptions we will specify.

Let us parameterize a state by the number nstr of strings it contains stretching among
the 7-branes, the winding number nf on the fiber circle, and the momentum number kf on
the fiber circle. We will ultimately analyze all cases, with various dimensionalities for the
compact and noncompact directions. Let us start with the specific case of d = 5, m = 2 (i.e.
uplifted AdS5 × S5).

We can bound nstr by the requirement that the core size of the set of nstr strings not
exceed R, to avoid strong backreaction. The core size is determined from the gravitational
potential, which goes like 1/rd⊥−2, where d⊥ is the codimension (e.g. 1/r for particles in 3+1
dimensions, 1/r4 for D3-branes in ten dimensions, and so on). In our case, we need to take
into account that the fiber circle is much smaller than R, so the effective codimension of the
strings is 7 rather than 8. With nstr strings, the core size is given by

nstr

r5
core

∼ 1. (4.2)

From this, the condition that this size not exceed the size R of the base CP2 is

rcore ∼ n
1/5
str ≤ R ∼ ts ∼ t3/7 ⇒ nstr ≤ t15/7. (4.3)

The strings can wind around the fiber circle also. If they wind R/Rf ∼ ts ∼ t3/7 times,
they can detect that the fiber is contractible. So let us cut off the windings at

nf ≤ t3/7. (4.4)

The string may also have momentum kf/(Rf

√
α′) along the fiber circle. There is not a

topological cutoff on kf as for windings; the momentum is a conserved charge. However, the

12There have been similar intriguing appearances of large algebras organizing states and/or dynamics in
works such as [35].

13In the future it might be very interesting to analyze the factors arising from group theory to characterize
the dual theory in more detail. The present calculation suggests that this is on the right track.
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tower of momentum modes does not go up forever. Ultimately, it was shown in [36] that
Kaluza-Klein momenta are naturally cut off in UV-complete string theoretic examples of
AdS/CFT in exactly the right way to mirror the operator content of the dual field theory. In
the present case, there is an important crossover at a lower scale. We may view our states as
bound states of Kaluza-Klein gravitons and (p, q) string junctions. For sufficiently small kf ,
i.e. kf/Rf � R, the energy of each stretched string is of order R/

√
α′; the gravitons are well

bound to the strings. But when kf crosses over to become much larger than RRf , they are
not strongly bound and the system as a whole behaves like a set of relativistic Kaluza-Klein
gravitons of total momentum kf/(Rf

√
α′). (Ultimately, as in [36], these gravitons grow into

giants.) Since the gravitons are not strongly bound to the stretched strings (if bound at all),
the state may no longer be fundamental. Because of this crossover, we will count kf only up
to RRf ∼ t3/7:

kf ≤ t3/7. (4.5)

Finally, we need to determine whether there are additional combinatorial factors which
depend on nstr arising from the algebra generated by the junctions. To start, let us consider
the configurations classified in [14]. There, one starts from a subset S0 of the (p, q) 7-branes
which generates a finite Lie algebra G0. One then considers junctions with some prongs
ending on the S0 branes, transforming under G0 according to their weight vector λ under G0.
The rest of the prongs of these junctions form a set of nZ strings with charge (p, q); these end
on the remaining 7-branes (or some subset of them) denoted collectively by Z. The works
[14] show that a junction with weight λ and asymptotic charge nZ(p, q) satisfies a relation

λ · λ = −J2 + n2
Z(f(p, q)− 1). (4.6)

Here J2 ≥ −2 is the self-intersection of the junction, and f(p, q) is a specific function of
the asymptotic charges (see for example eqn. (2.9) of the second reference in [14]). Since
λ · λ ≥ 0, f(p, q) ≥ 1 in the generic cases where the full system builds up an infinite algebra
Ginf . In particular, for f(p, q) > 1 the right hand side of (4.6) can become large and positive
by increasing nZ , and the equation may be satisfied with longer and longer weight vectors
λ in G0. (This is in contrast to the cases with f(p, q) < 1, where at most a finite number of
weights can satisfy (4.6).) It is conjectured in [14] that states with J2 = −2 have the special
feature that they can be realized by “Jordan Open Strings”, strings that end on two of the
7-branes (crossing cuts emanating from the 7-branes in the process). We will count these
strings.

Given that, next we need to know if there are any multiplicities in the tower of available
states which grow with nstr at large nstr. As mentioned below (5.52) of the first reference in
[14], given a weight vector of length squared λ·λ, there is a degeneracy given by the dimension
of its Weyl orbit. However, this number cannot grow arbitrarily large; it is bounded by the
dimension of the Weyl group of G0. In particular, if we consider any individual representation
of G0, the number of weight vectors degenerate with the longest weight vector is given by
the Weyl group, and does not grow with n.

There are additional degeneracies in the weight lattice beyond those required by Weyl
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reflections, but these involve multiple representations. As long as the number of these rep-
resentations which arise in our physical system do not grow too fast with nstr, the count
we propose here holds up. It would be interesting to analyze this explicitly for specific Lie
groups. This question of which charged matter representations appear in F theory compact-
ifications has been studied previously in string theory for phenomenological model building,
and similar techniques may be useful in the present case.

Next, let us consider more general configurations which build up ∆n > 0. One way
to think about these is by iterating the procedure just described, considering junctions
stretching between the entire set of 7-branes corresponding to the infinite group Ginf , and
an additional (p, q) 7-brane. This works similarly to the above case, except now the Cartan
matrix of the Ginf set of sevenbranes is of indefinite signature. This by itself would allow
for an infinite number of weight vectors of a fixed length squared (schematically of the form
λ2

+ − λ2
− given the indefinite metric). So in the equation (4.6) there would be an infinite

number of solutions even for finite nZ . However, this infinite number is itself cut off by
insisting that the corresponding junctions be made up of at most of order nstr strings. This
limits λ+ and λ− above to be at most of order nstr in length, and counting their degeneracy
is similar to the above count for finite groups.

Putting this all together, the number of available degrees of freedom is obtained from the
product of the maximum values of nstr, nf , and kf :

Ñdof ∼ (nstrnfkf )max ∼ t15/7+2×3/7 = t3 = td−2 (4.7)

for d = 5.

Next, let us work out Ñdof for d = 3, m = 1 (i.e. an FRW uplift of AdS3 × S3 × T 4). In
this case, the T 4 is of fixed size, independent of t, so (4.2) becomes

nstr

rcore

∼ 1. (4.8)

As a result, (4.3) becomes

r ∼ nstr ≤ R ∼ ts ∼ t1/3 ⇒ nstr ≤ t1/3 (4.9)

Again, the strings can wind around the fiber circle as well. If they wind R/Rf ∼ ts ∼ t1/3

times, they see that the fiber is contractible. So we cut off the windings at

nf ≤ t1/3 (4.10)

and also the momentum
kf ≤ t1/3. (4.11)

Altogether we get
Ñdof ∼ (nstrnfkf )max ∼ t = td−2 (4.12)

for d = 3.
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Having checked it now for two examples, let us finally consider all cases, varying the di-
mensionalities of the FRW spacetime and the uplifted internal base space. For d noncompact
FRW dimensions and a 2m dimensional uplifted base space, together with one fiber circle
and 9− d− 2m toroidal directions, we have

nstr ≤ td+2m−4
s , nf ≤ ts, kf ≤ ts (4.13)

where ts is the 10-dimensional string frame time coordinate (2.6). So Ñdof goes like td+2m−2
s .

Recall that ts goes like t1/c
2

in terms of the Einstein frame time coordinate (2.10), and
c2 = (d+ 2m− 2)/(d− 2) (2.11). Therefore for the general case, we have

Ñdof ∼ td−2 , (4.14)

whose time dependence agrees precisely with the macroscopic calculations of Ñdof.

4.2 Deriving Ñdof from the quasilocal stress tensor

In the AdS/CFT correspondence, there are several ways to compute the number of degrees of
freedom per lattice point of the CFT. For instance, Brown and Henneaux [37] used the con-
formal structure of asymptotically AdS3 to identify the central charge, which was rederived
from different points of view in [38, 39]. The conformal anomaly can also be computed from
the variation of the renormalized effective action under a conformal transformation [40, 41].
Those analyses, however, depend highly on the conformal symmetry, or on the asymptotic
structure of AdS spacetime. Since our spacetime does not have such a structure, we need to
apply other methods.

One possible method is to excite our FRW spacetime and produce a black hole with a
hyperbolic horizon in the IR region. The horizon entropy will be identified with that of the
effective field theory, from which we could extract Ñdof. This is analogous to the entropy
computation of an AdS black hole in [42].

Another method, which will be applied here, is to compute Brown and York’s quasilo-
cal stress tensor [43] and identify it with the expectation value of the stress tensor in the
boundary theory. In the context of AdS/CFT, this was used to compute the Casimir energy
and Ñdof of the boundary theory in [44, 39]. This method can be generalized to the dS/dS
correspondence [4] and to our FRW model. In order to see how it works, let us first review
the definition of the quasilocal stress tensor and then use it to calculate Ñdof of the dual
theories in both dS/dS and FRW.

4.2.1 Quasilocal stress tensor

Let us consider a spacetime manifold M with a timelike boundary ∂M and space-time
metric gµν . This boundary could be a regularized one at some coordinate cutoff rc. Let nµ
be the outward pointing normal vector to ∂M, normalized so that nµn

µ = 1. The induced
metric on the boundary is given by

γµν = gµν − nµnν , (4.15)
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where a pullback onto ∂M is understood. The Einstein action including a boundary term is

S =
Md−2

d

2

∫
M
ddx
√
−g(R− 2Λ)−Md−2

d

∫
∂M

dd−1x
√
−γΘ +Md−2

d Sct[γab], (4.16)

where Θ is the trace of the extrinsic curvature of the boundary

Θµν = −γµρ∇ρnν , (4.17)

Sct is a suitably chosen local functional of the intrinsic geometry γab of the boundary, and a,
b are coordinate indices on the boundary. The quasilocal stress tensor [43] is given by

τab ≡ 2√
−γ

δS

δγab
= Md−2

d

(
Θab −Θγab +

2√
−γ

δSct

δγab

)
. (4.18)

The AdS/CFT correspondence relates the expectation value of the stress tensor 〈Tab〉 in the
dual field theory to the limit of the quasilocal stress tensor τab as the regularized boundary
at rc is taken to infinity: √

−hhab〈Tbc〉 = lim
rc→∞

√
−γγabτbc, (4.19)

where hab, the background metric on which the dual field theory is defined, is related to the
boundary metric γab by a conformal transformation. The counterterms in Sct[γab] are chosen
appropriately so as to cancel all divergences when the limit is taken. This has a natural
interpretation on the dual field theory side: we use local counterterms to obtain a finite,
renormalized expectation value of the stress tensor in the field theory.

4.2.2 Ñdof in AdS/CFT and dS/dS

Let us calculate the quasilocal stress tensor in AdSd and dSd, both sliced by dSd−1. The
metric is given by

ds2
(A)dSd

= R2dw2 + f(w)2ds2
dSd−1

, ds2
dSd−1

= habdx
adxb, (4.20)

where f(w) = sinhw for AdSd and sinw for dSd. Here R is the curvature radius of both
ds2

(A)dSd
and ds2

dSd−1
.

In the AdSd case, the AdS/CFT correspondence says that the bulk is dual to a bound-
ary conformal field theory living on dSd−1. In the dSd case, the dS/dS correspondence [4]
conjectures that the bulk is dual to two effective field theories living on dSd−1, both of which
are cut off at an energy scale 1/R and coupled to (d − 1)-dimensional gravity and to each
other.

Coming back to our calculation, let us choose a regularized boundary at w = wc. It has
an induced metric γab = f(w)2hab, where hab is the dSd−1 metric on which the field theory is
defined. The extrinsic curvature tensor is

Θab = − 1

R
f(wc)f

′(wc)hab, (4.21)
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and before adding the counterterms the quasilocal stress tensor is given by

τab =
(d− 2)Md−2

d

R
f(wc)f

′(wc)hab =


(d− 2)Md−2

d

R
(sinhwc coshwc)hab, for AdSd,

(d− 2)Md−2
d

R
(sinwc coswc)hab, for dSd.

(4.22)
In the AdSd case, the stress tensor is divergent as wc goes to infinity, and the counterterms
in Sct renormalize it to

τab ∼
Md−2

d

R
e−(d−3)wchab (4.23)

for large wc, so that the limit in (4.19) becomes finite and gives 〈Tab〉 ∼ (Md−2
d /R)hab.

14

Matching this to the expectation value of the CFT stress tensor on dSd−1 with Ñdof degrees
of freedom per lattice point

〈Tab〉 ∼
Ñdof

Rd−1
hab, (4.24)

we arrive at the correct number of degrees of freedom per lattice point

Ñdof ∼Md−2
d Rd−2 (4.25)

in the context of AdS/CFT. In fact we do not have to take wc to infinity to get this parametric
result. We could set wc to be of order 1 and forget about the counterterms (because there
are no divergences to cancel if wc is fixed at order 1, and including the counterterms would
only change the numerical coefficients which we are not keeping track of). This gives the
same parametric result for Ñdof.

This perspective is important for the dS/dS correspondence, because in this case the w
coordinate is bounded and we cannot take wc to infinity. What we can do is fix wc at order 1,
and by the same argument we get Ñdof ∼Md−2

d Rd−2. This means that the number of degrees
of freedom per lattice point for the dual theory on dSd−1 is parametrically the same as the
Gibbons-Hawking entropy of dSd. This was confirmed by the concrete brane construction
for the dS/dS correspondence in [6].

It is interesting to note that the quasilocal stress tensor (4.22) vanishes at wc = π/2 in
the dSd case. This does not contradict our previous result Ñdof ∼ Md−2

d Rd−2, because one
can reliably deduce Ñdof of the dual field theory only well below its cutoff. The “UV slice”
wc = π/2 corresponds exactly to the energy scale where the effective field theory is cut off
and coupled to gravity. The vanishing of the quasilocal stress tensor is reminiscent of the
gravitational dressing effect discussed in [4]. As we shall see in the next subsection, this also
happens in our FRW spacetime.

Before going on, we should note that the advantage of being able to take wc to infinity
in the AdSd case is that we can calculate the exact Ñdof including the numerical coefficients.

14Strictly speaking, the limit is nonzero only for odd d. In even (bulk) dimensions, the limit vanishes and
so does the trace anomaly of a CFT in odd (boundary) dimensions. We can still get Ñdof by other means.
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To demonstrate this, let us work for simplicity in d = 3. Only one counterterm is needed in
this case, which is simply a cosmological constant on the boundary: Sct = −(1/R)

∫
∂M
√
−γ.

The quasilocal stress tensor becomes

τab =
M3

R
(sinhwc coshwc − sinh2wc)hab, (4.26)

which gives 〈Tab〉 = (M3/2R)hab upon taking wc to infinity. The stress tensor from Ñdof

free massless scalar fields in dS2 may be calculated in a standard way,15 giving 〈Tab〉 =
(Ñdof/24πR2)hab. This can also be obtained from the trace anomaly 〈T aa 〉 = (c/24π)R of a
two-dimensional CFT. Matching this result to the quasilocal stress tensor, we arrive at

c ≡ Ñdof = 12πM3R, (4.27)

which agrees exactly with [41, 39].

4.2.3 Ñdof in the FRW dual

Let us now calculate the quasilocal stress tensor in our FRW spacetime. We start with the
warped metric

ds2
d = c2(η2 − w2)c−1(dw2 − dη2 + η2dH2

d−2), (4.28)

and choose the regularized boundary to be a surface of constant α where α is defined by
w = αη with 0 < α < 1. This is a hypersurface of constant energy scale relative to the UV
cutoff: α ≈ 1 corresponds to the IR, while α � 1 corresponds to the UV. The exact value
of α is not essential in our analysis, as long as it is of order 1. This is because our main
interest is the parametric dependence of the quasilocal stress tensor on η (or tUV ), and this
is not affected by the exact location of the hypersurface. One may also consider RG flows in
our FRW geometry, as in AdS or dS [46]–[50], and relate Ñdof in the IR to its value in the
UV. The η-dependence of Ñdof is not affected by the energy scale.16

From the coordinate transformation χ = 1
2

log η+w
η−w , a hypersurface of constant α is also a

hypersurface of constant χ = arctanhα, so it is much easier to calculate the quasilocal stress
tensor in the usual FRW coordinates

ds2
d = −dt2 + c2t2(dχ2 + cosh2 χdH2

d−2). (4.29)

The induced metric on the regularized boundary at χ = χc is given by

γabdx
adxb = −dt2 + c2t2 cosh2 χdH2

d−2, (4.30)

15For two-dimensional (and therefore conformally flat) spacetimes one can use Eq. (6.136) of [45]. Note
that their metric convention is the opposite of ours.

16α = 1 is a singular surface and we do not set the hypersurface there. In a broader picture, this singular
surface is replaced by the Coleman–de Luccia instanton and connected to the parent de Sitter space.
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and the extrinsic curvature can be calculated as

Θtt = 0, Θij = −tanhχc
ct

γij, (4.31)

where i, j are the coordinate indices on Hd−2. The quasilocal stress tensor is given by

τtt = (d− 2)
Md−2

d

ct
(tanhχc)γtt, τij = (d− 3)

Md−2
d

ct
(tanhχc)γij, (4.32)

It is interesting to note that this corresponds to a perfect fluid with equation of state w =
(d− 3)/(d− 2). It has vanishing pressure in d = 3.

The next step is to calculate the expectation value of the stress tensor in the dual field
theory, which lives on the background metric hab = γab and has Ñdof degrees of freedom per
lattice point:

〈Tab〉 ∼
Ñdof

td−1
hab. (4.33)

This can be obtained either on dimensional grounds or by using Eq. (6.134) of [45], noting
that γab is conformally flat. Let us set χc to be of order 1 as this is equivalent to setting α
to be of order 1. We match 〈Tab〉 to the quasilocal stress tensor (4.32) and obtain

Ñdof ∼Md−2
d td−2

UV , (4.34)

where we have replaced t with tUV because on a hypersurface of constant α we have t =
(1 − α2)c/2tUV ∼ tUV from (2.13). This is in agreement with the microscopic count of the
number of degrees of freedom.

Just as in the dS/dS correspondence, the quasilocal stress tensor (4.32) vanishes at χc = 0,
corresponding to the UV slice w = 0. Again this suggests renormalization from the (d− 1)-
dimensional gravitational effects.

5 Correlation functions

In this section we compute two-point functions for massive and massless scalar fields in
our solution. These should provide detailed information about the nature of the (d − 1)-
dimensional theory. That theory lives on an FRW geometry, has time-dependent and scale-
dependent couplings, and is necessarily strongly coupled in order to reproduce a large-radius
gravity solution. We will leave a complete interpretation of our Green’s functions to future
work, but will note some of their interesting features below.

5.1 Massive Green’s functions

In AdS/CFT it is well understood how gravitational scattering amplitudes behave like field
theory correlators. For example, massive propagators in the bulk (which are exponentially

27



suppressed in flat space) turn into power-law CFT two-point functions in the dual theory
through the effects of the warp factor, which is a strong function of the radial distance r.
Because of the warp factor, geodesics do not go along fixed-r trajectories; they can take
advantage of the warp factor and go along a shorter path by moving in the radial direction.
This leads to the power law rather than exponential correlators. (A simple discussion of this
can be found in [28].)

Let us ask the analogous question in our case. Our dual theory is formulated on an FRW
spacetime and has a time and scale-dependent coupling corresponding to the radius R of B̂,
which depends on t = (t

2/c
UV − w2)c/2. (As noted above (2.16), this quantity depends more

strongly on the radial scale coordinate w than on time tUV .) As we saw in Section 2.5 and
Section 4, our theory is cut off at a finite scale, but accumulates additional field theoretic
degrees of freedom as time evolves forward. As a result, the theory is not conformally
invariant. Nonetheless we will see that there is one sector of massive bulk fields – KK modes
on the base B̂ – which have power law correlators.

We will now compute the leading behavior of the 2-point Green’s functions for particles
of mass m(t) ∝ t−α in our geometry. To find the dominant trajectory, we must solve the
equations obtained by varying the action

S = −
∫
dλm(t)

√
ṫ2 − c2t2

(
χ̇2 + cosh2 χ ˙̃χ2 + . . .

)
, (5.1)

where “dot” represents a derivative with respect to the worldline coordinate λ and dH2
d−1 =

dχ2 + cosh2 χ(dχ̃2 + sinh2 χ̃ dΩ2
d−3). We are interested in computing the propagator between

the points (t, χ, χ̃) and (t, χ, χ̃ + ∆χ̃). Note that because of the time-dependent mass, the
calculation of the dominant trajectory is not equivalent to a calculation of the geodesic
distance between the two points in our spacetime.

Our result can only depend on time t and on the geodesic distance L between two points
in Hd−1 because of the isometries of Hd−1. For two points on the same χ-surface, the geodesic
distance L in Hd−1 is given by17

coshL = cosh2 χ cosh ∆χ̃− sinh2 χ . (5.2)

The central (UV) slice of our warped geometry is at χ = 0. We will be interested both
in Green’s functions formulated deep in the IR at χ � 1, and also in Green’s functions
formulated at the UV slice χ = 0.

Since the propagator can only depend on t and on the geodesic distance L, it is actually
easier to do the calculation at constant χ̃ and varying χ, and at the end replace this by L.
Consider a particle with mass

m(t) =
nα
tα
, (5.3)

17This is the hyperbolic law of cosines, and it can be obtained by analytic continuation from a similar
formula on a sphere, or simply from the dot product in the embedding space.
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where nα is a constant of dimension 1 − α. In the d = 5 case, α = 1, 4/7, and 1/7 for KK
modes, closed strings, and 7-7 strings, respectively. Define the new coordinates

τ =
t1−α

1− α
, y = (1− α)cχ, (α 6= 1) (5.4)

and
τ = log(t/`), y = cχ, (α = 1). (5.5)

Let us first address the KK modes. Setting n1 ≡ nKK we see that the action (5.1) at constant
χ̃ reduces to

S = −nKK
∫
dλ
√
τ̇ 2 − ẏ2 (α = 1). (5.6)

This is equivalent to the action for a particle with a constant mass in flat spacetime. The
resulting two-point function is e−nKK∆y, exponentially suppressed in ∆y = c∆χ = cL.

However, this is a power law suppression in the geodesic distance ∆X in the (d − 1)-
dimensional spacetime −dt2UV + c2t2UV dH

2
d−2 on which the d − 1 theory lives. Working at

χ = 0, we have the geodesic distance L = ∆χ̃ according to (5.2). We can see the power law
behavior by making a coordinate transformation

X = tUV sinh(cχ̃) , T = tUV cosh(cχ̃) , (5.7)

where the metric is Minkowskian on the plane spanned by X and T . Taking our two points
at the same T , i.e. taking χ̃1 = −χ̃2 = ∆χ̃/2, we obtain the geodesic distance (for ∆χ̃� 1)

∆X = 2tUV sinh(c∆χ̃/2) ≈ tUV e
c∆χ̃/2, (5.8)

and hence our exponential result in ∆χ̃ becomes a power law in ∆X. The Green’s function
is of the form

G(∆x) ∼ e−nKKcL ∼ e−nKKc∆χ̃ ∼ 1

(∆x)2nKK
, (5.9)

where ∆x ≡ ∆X/ctUV is the comoving geodesic distance.

This result is quite intriguing, as we obtain power law correlators from a massive KK
mode propagator, which is reminiscent of what happens in ordinary AdS/CFT. However,
here the mechanism for this involves the time dependence of the mass. The propagator deep
in the IR (large χ) and for large ∆χ̃, has an additional exponential suppression as a function
of χ,

G(χ; ∆x) ∼ e−nKKcL ∼ e−nKKc(2χ+∆χ̃) ∼ e−2cnKKχ
1

(∆x)2nKK
, (5.10)

where we used L ≈ 2χ + ∆χ̃ from the large χ, ∆χ̃ limit of (5.2). Recalling that χ =
1
2

log η+w
η−w (2.12), we find that the propagator has a power law scaling with w/η. This energy

scaling of the correlator is again characteristic of a CFT, where power-law wavefunction
renormalization is produced by nontrivial anomalous dimensions. Note that these formulas
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only apply in the c > 1 case, since for c = 1 the KK masses are constant, and we do not get
warping or this power law behavior.

Next, let us analyze the correlation functions for other massive scalar fields, those for
which α 6= 1.

S = −nα
∫
dλ
√
τ̇ 2 − τ 2ẏ2 (α 6= 1). (5.11)

This action is equivalent to the action for a particle with constant mass nα in the Milne
universe, and the dominant trajectory is obtained by analytic continuation from flat space:

Scl = 2inατ sinh
∆y

2
, (5.12)

where the sign can be determined by the −iε prescription implicit in the square root. Ap-
proximating the propagator by eiScl and rewriting the action in terms of the geodesic distance
L obtains

G(t;L) ∼ exp

[
−2nα

t1−α

1− α
sinh

(1− α)cL

2

]
. (5.13)

Let us consider the massive fields with α < 1 (closed strings and 7-7 strings) at large
∆χ̃� 1, in which case we have L ≈ ∆χ̃+ 2 log coshχ from (5.2). Note that this expression
is valid for both small and large χ. In terms of the geodesic distance ∆X (5.8) in the (d−1)-
dimensional FRW spacetime, the massive Green’s function (5.13) has (for large ∆χ̃� 1) an
exponential suppression

G(t; ∆X) ∼ exp

[
−nα

t1−α

1− α

(
∆X

tUV

)1−α

(coshχ)c(1−α)

]
∼ exp

[
−nα

(∆X)1−α

1− α

]
, (5.14)

where we have used tUV = t(coshχ)c from the coordinate transformation (2.12). It is inter-
esting to note that the α < 1 Green’s function in this form is independent of χ (although
there could be χ-dependent prefactors that we have not kept track of).

These α < 1 fields become parametrically heavy at late times, dying away at long dis-
tances as compared to the KK modes with their power law correlators. But they remain part
of the theory: as we have seen in Section 4.1, the set of 7-7 strings and junctions which do
not strongly backreact on the geometry make a leading contribution to the count of degrees
of freedom. This is somewhat reminiscent of off-diagonal matrix elements in the N = 4 SYM
theory out on its Coulomb branch: these are parametrically heavy at large AdS radius as
compared to KK modes, but they cannot be decoupled from the system.

5.2 Massless Green’s functions

One can potentially learn about the field theory dual of a warped gravity solution such as
ours by studying the massless correlation functions. In this section, we give the correla-
tion function of a massless scalar field in our open FRW spacetime, considering the case
where it comes from a Coleman–de Luccia (CdL) decay [51]. Details on deriving correlation
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functions in a general d-dimensional CdL geometry, including an explicitly Lorentzian pre-
scription without the need to analytically continue the eigenmode expansion, are presented
in Appendix A.

The calculation is of interest more generally, as it requires developing tools to treat
pseudotachyon modes [16] which arise from Hubble expansion. These are infrared modes
which do not oscillate with time, but also do not grow large enough to significantly affect
the background solution. Such modes arise for c > 1, as explained in Section A.3. In
general, these may be treated by putting them in a scattering state and computing correlation
functions as expectation values in this state. The method we use here involves choosing a
particular state, the Hartle-Hawking vacuum that one obtains from the analytic continuation
of the Euclidean CdL geometry.

We consider a minimally coupled massless scalar field φ in our FRW background

ds2
d = −dt2 + c2t2dH2

d−1, dH2
d−1 = dχ2 + cosh2 χdH2

d−2, (5.15)

where the scale factor a(t) = ct is correct at late times. If this FRW spacetime comes from
a CdL decay, the scale factor has to behave like a(t) = t+O(t3) for small t, so that the big
bang t = 0 is just a coordinate singularity.

We are interested in the large t behavior of the equal-time correlator

G(t, χ,∆χ̃) ≡ 〈φ(t, χ,∆χ̃)φ(t, χ, 0)〉, (5.16)

where we have put the two points on a hypersurface of constant χ, corresponding to a
given energy scale as discussed in Section 4.2.3. In particular, χ = 0 corresponds to the
UV and χ � 1 corresponds to the IR of the dual field theory. We use ∆χ̃ to denote the
geodesic separation of the two points in the Hd−2 directions. In Appendix A we organize
the correlation function into an expansion in the large t and large ∆χ̃ limit. The first two
leading terms turn out to be

Gleading(t, χ,∆χ̃) ∼ ∆χ̃+ 2 log coshχ, (5.17)

Gsubleading(t, χ,∆χ̃) ∼ t(d−2)(
√

1−1/c2−1)

coshd−2 χ
e−(d−2)∆χ̃/2(∆χ̃+ 2 log coshχ), (5.18)

up to terms that are “pure gauge”.18 The same leading term was obtained in [5].

We rewrite the correlation function in terms of the geodesic distance ∆X in d − 1 di-
mensions, which was derived in Section 5.1 to be ∆X ≈ tUV e

c∆χ̃/2. From the coordinate
transformation (2.12), tUV and t are related by

tUV = t(coshχ)c. (5.19)

18This is because the massless correlator on a compact space such as the Euclidean CdL geometry is only
well-defined up to arbitrary constants and linear functions of the coordinates. See a more detailed discussion
in Section A.1.
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The leading contribution (5.17) to the correlation function becomes

Gleading(t, χ,∆X) ∼ log
∆X

tUV
+ c log coshχ = log

∆X

t
, (5.20)

where we have used (5.19) in the last equality. We note that this leading term is present
for both c > 1 and c = 1, and it is independent of the dimension d. This suggests an
interpretation of it as the contribution from the zero mode of φ localized on the UV slice.

The subleading contribution to the correlation function in terms of ∆X is

Gsubleading(t, χ,∆X) ∼ t(d−2)(
√

1−1/c2−1)

coshd−2 χ

(
tUV
∆X

)(d−2)/c(
log

∆X

tUV
+ c log coshχ

)
(5.21)

=
t(d−2)(

√
1−1/c2−1+1/c)

(∆X)(d−2)/c
log

∆X

t
, (5.22)

where we have used (5.19) in the second line. This term is dominated by contributions from
the pseudotachyonic modes, and is present only for c > 1. This is the case we have focused
on in this paper, which has a warped geometry with a consistent description in terms of a
low-energy (d− 1)-dimensional dual.

In order to holographically interpret these results for c > 1 in detail, it is necessary
to understand better the behavior of a strongly coupled field theory with time and scale
dependent couplings on a (d − 1)-dimensional FRW background. The strong coupling will
limit our ability to compute, but it will be interesting to see if one can determine enough
about this theory to make detailed comparisons with results such as (5.21). We will leave
an in-depth study of this for future work.

6 Future directions: Magnetic flavors and time-dependent QFT

This work raises many interesting questions, which we have only begun to explore. In this
section we describe a few of them.

On the gravity side, we have seen that in the presence of sufficiently many magnetic
flavor branes to uplift AdS/CFT to cosmology, one has simple time-dependent solutions,
whereas the would-be static solutions are singular (as observed before in [8] via another
class of time-dependent F-theory solutions). We have exhibited a warped metric on these
solutions, and have obtained results consistent with the interpretation of the corresponding
low energy region as a (d− 1)-dimensional holographic dual.

It would be very interesting to understand directly from a field-theoretic point of view
where the distinction between ∆n < 0 and ∆n ≥ 0 comes from. If there is a condition on the
number of magnetic flavors (holding fixed other quantities) which corresponds to ∆n < 0,
the above results may suggest that time-dependent effects in field theory could change this
condition. Time dependent couplings affect the scaling dimensions of the corresponding
operators in the effective Lagrangian.19 On sufficiently short timescales, of course, the system

19One interesting new effect of time-dependent couplings in quantum field theory was discussed in [52].
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becomes insensitive to the time-dependent couplings. Perhaps this is related to the finite
cutoff we are left with in our late-time non-gravitational field theories.

Even at finite times, the holographic description of our system will be very interesting
to develop further. The dual theory has time-dependent running couplings and (depending
on our choice of conformal frame) in general lives on its own FRW geometry. These features
render it somewhat complicated to match in detail the correlation functions computed in
Section 5 and Appendix A to quantities in the holographic dual, a task we therefore leave
to (near-)future work.

A crucial step in a holographic formulation of cosmology is the identification of the
correct microscopic degrees of freedom. In the solutions presented in this work, such states
are predominantly given by string junctions extended between the magnetic flavor branes.
We computed the number of degrees of freedom Ñdof in several ways, and found agreement
between the gravity and field theory sides. This generalizes the microscopic calculation of the
de Sitter entropy of [6] to a time-dependent cosmology. While some of our results are specific
to the class of solutions presented in Section 2, our methods suggest a concrete framework for
holographic cosmology, which may have wider applications. Yet another method would be
to put the system at finite temperature by adding a black brane and computing its entropy
– we hope to pursue this calculation further.

Finally, we expect our results here to translate into a clearer understanding of appro-
priate observables in cosmological spacetimes. There have been a number of interesting
attempts to find a consistent framework in which to define probabilities in cosmology. In our
view, this program will likely benefit from concrete study of the structure of UV complete
time-dependent backgrounds, in the same way as occurred in black hole physics. There,
analyzing the dynamics of brane solutions in string theory led to black hole entropy counts
and ultimately to the AdS/CFT correspondence. The details of particular examples may
not be of central importance in the end, but can provide much needed checks and may lead
us toward the right principles.

On this note, it would be extremely interesting to determine to what extent the magnetic
flavor branes which play a key role here (and in other landscape constructions which use F-
theory [53]) are generic in cosmological solutions with holographic duals. In general there is
a longer list of “uplifting” possibilities, including starting from a larger total dimensionality
D > 10 (the more generic case) and/or compactifying on more general curved manifolds
[54]. Magnetic flavors bring in a new source of strong coupling – in addition to the strong
’t Hooft coupling required to formulate large-radius gravity – and it would be interesting to
further understand their role in the theory.
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A Correlation functions in general CdL geometry

In this appendix we develop an exact formalism for calculating correlation functions in a
general CdL geometry. One of our main goals is an explicitly Lorentzian formula (A.32)
for the real-time correlator in the FRW region of the CdL geometry, so that one can apply
it without having to analytically continue the Euclidean modes into Lorentzian signature.
This is very desirable in any calculation away from the thin-wall limit, because in general
the exact eigenmodes are not analytically tractable. One can certainly make approximations
or compute them numerically, but these are not useful for analytic continuation because
one cannot reliably continue an approximate solution.20 Instead, we can derive an exact
Lorentzian formula (A.32), and if necessary make approximations from there. This is the
approach of this appendix.

In Section A.1 we deveop a Euclidean prescription (A.17) for the correlation function.
This is a relatively straightforward generalization of the discussion in Appendix A of [5] to
arbitrary dimensions and arbitrary scale factors.21 In Section A.2 we analytically continue
(A.17) to an exact, Lorentzian formula (A.32), with extra care given to the choice of inte-
gration contours. Section A.3 applies the Lorentzian prescription to our FRW spacetime.
Finally, in Section A.4 we briefly outline how to generalize this to a massive correlation
function.

A.1 Euclidean prescription

The Euclidean CdL instanton in d dimensions is characterized by the isometries of a (d−1)-
dimensional sphere. It is the Euclidean version of a closed FRW universe. Let us work in
the conformal coordinates:

ds2
d = a(X)2(dX2 + dΩ2

d−1), dΩ2
d−1 = dθ2 + sin2 θ dΩ2

d−2, (A.1)

where X varies from −∞ to +∞. The smoothness of the instanton requires that the scale
factor vanish as ξ + O(ξ3) at the two tips, where ξ is the proper coordinate in the X

20A toy example is the tanhx function, which is well approximated by 1 for large, real x, but we certainly
cannot continue this approximate result to the imaginary axis. A class of exact CdL solutions showing this
explicitly will appear in [55].

21Correlation functions in general dimensions were also calculated in [56] in the thin-wall limit. In this
appendix we work more generally, partly because our FRW spacetime with c > 1 is not in the thin-wall
limit.
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direction. In the conformal coordinates this means a(X) approaches (up to constant factors)
eX as X → −∞, and approaches e−X as X → +∞.

We calculate the two-point function of a minimally coupled massless scalar field φ. It is
convenient to consider the rescaled field

φ̂ = a(X)k0φ, where k0 ≡
d− 2

2
, (A.2)

which has a canonical kinetic term. Note that k0 is the momentum gap for the normalizable
eigenmodes of the Laplacian on the unit (d− 1)-dimensional hyperboloid. We let G and Ĝ
denote the correlator of φ and φ̂ respectively. The rotational symmetry of the d− 1 sphere
may be used to bring one of the two points to θ = 0, so that the correlator Ĝ(X,X ′, θ)
depends on no other angular coordinates and satisfies the Laplace equation with a delta
function source: [

−∂2
X −∇2

Sd−1 + U(X)
]
Ĝ(X,X ′, θ) =

δ(X −X ′)δ(θ)
Sd−2 sind−2 θ

, (A.3)

where Sn = 2π(n+1)/2/Γ((n + 1)/2) is the volume of the unit n-sphere, and the potential
U(X) is defined as

U(X) =
b′′(X)

b(X)
= k2

0 −
k0Φ′2 + d a(X)2V (Φ)

2(d− 1)
, where b(X) ≡ a(X)k0 . (A.4)

Here Φ is the scalar field sourcing the metric and has a canonical kinetic term. Its potential22

V (Φ) between the two tunneling points Φ(X = ±∞) is nonnegative for decays from de Sitter
to de Sitter or to FRW with a zero cosmological constant (if one assumes the null energy
condition), so U(X) is bounded from above by k2

0 and asymptotes to this bound as X → ±∞.

The correlator Ĝ(X,X ′, θ) can be obtained as an expansion in the eigenmodes of the
“Schrödinger operator” [−∂2

X + U(X)]. The result is

Ĝ(X,X ′, θ) =

∫ +∞

−∞

dk

2π
uk(X)u∗k(X

′)Gk(θ) +
∑
κ

uiκ(X)u∗iκ(X
′)Giκ(θ), (A.5)

where the first term is an integral over the orthonormal continuum modes satisfying the
“Schrödinger equation” [

−∂2
X + U(X)

]
uk(X) = (k2 + k2

0)uk(X), (A.6)

with the boundary conditions

uk(X)→ eikX +R(k)e−ikX (X → −∞), uk(X)→ T (k)eikX (X → +∞), (A.7)

u−k(X)→ Tr(k)e−ikX (X → −∞), u−k(X)→ e−ikX +Rr(k)eikX (X → +∞), (A.8)

22It is important not to confuse the “Schrödinger potential” U(X) with the potential V (Φ) which sources
the geometry. It is also important to distinguish the two scalar fields φ and Φ.
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where k > 0 is understood. One can show that these coefficients are related by

T (k) = Tr(k),
R(k)

R∗r(k)
= − T (k)

T ∗r (k)
, |R(k)|2 + |T (k)|2 = 1. (A.9)

The second term in (A.5) is a discrete sum over the normalized bound states. They
satisfy the Schrödinger equation (A.6) with k = iκ. There is always at least one bound state
for a compact Euclidean CdL: the zero mode uik0(X) ∝ a(X)k0 . For d ≤ 4 one can show
that this is the only bound state using a technique of supersymmetric quantum mechanics
[5]. For d > 4 there may be additional bound states.

The Gk(θ) that appears in (A.5) is the Green’s function on Sd−1 with an appropriate
mass: [

−∇2
Sd−1 + (k2 + k2

0)
]
Gk(θ) =

δ(θ)

Sd−2 sind−2 θ
. (A.10)

The solution may be written in terms of the hypergeometric function:

Gk(θ) =
(2
√
π)1−d

Γ
(
d−1

2

) Γ(k0 + ik)Γ(k0 − ik) 2F1

(
k0 + ik, k0 − ik,

d− 1

2
, cos2 θ

2

)
, (A.11)

which is a meromorphic function in k. It has simple poles located at

k = ±i(k0 + n), n = 0, 1, 2, · · · (A.12)

due to the Gamma functions in (A.11). In even dimensions the hypergeometric function
simplifies to an elementary function. For example, in d = 4 (A.11) as a function of complex
θ becomes

Gk(θ) =
sinh [k(π − θ)]

4π sinh(kπ) sin θ
, for 0 < Re(θ) < 2π. (A.13)

The Green’s function Giκ(θ) for the bound states is also given by (A.11). The only
subtlety appears when we consider the zero energy bound state a(X)k0 with k = ik0, for
which Gk(θ) hits a pole and diverges. This reflects the fact that the massless correlator on
a compact space is ill-defined because we cannot put a single source there without violating
Gauss’s law.23 The two-point function for the derivative of a massless field is well-defined and
physical, so one may say that the massless correlator is well-defined up to arbitrary constant
and/or linear terms in the coordinates. These terms are called “pure gauge”. Therefore we
may get a finite massless Green’s function by subtracting an infinite constant from Gik0(θ).
For example in d = 4 one prescription is

Gik0(θ) = lim
k→ik0

[
Gk(θ)−

1

2π2(k2 + 1)

]
+

1

8π2
=

cot θ

4π

(
1− θ

π

)
. (A.14)

23The left hand side of (A.10) integrates to zero, but the right hand side does not. This may be solved by
subtracting an inhomogeneous term proportional to the inverse of the volume of the compact space.
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Before we analytically continue to the Lorentzian signature, let us rewrite the expansion
(A.5) in a simpler form. Instead of using uk(X) we might want to write the correlator in
terms of eigenmodes that have simpler asymptotic behavior as X → −∞, as this is where
we cross to the FRW region. Let us call this new set of eigenmodes vk(X), defined with the
boundary condition vk(X) → eikX as X → −∞ for both positive and negative k. We may
write them in terms of the old eigenmodes:

vk(X) =
u∗−k(X)

T ∗r (k)
, v−k(X) =

u−k(X)

Tr(k)
, k > 0. (A.15)

After some algebra, one finds that in terms of the new eigenmodes the continuum contribution
in (A.5) becomes

Ĝc(X,X
′, θ) =

∫ +∞

−∞

dk

2π
[vk(X)v−k(X

′) +R(k)v−k(X)v−k(X
′)]Gk(θ), (A.16)

where the reflection coefficient R(k) is extended from k > 0 to a meromorphic function on
the complex k-plane. For k < 0 one can show R(k) = R∗(−k). One may ask what we have
achieved by rewriting (A.5) as (A.16). It turns out24 that the bound-state contribution in
(A.5) can be accounted for, up to pure gauge, by simply deforming the integration contour
for the second term in (A.16). Specifically, the massless correlator (A.5) simplifies to

Ĝ(X,X ′, θ) =

∫ +∞

−∞

dk

2π
vk(X)v−k(X

′)Gk(θ) +

∫
C

dk

2π
R(k)v−k(X)v−k(X

′)Gk(θ), (A.17)

where C is a contour that goes from k = −∞ above the double pole k = ik0 to k = +∞, as
shown in Figure 1. In the limit X, X ′ → −∞, the second integrand in (A.17) asymptotes
to e−ik(X+X′), so we may push the contour C up to Ca, picking up the simple poles at
k = i(k0 + n), n = 1, 2, 3, · · · . This is shown in Figure 2a.

Note that R(k) has a simple pole at k = ik0 (corresponding to the zero mode) and a
zero at k = −ik0, so the second integrand in (A.17) has a double pole at ik0 and is regular
at −ik0. It is precisely the residue at the double pole that cancels with the zero energy
bound state contribution up to pure gauge. For d > 4 there may be additional bound states,
corresponding to additional simple poles between k = 0 and k = ik0. There could also be
resonance poles, all of which must lie in the lower half plane. As we will see in the next two
subsections, these additional poles need to be taken into account when calculating the exact
correlation function, but at the order we work, they do not contribute to our final result.

A.2 Lorentzian prescription

Now that we have (A.17) for the massless correlator in the Euclidean CdL geometry, we can
analytically continue it to the FRW geometry

ds2
d = a(T )2(−dT 2 + dH2

d−1), dH2
d−1 = dr2 + sinh2 r dΩ2

d−2. (A.18)

24This may be shown by expanding the Green’s function in terms of eigenmodes of the Laplacian on Sd−1

(discarding the zero mode). This expansion exactly matches the sum of contributions from the simple poles
enclosed by Ca as shown in Figure 2a.
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k

C

Figure 1: Contour C going from k = −∞ above the double pole k = ik0 to k = +∞.
Remember k0 ≡ (d−2)/2. The simple poles above the double pole are located at k = i(k0+n),
n = 1, 2, 3, · · · . The locations of the simple poles below the double pole are for illustration
purposes only and should not be taken too seriously. They depend on the reflection coefficient
R(k), and also on whether we are considering the second integrand in (A.17) or in (A.32).
The pair of poles away from the imaginary axis are resonance poles.

k

Ca
HaL k

Cb

HbL

Figure 2: (a) Contour Ca surrounding simple poles at k = i(k0 + n), n = 1, 2, 3, · · · . (b)
Coutour Cb surrounding a double pole at k = ik0 and simple poles below ik0. In general
there could also be resonance poles away from the imaginary axis in the lower half plane, in
which case the contour Cb needs to enclose them as well.
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The prescription for the analytic continuation in our conformal coordinates is given by

X → T +
iπ

2
, θ → ir, a(X)→ ia(T ), vk(X)→ vk(T )e−kπ/2, (A.19)

so that vk(T ) similarly satisfies a “Schrödinger equation”

[
−∂2

T + U(T )
]
vk(T ) = (k2 + k2

0)vk(T ), U(T ) ≡ b̈(T )

b(T )
, b(T ) ≡ a(T )k0 , (A.20)

with the simple boundary condition vk(T )→ eikT as T → −∞.

The Lorentzian correlator Ĝ(T, T ′, r) satisfies[
−∂2

T +∇2
Hd−1

+ U(T )
]
Ĝ(T, T ′, r) =

iδ(T − T ′)δ(r)
Sd−2 sinhd−2 r

, (A.21)

and is therefore given (for sufficiently negative T + T ′) by analytically continuing the Eu-
clidean correlator (A.17):

Ĝ(T, T ′, r) = idĜ(X → T +
iπ

2
, X ′ → T ′ +

iπ

2
, θ → ir) ≡ Ĝ1 + Ĝ2 (A.22)

=

∫ +∞

−∞

dk

2π
vk(T )v−k(T

′)Gk(r) +

∫
Ca

dk

2π
R(k)v−k(T )v−k(T

′)G̃k(r), (A.23)

where Gk(r) and G̃k(r) are defined as

Gk(r) = idGk(θ → ir), G̃k(r) = idekπGk(θ → ir) (A.24)

except for the subtlety mentioned below for G̃k(r). Let us call the two integrals in (A.23)
Ĝ1 and Ĝ2 respectively. Note that our choice of the contour Ca in Ĝ2 is correct only for
sufficiently negative25 T + T ′. On the other hand, we are most interested in the massless
correlator at late times. If we näıvely increase T + T ′ without deforming the contour Ca, at
some point the integral would diverge. A standard way of solving this problem is to pull the
contour down to C which goes from k = −∞ above the double pole k = ik0 to k = +∞, as
shown in Figure 1. Once this is done and the new integral on C agrees with the old one on
Ca for sufficiently negative T + T ′, we simply use the new integral as the definition for any
values of T + T ′. To evaluate this new integral for large T + T ′, one can legally deform the
contour from C to Cb as shown in Figure 2b (at least for some of the terms in the integrand),
picking up the double and simple poles below the contour. This last step will be done on a
case-by-case basis in the next subsection. Here we first obtain the correct expression for the
new integral on C that is valid for any T and T ′.

It turns out that we cannot näıvely deform the contour from Ca to C in Ĝ2. If we do
that, the integral on C would diverge, as we will show shortly. This is different from the

25One can see from (A.29) that “sufficiently negative” here means T + T ′ � −r.
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situation before the analytic continuation, where it does not matter whether we choose C or
Ca, as long as X+X ′ is sufficiently negative. The main difference is the additional ekπ factor
inside G̃k(r), which comes from analytically continuing v−k(X)v−k(X

′) to v−k(T )v−k(T
′) in

Ĝ2.

A hint that something subtle is going on is that we could multiply the integrand of Ĝ2 by
any number of e2(k−ik0)π factors without changing the integral on Ca. The reason is simply
that the integral on Ca is equal to the sum of residues at the simple poles k = i(k0 + n),
n = 1, 2, 3, · · · , and e2(k−ik0)π is simply 1 at all these poles, so none of the residues are
changed. On the other hand, factors such as e2(k−ik0)π definitely matter when the integral is
performed on C. In fact, there is a unique prescription for this factor for which the integral
on C is actually convergent. This is the correct prescription, which we will find in exact
form below.

Let us use the connection formula for the hypergeometric function

2F1(a, b, c, z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1

(
a, 1 + a− c, 1 + a− b, 1

z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1

(
b, 1 + b− c, 1 + b− a, 1

z

)
(A.25)

to decompose the G̃k(r) into two terms:

G̃k(r) = idekπ
(2
√
π)1−d

Γ
(
d−1

2

) Γ(k0 + ik)Γ(k0 − ik) 2F1

(
k0 + ik, k0 − ik,

d− 1

2
, cosh2 r

2

)
(A.26)

= − 1

4πd/2(4z)k0

[
e2kπ(4z)−ikΓ(k0 + ik)Γ(−ik) 2F1

(
k0 + ik,

1

2
+ ik, 1 + 2ik,

1

z

)
+(4z)ikΓ(k0 − ik)Γ(ik) 2F1

(
k0 − ik,

1

2
− ik, 1− 2ik,

1

z

)]
,

(A.27)

where z is defined as cosh2(r/2). For d = 4 this decomposition looks very simple:

G̃k(r) =
ekπ sinh [k(π − ir)]
4πi sinh(kπ) sinh r

=
e2kπ−ikr − eikr

8πi sinh(kπ) sinh r
. (A.28)

In general dimensions this decomposition may look complicated, but each term has a simple
asymptotic behavior at large r. Specifically as r →∞, z goes to er/4, both hypergeometric
functions in (A.27) goes to 1, and we have

G̃k(r) ≈ −
1

4πd/2ek0r
[
e2kπe−ikrΓ(k0 + ik)Γ(−ik) + eikrΓ(k0 − ik)Γ(ik)

]
. (A.29)

As k → ±∞ along the real axis, the absolute value of the products of Gamma functions
in (A.29) becomes

|Γ(k0 + ik)Γ(−ik)| = |Γ(k0 − ik)Γ(ik)| ≈ 2π|k|
d−4
2 e−|k|π. (A.30)
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Clearly the first term in (A.29) diverges as k → +∞, while the second term goes to zero as
k → ±∞. As we argued earlier, we treat this divergence by multiplying the first term by a
factor of e−2(k−ik0)π = (−1)de−2kπ, changing the exact form (A.27) of G̃k(r) into

G̃k(r) = − 1

4πd/2(4z)k0

[
(−1)d(4z)−ikΓ(k0 + ik)Γ(−ik) 2F1

(
k0 + ik,

1

2
+ ik, 1 + 2ik,

1

z

)
+(4z)ikΓ(k0 − ik)Γ(ik) 2F1

(
k0 − ik,

1

2
− ik, 1− 2ik,

1

z

)]
, (A.31)

where again z = cosh2(r/2). This does not change the integral on Ca, but enables us to
legally deform the contour from Ca to C for sufficiently negative T + T ′. In terms of this
improved G̃k(r) the Lorentzian correlator is

Ĝ(T, T ′, r) = Ĝ1 + Ĝ2 =

∫ +∞

−∞

dk

2π
vk(T )v−k(T

′)Gk(r) +

∫
C

dk

2π
R(k)v−k(T )v−k(T

′)G̃k(r),

(A.32)
which looks the same as (A.23) except for the contour C. This is our final, exact expression
for the massless correlator in any open FRW spacetime resulting from a CdL decay, valid
for any T , T ′, and r. Here Gk(r) is given by (A.24) as

Gk(r) = id
(2
√
π)1−d

Γ
(
d−1

2

) Γ(k0 + ik)Γ(k0 − ik) 2F1

(
k0 + ik, k0 − ik,

d− 1

2
, cosh2 r

2

)
. (A.33)

Before concluding this section, let us comment on the structure of (A.32). In order to
calculate the Lorentzian correlator, we only need the eigenmodes vk(T ) and the reflection
coefficient R(k). For vk(T ) we solve the “Lorentzian Schrödinger equation” (A.20) with
the boundary condition vk(T ) → eikT as T → −∞. For R(k) we in principle need to
solve the “Euclidean Schrödinger equation” (A.6). We cannot in general hope to calculate
the complete Lorentzian correlator by knowing only a(T ) but not a(X) (or vice versa); an
example is provided by the thin-wall limit discussed in [5], where the Lorentzian scale factor
a(T ) = eT is exactly the same as that of flat space in Milne coordinates, but the massless
correlator still has a nontrivial term due to the specific vacuum chosen by the CdL geometry.
From the perspective of (A.32), the choice of vacuum is encoded in the reflection coefficient
R(k) which must in general be calculated from the Euclidean scale factor a(X). Usually
R(k) is not analytically tractable away from the thin-wall limit, but fortunately all we need
to know in order to calculate the leading behavior of Ĝ2 is the fact that R(k) always has a
simple pole at k = ik0, and all other poles lie below it.

A.3 Our FRW spacetime

Let us now apply (A.32) to our FRW model

ds2
d = −dt2 + a(t)2dH2

d−1, (A.34)
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where the scale factor a(t) asymptotes to ct at late times. Near the big bang singularity
t = 0 the scale factor a(t) = t+O(t3) as required by the smoothness of the CdL instanton.
Going to the conformal coordinates T =

∫
dt/a(t), the scale factor a(T ) approaches (up

to constant factors) eT as T → −∞, and approaches ecT as T → +∞. Therefore the
“Schrödinger potential” U(T ) asymptotes to k2

0 as T → −∞ and c2k2
0 as T → +∞. This

means that the eigenmodes vk(T ) have the following asymptotic behavior

vk(T )→ eikT (T → −∞), (A.35)

vk(T )→ αke
iT
√
k2−(c2−1)k20 + βke

−iT
√
k2−(c2−1)k20 (T → +∞), (A.36)

where αk and βk are analogous to reflection and transmission coefficients. For k > k0

√
c2 − 1

the eigenmodes are oscillatory at large T ; for smaller k they are exponentially decaying or
growing. These are pseudotachyonic modes.

The exact eigenmodes vk(T ) are difficult to solve analytically except for perhaps un-
realistically simple U(T ) such as a step potential. Fortunately, we are most interested in
the equal-time massless correlator at large T and large r, for which both vk(T ) and G̃k(r)
simplify. Specifically in the large T limit v−k(T )v−k(T ) in Ĝ2 becomes

v−k(T )2 ≈ α2
−ke

−2iT
√
k2−(c2−1)k20 + β2

−ke
2iT
√
k2−(c2−1)k20 + 2α−kβ−k ≡ v− + v+ + v0, (A.37)

where we have changed the sign of the exponent in v−k(T ) because we choose the square
root to have a branch cut between k = ±k0

√
c2 − 1. In the large r limit (A.31) simplifies to

G̃k(r) ≈ −
1

4πd/2ek0r
[
(−1)de−ikrΓ(k0 + ik)Γ(−ik) + eikrΓ(k0 − ik)Γ(ik)

]
≡ G̃− + G̃+.

(A.38)
Therefore the integrand of Ĝ2 in (A.32) can be decomposed into six terms:

Ĝ2(T, T, r) ≈
∫
C

dk

2π
R(k)(v− + v+ + v0)(G̃− + G̃+), (A.39)

where for large |k| we have v± ∼ e±i2kT and G̃± ∼ e±ikr/ sinh(kπ) up to powers of k.

In the large T , large fixed r limit that we are interested in (i.e. T � r � 1) we may
deform the contour from C to Ca for the three terms v+(G̃− + G̃+) + v0G̃+, and deform the
contour to Cb for the other three: v−(G̃− + G̃+) + v0G̃−. If we are interested in the large r,
large fixed T limit (i.e. r � T � 1) instead, we simply switch the contours for v+G̃− and
v−G̃+. In both cases (or more generally, in any large T , r limit), the leading behavior of Ĝ2

can be shown to come from the residue of the v−G̃− term at the double pole k = ik0. This
can be evaluated up to numerical factors:

Ĝ2(T, T, r) ∼ e2ck0T (2T + r), G2(T, T, r) =
Ĝ2(T, T, r)

a(T )k0a(T )k0
∼ 2T + r, (A.40)

where G2 is the corresponding piece of the original correlator for φ. The first term 2T is a
pure gauge because it is linear in the coordinates. The second term r is not, because it is
actually the geodesic distance on Hd−1 between the two points of the correlation function.
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To study the holographic dual of our FRW model, we rewrite the metric in hyperbolic
slicing

ds2
d = −dt2 + a(t)2(dχ2 + cosh2 χdH2

d−2), dH2
d−2 = dχ̃2 + sinh2 χ̃ dΩ2

d−3. (A.41)

Let us put both points of the correlator on a hypersurface of constant χ, with a separation
of ∆χ̃ in the χ̃ direction. Their geodesic distance on Hd−1 is therefore

r = arccosh(cosh ∆χ̃ cosh2 χ− sinh2 χ) ≈ ∆χ̃+ 2 log coshχ, (A.42)

where the approximation holds for large ∆χ̃ and any χ. For large χ the second term on the
right hand side of (A.42) simply becomes 2χ, but let us not commit ourselves to that limit.
In terms of χ and ∆χ̃ the leading behavior of G2 from (A.40) becomes

G2(t, χ,∆χ̃) ∼ ∆χ̃+ 2 log coshχ. (A.43)

This term is present for both c > 1 and c = 1, and it is independent of the dimension d.
This suggests an interpretation as the contribution from the zero mode of φ localized on the
UV slice.

The leading behavior of the other term in the correlator, namely Ĝ1, is dominated by
the contributions of the pseudotachyonic modes. The most pseudotachyonic mode is the one
with k = 0, given by

v0(T ) ∼ ek0T
√
c2−1. (A.44)

In the large r limit G0(r) as defined in (A.33) goes like re−k0r, so the first term in the
correlator (A.32) becomes

Ĝ1(T, T, r) ∼ re2k0T
√
c2−1−k0r, G1(T, T, r) ∼ re2k0T (

√
c2−1−c)−k0r, (A.45)

which we rewrite in terms of t, χ, and ∆χ̃ as

G1(t, χ,∆χ̃) ∼ t(d−2)(
√

1−1/c2−1)

coshd−2 χ
e−(d−2)∆χ̃/2(∆χ̃+ 2 log coshχ). (A.46)

This term is present only for c > 1, in which case there is a warped geometry with a consistent
description in terms of a low-energy (d− 1)-dimensional dual.

A.4 Massive correlation functions

We have hitherto focused on massless correlation functions, but it is rather straightforward
to generalize it to massive correlation functions, as we outline below. This provides an
alternative way of calculating the massive Green’s functions for the KK modes, closed strings,
and 7-7 strings in Section 5.1.

Let us consider a scalar field φ with mass m(t) which we allow to be time-dependent. We
can use the same techniques developed in Sections A.1 and A.2 to calculate its correlation
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function. The only difference is that we need to add a corresponding mass term a(X)2m(X)2

to the “Schrödinger potential” U(X), and similarly add −a(T )2m(T )2 to U(T ). This makes
the potential U(X) shallower, and the bound states either have larger eigenvalues (for small
masses) or simply disappear (for large masses). This means that the reflection coefficient
R(k) no longer has a pole at k = ik0. The pole is moved down to between k = ik0 and k = 0 if
there is still a bound state. Therefore, the formulae for both the Euclidean correlator (A.17)
and the Lorentzian correlator (A.32) are fully correct, as long as we define the contour C to
go from k = −∞ to k = +∞, in a way that goes just below k = ik0 but always above any
possible poles corresponding to bound states.

The pseudotachyonic modes disappear for sufficiently large masses due to the additional
term −a(T )2m(T )2 in the “Schrödinger potential” U(T ). One can show that in this case the
leading term in the correlation function agrees with the estimates in Section 5.1.
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