

PROCESS KNOWLEDGE DATA GATHERING AND REPORTING IN SUPPORT OF DECOMMISSIONING

**Health Physics Society
Annual Meeting
West Palm Beach, Florida**

David A. King

Oak Ridge Associated Universities

June 27, 2011

Backdrop

- Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP).
- Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility.
- The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators.

What is PK?

- PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNL guidance) – similar to the MARSSIM historical site assessment.
 - What was the facility designed to do?
 - What types of operations were conducted at the facility?
 - Could these operations have contaminated the facility or surrounding environment?
 - What potential contaminants were used or stored at the facility?
 - Were there spills or releases?

Why is PK Important to Decommissioning?

- Worker safety:
 - The level of PPE can be set based on PK (e.g., is there potential for mercury vapor?).
 - Dangerous environments/conditions may be identified (e.g., were perchlorates were used in hoods?)
 - Special training requirements can be identified (e.g., beryllium awareness).

Why is PK Important to Decommissioning? (cont.)

- Characterization planning:
 - Identify potential contaminants and, thus, the target analytes for laboratory analysis.
 - Identify process systems and system configurations, whether the system should be sampled, and where the sample should be collected.
 - Identify areas with high potential for contamination for biased sampling.
- Address WAC (physical and analytical).
- Identify anomalous waste.

What Are Some Types of PK Data?

- Some types of PK data used to decommission ORNL and ETTP facilities include:
 - Design drawings.
 - Historical documents [e.g., *History of the Oak Ridge National Laboratory* by Thomas (1963) and *A Brief History of the Chemical Technical Division* (ORNL/M-2733)].
 - Historical photographs.
 - Radiological survey reports.

What Are Some Types of PK Data? (cont.)

- Facility-specific databases:
 - Spill history,
 - Waste Information Tracking System (WITS), and
 - Hazardous Materials Management Information System (HMMIS).
- Facility walkdown summary reports.
- Living memory data.

Facility Walkdowns

- Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions.
- For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following:
 - Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants,
 - Items with physical WAC restriction (e.g., large items, pipes, and concrete), and
 - Too “hot” for EMWMF.

Living Memory Interviews

- Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities.
- Interviews often led to more contact names and reports but also offered anecdotal accounts of releases, process-related operations, maintenance activities, and other relevant information not addressed in the written record.
- “Fun” part of PK data gathering. Often got not-so-useful information such as, “The operations manager was a jerk and we all hated him.”

Example PK Data - Timeline

- 1948 Constructed as the Solvent Column Pilot Plant (Bldg. 706-HB).
- 1952 Interim-23 process experimentation in progress (kilogram quantities of ^{233}U extracted from irradiated thorium).
- 1950s Used for chemical engineering studies of radiochemical processes involving evaporation, solvent extraction, and ion exchange.
- <1963 Facility was used to store empty mercury flasks and cleaned mercury from the resin columns in Bldg. 3592.
- 1975 Major decontamination effort completed including pouring a new 2-in slab over existing slab to affix radiological contamination.
- ~1980 The sol-gel technology development program operated out of Bldg. 3503 for coating nuclear fuel pellets with a metal oxide.
- ~1986 Building houses a program producing microspheres from depleted U.
- > 1986 Facility used for equipment and material storage (start date unknown).
- 2005 Majority of legacy materials removed.

Example PK Data - Waste Summary

Waste Description	Classification	Proposed Disposal Location	Amount*
Radiological-contaminated demolition debris (PCB remediation waste)	LLW	EMWMF	91,250 yd ³
Non radiological demolition debris	Construction/demolition waste	ORRILF	22 yd ³
PCB Oil	TSCA Waste	Commercial Vendor	3,600 gal
Used Oil (non-PCB)	Used Oil	Commercial Vendor	200 gal
PCB Ballasts/Capacitors	TSCA/PCB Remediation Waste	EMWMF	3,820 (no.)
Radiological PCB-Contaminated Equipment	TSCA LLW	EMWMF	850 yd ³
Lamps (bulbs, tubes, etc.)	Universal Waste	Commercial Vendor	7,200 (no.)
Batteries	Universal Waste	Commercial Vendor	550 (no.)
Mercury-containing equipment	Universal Waste	Commercial Vendor	70 (no.)
Contaminated wastewater from demolition activities	LLLW	LGWO	TBD
Radiological-contaminated ACM	ALLW	EMWMF	645 yd ³
Hazardous/Mixed Waste	MLLW	EnergySolutions	20 yd ³

*All volumes were initial project estimations. Final volumes are accurate and included in the waste profile document.

ACM = Asbestos-Containing Material

ALLW = asbestos low-level waste.

EMWMF = Environmental Management Waste Management Facility.

LGWO = Liquid and Gaseous Waste Operations.

LLLW = liquid low level waste.

LLW = low level waste.

MLLW = mixed low level waste.

ORRILF = Oak Ridge Reservation Industrial Landfill

PCB = polychlorinated biphenyl.

TBD = to be determined.

TSCA = Toxic Substances Control Act.

Example PK Data - Photographs

Conclusions

- PK data are used to indicate the presence or absence of contaminants.
- Multiple lines of investigation are necessary for characterization planning and to help determine which disposal facility is best suited for targeted wastes.
- The model used by ORAU assisted remediation contractors and EMWMF managers by identifying anomalous waste and items requiring special handling.

QUESTIONS?