

# **Data Summary Report Small Scale Melter Testing of HLW Algorithm Glasses: Matrix 1 Tests**

**VSL-07S1220-1, Rev. 0, 7/25/07**

Prepared for the U.S. Department of Energy  
Assistant Secretary for Environmental Management

**Office of River Protection**

P.O. Box 450  
Richland, Washington 99352

**Approved for Public Release,  
Further Dissemination Unlimited**

# **Data Summary Report Small Scale Melter Testing of HLW Algorithm Glasses: Matrix 1 Tests**

**VSL-07S1220-1, Rev. 0, 7/25/07**

K. S. Matlack  
I. L. Pegg  
Vitreous State Laboratory,  
The Catholic University of America

A. A. Kruger  
Department of Energy - Office of River Protection

Date Published  
December 2011

Prepared for the U.S. Department of Energy  
Assistant Secretary for Environmental Management

## **Office of River Protection**

P.O. Box 450  
Richland, Washington 99352

*J. D. Aardal* 12/29/2011  
Release Approval Date

**Approved for Public Release;  
Further Dissemination Unlimited**

**TRADEMARK DISCLAIMER**

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

**24590-101-TSA-W000-0009-98-00015  
REV 00A**

**REVIEW NOT REQUIRED**

**VSL-07S1220-1**

## **Data Summary Report**

### **Small Scale Melter Testing of HLW Algorithm Glasses: Matrix 1 Tests**

*prepared by*

**Keith S. Matlack and Ian L. Pegg**

**Vitreous State Laboratory  
The Catholic University of America  
Washington, DC 20064**

*for*

**Duratek, Inc.**

*and*

**Bechtel National, Inc.**

**July 25, 2007**

*Rev. 0*

*24590-101-TSA-W000-0009-98-00015 Rev 00A*

## Data Summary Report

### Small Scale Melter Testing of HLW Algorithm Glasses: Matrix 1 Tests

#### 1.0 Introduction and Test Overview

Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and  $T_{1\%}$ , as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were  $\pm 15\%$  batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests [1, 2]) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan [3] that was prepared in response to the Test Specification [4] for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan [3]. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed.

The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and melter operating details will be provided in the final report.

A summary of the tests that were conducted is provided in Table 1. Each of the seven tests was of nominally one hundred hours in duration. Test B was conducted in two equal segments: the first with nominal additives, and the second with the replacement of borax with a mixture of boric acid and soda ash to determine the effect of alternative GFC sources on production rates and processing characteristics. Interestingly, sugar additions were required near mid points of Tests W and Z to reduce excessive foaming that severely limited feed processing rates. The sugar additions were very effective in recovering manageable processing conditions, albeit over the relatively short remainder of the test duration. Tests W and Z employed the highest melt viscosities but not by a particularly wide margin. Other tests, which did not exhibit such foaming issues,

employed higher concentrations of manganese or iron or both. These results highlight the need for the development of protocols for the *a priori* determination of which HLW feeds will require sugar additions and the appropriate amounts of sugar to be added in order to control foaming (and maintain throughput) without over-reduction of the melt (which could lead to molten metal formation).

In total, over 8,800 kg of feed was processed to produce over 3200 kg of glass. Steady-state processing rates were achieved, and no secondary sulfate phases were observed during any of the tests. Analysis was performed on samples of the glass product taken throughout the tests to verify composition and properties. Sampling and analysis was also performed on melter exhaust to determine the effect of the feed and glass changes on melter emissions.

## 2.0 Operating Data

Production rates, run conditions, and the amount of feed used and glass poured for each of the seven tests are summarized in Table 1. Production rates are depicted over the course of each of the tests in Figures 1 – 7. The steady-state production rates ranged between 900 to 1600 kg/m<sup>2</sup>/day (with sugar additions to Tests W and Z) and bracketed the range of steady-state production rates (1100 to 1400 kg/m<sup>2</sup>/day) measured on other WTP HLW waste streams processed on the DM100 under similar conditions [5-7]. Comparison of results from Tests W through Z shows that the melts with lower viscosity (and higher conductivity) processed faster. The less viscous and more conductive glasses generally have higher concentrations of alkali and lower concentrations of aluminum; however, the glass composition with the highest aluminum concentration, HLW-ALG-16, processed at a rate a third higher than the more viscous and less conductive formulations. Sugar additions during Tests W and Z allowed a near doubling of production rates from about 500 to 900 kg/m<sup>2</sup>/day. The foaming during the first half of these tests was partially mitigated by the addition of 10 grams of sucrose per liter of feed. As noted above, the glass processing difficulties from the foaming occurred with the more viscous melts, presumably due to the inability of gas to readily escape from the melt. Foaming did not increase with glass manganese content and, in fact, the glass with the highest manganese concentration, HLW-ALG-17, processed at the highest rate of any the compositions tested, with no foaming problems. Tests processing the HLW98-86 formulation with fifteen percent GFC batching errors and with boric acid and soda ash replacing borax all resulted in steady-state production rates between 1000 and 1050 kg/m<sup>2</sup>/day, indicating that these changes do not have a substantial effect on processing rates. These measured production rates are consistent with the rate of about 1150 kg/m<sup>2</sup>/day measured previously for this feed on the DM100 while bubbling at the higher rate of 17.2 lpm [8] as opposed to the 9 lpm used throughout the present tests. The decrease in production rate during Test B1 between 13 and 46 hours run time is attributable to a loose connection between the bubbler and air supply that was not apparent in the electronic readout. After the problem was identified and corrected, additional run time was added to the test in order to verify the steady-state rate of 1000 kg/m<sup>2</sup>/day that was obtained at the beginning of the test.

Melter operating conditions were held constant throughout the tests to facilitate comparison of results with previous tests [5-7]. Electronically recorded measured melter parameters are provided in Table 2. Measured test average glass temperatures in the bulk glass (5" and 10" from the bottom) were within 9°C of the target glass temperature of 1150°C during the tests. Glass temperatures at higher locations in the glass pool were lower than the target due to the intentional varying of the glass pool level at the beginning and end of each test as well as the expected temperature gradients near the cold cap. Plenum temperatures typically ranged from 350 to 500°C, indicating that the target of a complete cold cap was obtained throughout the tests. Higher plenum temperatures occurred during Test X at the highest production rate. Plenum temperatures monitored by the exposed thermocouple were about 25°C higher than the plenum temperature monitored in the thermowell due in part to shelves forming across the walls of the melter shielding the thermowell. The target bubbling rate of 9 lpm was maintained throughout the tests except during a portion of Test B1.

Differences in measured melter parameters between the tests were observed in electrode power and glass pool resistance in response to changes in the glass composition. Examples of these changes for select tests are shown in Figures 8 and 9. Test average glass resistance in Tests W and Z targeting high viscosity and low conductivity glasses were about 30 percent higher than in Tests X and Y targeting low viscosity and high conductivity glasses. The addition of sugar to the feed in Test W also resulted in a drop in glass resistance of about 30%, whereas the same sugar addition to the feed in Test Z appeared to have little effect on glass resistance. Power utilization was higher in Tests X and Y than other tests due to the higher production rates; power normalized to glass production rate shows the opposite trend.

### 3.0 Feed and Glass Analysis

Samples of melter feed and product glass were collected and analyzed throughout each test. Measured concentrations of glass from the end of each test and the respective melter feed are compared to the target compositions in Tables 3 – 9. The product glass compositions over the course of testing are illustrated in Figures 10.a – 13.b. Most of the oxides approximate their respective target values in the feed and glass samples; however, the magnitude and number of deviations was greater than observed in past studies with simulated HLW feeds prepared by the same vendor [9]. These deviations are currently being investigated with the vendor to determine the source of the deficiencies and surpluses. Surpluses of alumina at target concentrations less than 6 percent suggest a contamination.

The glass composition used in Tests W, X, Y, and Z are significantly different and therefore changes in oxide concentrations were observed throughout the tests, as shown in Figures 10.a, 11.a, 12.a and 13.a. Conversely, differences in glass compositions in Tests A, B, and C were not as large and correspondingly smaller changes in oxide concentrations were observed, as shown in Figures 10.b, 11.b, 12.b and 13.b. The most

noticeable changes observed in Tests A, B and C was the expected increases of waste components such as iron and antimony.

Glasses from the end of feeding periods from Tests W, X, Y and Z were also analyzed for viscosity and conductivity to compare to target values obtained previously from the analysis of crucible glasses. Data displayed in Table 10 show that the measured glass properties from the discharged glasses approximate the target values for most of the properties. The viscosity was 10 poise above the target for Test X, due perhaps to the aluminum surplus and the lack of complete turnover due to the slow production rate. The test data from these four tests suggest the production rate would have been even lower in Test X at the target viscosity. The  $T_{1\%}$  value for the final glass sample and other glasses from Test Z are currently being measured. Subsequent to Test Z, the melter was idled for about five weeks during which time several samples were taken from the melt pool to determine the extent of crystal formation and settling at the minimum idling temperatures. Analysis of crystal content for all these samples will be included in the final report.

The sugar additions to Tests W and Z resulted in somewhat different impacts on glass redox: divalent iron as a percent of total iron measured by Mossbauer spectroscopy in glass samples from Tests W and Z were 13.6 and 5.4 percent, respectively.

#### **4.0 Emissions Monitored by FTIR**

Average concentrations of select gaseous constituents measured by FTIR are given in Table 11. As expected, concentrations were low for most monitored species due to the low concentrations of nitrogen and organic compounds in the feed. Nitrogen oxide was the most abundant monitored nitrogen species emitted, as has been observed in previous melter tests [1, 2, 5-8, 10-13]. The concentrations of carbon dioxide and incomplete combustion byproducts, such as carbon monoxide and ammonia, predictably increased when sugar was added to the feed in Tests W and Z.

## 5.0 References

- [1] "Integrated DM1200 Melter Testing of HLW C-106/AY-102 Composition Using Bubblers," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Kot and I.L. Pegg, Final Report, VSL-03R3800-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 9/15/03.
- [2] "Integrated DM1200 Melter Testing of Redox Effects Using HLW AZ-101 and C-106/AY-102 Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Lutze, P. M. Bizot, R. A. Callow, M. Brandys, W.K. Kot, and I.L. Pegg, Final Report, VSL-04R4800-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 5/6/04.
- [3] "Small Scale Melter Testing of HLW Algorithm Glasses," K.S. Matlack, W.K. Kot, and I.L. Pegg, Test Plan, VSL-06T1220-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 1/29/07.
- [4] "Small Scale Melter Testing of HLW Algorithm Glasses," L. Petkus, WTP Test Specification 24590-HLW-TSP-RT-06-001, Rev. 0, 8/18/06.
- [5] "Melter Tests with AZ-101 HLW Simulant Using a DuraMelter 100 Vitrification System," K.S. Matlack, W.K. Kot, and I.L. Pegg, Final Report, VSL-01R10N0-1, Rev. 1, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 2/25/01.
- [6] "Integrated DM1200 Melter Testing Using AZ-102 and C-106/AY-102 HLW Simulants: HLW Simulant Verification," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, M. Brandys, W.K. Kot, and I.L. Pegg, Final Report, VSL-05R5800-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 6/27/05.
- [7] "DuraMelter 100 HLW Simulant Validation Tests with C-106/AY-102 Feeds," K.S. Matlack, W. Gong, and I.L. Pegg, Final Report, VSL-05R5710-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 6/2/05.
- [8] "Integrated DM1200 Melter Testing of HLW C-106/AY-102 Composition Using Bubblers," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Kot and I.L. Pegg, Final Report, VSL-03R3800-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 9/15/03.
- [9] "Review of Properties of Simulated Feeds Used for Melter Testing," K. S. Matlack, W. Gong, and I. L. Pegg, Final Report, VSL-06R6410-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 8/12/06.

- [10] "DM1200 Tests with AZ-101 HLW Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W.K. Kot, and I.L. Pegg, Final Report, VSL-03R3800-4, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 2/17/04.
- [11] "Integrated DM1200 Melter Testing of HLW C-104/AY-101 Compositions Using Bubblers," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Kot and I.L. Pegg, Final Report, VSL-03R3800-3, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 11/24/03.
- [12] "Tests on the DuraMelter 1200 HLW Pilot Melter System Using AZ-101 HLW Simulants," K.S. Matlack, W.K. Kot, T. Bardakci, T.R. Schatz, W. Gong, and I.L. Pegg, Final Report, VSL-02R0100-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 6/11/02.
- [13] "Integrated DM1200 Melter Testing of HLW AZ-102 Compositions Using Bubblers," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Kot and I.L. Pegg, Final Report, VSL-03R3800-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 9/24/03.

Table 1. Summary of Results from HLW Algorithm DM100 Matrix 1 Tests.

| Test                       | W                                      | X                                                                                     | Y                                                               | Z                                                    |
|----------------------------|----------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|
|                            | High Viscosity                         | Low Viscosity<br>Low Al <sub>2</sub> O <sub>3</sub><br>Maximum NiO<br>High MnO        | High<br>Conductivity<br>Low Fe <sub>2</sub> O <sub>3</sub>      | T <sub>1%</sub> criterion<br>(& Low<br>Conductivity) |
| Target Test Condition      | 112 P @ 1150°C<br>MnO = 5%<br>SrO = 5% | 19 P @ 1150°C<br>Al <sub>2</sub> O <sub>3</sub> = 1.93%<br>NiO = 1.00%<br>MnO = 6.91% | 0.68 S/cm @<br>1200°C<br>Fe <sub>2</sub> O <sub>3</sub> = 4.4 % | T1% = 963°C<br>(0.23 S/cm @<br>1150°C)               |
| Time                       | Feed Start                             | 3/5/07 8:00                                                                           | 3/12/07 8:00                                                    | 3/19/07 8:00                                         |
|                            | Feed End                               | 3/9/07 17:30                                                                          | 3/16/07 5:50                                                    | 3/23/07 13:00                                        |
|                            | Interval                               | 105.5 hr                                                                              | 93.8 hr                                                         | 101.0 hr                                             |
| Water Feeding for Cold Cap | 1.0 hr                                 | 1.0 hr                                                                                | 1.0 hr                                                          | 1.4 hr                                               |
| Slurry Feeding             | 104.5 hr                               | 92.8 hr                                                                               | 100.0 hr                                                        | 102.0 hr                                             |
| Feeding Interruptions      | 275 min                                | 152 min                                                                               | 34 min                                                          | 237 min                                              |
| Cold cap burn              | 0.9 hr                                 | 2.0 hr                                                                                | 0.8 hr                                                          | 0.8 hr                                               |
| Feed                       | Glass                                  | HLW02-24                                                                              | HLW-ALG-17                                                      | HLW-ALG-16                                           |
|                            | Used                                   | 1218 kg                                                                               | 1400 kg                                                         | 1444 kg                                              |
|                            | Sugar Added                            | 10 g/L feed @<br>56 hr run time                                                       | No                                                              | No                                                   |
|                            | Target Glass yield                     | 0.35 kg/kg                                                                            | 0.42 kg/kg                                                      | 0.378 kg/kg                                          |
|                            | Average Feed Rate                      | 11.7 kg/hr                                                                            | 15.1 kg/hr                                                      | 14.4 kg/hr                                           |
| Glass Produced             | Poured                                 | 356 kg                                                                                | 591 kg                                                          | 576 kg                                               |
|                            | Average Rate <sup>\$</sup>             | 757 kg/m <sup>2</sup> /day                                                            | 1415 kg/m <sup>2</sup> /day                                     | 1280 kg/m <sup>2</sup> /day                          |
|                            | Average Rate <sup>*</sup>              | 907 kg/m <sup>2</sup> /day                                                            | 1409 kg/m <sup>2</sup> /day                                     | 1213 kg/m <sup>2</sup> /day                          |
|                            | Steady State Rate <sup>*</sup>         | 900 kg/m <sup>2</sup> /day <sup>#</sup>                                               | 1600 kg/m <sup>2</sup> /day                                     | 1200 kg/m <sup>2</sup> /day                          |
|                            | Average Power Use                      | 4.5 kW hr/kg<br>glass                                                                 | 3.5 kW hr/kg glass                                              | 4.1 kW hr/kg<br>glass                                |

\$ - Rates calculated from glass poured.

\* - Rates calculated from feed data.

# - Rate estimated from the portion of the test after sugar was added to the feed.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

**Table 1. Summary of Results from HLW Algorithm DM100 Matrix 1 Tests (continued).**

| Test                       |                                | A                           | B1                          | B2                                                                           | C                           |
|----------------------------|--------------------------------|-----------------------------|-----------------------------|------------------------------------------------------------------------------|-----------------------------|
|                            |                                | + 15% GFCs                  | Baseline                    | Na <sub>2</sub> CO <sub>3</sub> +H <sub>3</sub> BO <sub>3</sub><br>Additives | - 15% GFCs                  |
| Target Test Condition      |                                | + 15% GFCs                  | -                           | Replace borax                                                                | - 15% GFCs                  |
| Time                       | Feed Start                     | 5/14/07 12:00               | 5/21/07 12:35               | 5/23/07 23:55                                                                | 6/18/07 8:43                |
|                            | Feed End                       | 5/18/07 16:45               | 5/23/07 23:30               | 5/26/07 1:55                                                                 | 6/22/07 13:45               |
|                            | Interval                       | 100.8 hr                    | 58.9 hr                     | 50.0 hr                                                                      | 101.0 hr                    |
| Water Feeding for Cold Cap |                                | 0.8 hr                      | 0.9 hr                      | 0 hr                                                                         | 1.0 hr                      |
| Slurry Feeding             |                                | 100.0 hr                    | 58.0 hr                     | 50.0 hr                                                                      | 100.0 hr                    |
| Feeding Interruptions      |                                | 31 min                      | 11 min                      | 15 min                                                                       | 50 min                      |
| Cold cap burn              |                                | 0.6 hr                      | NA                          | 1.5 hr                                                                       | 1.4 hr                      |
| Feed                       | Glass                          | HLW98-86                    | HLW98-86                    | HLW98-86                                                                     | HLW98-86                    |
|                            | Used                           | 1159 kg                     | 579 kg                      | 606 kg                                                                       | 1336 kg                     |
|                            | Sugar Added                    | None                        | None                        | None                                                                         | None                        |
|                            | Target Glass yield             | 0.396 kg/kg                 | 0.372 kg/kg                 | 0.378 kg/kg                                                                  | 0.354 kg/kg                 |
|                            | Average Feed Rate              | 11.6 kg/hr                  | 10.0 kg/hr                  | 10.5 kg/hr                                                                   | 13.4 kg/hr                  |
| Glass Produced             | Poured                         | 444 kg                      | 208 kg                      | 223 kg                                                                       | 482 kg                      |
|                            | Average Rate <sup>\$</sup>     | 987 kg/m <sup>2</sup> /day  | 797 kg/m <sup>2</sup> /day  | 991 kg/m <sup>2</sup> /day                                                   | 1071 kg/m <sup>2</sup> /day |
|                            | Average Rate <sup>*</sup>      | 1021 kg/m <sup>2</sup> /day | 827 kg/m <sup>2</sup> /day  | 882 kg/m <sup>2</sup> /day                                                   | 1050 kg/m <sup>2</sup> /day |
|                            | Steady State Rate <sup>*</sup> | 1000 kg/m <sup>2</sup> /day | 1000 kg/m <sup>2</sup> /day | 1050 kg/m <sup>2</sup> /day                                                  | 1050 kg/m <sup>2</sup> /day |
|                            | Average Power Use              | 4.2 kW hr/kg glass          | 4.8 kW hr/kg glass          | 4.9 kW hr/kg glass                                                           | 4.3 kW hr/kg glass          |

\$ - Rates calculated from glass poured.

\*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

**Table 2. Summary of Measured Parameters for HLW Algorithm DM100 Matrix 1 Tests.**

| Test                                                  |                                |                 | W     |       |       | X     |       |       | Y     |       |       | Z     |       |       |
|-------------------------------------------------------|--------------------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                       |                                |                 | AVG   | MIN   | MAX   |
| T<br>E<br>M<br>P<br>E<br>R<br>A<br>T<br>U<br>R<br>(C) | Electrode                      | East Upper      | 1034  | 697   | 1110  | 1057  | 682   | 1110  | 1078  | 732   | 1129  | 1027  | 654   | 1099  |
|                                                       |                                | West Upper      | 1021  | 769   | 1086  | 1047  | 679   | 1106  | 1071  | 741   | 1107  | 1033  | 681   | 1083  |
|                                                       |                                | West Lower      | 1076  | 1050  | 1120  | 1081  | 1055  | 1104  | 1089  | 1044  | 1103  | 1077  | 1063  | 1102  |
|                                                       |                                | Bottom          | 775   | 743   | 795   | 723   | 709   | 733   | 729   | 675   | 746   | 796   | 782   | 802   |
|                                                       | Glass                          | 27" from bottom | 1077  | 263   | 1178  | 1110  | 475   | 1174  | 1109  | 632   | 1161  | 1115  | 557   | 1185  |
|                                                       |                                | 16" from bottom | 1120  | 601   | 1182  | 1133  | 847   | 1163  | 1128  | 683   | 1157  | 1132  | 1012  | 1176  |
|                                                       |                                | 10" from bottom | 1152  | 1099  | 1194  | 1153  | 1126  | 1179  | 1154  | 1102  | 1180  | 1157  | 1130  | 1186  |
|                                                       |                                | 5" from bottom  | 1153  | 1090  | 1196  | 1148  | 1124  | 1171  | 1152  | 1088  | 1177  | 1149  | 1122  | 1176  |
|                                                       | Plenum                         | Exposed         | 458   | 142   | 710   | 518   | 222   | 758   | 470   | 329   | 641   | 453   | 104   | 645   |
|                                                       |                                | Thermowell      | 422   | 206   | 692   | 471   | 255   | 722   | 437   | 257   | 630   | 425   | 202   | 631   |
|                                                       | Discharge                      | Chamber         | 1006  | 557   | 1067  | 1041  | 967   | 1071  | 1035  | 980   | 1064  | 1058  | 1035  | 1083  |
|                                                       |                                | Air Lift        | 991   | 793   | 1079  | 1013  | 906   | 1090  | 1017  | 926   | 1125  | 1027  | 994   | 1111  |
|                                                       | Film Cooler Outlet             | 268             | 247   | 309   | 283   | 46    | 309   | 288   | 251   | 306   | 276   | 259   | 296   |       |
|                                                       | Transition Line Outlet         | 259             | 205   | 307   | 271   | 60    | 299   | 280   | 240   | 315   | 264   | 211   | 284   |       |
|                                                       | Lance Bubbling (lpm)           | 8.9             | 1.4   | 9.2   | 9.0   | 8.8   | 9.1   | 8.9   | 1.3   | 9.1   | 8.9   | 8.8   | 9.0   |       |
|                                                       | Melter Pressure (inches water) | -1.06           | -3.03 | 1.75  | -0.98 | -3.62 | 0.81  | -0.92 | -2.69 | 0.38  | -0.97 | -2.57 | 1.84  |       |
| Total Electrode Voltage (V)                           |                                |                 | 44.8  | 2.3   | 53.0  | 40.7  | 1.9   | 52.4  | 38.0  | 2.1   | 45.1  | 40.2  | 2.2   | 44.2  |
| Total Power (kW)                                      |                                |                 | 18.4  | 0.3   | 24.1  | 22.2  | 0.3   | 25.6  | 22.7  | 0.3   | 26.2  | 17.9  | 0.3   | 21.1  |
| Glass Resistance (ohms)                               |                                |                 | 0.110 | 0.019 | 0.155 | 0.076 | 0.012 | 0.145 | 0.064 | 0.016 | 0.097 | 0.090 | 0.017 | 0.101 |

**Table 2. Summary of Measured Parameters for HLW Algorithm DM100 Matrix 1 Tests (continued).**

| Test                                                  |           |                        | A     |       |       | B1               |       |       | B2               |       |       | C     |       |       |  |
|-------------------------------------------------------|-----------|------------------------|-------|-------|-------|------------------|-------|-------|------------------|-------|-------|-------|-------|-------|--|
|                                                       |           |                        | AVG   | MIN   | MAX   | AVG              | MIN   | MAX   | AVG              | MIN   | MAX   | AVG   | MIN   | MAX   |  |
| T<br>E<br>M<br>P<br>E<br>R<br>A<br>T<br>U<br>R<br>(C) | Electrode | East Upper             | 1031  | 661   | 1120  | 1018             | 679   | 1121  | 1102             | 1056  | 1125  | 1052  | 723   | 1115  |  |
|                                                       |           | West Upper             | 1062  | 692   | 1099  | 1008             | 686   | 1086  | 1064             | 1037  | 1084  | 1033  | 725   | 1079  |  |
|                                                       |           | West Lower             | 1091  | 1068  | 1112  | 1071             | 1047  | 1089  | 1077             | 1066  | 1086  | 1075  | 1060  | 1094  |  |
|                                                       |           | Bottom                 | 788   | 781   | 810   | 755              | 721   | 766   | 769              | 762   | 774   | 801   | 786   | 845   |  |
|                                                       | Glass     | 27" from bottom        | 1106  | 340   | 1179  | 1059             | 605   | 1178  | 1147             | 1093  | 1172  | 1101  | 632   | 1174  |  |
|                                                       |           | 16" from bottom        | 1118  | 246   | 1163  | 1129             | 613   | 1194  | 1151             | 1122  | 1175  | 1138  | 764   | 1176  |  |
|                                                       |           | 10" from bottom        | 1153  | 1133  | 1179  | 1156             | 1087  | 1189  | 1154             | 1133  | 1175  | 1156  | 1126  | 1175  |  |
|                                                       |           | 5" from bottom         | 1152  | 1127  | 1176  | 1144             | 1091  | 1170  | 1145             | 1126  | 1163  | 1141  | 1117  | 1169  |  |
|                                                       | Plenum    | Exposed                | 461   | 259   | 622   | 450              | 137   | 679   | 461              | 393   | 497   | 500   | 337   | 691   |  |
|                                                       |           | Thermowell             | 434   | 337   | 608   | 420              | 289   | 651   | 417              | 353   | 455   | 445   | 382   | 655   |  |
|                                                       | Discharge | Chamber                | 1046  | 1019  | 1068  | 956              | 583   | 1039  | 1044             | 1005  | 1061  | 1045  | 999   | 1088  |  |
|                                                       |           | Air Lift               | 1021  | 962   | 1068  | 958              | 791   | 1046  | 1040             | 989   | 1102  | 1040  | 985   | 1092  |  |
|                                                       |           | Film Cooler Outlet     | 281   | 209   | 305   | 275              | 256   | 306   | 276              | 267   | 291   | 274   | 267   | 308   |  |
|                                                       |           | Transition Line Outlet | 271   | 229   | 297   | 269              | 214   | 315   | 269              | 220   | 281   | 267   | 215   | 299   |  |
| Lance Bubbling (lpm)                                  |           |                        | 8.8   | 1.4   | 9.3   | 8.9 <sup>#</sup> | 1.9   | 10.3  | 9.0 <sup>*</sup> | 1.9   | 10.8  | 9.0   | 1.5   | 10.0  |  |
| Melter Pressure (inches water)                        |           |                        | -0.99 | -3.58 | 1.02  | -1.00            | -2.28 | 6.66  | -1.20            | -1.95 | 0.92  | -1.16 | -3.88 | 1.08  |  |
| Total Electrode Voltage (V)                           |           |                        | 41.8  | 2.1   | 53.4  | 40.8             | 1.5   | 51.0  | 41.3             | 39.3  | 42.9  | 45.1  | 1.5   | 53.0  |  |
| Total Power (kW)                                      |           |                        | 19.2  | 0.3   | 22.1  | 17.8             | 0.3   | 22.5  | 19.6             | 18.9  | 20.6  | 20.6  | 0.3   | 23.5  |  |
| Glass Resistance (ohms)                               |           |                        | 0.091 | 0.016 | 0.130 | 0.094            | 0.008 | 0.145 | 0.087            | 0.078 | 0.092 | 0.099 | 0.008 | 0.127 |  |

# - Value not representative of entire test

\* - Electronic data collected for first 40 hours of test

**Table 3. XRF Analyzed Compositions of Vitrified Melter Feed and Glass Discharged at the End of HLW Algorithm DM100 Matrix 1 Test W (wt%).**

| Sample Type                    |        | Melter Feed |        | Glass Discharged After 356 kg Production |        |
|--------------------------------|--------|-------------|--------|------------------------------------------|--------|
| Sample Name                    |        | BLP-F-125B  |        | BLQ-G-23A                                |        |
| Constituent                    | Target | XRF         | %Dev.  | XRF                                      | %Dev.  |
| Al <sub>2</sub> O <sub>3</sub> | 8.54   | 9.09        | 6.49   | 8.73                                     | 2.20   |
| As <sub>2</sub> O <sub>5</sub> | 0.18   | 0.10        | NC     | 0.08                                     | NC     |
| B <sub>2</sub> O <sub>3</sub>  | 5.02   | 5.02*       | NC     | 9.04**                                   | NC     |
| BaO                            | 0.23   | <0.01       | NC     | 0.26                                     | NC     |
| CaO                            | 0.50   | 0.57        | NC     | 0.50                                     | NC     |
| CdO                            | 0.05   | 0.05        | NC     | <0.01                                    | NC     |
| Ce <sub>2</sub> O <sub>3</sub> | 0.05   | 0.05        | NC     | 0.02                                     | NC     |
| Cl                             | 0.20   | 0.10        | NC     | 0.09                                     | NC     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.15   | 0.17        | NC     | 0.19                                     | NC     |
| Cs <sub>2</sub> O              | §      | <0.01       | NC     | 0.01                                     | NC     |
| CuO                            | 0.08   | 0.09        | NC     | 0.09                                     | NC     |
| F                              | 0.05   | NA          | NC     | NA                                       | NC     |
| Fe <sub>2</sub> O <sub>3</sub> | 8.04   | 8.02        | -0.22  | 7.18                                     | -10.59 |
| I                              | §      | <0.01       | NC     | <0.01                                    | NC     |
| K <sub>2</sub> O               | 0.06   | 0.11        | NC     | 0.12                                     | NC     |
| La <sub>2</sub> O <sub>3</sub> | 0.30   | 0.27        | NC     | 0.23                                     | NC     |
| Li <sub>2</sub> O              | 2.01   | 2.01*       | NC     | 2.58**                                   | NC     |
| MgO                            | 0.12   | 0.14        | NC     | 0.20                                     | NC     |
| MnO                            | 5.02   | 4.80        | -4.49  | 4.18                                     | -16.82 |
| Na <sub>2</sub> O              | 12.25  | 10.50       | -14.33 | 12.39                                    | 1.12   |
| Nd <sub>2</sub> O <sub>3</sub> | §      | <0.01       | NC     | <0.01                                    | NC     |
| NiO                            | 0.10   | 0.10        | NC     | 0.17                                     | NC     |
| P <sub>2</sub> O <sub>5</sub>  | 0.50   | 0.51        | NC     | 0.44                                     | NC     |
| PbO                            | 0.31   | 0.28        | NC     | 0.24                                     | NC     |
| Sb <sub>2</sub> O <sub>3</sub> | 0.02   | 0.03        | NC     | 0.02                                     | NC     |
| SeO <sub>2</sub>               | 0.20   | 0.05        | NC     | 0.06                                     | NC     |
| SiO <sub>2</sub>               | 47.27  | 48.81       | 3.26   | 45.53                                    | -3.68  |
| SO <sub>3</sub>                | 0.10   | 0.15        | NC     | 0.11                                     | NC     |
| SrO                            | 5.02   | 4.84        | -3.69  | 4.00                                     | -20.42 |
| TiO <sub>2</sub>               | 0.08   | 0.14        | NC     | 0.18                                     | NC     |
| Tl <sub>2</sub> O              | §      | <0.01       | NC     | <0.01                                    | NC     |
| V <sub>2</sub> O <sub>5</sub>  | 0.08   | 0.08        | NC     | 0.06                                     | NC     |
| ZnO                            | 2.01   | 2.02        | 0.40   | 1.67                                     | -16.63 |
| ZrO <sub>2</sub>               | 1.51   | 1.89        | 25.21  | 1.64                                     | 8.63   |
| Sum                            | 100.00 | 100.00      | NC     | 100.00                                   | NC     |

\* - Target values for melter feed sample

\*\* - Target values calculated based on simple well-stirred tank model (discharged glass)

§ - Not a target constituent

NA - Not analyzed

NC - Not calculated

**Table 4. XRF Analyzed Compositions of Vitrified Melter Feed and Glass Discharged at the End of HLW Algorithm DM100 Matrix 1 Test X (wt%).**

| Sample Type                    |        | Melter Feed |        | Glass Discharged After 591 kg Production |        |
|--------------------------------|--------|-------------|--------|------------------------------------------|--------|
| Sample Name                    |        | BLQ-F-68A   |        | BLQ-G-82C                                |        |
| Constituent                    | Target | XRF         | %Dev.  | XRF                                      | %Dev.  |
| Al <sub>2</sub> O <sub>3</sub> | 1.93   | 3.92        | 103.54 | 3.61                                     | 87.05  |
| As <sub>2</sub> O <sub>5</sub> | §      | <0.01       | NC     | 0.01                                     | NC     |
| B <sub>2</sub> O <sub>3</sub>  | 10.35  | 10.35*      | NC     | 10.30**                                  | NC     |
| BaO                            | 0.04   | 0.07        | NC     | 0.08                                     | NC     |
| CaO                            | 0.33   | 0.41        | NC     | 0.42                                     | NC     |
| CdO                            | §      | <0.01       | NC     | <0.01                                    | NC     |
| Ce <sub>2</sub> O <sub>3</sub> | 0.05   | 0.04        | NC     | 0.04                                     | NC     |
| Cl                             | §      | 0.01        | NC     | 0.01                                     | NC     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.50   | 0.56        | NC     | 0.62                                     | NC     |
| Cs <sub>2</sub> O              | §      | <0.01       | NC     | 0.01                                     | NC     |
| CuO                            | §      | <0.01       | NC     | 0.01                                     | NC     |
| F                              | 0.03   | NA          | NC     | NA                                       | NC     |
| Fe <sub>2</sub> O <sub>3</sub> | 12.52  | 12.08       | -3.53  | 12.55                                    | 0.23   |
| I                              | §      | <0.01       | NC     | <0.01                                    | NC     |
| K <sub>2</sub> O               | 0.12   | 0.18        | NC     | 0.16                                     | NC     |
| La <sub>2</sub> O <sub>3</sub> | 0.10   | 0.09        | NC     | 0.10                                     | NC     |
| Li <sub>2</sub> O              | 2.02   | 2.02*       | NC     | 2.04**                                   | NC     |
| MgO                            | 0.10   | 0.23        | NC     | 0.19                                     | NC     |
| MnO                            | 6.92   | 6.39        | -7.69  | 6.71                                     | -2.98  |
| Na <sub>2</sub> O              | 17.43  | 16.00       | -8.21  | 15.51                                    | -11.01 |
| Nd <sub>2</sub> O <sub>3</sub> | 0.08   | 0.09        | NC     | 0.09                                     | NC     |
| NiO                            | 1.00   | 0.95        | -4.54  | 1.05                                     | NC     |
| P <sub>2</sub> O <sub>5</sub>  | 0.10   | 0.12        | NC     | 0.13                                     | NC     |
| PbO                            | 0.20   | 0.16        | NC     | 0.18                                     | NC     |
| Sb <sub>2</sub> O <sub>3</sub> | §      | <0.01       | NC     | <0.01                                    | NC     |
| SeO <sub>2</sub>               | §      | <0.01       | NC     | <0.01                                    | NC     |
| SiO <sub>2</sub>               | 45.90  | 45.78       | -0.27  | 45.31                                    | -1.30  |
| SO <sub>3</sub>                | 0.05   | 0.12        | NC     | 0.14                                     | NC     |
| SrO                            | §      | 0.01        | NC     | 0.17                                     | NC     |
| TiO <sub>2</sub>               | 0.04   | 0.17        | NC     | 0.16                                     | NC     |
| Tl <sub>2</sub> O              | §      | <0.01       | NC     | <0.01                                    | NC     |
| V <sub>2</sub> O <sub>5</sub>  | §      | <0.01       | NC     | <0.01                                    | NC     |
| ZnO                            | 0.03   | 0.05        | NC     | 0.13                                     | NC     |
| ZrO <sub>2</sub>               | 0.16   | 0.20        | NC     | 0.27                                     | NC     |
| Sum                            | 100.00 | 100.00      | NC     | 100.00                                   | NC     |

\* - Target values for melter feed sample

\*\* - Target values calculated based on simple well-stirred tank model (discharged glass)

§ - Not a target constituent

NA - Not analyzed

NC - Not calculated

**Table 5. XRF Analyzed Compositions of Vitrified Melter Feed and Glass Discharged at the End of HLW Algorithm DM100 Matrix 1 Test Y (wt%).**

| Sample Type                    |        | Melter Feed |        | Glass Discharge After 576 kg Production |        |
|--------------------------------|--------|-------------|--------|-----------------------------------------|--------|
| Sample Name                    |        | BLQ-F-100A  |        | BLQ-G-155C                              |        |
| Constituent                    | Target | XRF         | %Dev.  | XRF                                     | %Dev.  |
| Al <sub>2</sub> O <sub>3</sub> | 10.34  | 10.74       | 3.87   | 10.22                                   | -1.11  |
| As <sub>2</sub> O <sub>5</sub> | §      | <0.01       | NC     | <0.01                                   | NC     |
| B <sub>2</sub> O <sub>3</sub>  | 13.86  | 13.86*      | NC     | 13.71**                                 | NC     |
| BaO                            | 0.04   | 0.06        | NC     | 0.06                                    | NC     |
| CaO                            | 0.36   | 0.43        | NC     | 0.45                                    | NC     |
| CdO                            | 0.03   | <0.01       | NC     | <0.01                                   | NC     |
| Ce <sub>2</sub> O <sub>3</sub> | 0.06   | 0.06        | NC     | 0.06                                    | NC     |
| Cl                             | §      | <0.01       | NC     | 0.01                                    | NC     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.50   | 0.60        | NC     | 0.61                                    | NC     |
| Cs <sub>2</sub> O              | §      | <0.01       | NC     | <0.01                                   | NC     |
| CuO                            | §      | <0.01       | NC     | <0.01                                   | NC     |
| F                              | 0.03   | NA          | NC     | NA                                      | NC     |
| Fe <sub>2</sub> O <sub>3</sub> | 4.40   | 4.88        | 10.92  | 5.61                                    | 27.41  |
| I                              | §      | <0.01       | NC     | <0.01                                   | NC     |
| K <sub>2</sub> O               | 0.14   | 0.20        | NC     | 0.20                                    | NC     |
| La <sub>2</sub> O <sub>3</sub> | 0.11   | 0.06        | NC     | 0.06                                    | NC     |
| Li <sub>2</sub> O              | 2.02   | 2.02*       | NC     | 2.02**                                  | NC     |
| MgO                            | 0.10   | 0.13        | NC     | 0.14                                    | NC     |
| MnO                            | §      | 0.09        | NC     | 0.61                                    | NC     |
| Na <sub>2</sub> O              | 17.42  | 16.12       | -7.44  | 15.60                                   | -10.45 |
| Nd <sub>2</sub> O <sub>3</sub> | 0.09   | 0.12        | NC     | 0.13                                    | NC     |
| NiO                            | 0.75   | 0.79        | 5.47   | 0.83                                    | NC     |
| P <sub>2</sub> O <sub>5</sub>  | 0.11   | 0.13        | NC     | 0.14                                    | NC     |
| PbO                            | 0.22   | 0.21        | NC     | 0.22                                    | NC     |
| Sb <sub>2</sub> O <sub>3</sub> | §      | <0.01       | NC     | <0.01                                   | NC     |
| SeO <sub>2</sub>               | §      | 0.01        | NC     | <0.01                                   | NC     |
| SiO <sub>2</sub>               | 43.81  | 45.12       | 2.99   | 43.96                                   | 0.35   |
| SO <sub>3</sub>                | 0.06   | 0.07        | NC     | 0.13                                    | NC     |
| SrO                            | §      | 0.01        | NC     | 0.09                                    | NC     |
| TiO <sub>2</sub>               | §      | 0.04        | NC     | 0.06                                    | NC     |
| Tl <sub>2</sub> O              | §      | <0.01       | NC     | <0.01                                   | NC     |
| V <sub>2</sub> O <sub>5</sub>  | §      | <0.01       | NC     | <0.01                                   | NC     |
| ZnO                            | 1.79   | 1.83        | 2.30   | 1.70                                    | -5.11  |
| ZrO <sub>2</sub>               | 3.76   | 2.43        | -35.47 | 3.36                                    | -10.74 |
| Sum                            | 100.00 | 100.00      | NC     | 100.00                                  | NC     |

\* - Target values for melter feed sample

\*\* - Target values calculated based on simple well-stirred tank model (discharged glass)

§ - Not a target constituent

NA - Not analyzed

NC - Not calculated

**Table 6. XRF Analyzed Compositions of Vitrified Melter Feed and Glass Discharged at the End of HLW Algorithm DM100 Matrix 1 Test Z (wt%).**

| Sample Type                    |        | Melter Feed |        | Glass Discharge After 326 kg Production |        |
|--------------------------------|--------|-------------|--------|-----------------------------------------|--------|
| Sample Name                    |        | BLR-F-17A   |        | BLR-G-68A                               |        |
| Constituent                    | Target | XRF         | %Dev.  | XRF                                     | %Dev.  |
| Al <sub>2</sub> O <sub>3</sub> | 5.52   | 6.26        | 13.46  | 6.78                                    | 22.91  |
| As <sub>2</sub> O <sub>5</sub> | 0.05   | 0.02        | NC     | 0.02                                    | NC     |
| B <sub>2</sub> O <sub>3</sub>  | 9.18   | 9.18*       | NC     | 9.65**                                  | NC     |
| BaO                            | 0.06   | <0.01       | NC     | 0.08                                    | NC     |
| CaO                            | 0.50   | 0.53        | NC     | 0.52                                    | NC     |
| CdO                            | 0.50   | 0.40        | NC     | 0.39                                    | NC     |
| Ce <sub>2</sub> O <sub>3</sub> | 0.05   | 0.04        | NC     | 0.01                                    | NC     |
| Cl                             | 0.20   | 0.04        | NC     | 0.09                                    | NC     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.04   | 0.04        | NC     | 0.12                                    | NC     |
| Cs <sub>2</sub> O              | §      | <0.01       | NC     | <0.01                                   | NC     |
| CuO                            | 0.02   | 0.02        | NC     | 0.02                                    | NC     |
| F                              | 0.05   | NA          | NC     | NA                                      | NC     |
| Fe <sub>2</sub> O <sub>3</sub> | 10.03  | 9.15        | -8.84  | 8.96                                    | -10.73 |
| I                              | §      | <0.01       | NC     | <0.01                                   | NC     |
| K <sub>2</sub> O               | 0.06   | 0.11        | NC     | 0.13                                    | NC     |
| La <sub>2</sub> O <sub>3</sub> | 0.30   | 0.26        | NC     | 0.24                                    | NC     |
| Li <sub>2</sub> O              | 3.71   | 3.71*       | NC     | 3.54**                                  | NC     |
| MgO                            | 0.12   | 0.22        | NC     | 0.22                                    | NC     |
| MnO                            | 3.51   | 3.04        | -13.56 | 2.94                                    | -16.21 |
| Na <sub>2</sub> O              | 9.03   | 9.04        | 0.07   | 9.21                                    | 1.95   |
| Nd <sub>2</sub> O <sub>3</sub> | §      | <0.01       | NC     | <0.01                                   | NC     |
| NiO                            | 0.80   | 0.74        | -7.65  | 0.73                                    | -8.55  |
| P <sub>2</sub> O <sub>5</sub>  | 0.50   | 0.51        | NC     | 0.49                                    | NC     |
| PbO                            | 0.08   | 0.04        | NC     | 0.06                                    | NC     |
| Sb <sub>2</sub> O <sub>3</sub> | 0.05   | 0.06        | NC     | 0.06                                    | NC     |
| SeO <sub>2</sub>               | 0.15   | 0.03        | NC     | 0.03                                    | NC     |
| SiO <sub>2</sub>               | 49.17  | 50.28       | 2.27   | 49.49                                   | 0.67   |
| SO <sub>3</sub>                | 0.10   | 0.09        | NC     | 0.09                                    | NC     |
| SrO                            | 1.51   | 1.33        | -11.47 | 1.22                                    | -19.15 |
| TiO <sub>2</sub>               | 0.03   | 0.09        | NC     | 0.09                                    | NC     |
| Tl <sub>2</sub> O              | 0.14   | <0.01       | NC     | 0.02                                    | NC     |
| V <sub>2</sub> O <sub>5</sub>  | 0.02   | 0.02        | NC     | <0.01                                   | NC     |
| ZnO                            | 2.01   | 1.91        | -4.65  | 1.87                                    | -7.05  |
| ZrO <sub>2</sub>               | 2.51   | 2.84        | 13.03  | 2.91                                    | 16.11  |
| Sum                            | 100.00 | 100.00      | NC     | 100.00                                  | NC     |

\* - Target values for melter feed sample

\*\* - Target values calculated based on simple well-stirred tank model (discharged glass)

§ - Not a target constituent

NA - Not analyzed

NC - Not calculated

**Table 7. XRF Analyzed Compositions of Vitrified Melter Feed and Glass Discharged at the End of HLW Algorithm DM100 Matrix 1 Test A (wt%).**

| Sample Type                    |        | Melter Feed |        | Glass Discharged After 444 kg Production |        |
|--------------------------------|--------|-------------|--------|------------------------------------------|--------|
| Sample Name                    |        | BLR-F-90A   |        | BLR-G-137A                               |        |
| Constituent                    | Target | XRF         | %Dev.  | XRF                                      | %Dev.  |
| Al <sub>2</sub> O <sub>3</sub> | 5.01   | 5.80        | 15.69  | 6.39                                     | 27.43  |
| As <sub>2</sub> O <sub>5</sub> | 0.17   | 0.12        | NC     | 0.11                                     | NC     |
| B <sub>2</sub> O <sub>3</sub>  | 9.72   | 9.72*       | NC     | 9.71**                                   | NC     |
| BaO                            | §      | <0.01       | NC     | <0.01                                    | NC     |
| CaO                            | 0.27   | 0.41        | NC     | 0.44                                     | NC     |
| CdO                            | §      | <0.01       | NC     | 0.06                                     | NC     |
| Ce <sub>2</sub> O <sub>3</sub> | §      | <0.01       | NC     | <0.01                                    | NC     |
| Cl                             | 0.10   | 0.05        | NC     | 0.07                                     | NC     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.07   | 0.09        | NC     | 0.11                                     | NC     |
| Cs <sub>2</sub> O              | 0.05   | 0.05        | NC     | 0.06                                     | NC     |
| CuO                            | 0.04   | 0.06        | NC     | 0.05                                     | NC     |
| F                              | §      | NA          | NC     | NA                                       | NC     |
| Fe <sub>2</sub> O <sub>3</sub> | 11.35  | 12.35       | 8.77   | 11.93                                    | 5.03   |
| I                              | 0.09   | <0.01       | NC     | <0.01                                    | NC     |
| K <sub>2</sub> O               | §      | 0.18        | NC     | 0.17                                     | NC     |
| La <sub>2</sub> O <sub>3</sub> | 0.22   | 0.19        | NC     | 0.19                                     | NC     |
| Li <sub>2</sub> O              | 3.12   | 3.12*       | NC     | 3.15**                                   | NC     |
| MgO                            | 1.05   | 1.01        | -3.98  | 0.93                                     | -11.33 |
| MnO                            | 3.61   | 3.08        | -14.74 | 3.05                                     | -15.32 |
| Na <sub>2</sub> O              | 12.20  | 11.28       | -7.55  | 10.78                                    | -11.61 |
| Nd <sub>2</sub> O <sub>3</sub> | 0.14   | 0.16        | NC     | 0.14                                     | NC     |
| NiO                            | 0.16   | 0.15        | NC     | 0.24                                     | NC     |
| P <sub>2</sub> O <sub>5</sub>  | 0.09   | 0.10        | NC     | 0.16                                     | NC     |
| PbO                            | 0.13   | 0.10        | NC     | 0.11                                     | NC     |
| Sb <sub>2</sub> O <sub>3</sub> | 0.23   | 0.25        | NC     | 0.26                                     | NC     |
| SeO <sub>2</sub>               | 0.33   | 0.11        | NC     | 0.10                                     | NC     |
| SiO <sub>2</sub>               | 48.53  | 48.33       | -0.41  | 48.17                                    | -0.74  |
| SO <sub>3</sub>                | §      | 0.10        | NC     | 0.11                                     | NC     |
| SrO                            | 0.83   | 0.75        | NC     | 0.80                                     | NC     |
| TiO <sub>2</sub>               | 0.13   | 0.14        | NC     | 0.14                                     | NC     |
| Tl <sub>2</sub> O              | §      | <0.01       | NC     | <0.01                                    | NC     |
| V <sub>2</sub> O <sub>5</sub>  | §      | <0.01       | NC     | <0.01                                    | NC     |
| ZnO                            | 2.14   | 2.03        | -4.92  | 1.94                                     | -9.16  |
| ZrO <sub>2</sub>               | 0.23   | 0.27        | NC     | 0.61                                     | NC     |
| Sum                            | 100.00 | 100.00      | NC     | 100.00                                   | NC     |

\* - Target values for melter feed sample

\*\* - Target values calculated based on simple well-stirred tank model (discharged glass)

§ - Not a target constituent

NA - Not analyzed

NC - Not calculated

**Table 8. XRF Analyzed Compositions of Vitrified Melter Feed and Glass Discharged at the End of HLW Algorithm DM100 Matrix 1 Test B (wt%).**

| Sample Type                    |            | Melter Feed |       |           |        | Glass Discharged After 431 kg Production |        |
|--------------------------------|------------|-------------|-------|-----------|--------|------------------------------------------|--------|
| Sample Name                    | BLR-F-149A | BLS-F-26A   |       | BLS-G-48C |        |                                          |        |
| Constituent                    | Target     | XRF         | %Dev. | XRF       | %Dev.  | %Dev.                                    | %Dev.  |
| Al <sub>2</sub> O <sub>3</sub> | 5.29       | 6.20        | 17.15 | 6.22      | 17.52  | 6.12                                     | 15.61  |
| As <sub>2</sub> O <sub>5</sub> | 0.19       | 0.13        | NC    | 0.11      | NC     | 0.13                                     | NC     |
| B <sub>2</sub> O <sub>3</sub>  | 9.39       | 9.39*       | NC    | 9.39*     | NC     | 9.40**                                   | NC     |
| BaO                            | §          | <0.01       | NC    | <0.01     | NC     | <0.01                                    | NC     |
| CaO                            | 0.30       | 0.45        | NC    | 0.45      | NC     | 0.45                                     | NC     |
| CdO                            | §          | <0.01       | NC    | <0.01     | NC     | <0.01                                    | NC     |
| Ce <sub>2</sub> O <sub>3</sub> | §          | <0.01       | NC    | <0.01     | NC     | <0.01                                    | NC     |
| Cl                             | 0.11       | 0.06        | NC    | 0.04      | NC     | 0.08                                     | NC     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.08       | 0.09        | NC    | 0.08      | NC     | 0.11                                     | NC     |
| Cs <sub>2</sub> O              | 0.05       | 0.06        | NC    | 0.06      | NC     | 0.05                                     | NC     |
| CuO                            | 0.04       | 0.06        | NC    | 0.05      | NC     | 0.05                                     | NC     |
| F                              | §          | NA          | NC    | NA        | NC     | NA                                       | NC     |
| Fe <sub>2</sub> O <sub>3</sub> | 12.59      | 11.96       | -4.98 | 12.38     | -1.63  | 12.53                                    | -0.44  |
| I                              | 0.10       | <0.01       | NC    | <0.01     | NC     | <0.01                                    | NC     |
| K <sub>2</sub> O               | §          | <0.01       | NC    | 0.05      | NC     | 0.06                                     | NC     |
| La <sub>2</sub> O <sub>3</sub> | 0.24       | 0.23        | NC    | 0.20      | NC     | 0.21                                     | NC     |
| Li <sub>2</sub> O              | 3.01       | 3.01*       | NC    | 3.01*     | NC     | 3.01**                                   | NC     |
| MgO                            | 1.17       | 1.24        | 5.99  | 1.20      | 2.54   | 1.19                                     | 1.67   |
| MnO                            | 4.00       | 3.67        | -8.11 | 3.44      | -13.90 | 3.52                                     | -11.90 |
| Na <sub>2</sub> O              | 11.84      | 11.10       | -6.18 | 10.97     | -7.29  | 11.38                                    | -3.81  |
| Nd <sub>2</sub> O <sub>3</sub> | 0.15       | 0.15        | NC    | 0.16      | NC     | 0.17                                     | NC     |
| NiO                            | 0.17       | 0.16        | NC    | 0.16      | NC     | 0.20                                     | NC     |
| P <sub>2</sub> O <sub>5</sub>  | 0.09       | 0.11        | NC    | 0.12      | NC     | 0.12                                     | NC     |
| PbO                            | 0.14       | 0.13        | NC    | 0.08      | NC     | 0.10                                     | NC     |
| Sb <sub>2</sub> O <sub>3</sub> | 0.26       | 0.29        | NC    | 0.27      | NC     | 0.27                                     | NC     |
| SeO <sub>2</sub>               | 0.37       | 0.10        | NC    | 0.08      | NC     | 0.11                                     | NC     |
| SiO <sub>2</sub>               | 47.04      | 48.17       | 2.41  | 48.45     | 3.00   | 47.49                                    | 0.96   |
| SO <sub>3</sub>                | §          | 0.06        | NC    | 0.06      | NC     | 0.07                                     | NC     |
| SrO                            | 0.92       | 0.80        | NC    | 0.70      | NC     | 0.76                                     | NC     |
| TiO <sub>2</sub>               | 0.14       | 0.22        | NC    | 0.15      | NC     | 0.17                                     | NC     |
| Tl <sub>2</sub> O              | §          | <0.01       | NC    | <0.01     | NC     | <0.01                                    | NC     |
| V <sub>2</sub> O <sub>5</sub>  | §          | <0.01       | NC    | <0.01     | NC     | <0.01                                    | NC     |
| ZnO                            | 2.07       | 1.88        | -9.02 | 1.79      | -13.41 | 1.87                                     | -9.53  |
| ZrO <sub>2</sub>               | 0.26       | 0.28        | NC    | 0.31      | NC     | 0.37                                     | NC     |
| Sum                            | 100.00     | 100.00      | NC    | 100.00    | NC     | 100.00                                   | NC     |

\* - Target values for melter feed sample

\*\* - Target values calculated based on simple well-stirred tank model (discharged glass)

§ - Not a target constituent

NA - Not analyzed

NC - Not calculated

**Table 9. XRF Analyzed Compositions of Vitrified Melter Feed and Glass Discharged at the End of HLW Algorithm DM100 Matrix 1 Test C (wt%).**

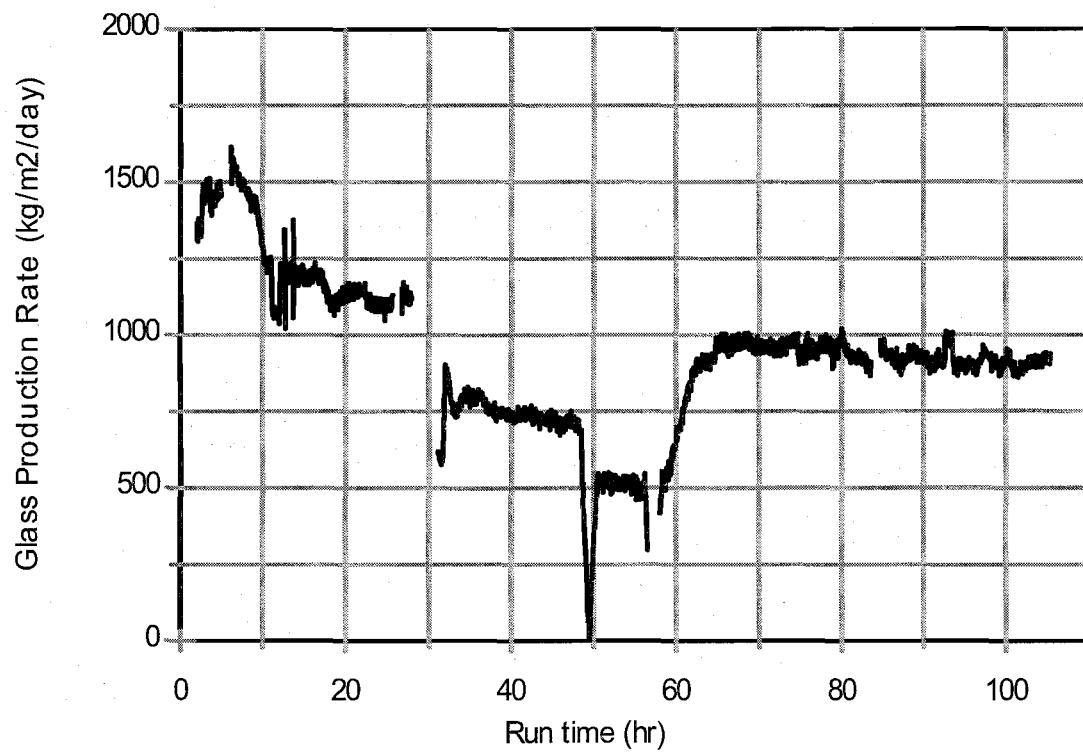
| Sample Type                    |        | Melter Feed |        | Glass Discharge After 482 kg Production |        |
|--------------------------------|--------|-------------|--------|-----------------------------------------|--------|
| Sample Name                    |        | BLS-F-65A   |        | BLS-G-109C                              |        |
| Constituent                    | Target | XRF         | %Dev.  | XRF                                     | %Dev.  |
| Al <sub>2</sub> O <sub>3</sub> | 5.64   | 6.54        | 15.95  | 6.63                                    | 17.54  |
| As <sub>2</sub> O <sub>5</sub> | 0.21   | 0.16        | NC     | 0.15                                    | NC     |
| B <sub>2</sub> O <sub>3</sub>  | 8.97   | 8.97*       | NC     | 8.99**                                  | NC     |
| BaO                            | §      | <0.01       | NC     | <0.01                                   | NC     |
| CaO                            | 0.34   | 0.51        | NC     | 0.50                                    | NC     |
| CdO                            | §      | <0.01       | NC     | <0.01                                   | NC     |
| Ce <sub>2</sub> O <sub>3</sub> | §      | <0.01       | NC     | <0.01                                   | NC     |
| Cl                             | 0.12   | 0.11        | NC     | 0.07                                    | NC     |
| Cr <sub>2</sub> O <sub>3</sub> | 0.09   | 0.10        | NC     | 0.11                                    | NC     |
| Cs <sub>2</sub> O              | 0.06   | 0.06        | NC     | 0.07                                    | NC     |
| CuO                            | 0.05   | 0.06        | NC     | 0.06                                    | NC     |
| F                              | §      | NA          | NC     | NA                                      | NC     |
| Fe <sub>2</sub> O <sub>3</sub> | 14.11  | 14.30       | 1.32   | 14.29                                   | 1.23   |
| I                              | 0.11   | <0.01       | NC     | <0.01                                   | NC     |
| K <sub>2</sub> O               | §      | 0.21        | NC     | 0.21                                    | NC     |
| La <sub>2</sub> O <sub>3</sub> | 0.27   | 0.23        | NC     | 0.22                                    | NC     |
| Li <sub>2</sub> O              | 2.87   | 2.87*       | NC     | 2.88**                                  | NC     |
| MgO                            | 1.31   | 1.39        | 6.31   | 1.39                                    | 5.92   |
| MnO                            | 4.48   | 3.78        | -15.70 | 3.65                                    | -18.69 |
| Na <sub>2</sub> O              | 11.38  | 10.96       | -3.69  | 10.74                                   | -5.60  |
| Nd <sub>2</sub> O <sub>3</sub> | 0.17   | 0.19        | NC     | 0.19                                    | NC     |
| NiO                            | 0.19   | 0.18        | NC     | 0.20                                    | NC     |
| P <sub>2</sub> O <sub>5</sub>  | 0.11   | 0.13        | NC     | 0.13                                    | NC     |
| PbO                            | 0.16   | 0.15        | NC     | 0.13                                    | NC     |
| Sb <sub>2</sub> O <sub>3</sub> | 0.29   | 0.33        | NC     | 0.35                                    | NC     |
| SeO <sub>2</sub>               | 0.42   | 0.12        | NC     | 0.08                                    | NC     |
| SiO <sub>2</sub>               | 45.19  | 45.15       | -0.08  | 45.43                                   | 0.53   |
| SO <sub>3</sub>                | §      | 0.18        | NC     | 0.14                                    | NC     |
| SrO                            | 1.03   | 0.96        | -6.91  | 0.97                                    | -6.12  |
| TiO <sub>2</sub>               | 0.16   | 0.17        | NC     | 0.18                                    | NC     |
| Tl <sub>2</sub> O              | §      | <0.01       | NC     | <0.01                                   | NC     |
| V <sub>2</sub> O <sub>5</sub>  | §      | <0.01       | NC     | <0.01                                   | NC     |
| ZnO                            | 1.99   | 1.83        | -7.72  | 1.85                                    | -6.66  |
| ZrO <sub>2</sub>               | 0.29   | 0.35        | NC     | 0.38                                    | NC     |
| Sum                            | 100.00 | 100.00      | NC     | 100.00                                  | NC     |

\* - Target values for melter feed sample

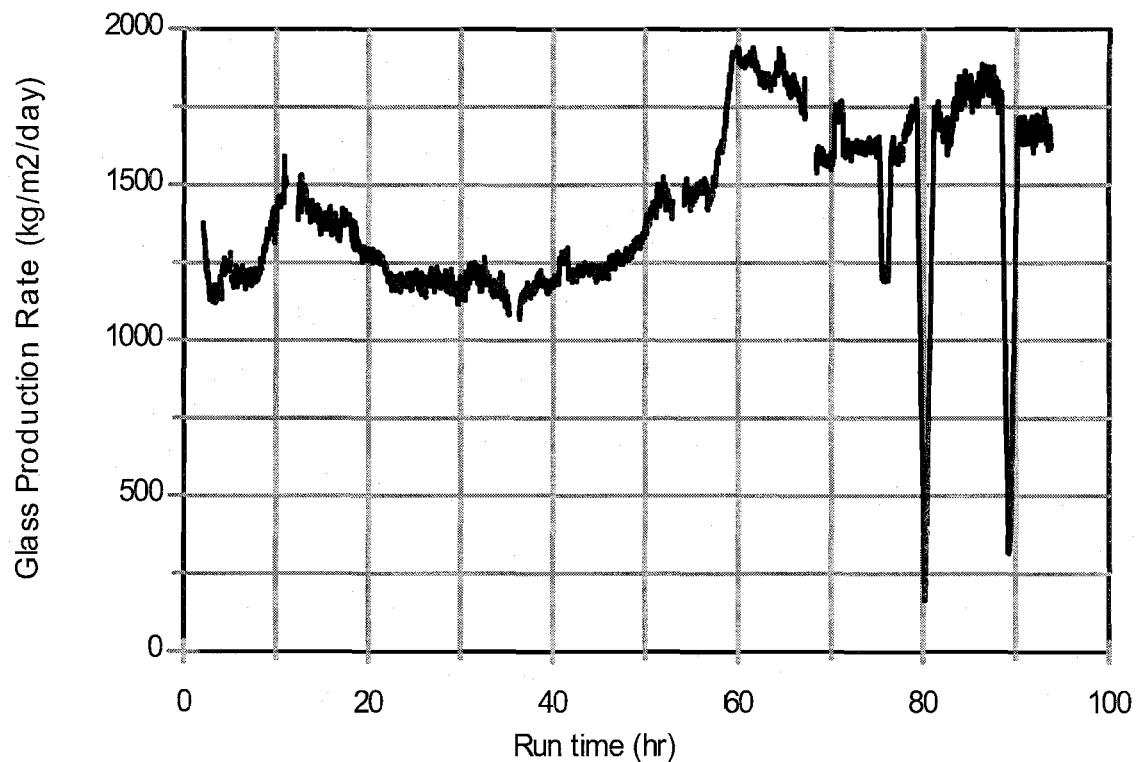
\*\* - Target values calculated based on simple well-stirred tank model (discharged glass)

§ - Not a target constituent

NA - Not analyzed


NC - Not calculated

**Table 10. Comparison of Target and Measured Test Conditions for HLW Algorithm  
DM100 Matrix 1 Tests W, X, Y, and Z.**


| Test                                                   | W                                              | X                                                                                       | Y                                                                 | Z                                                    |
|--------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|
|                                                        | High Viscosity                                 | Low Viscosity<br>Low Al <sub>2</sub> O <sub>3</sub><br>Maximum NiO<br>High MnO          | High<br>Conductivity<br>Low Fe <sub>2</sub> O <sub>3</sub>        | T <sub>1%</sub> criterion<br>(& Low<br>Conductivity) |
| Glass                                                  | HLW02-24                                       | HLW-ALG-17                                                                              | HLW-ALG-16                                                        | HLW02-46                                             |
| Target Test Condition                                  | 112 P @ 1150°C<br>MnO = 5%<br>SrO = 5%         | 19 P @ 1150°C<br>Al <sub>2</sub> O <sub>3</sub> = 1.93%<br>NiO = 1.00%<br>MnO = 6.91%   | 0.68 S/cm @<br>1200°C<br>Fe <sub>2</sub> O <sub>3</sub> = 4.4 %   | T <sub>1%</sub> = 963°C<br>(0.23 S/cm @<br>1150°C)   |
| Parameters Measured on<br>Glass from End of Test       | 108.3 P @ 1150°C<br>MnO = 4.18%<br>SrO = 4.00% | 29.2 P @ 1150°C<br>Al <sub>2</sub> O <sub>3</sub> = 3.61%<br>NiO = 1.05%<br>MnO = 6.71% | 0.628 S/cm @<br>1200°C<br>Fe <sub>2</sub> O <sub>3</sub> = 5.61 % | (0.226 S/cm @<br>1150°C)                             |
| Other Parameters Measured<br>on Glass from End of Test | 0.252 S/cm @<br>1150°C                         | 0.415 S/cm @<br>1150°C                                                                  | 65.1 P @ 1150°C                                                   | 85.1 P @ 1150°C                                      |

**Table 11. Average Concentrations [ppmv] of Selected Species in Off-Gas Measured by FTIR Spectroscopy during Algorithm DM100 Matrix 1 Tests.**

| Test                 | W        |       | X    | Y    | Z        |       | A    | B    |      | C    |
|----------------------|----------|-------|------|------|----------|-------|------|------|------|------|
|                      | No Sugar | Sugar |      |      | No Sugar | Sugar |      | B1   | B2   |      |
| N <sub>2</sub> O     | <1.0     | <1.0  | <1.0 | <1.0 | <1.0     | <1.0  | <1.0 | <1.0 | <1.0 | <1.0 |
| NO                   | 11.3     | 1.2   | 12.5 | 12.3 | 9.0      | <1.0  | 20.0 | 7.9  | 13.8 | 20.1 |
| NO <sub>2</sub>      | <1.0     | <1.0  | 9.1  | <1.0 | <1.0     | <1.0  | <1.0 | <1.0 | 3.8  | <1.0 |
| NH <sub>3</sub>      | <1.0     | 6.5   | <1.0 | <1.0 | <1.0     | 5.4   | <1.0 | <1.0 | <1.0 | <1.0 |
| H <sub>2</sub> O [%] | 4.4      | 4.7   | 5.8  | 5.4  | 4.8      | 4.7   | 5.3  | 4.7  | 6.0  | 6.4  |
| CO <sub>2</sub>      | 1607     | 2267  | 2680 | 1891 | 1481     | 1945  | 1500 | 1343 | 1985 | 1867 |
| Nitrous Acid         | <1.0     | <1.0  | <1.0 | <1.0 | <1.0     | <1.0  | <1.0 | <1.0 | <1.0 | <1.0 |
| Nitric Acid          | <1.0     | <1.0  | <1.0 | <1.0 | <1.0     | <1.0  | <1.0 | <1.0 | <1.0 | <1.0 |
| HCN                  | <1.0     | <1.0  | <1.0 | <1.0 | <1.0     | <1.0  | <1.0 | <1.0 | <1.0 | <1.0 |
| SO <sub>2</sub>      | <1.0     | <1.0  | <1.0 | <1.0 | 1.2      | 4.7   | <1.0 | <1.0 | <1.0 | 1.1  |
| CO                   | <1.0     | 15.8  | 1.1  | <1.0 | <1.0     | 14.3  | <1.0 | <1.0 | <1.0 | <1.0 |
| HCl                  | <1.0     | <1.0  | <1.0 | <1.0 | <1.0     | <1.0  | <1.0 | <1.0 | <1.0 | 1.0  |
| HF                   | 1.1      | <1.0  | <1.0 | <1.0 | <1.0     | <1.0  | 1.5  | 1.2  | 1.4  | 2.6  |



**Figure 1. Glass production rate (hourly averaged) during DM100 Test W.**



**Figure 2. Glass production rate (hourly averaged) during DM100 Test X.**

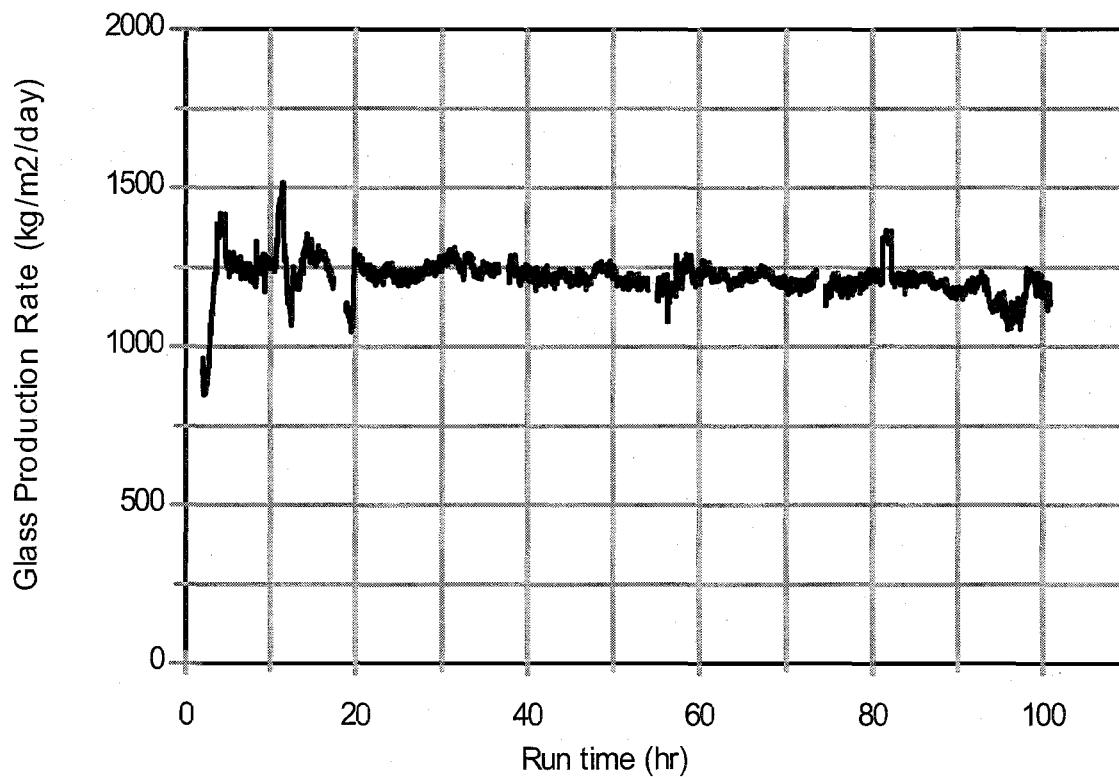
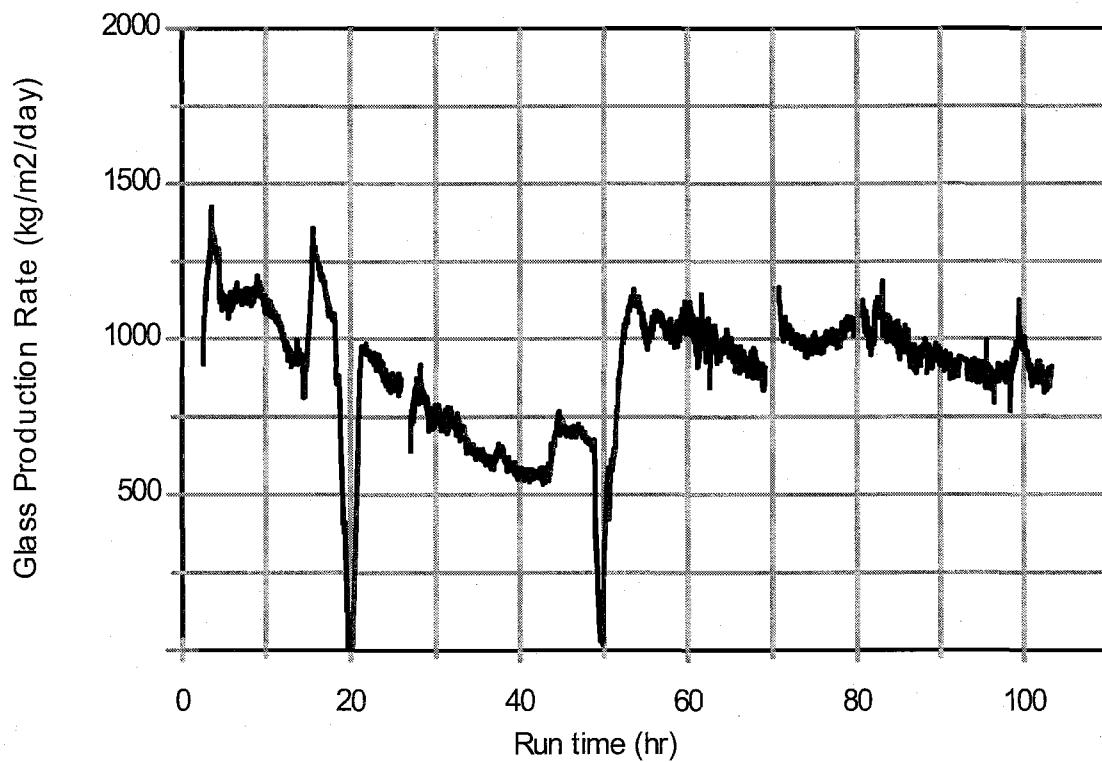
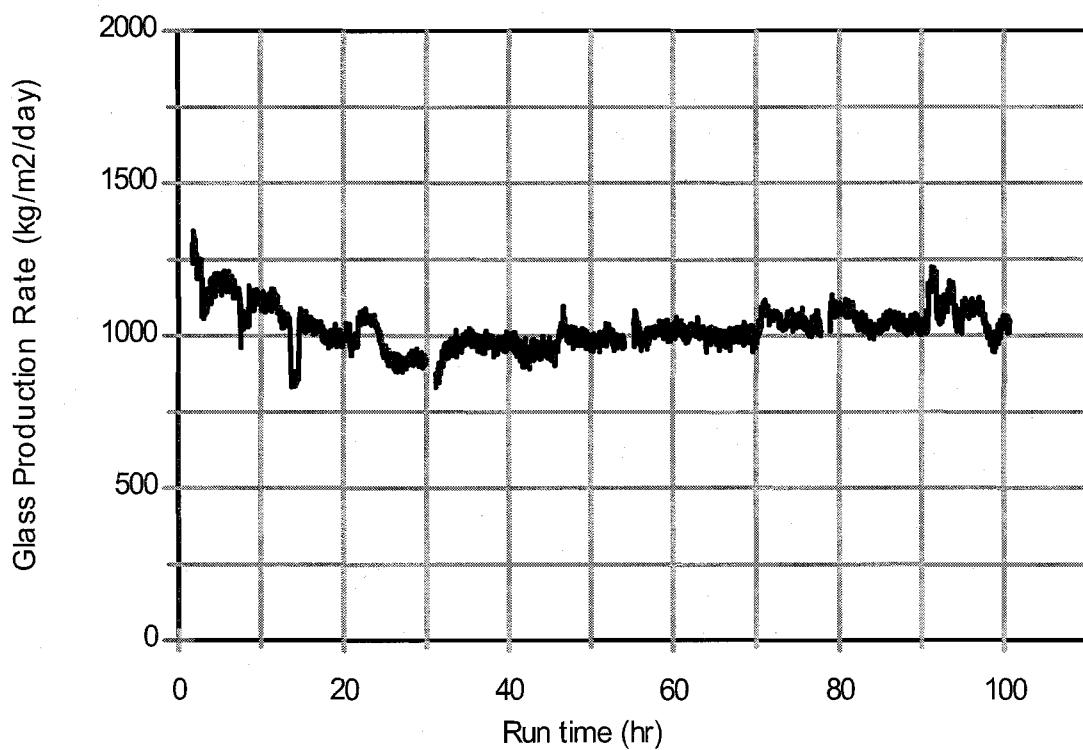




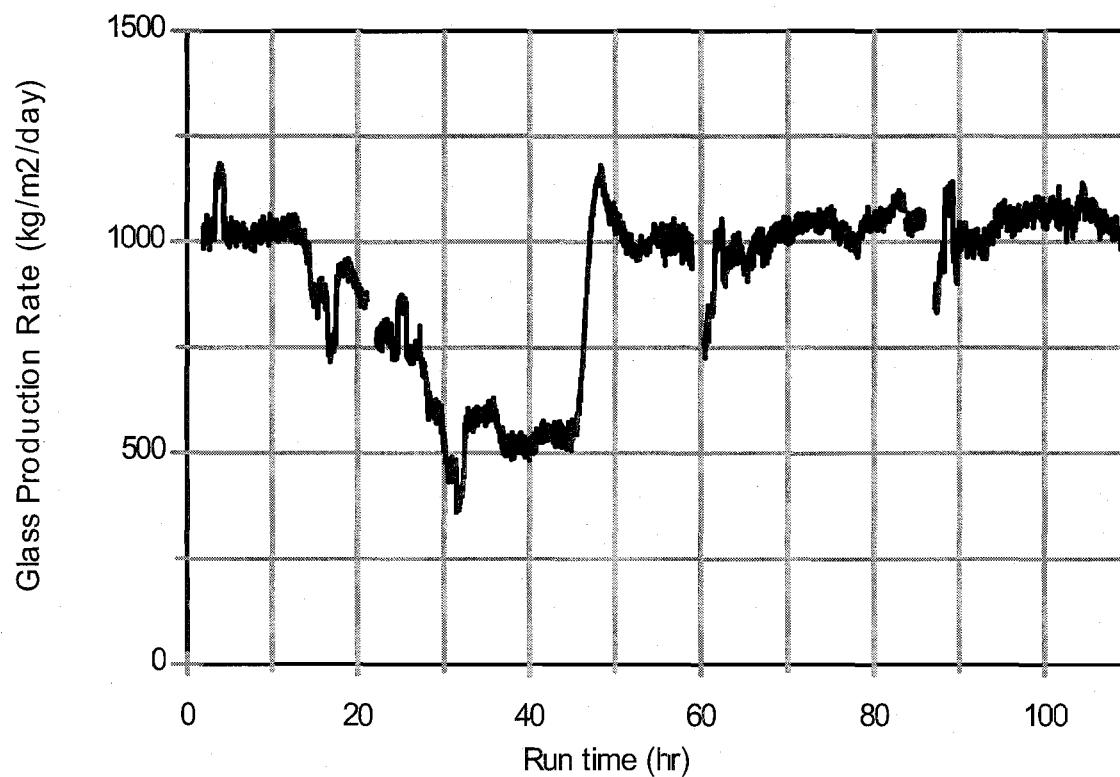
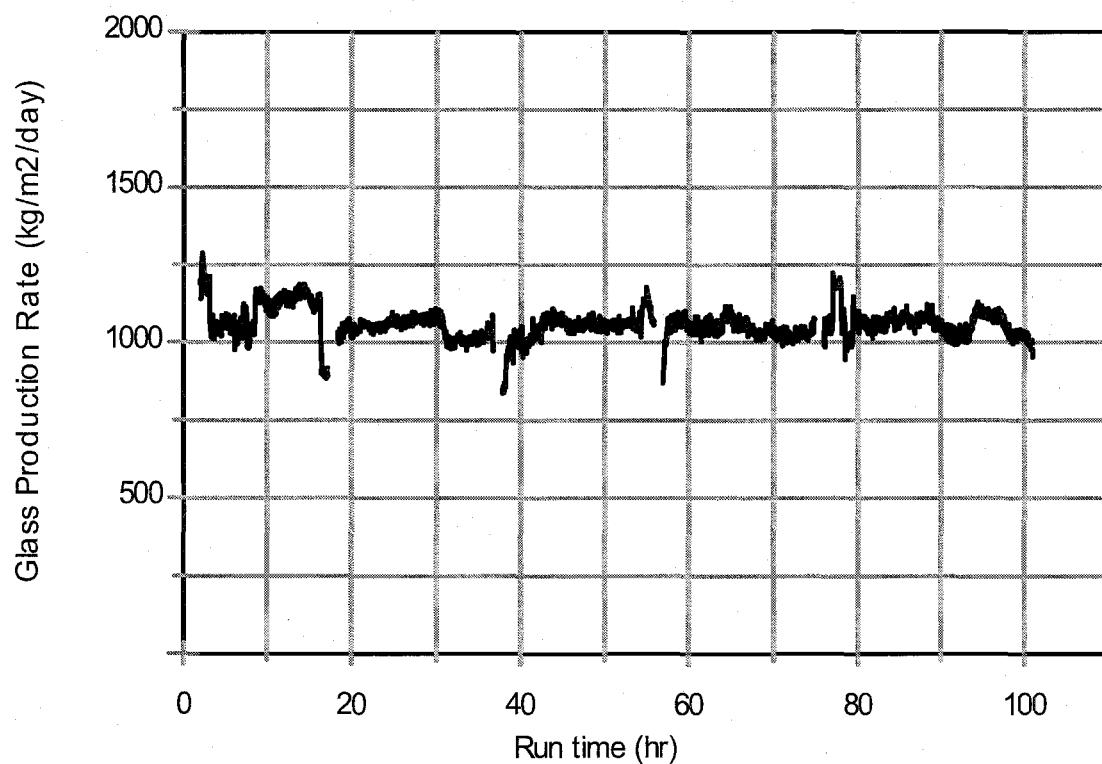
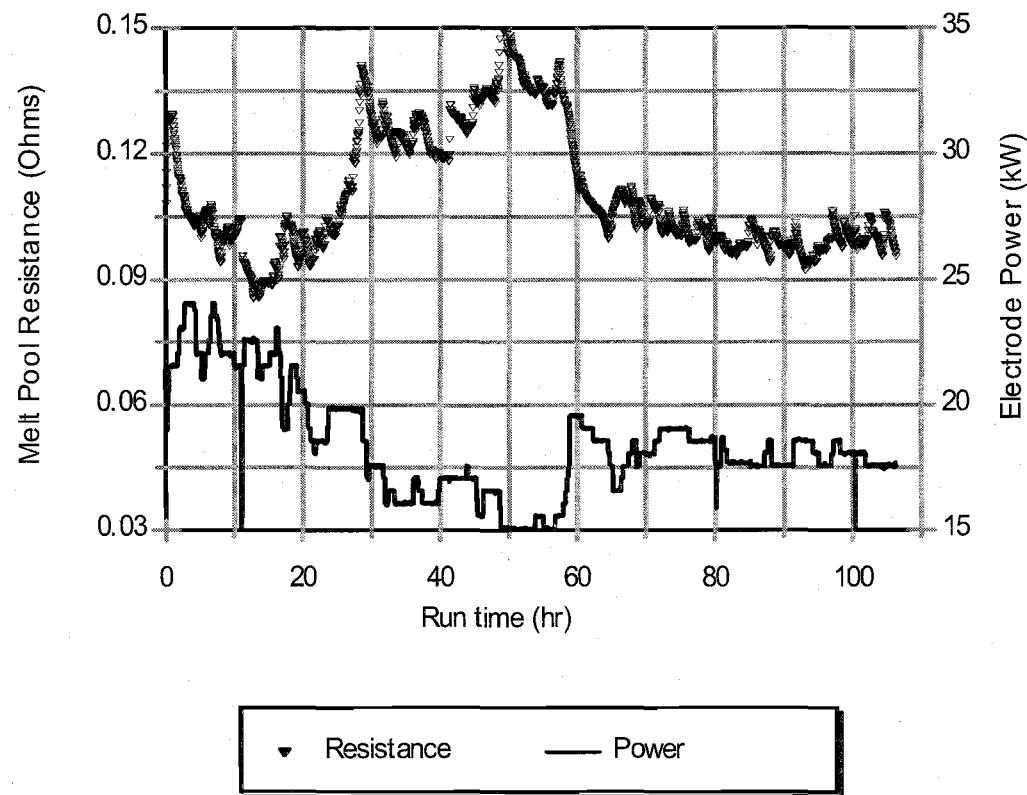

Figure 3. Glass production rate (hourly averaged) during DM100 Test Y.

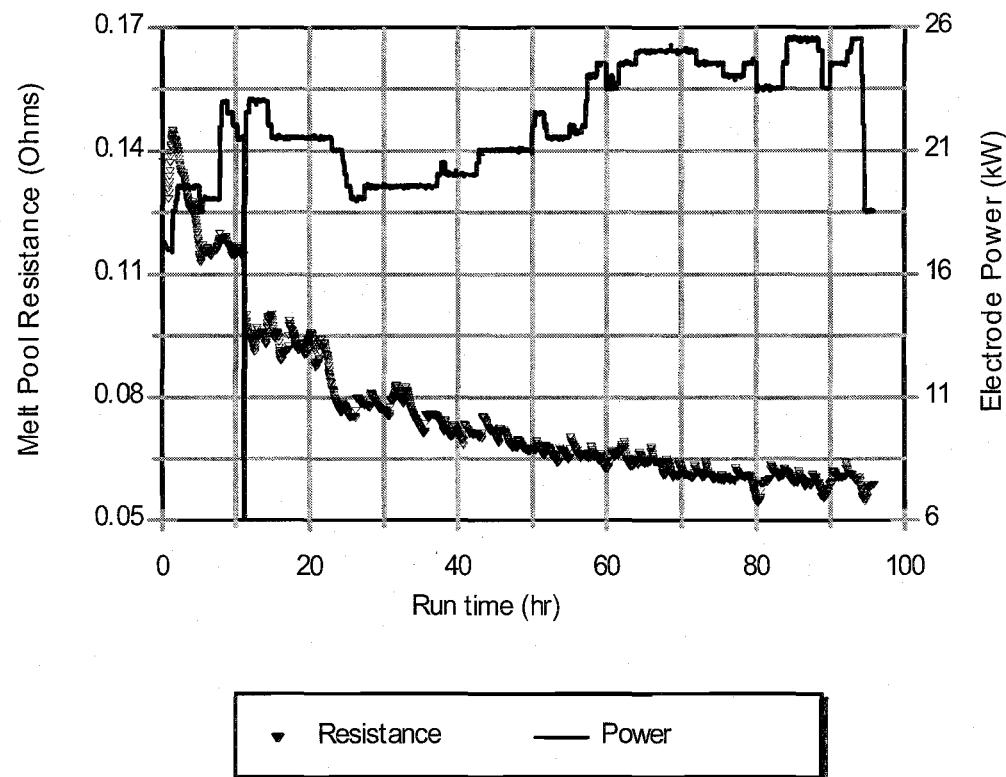


**Figure 4. Glass production rate (hourly averaged) during DM100 Test Z.**

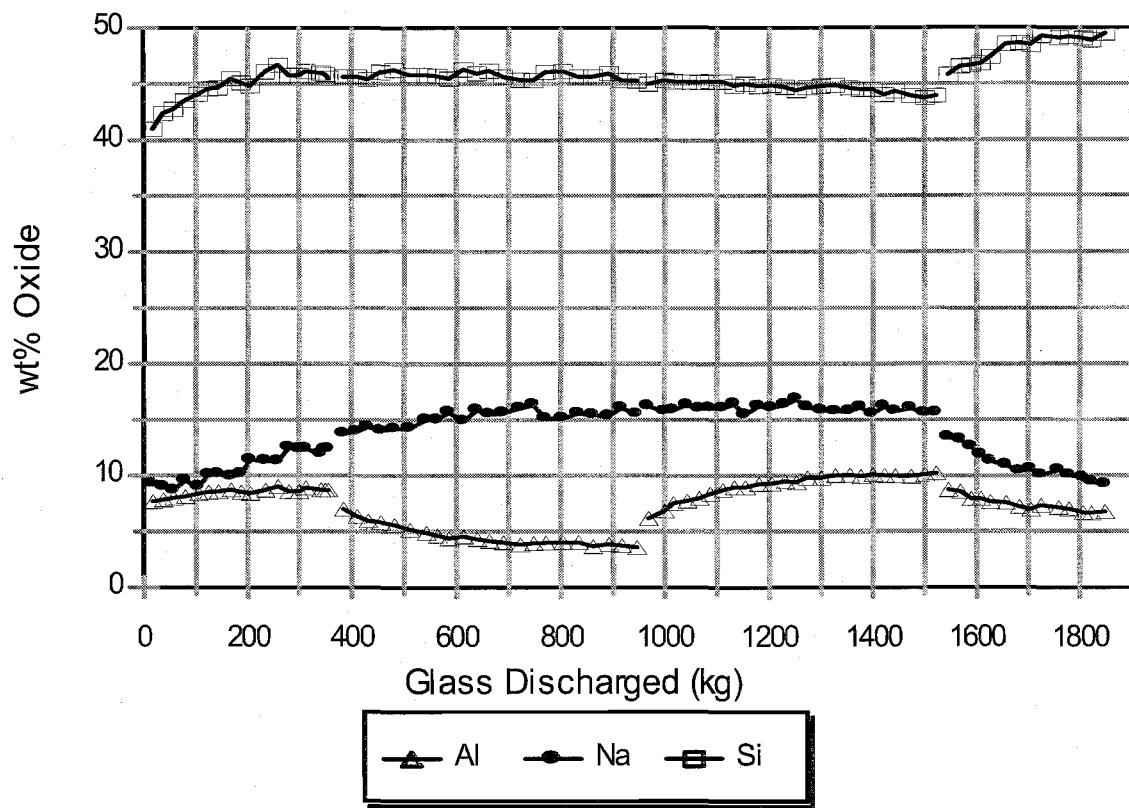


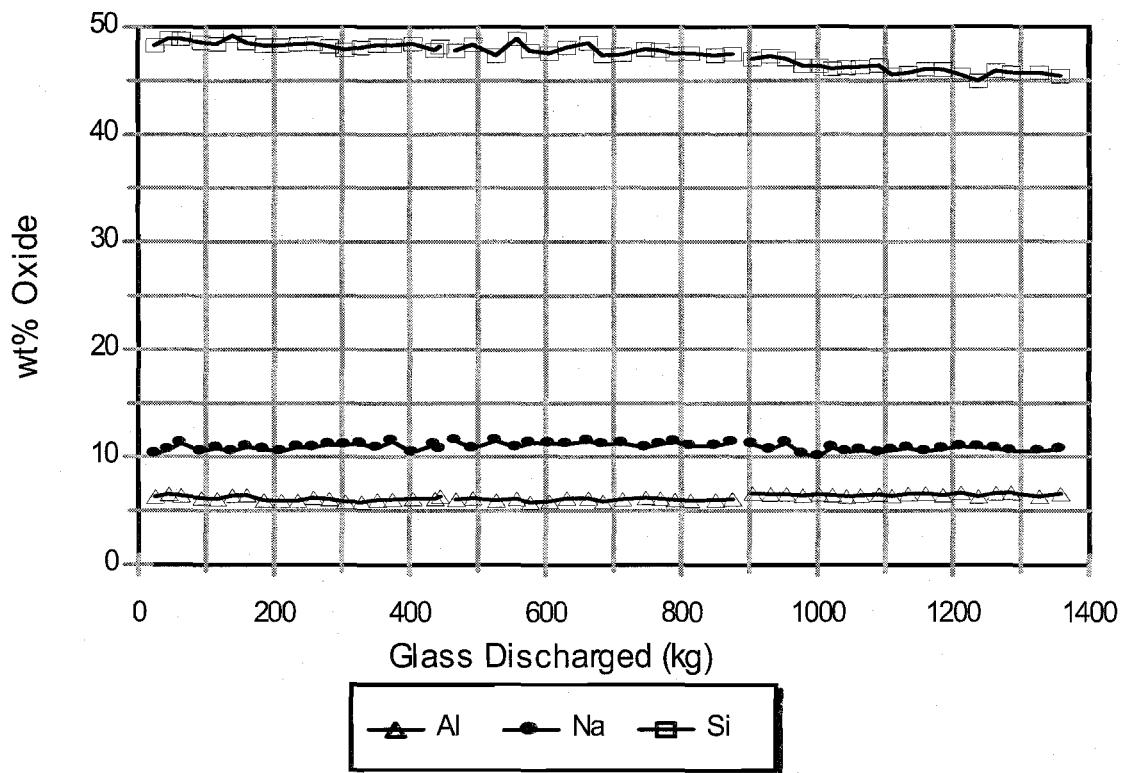
**Figure 5. Glass production rate (hourly averaged) during DM100 Test A.**

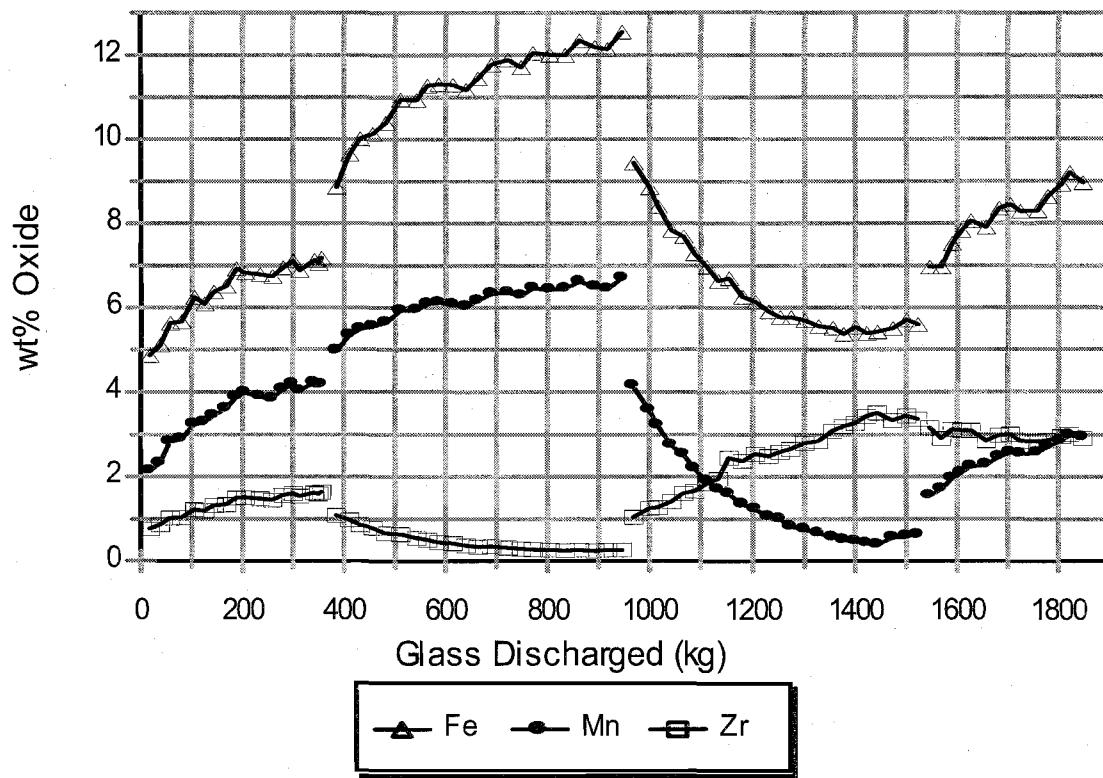


Figure 6. Glass production rate (hourly averaged) during DM100 Test B.

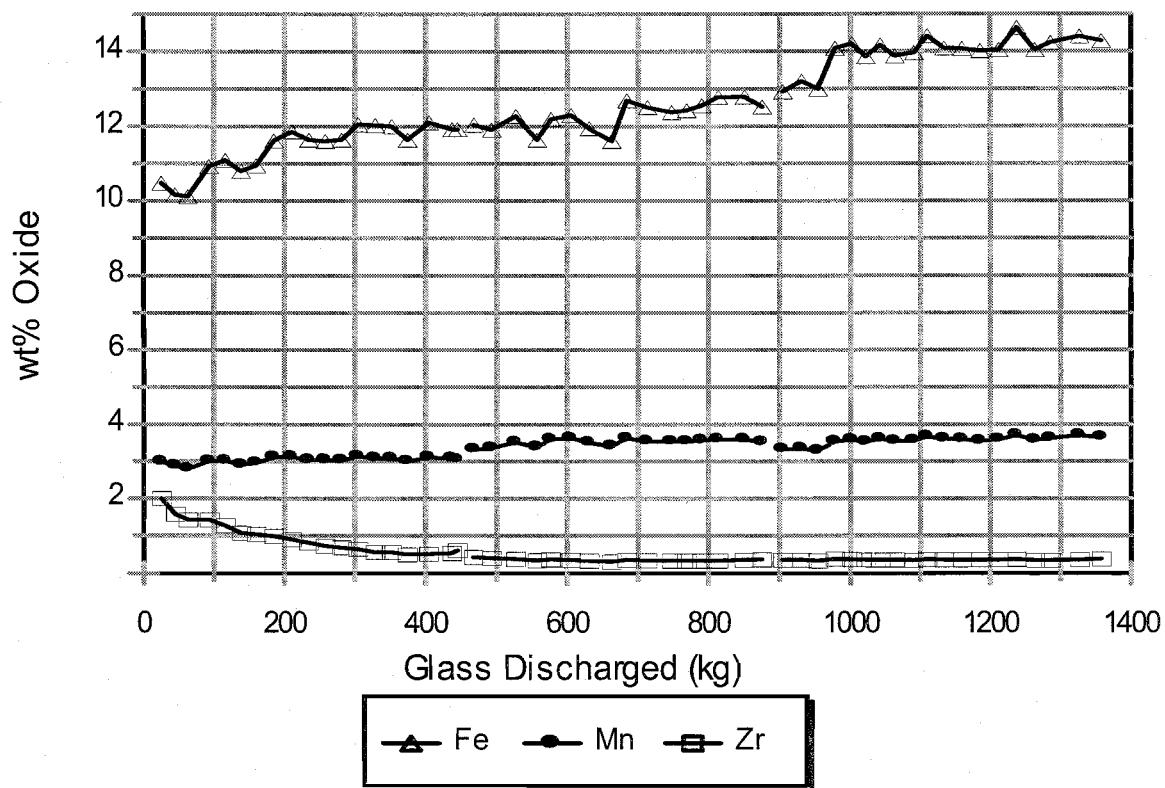



**Figure 7. Glass production rate (hourly averaged) during DM100 Test C.**

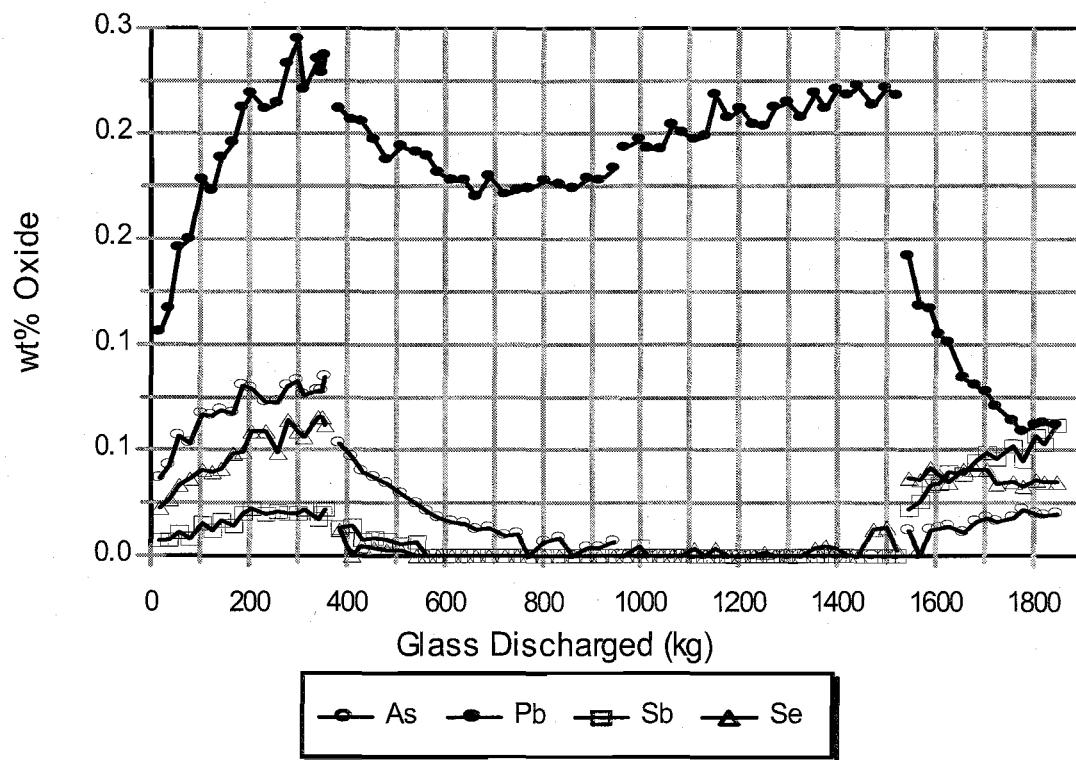



**Figure 8. Glass resistance and electrode power during DM100 Test W.**

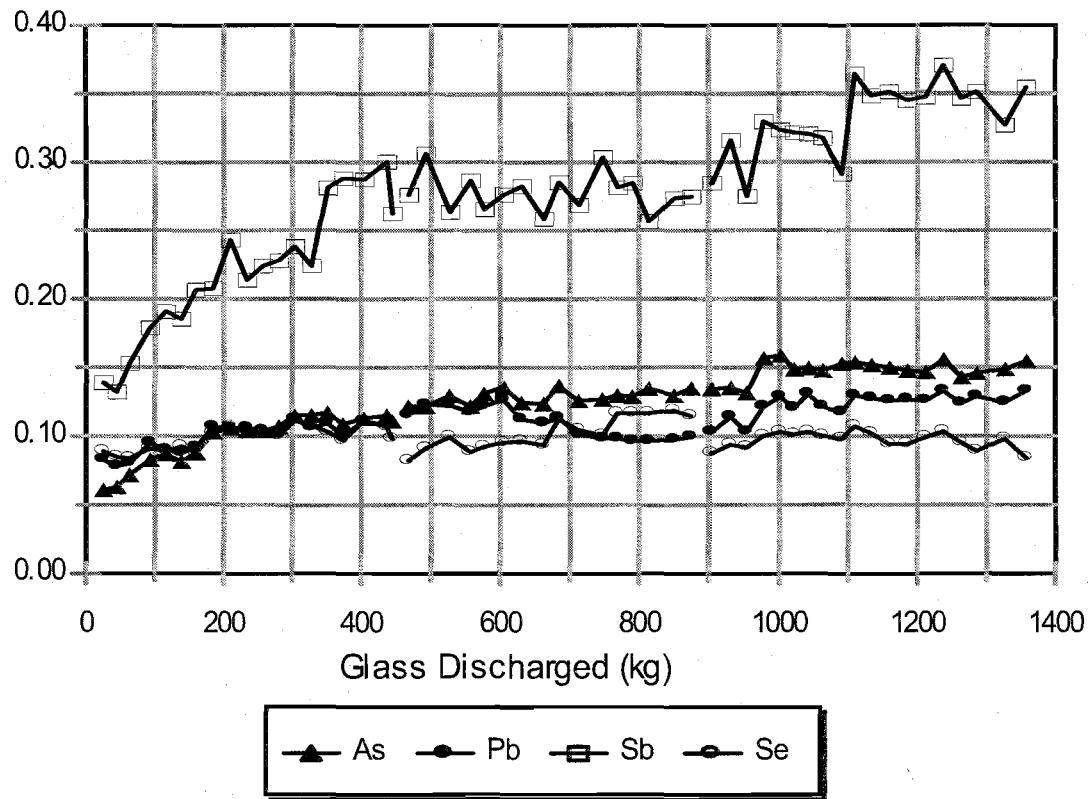




**Figure 9. Glass resistance and electrode power during DM100 Test X.**

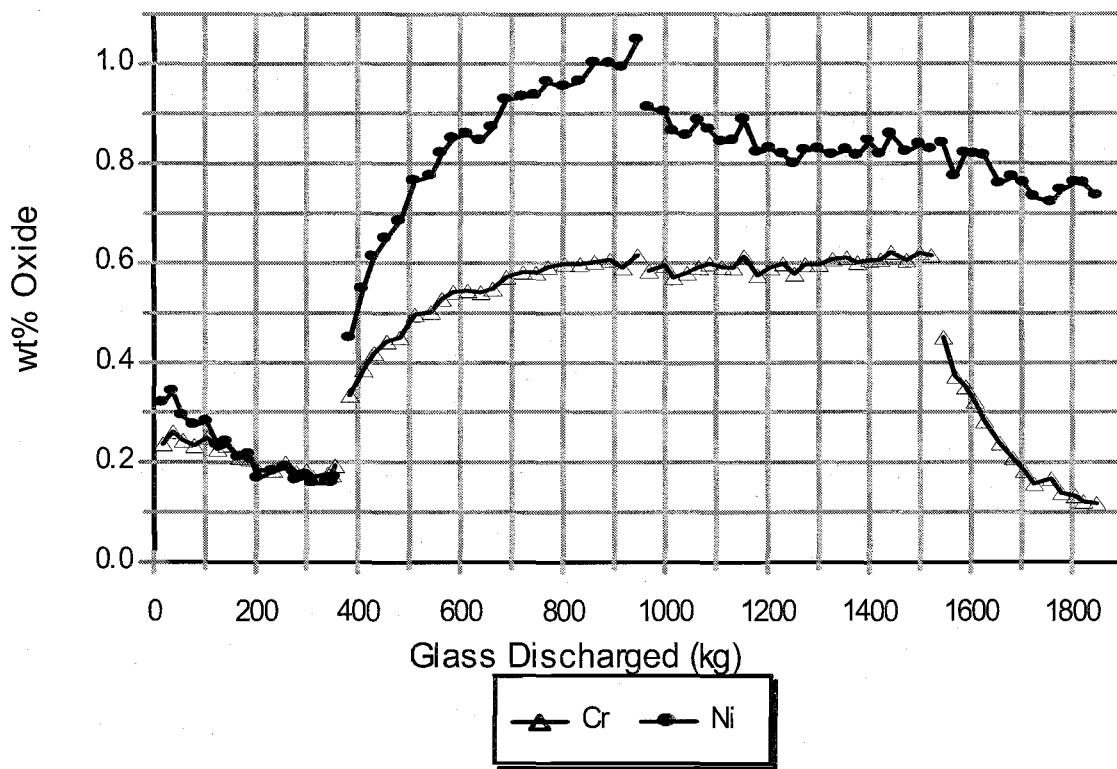




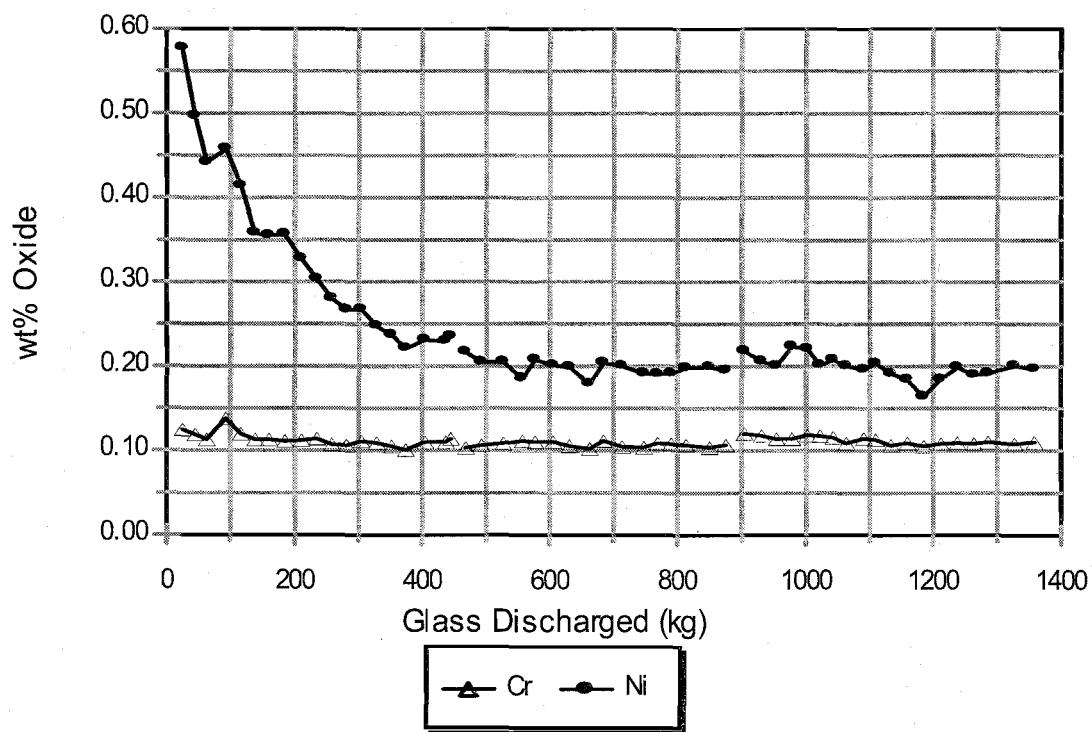

**Figure 10.b. Alumina, soda, and silica concentrations determined by XRF in glasses from Tests A, B and C.**







**Figure 11.b. Iron, manganese, and zirconium oxide concentrations determined by XRF in glasses from Tests A, B and C.**




**Figure 12.a. Select toxic metals concentrations determined by XRF in glasses from Tests W, X, Y and Z.**



**Figure 12.b. Select toxic metals concentrations determined by XRF in glasses from Tests A, B, and C.**



**Figure 13.a. Chromium and nickel oxide concentrations determined by XRF in glasses from Tests W, X, Y and Z.**



**Figure 13.b Chromium and nickel oxide concentrations determined by XRF in glasses from Tests A, B and C.**