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1 Introduction

The goal of this project was to develop and investigate the performance of reduced-physics
formulations of high energy charged particle (electrons, protons and heavier ions) transport
that are computationally more efficient than not only analog Monte Carlo methods but also
the established condensed history Monte Carlo technique. Charged particles interact with
matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation
loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic
collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and
angular deflection or range straggling of a primary particle. These collisions are charac-
terized by extremely short mean free paths (sub-microns) and highly peaked, near-singular
differential cross sections about forward directions and zero energy loss, with the situation
for protons and heavier ions more extreme than for electrons. For this reason, analog or true-
physics single-event Monte Carlo simulation, while possible in principle, is computationally
prohibitive for routine calculation of charged particle interaction phenomena.

The widely used alternative to analog simulation is the condensed history method [1]
where large numbers of collisions are effectively grouped together to create macroscopic
collisions. While this improves computational efficiency, the practical implementation of
this algorithm exacts a price, namely the sacrifice of correct transport mechanics, which
places inherent limitations on the method. In particular, the use of precomputed infinite
medium multiple scattering and multiple ionization theories to describe angular deflections
and energy-loss straggling at the end of macroscopic steps of prescribed lengths introduces
an irreducible systematic or deterministic error in addition to the statistical error associated
with the simulation. Moreover, the method breaks down in the vicinity of material inter-
faces where the precomputed distributions are not valid. The method is typically retrofitted
with various corrections that are difficult to generalize to realize systematic improvements in
accuracy. In this research, we have developed and demonstrated, in extensive numerical im-
plementations, a computationally efficient and accurate alternative to the condensed history
Monte Carlo method for energetic charged particles. The focus has been on developing an
improved method to handle extreme physics interactions associated with charged particles,
specifically highly peaked elastic nuclear and inelastic electronic scattering, but as a serendip-
itous side outcome we also developed and demonstrated an efficient multigroup method for
coupled proton-neutron transport using MCNPX with purely forward and forward-adjoint
approaches. In the latter, a novel forward-adjoint coupling was introduced and applied to
the challenging problem of secondary neutron dose resulting from interactions of high en-
ergy primary protons. The methodology and results for the multigroup approach have been
described in previous progress reports and publications and was not the primary focus of
this grant. In this report, we describe the methodology developed for handling extremely
peaked scattering and energy losses in Coulomb collisions and itl numerical implementation.
One highlight of this work was the implementation of a new energy-loss straggling method
directly in the MCNP code. The report concludes with a list of publications and invited
seminars resulting from this grant.
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2 Generalized Boltzmann Fokker-Planck Approach

A key feature of our algorithm is that it is optimal for implementation in a single-event
Monte Carlo simulation and is computationally considerably less costly than the intractable
analog single-event simulation. Unlike the condensed history employed in the ITS , EGS4,
MCNP/MCNPX, and GEANT production codes, our approach has rigorous transport theo-
retic foundations and hence does not suffer from the same limitations. We have been guided
in the development of our approach by the over-arching philosophy that any new method
should be:

• physically sound the underlying physics must reflect the analog processes

• mathematically robust it should retain the transport theoretic basis of the analog
formulation and hence will preserve the correct transport mechanics

• computationally efficient it should be characterized by longer mean free paths and less
peaked differential cross sections than analog

• accurate - it should be possible to incorporate physics model refinements without ne-
cessitating changes to algorithm

• systematic the methodology should allow accuracy to approach analog

Key to our approach is the idea of regularizing the near singular collision operators in the
linear Boltzmann equation for the space-energy-angle distribution function, that describe
the energy loss and scattering (angular deflection) interactions and which are the underlying
cause of the inefficiency in the analog simulation of these processes. In our method, the
analog problem is replaced with an approximate one, a pseudo-transport problem, which
preserves important projections of analog scattering and energy loss interaction physics and
approximates rather than neglects the higher order contributions. Hence our model is ap-
propriately described as a reduced-physics model.

By developing methods that enable this conservation principle to be systematically ap-
plied, the above delineated attributes can be realized in a robust algorithm. Significantly, by
shifting dependence of the method away from detailed prescriptions of the physical interac-
tions and emphasizing instead a finite set of projections of these processes, the regularization
procedure becomes particle independent. That is, computational efficiency and accuracy can
be realized for all charged particles interacting through Coloumb forces. Our approach is
based on systematic preservation of moments of the underlying differential cross sections
using discrete, continuous and hybrid models and the motivation for this resides in the dif-
ferential approximations to the collision operators made possible by the peaked cross sections.
In particular, we build on Fokker-Planck and Boltzmann Fokker-Planck approximations and
we accordingly refer to our new formulation as the Generalized Boltzmann Fokker-Planck or
GBFP method.
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3 Moment-Preserving Models

We consider an electron beam incident on a slab of material. The angular flux ψ(~r, ~Ω, E) of

electrons at spatial location ~r(x, y, z) traveling along direction ~Ω(µ, φ) with energy E satisfies
the linear transport equation,

~Ω ·∇ψ(~r, ~Ω, E) =

∫
∞

0

∫

4π

σs(~r, ~Ω ·~Ω′, E ′ → E)ψ(~r, ~Ω′, E ′)d~Ω′dE ′−σs(~r, E)ψ(~r, ~Ω, E), (1)

where σs(~r, ~Ω · ~Ω′, E ′ → E) is the differential scattering cross section and σs(~r, E) is the total
scattering cross section. We consider a monoenergetic pencil beam incident on the left face
along the z-axis with zero incidence on the right face,

ψ(x, y, 0, µ, φ, E) =
1

2π
δ(µ− 1) δ(E − E0) δ(x) δ(y), µ > 0, (2)

ψ(x, y, Z, µ, φ, E) = 0, µ < 0. (3)

In electron interactions with target atoms, elastic and inelastic interactions are treated
independently. Furthermore, we assume that elastic collisions occur without energy loss and
inelastic collisions occur without angular deflection. Under these conditions, the transport
equation becomes,

~Ω · ∇ψ(~r, ~Ω, E) =

∫

4π

σs,el(~r, ~Ω · ~Ω′, E)ψ(~r, ~Ω′, E)d~Ω′

+

∫
∞

0

σs,in(~r, E
′ → E)ψ(~r, ~Ω, E ′)dE ′

− [σs,el(~r, E) + σs,in(~r, E)]ψ(~r, ~Ω, E). (4)

where σs,el is the elastic scattering cross section and σs,in is the inelastic scattering cross
section. The elastic scattering differential cross section (DCS) is accurately described by
the Mott cross section at high energies and correspondingly by the Möller cross section for
inelastic interactions [2]. As mentioned previously, these differential cross sections are highly

peaked about the forward direction (~Ω · ~Ω′ ≡ µ0 = 1) and small energy-loss (E ′ − E = 0)
while the total scattering cross section is large (σs(~r, E) ≫ 1). The high frequency of electron
collisions with target atoms, coupled with miniscule changes in the electron state per collision,
is the underlying cause of the inefficiency of analog electron Monte Carlo simulations. In the
next section we describe our reduced transport model based on moment-preserving discrete
scattering representations, which is demonstrated in subsequent sections to be a practical
alternative to analog Monte Carlo calculations of electron dose and comparable to condensed
history methods in computational efficiency.

3.1 Angular Scattering

To introduce our approach to angular scattering, we define momentum transfer moments of
the elastic DCS according to

σn,el(~r, E) ≡ 2π

∫
1

−1

dµ0 (1 − µ0)
nσs,el(~r, µ0, E), n = 1, 2, . . . (5)
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Note that unlike the traditional Legendre moments, the momentum transfer moments σn,el

are all positive for a positive DCS, and for a sufficiently peaked DCS, they form a rapidly
decreasing sequence. Thus, in a sense (made more precise below) the σn,el provide a nat-
ural characterization of forward-peaked scattering, as the Legendre moments do for nearly
isotropic scattering. We also note that σ1,el is the familiar transport cross section.

The essence of our method is to replace σs,el(~r, µ0, E) by an approximate DCS, σ̃s,el(~r, µ0, E),
defined such that the associated momentum transfer moments σ̃n,el are identical to the ex-
act moments σn,el for n = 1, 2 . . .N , where N is arbitrary but finite. All higher moments
{σ̃n,el, n = N+1, N+2 . . .} are approximated in terms of these lower moments. The motiva-
tion and expectation is that by not rigorously preserving all momentum transfer moments we
are modeling a less singular scattering process. The consequence is that the reduced physics
should yield a longer mean free path (mfp) than the actual mfp as well as a less peaked
angular-scattering distribution. On the other hand, strictly preserving a number of low-
order moments should provide accuracy. This approach was motivated by the observation
that the Fokker-Planck approximation to the elastic scattering operator (i) only preserves
the first moment σ1,el yet is extensively used for pencil beams, forming the basis of the well-
known Fermi and Fermi-Eyges solutions, and (ii) constitutes the lowest order in a Generalized
Fokker-Planck (GFP) expansion whose coefficients depend on the σn,el, n ≥ 1 [3, 4, 5]. More-
over, Lewis theory [6] clearly demonstrates a direct correlation between preserving moments
of the DCS and the accuracy of the model as measured by space-angle moments of the infi-
nite medium solution. This suggests that increasingly more accurate physics can be captured
by preserving increasingly higher-order moments. In fact, preserving two moments of the
DCS, results in the preservation of all second-order (and first-order) space-angle moments
of the particle flux. However, it has been shown [4] that the GFP expansion is asymptotic,
being unstable to truncation orders beyond Fokker-Planck. Higher-order moments cannot,
therefore, be preserved by retaining only a finite number of terms in this expansion. An
alternative approach has been presented [5] where the GFP expansion was first renormalized
to yield a convergent series and then converted by resummation to an integral scattering
operator possessing a smoother scattering kernel. However, this alternative does not yield
an explicit, effective differential cross section. Rather, it gives the coefficients of a spherical
harmonics expansion of the cross section.

We adopt a conceptually simpler approach in which σ̃s,el is represented as a superposition
of discrete scattering angles,

σ̃s,el(~r, µ0, E) =
L∑

l=1

αl(~r, E)

2π
δ [µ0 − ξl(~r, E)] . (6)

The scattering amplitudes {αl, l = 1, 2 . . . L} and scattering cosines {ξl, l = 1, 2 . . . L}
are constrained to yield the exact first 2L momentum transfer moments {σ̃l,el = σl,el, l =
1, 2 . . . 2L} as given by Eq.(5). This condition yields a nonlinear algebraic system for the αl

and ξl that can be solved using Newton iteration. Sampling precalculated scattering angles
using Eq.(6) is almost trivial, which is an important consideration in the overall efficiency
of Monte Carlo simulations.

It should be noted that the approximation of angular scattering kernels by discrete an-
gle representations has been proposed and implemented by others previously. In the code
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MORSE [7], a discrete representation based on Gaussian quadrature was introduced that
exactly preserved the total scattering cross section, σ0,el. Sloan [8] and Morel [9] refined
the MORSE algorithm into an alternative method for solving Eq.(6) by employing Radau
quadrature. The method initially preserves the σ0,el moment, but then the straight-ahead di-
rection from the quadrature is discarded. The remaining directions and renormalized weights
provide an identical solution to Eq.(6) as solving by Newton iteration. Sloan’s method has
been observed to be robust for a wide range of physics (including the highly forward-peaked
elastic scattering of 100 MeV electrons in hydrogen) and L ≤ 8. An implementation of
Sloan’s algorithm with an associated Fokker-Planck approximation is described by Morel
et al. [9]. We omit the associated Fokker-Planck approximation in our implementation so
that higher-order moments may be exactly preserved. We also omit discussion of the pure
Fokker-Planck approximation as it was found to be expensive and in any case inaccurate for
pencil beam applications.

For L = 1, only the transport cross section σ1,el and the mean square momentum transfer
σ2,el are rigorously preserved, but for extremely forward-peaked scattering this may prove
sufficient. Notice, in this case, that if the limit ξ1 → 1 is taken while simultaneously enforcing
the requirement that the correct transport cross section be obtained, the Fokker-Planck
approximation is realized. Setting ξ1 close to unity then gives Morel’s discrete representation
of the Fokker-Planck approximation [9], which provides a practical method for simulating
Fokker-Planck scattering by Monte Carlo.

The mfp corresponding to L discrete directions is given by λ̃L =
(∑L

l=1
αl

)
−1

and can

be used as a measure of the potential speed-up over the analog case. For illustration, we
consider 1 MeV electrons incident on a gold target with elastic scattering described by the
screened Rutherford DCS [10]. The screening parameter at this energy is η = 4.88 × 10−5

which corresponds to a mean cosine of scattering µ̄0 = 0.99913 and a mfp λ = 3.38 × 10−6

cm. This yields λ̃1/λ = 257, λ̃2/λ = 91, and λ̃4/λ = 34, and indicates that considerable
reduction in the average number of collisions per history is realizable with the moment
preserving method.

3.2 Inelastic Energy-Loss

Inelastic energy-loss process and the elastic angular-scattering process share important char-
acteristics. In particular, the large total inelastic cross section and the high probability of
small energy transfers gives a GFP expansion in energy that is analogous to the angular
expansion of Leakeas and Larsen [5] and is unstable or divergent when truncated beyond
strictly Fokker-Planck. However, in the Fokker-Planck approximation, only the mean and
mean square energy loss per unit path length traveled are incorporated. The neglect of
higher order moments yields a symmetric near-Gaussian energy spectrum that is only accu-
rate for thick targets. It was further demonstrated that just as in the approach of Leakeas
and Larsen [5], the GFP expansion could be renormalized to yield a stable expansion to all
orders such that energy-loss moments up to any desired order were identical to the analog
values. This expansion was then reduced to an effective integral inelastic scattering operator
with an explicit energy-loss kernel that was easy to sample from. Numerical results showed
that preserving four energy-loss moments was sufficient to yield accurate energy spectra for

6



even very thin targets.
Here we further extend the analogy to elastic scattering and develop a discrete energy-

loss model for inelastic interactions also. We define the energy-loss moments of the inelastic
DCS by,

σn,in(~r, E) ≡

∫ E

0

dE ′ (E −E ′)nσs,in(~r, E → E ′), n = 1, 2, . . . (7)

We then approximate the inelastic DCS by a discrete energy-loss model,

σ̃s,in(~r, E ′) =

L∑

l=1

βl(~r, E)

2π
δ [E ′ − ζl(~r, E)] , (8)

where the amplitudes {βl, l = 1, 2 . . . L} and energy-losses {ζl, l = 1, 2 . . . L} are constrained
to yield the exact first 2L energy-loss moments {σ̃l,in = σl,in, l = 1, 2 . . . 2L}. All higher
moments {σ̃l,in, l = L + 1, L + 2 . . .} are then expressed in terms of these lower moments.
Thus, for L = 1 (i.e. a single discrete term) the correct stopping power and straggling
coefficient are obtained. It is important to note that unlike the Fokker-Planck approximation
for straggling, all higher energy-loss moments are extant in the discrete representation, albeit
approximately. Moreover, the discrete model yields a strictly downscatter representation of
energy loss, faithful to the analog process (the Fokker-Planck model approximates straggling
as a diffusion in energy and hence includes upscatter as well.) We conclude that the discrete
energy-loss model for L = 1 has potential accuracy exceeding that of the Fokker-Planck
approximation with the same stopping power and straggling coefficient.

The parameters {βl, ζl} in Eq.(8) are obtained by constructing an invertible linear map-
ping of the discrete energy-loss representation to a pseudo-elastic scattering representation
similar to Eq.(6). The procedure outlined by Sloan [8] is then used to compute the parame-
ters of the pseudo-process, and the inverse mapping gives {βl, ζl}.

Similar to the angular scattering approximation, the energy-loss mfp corresponding to L

discrete energy-losses is given by λ̃L =
(∑L

l=1
βl

)
−1

and can be used as a measure of the

potential speed-up over the analog case. Again, we consider 1 MeV electrons incident on
a gold target and inelastic scattering described by the Rutherford kernel [10]. The analog
cross section has a mfp λ = 5.84 × 10−4 cm. This yields λ̃1/λ = 14.7, λ̃2/λ = 6.1, and
λ̃4/λ = 2.8, and indicates that less speed-up is available by approximation of energy-loss than
by approximation of angular scattering. The energy-loss approximation can be expected to
have more impact on calculations in low-Z materials. For 1 MeV electrons incident on water,
the analog mfp is λ = 8.57×10−4 cm, and the ratio of mfps yields λ̃1/λ = 82.8, λ̃2/λ = 29.7,
and λ̃4/λ = 11.3.

4 Numerical Approach

The calculations presented are conducted with simplified physics both for simplicity of im-
plementation and to isolate the effects of the algorithms being tested. No secondary photons
or electrons are simulated. Angular scattering is modeled using the screened Rutherford
scattering model [10]. The discrete approximation requires only cross section moments, so
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the more accurate Mott cross sections [2] can be simulated also, but analog benchmarks are
easier to obtain for the screened Rutherford case. The angular deflection of the primary
electron due to inelastic scattering is not simulated. A common approximation is to include
the effect in the angular scattering cross section moments without correlation to energy loss
[10], and this could easily be included in our approach.

Inelastic interactions are also represented using a Rutherford energy loss model [10]. The
moments of the more accurate Möller cross section [2] can easily be used in the discrete
model, but analog benchmarks are easier to obtain for the Rutherford scattering model.

The energy dependence of the simulation is accomplished by defining all physics parame-
ters on an energy grid. The grid is logarithmically distributed with 8 values for every halving
of energy. The physical parameters used by the code are simply the angular-scattering mo-
ments and the energy-loss moments. The angular-scattering moments are computed from
Eq.(5) with the screened Rutherford scattering cross section given by:

σs,el(~r, µ0, E) =
σel,0

2π

2η (1 + η)

(1 + 2η − µ0)
2
, (9)

where η is the screening parameter and σel,0 is the total elastic scattering cross section. The
energy-loss moments are computed from Eq.(7) with the Rutherford cross section given by:

σs,in(~r, E → E ′) =

{
ZρNA

A

2πR2

0
mec2

β2Q2 , Qmin ≤ Q ≤ E
2

0, otherwise
, (10)

where

β2 =
τ(τ + 2)

(τ + 1)2
, (11)

τ =
E

mec2
, (12)

Q = (E − E ′) is the energy loss, NA is Avogadro’s number, R0 is the classical electron
radius, me is the electron rest mass, c is the speed of light in vacuum, ρ is the material
density, A is the average atomic weight of the material, and Z is the average atomic number
of the material. For our calculations Qmin is chosen to be the mean excitation energy of
the material. While this is a somewhat arbitrary choice, it gives reasonable results. A more
accurate choice could be obtained by matching appropriate low-order energy-loss moments
to experimental values, but this is beyond the scope of the present investigation. In the
calculations discussed here, the cutoff energy is set at one percent of the source energy or at
two times the mean excitation energy, whichever is greater.

In the continuous slowing down (CSD) approximation, only the first moment of energy-
loss, the mean energy-loss per unit distance, is retained. That is, all higher order energy-loss
moments are neglected, so that in the absence of elastic scattering an electron will always
lose the same amount of energy in travelling a fixed distance. In implementation, we assume
that the mean energy-loss is piecewise constant based on the grid point nearest in energy.

Our implementation of the condensed history method is based on sampling from Goudsmit-
Saunderson distributions divided into 33 non-uniform angular bins. The method we label
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as “ITS-like Condensed History” (or “ITS-like CH”) applies the multiple-scattering angular
deflection of the particle at the end of each step, i.e. the end of the pathlength for which
the angular deflection has been precomputed. The algorithm differs from the strict im-
plementation in the ITS codes in that: our angular distribution is based on the simpler
screened Rutherford scattering and ignores angular deflection due to inelastic scattering; we
sample from the precomputed angular deflection distribution nearest in energy to the en-
ergy of the particle when the angular deflection is applied; we have implemented a simpler
material boundary crossing algorithm; and we use the CSD approximation. These modifi-
cations simplify the implementation and seem reasonable for arriving at a consistent basis
for comparison with other methods. The same simplifications apply to the “Random Hinge
Condensed History” (or “Random Hinge CH”) algorithm. It differs from the ITS-like algo-
rithm only in that the angular deflection of the particle is applied at a uniformly sampled
random position within each step.

The discrete angle and discrete energy scattering parameters (αl, ξl, βl, and ζl) are pre-
calculated on the energy grid. The electron transport code uses these parameters based on
the nearest grid point to the energy of the particle. This energy grid has been found to be
sufficiently refined to yield accurate results. Efficiency improvements may be achieved by
coarsening this grid, possibly while using a more sophicated interpolation method. For the
condensed history schemes, the angular distributions of the nearest grid point are used. The
Goudsmit-Saunderson angular distributions are stored in 33 angular bins as a cumulative
probability function for ease of sampling during the calculation. For analog calculations,
parameters used in sampling scattering directions are also precomputed to make the Monte
Carlo calculation computationally efficient. While most of the results shown are one dimen-
sional, Monte Carlo tracking is performed in all three spatial dimensions for all methods.

While the computer code in which these methods have been implemented has been writ-
ten to be efficient for all methods and to provide a fair efficiency comparison between the
methods, it is important to note that independent efficiency improvements may be possible
in the algorithms employed for each of the methods. Some variation in relative runtimes
could also be expected on different computer architectures. Runtime comparisons should be
considered approximate due to these uncertainties.

5 Depth-Dose Profiles

In this section we present one-dimensional results from three sets of calculations with two
types of problems. The results are based on calculating the transversely-integrated dose in
layers within the slabs of materials. We examine the angular approximations (with CSD
in energy), the energy approximations (with analog angular-scattering), and the combined
discrete angular-scattering and energy-loss approximations.

For each of these three sets of calculations, we first illustrate that this method can
generate accurate results in a regime of relatively isotropic scattering. This is a regime in
which traditional condensed history transport methods have some difficulty. Specifically, we
simulate 250 keV electrons incident on a 0.008 cm thick slab of gold.

Next, we illustrate that this method can generate accurate results in a regime of highly
forward-peaked scattering by considering 20 MeV electrons incident on a 30 cm thick slab

9



of water. This is a regime in which traditional condensed history transport methods per-
form quite well. It is also a regime in which energy-losltiple-scattering approximations of
condensed history algorithms. All of the calculations in this section use continuous slowing
down (CSD) in energy, so the effects of the angular approximations may be isolated. Within
this section the term “Analog” refers to the analog simulation of angular scattering and
CSD in energy. These analog results are the benchmarks against which other calculations
are compared for accuracy.

The transversely-integrated dose for 250 keV electrons incident on gold is shown in Fig. 1.
Only results that have observable differences from the analog results are shown here. The
lower panel of the figure shows the statistical uncertainty of the analog results as a percent
of the dose. Note that at large depths the dose levels are not observable on a linear scale
and have large statistical uncertainties. The relative error of the methods as compared
with the analog benchmark is shown in Fig. ??. The lower panel of the figure shows the
statistical uncertainty of the relative error of the 4 Discrete Angles results in the same unitless
dimension. At depths beyond 0.005 cm, the statistical uncertainty is large enough to obscure
any real differences in the dose values.

In these and following figures, the statistical uncertainty is plotted for only one of the
results in each figure, so as to improve the clarity of the figure. The uncertainties of other
results were observed to have approximately the same magnitudes and to exhibit the same
trends as a function of depth. This is almost always the case, with a single exception among
our results. Dose calculations with CSD in energy are found to have different statistical
uncertainties than results using other energy-loss approximations. This difference can be
observed by comparing the statistical uncertainty in the plots of angular-scattering approx-
imations in this section (all using CSD) and the plots of energy-loss approximations in the
following section (where the statistical uncertainty plots are not based on CSD).

In both Figs. 1 and ?? the inaccuracies of the “ITS-like CH” approximation are clearly
evident. The ITS-like approximation, by imposing the angular deflection at the end of
each condensed history step, assumes that the angular deflection of the particle is generally
very forward-peaked. These results demonstrate that the forward-peaked assumption is
inadequate at low electron energies in high-Z materials. It underestimates the dose at shallow
depths and over-estimates the dose through the remainder of the dose profile. In the plot of
relative error, we observe that the 1 Discrete Angle approximation oscillates mildly about
the analog results at shallow depths. Small but statistically-significant differences of the 2
Discrete Angles and Random Hinge approximations can be seen also. However, both are
generally within 1 percent of the analog results, which is likely to be deemed a practically-
insignificant difference given the uncertainties in realistic cross section models.

The transversely-integrated dose for 20 MeV electrons incident on water is shown in
Fig. ??, and the relative error of the methods is shown in Fig. 2. Only the 1 Discrete Angle
approximation has visible inaccuracies in this problem, but the relative error remains less
than 4% except at large depths. The 2 Discrete Angles approximation can be observed to
oscillate about the analog result with errors of less than 1% except at large depths.

While we must be primarily concerned with obtaining accurate results, a secondary con-
cern of great importance is the speed with which the calculations can be performed. As
previously mentioned there are many sources of variation in the measure of computational
speed, but it is informative to state the speed-up that we observed relative to analog cal-
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culations. These speed-ups are given in Table 1. We include the speed-ups for the results
we have presented, as well as for two intermediate problems. Not surprisingly, the speed-up
of the discrete scattering-angle approximations scales roughly by the mean free paths as
suggested in Section 3.1. Note that the speed-ups given here for 1 MeV electrons on gold
are not as large as predicted from the cross sections, because these speed-ups are based on
energy-dependent calculations and the speed-up decreases with decreasing electron energy.
The 1 Discrete Angle approximation gives by far the largest speed-up in all cases. Thus,
we note that even this approximation that is generally less accurate may nevertheless be
deemed to be accurate enough for fast scoping calculations.

The condensed history methods, using step-sizes based on the ITS implementation of
the method, gives speed-ups that are generally on the same order of magnitude as the 2
Discrete Angles approximation. Some implementations of the condensed history method
allow variation of the step-size, thus varying the speed of the calculations. Altering the step-
size could be expected to have some effect on the accuracy of the method as well. We have
not performed such an analysis but merely note that the step-sizes in the ITS implementation
have been extensively studied and carefully selected.
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mations and the associated statistical uncertainty.
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Figure 4: The relative error (in dose from 250 keV electrons on gold) of approx-
imate energy-loss models compared with analog Monte Carlo results and the
associated statistical uncertainty.
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Figure 6: The relative error (in dose from 20 MeV electrons on water) of approx-
imate energy-loss models compared with analog Monte Carlo results and the
associated statistical uncertainty.

Table 1: Speed-up of Approximate Angular-Scattering Methods Over Analog
Monte Carlo with CSD in Energy.

Scattering-Angle Speed-up Factor

Approximation 20 MeV 1 MeV 1 MeV 250 keV
on H2O on H2O on Au on Au

1 Angle 1973.4 143.0 62.7 17.6

2 Angles 947.2 65.1 26.2 8.5

4 Angles 392.0 28.5 11.8 4.6

ITS-like CH 555.6 47.4 34.1 8.8

Random Hinge CH 493.9 42.6 30.8 8.1
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6 Implementation of Moment-Preserving Straggling Model

in MCNP

We now describe and demonstrate an improved condensed history (CH) [1] electron energy-
loss straggling model by implementing it directly in MCNP. In most CH implementations [11,
15, 14], electron energy losses are sampled from the Landau distribution [1, 17] which is an
approximate solution to the transport equation, ignoring deflection and valid for thin slabs.
Although the model is accurate under such conditions, it is difficult to refine for enhanced
accuracy and to apply under more general circumstances. Here we propose a different method
for accurately computing the straggling distribution, based on simulating the electron energy
loss through each step by single event Monte Carlo in conjunction with a simplified energy-
loss cross section. This new straggling model and algorithm has been implemented and
tested in MCNP and shown to be potentially more accurate than the traditional method
reliant on sampling the Landau distribution. In the ensuing we present the methodology
along with demonstrative numerical results.

6.1 Electron Energy-Loss Straggling

In the CH method, straggling distributions are ideally given by solutions to the following
transport equation without deflection,

∂ψ(s, E)

∂s
=

∫ Qmax

Qmin

Σe−(E +Q,Q)ψ(s, E +Q) dQ− Σe−(E)ψ(s, E), (13)

where ψ(s, E) is the flux as a function of pathlength s and energy E, Σe−(E) is the total cross
section, Σe−(E +Q,Q) is the differential cross section for energy loss Q in a collision which
is often approximated by the Rutherford cross section but is more accurately given by the
Moller formula [10]. The maximum energy transfer possible Qmax is given by the collision
kinematics, accounting for the indistinguishability of incident and recoiling electrons [?].
The minimum energy Qmin is set equal to the mean ionization energy of the target atom so
that our investigations are restricted to hard collisions only. The incorporation of mean and
mean-square energy losses associated with soft (sub-ionization threshold) collisions is quite
straightforward in our method and depends only on the availability of relevant models or
data for these moments.

The Landau distribution [17] represents a solution to Eq.(13) subject to two important
approximations. First, the mean free path of the electron is held constant throughout the
step, amounting to fixing E at its initial value, and second, Qmax is allowed to become
unbounded. Both approximations were introduced to facilitate analytic solution of Eq.(13)
using a Laplace transform in the energy variable. The subsequent inverse transform, while
not explicitly possible, was simplified enough to be numerically evaluated and stored for
sampling. The first approximation requires the mean energy loss to be small compared to
the incident electron energy, while the second is justified on the grounds that the differential
cross section for large energy transfers varies as ∼ 1/Q2 and hence relaxing the upper bound
should not measurably affect the result. While the former approximation is reasonable
for sufficiently thin layers or small step sizes, the second, however, results in the Landau
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distribution yielding an unbounded mean energy loss. This then necessitates the application
of an artificial cut-off in the spectrum so as to keep the mean energy loss finite. We next
briefly describe our alternative approach which does not require the above approximations.

6.2 Moment Preserving Cross Sections

Key to our approach is the accurate and inexpensive solution of the straggling equation given
by Eq.(13) over a step length. This is clearly not feasible when the true or analog differential
cross section is employed but we have already demonstrated that modeled differential cross
sections that preserve a finite number of energy-loss moments are capable of yielding accurate
representations of energy spectra and dose. We recall that the energy-loss moments of the
analog cross section are defined by,

Qn =

∫ Qmax

Qmin

dQQnΣe−(E,Q), n = 1, 2 . . . . (14)

No attempt is made to preserve the true mean free path but it has been demonstrated that
if lower order moments of the true cross section, such as the mean and mean-square en-
ergy losses which capture the bulk of the dominating small energy transfers, are rigorously
preserved while higher order moments, describing less frequent larger energy transfers, are
reasonably accurately approximated, the resulting modeled cross section tends to be con-
siderably smoother and the mean free path considerably longer [18, 16, 19]. This greatly
facilitates the numerical solution of Eq.(13) by any method and by Monte Carlo in particular,
as we demonstrate below.

Clearly, there is no unique method for constructing moment-preserving approximations
to the analog cross section, but we have identified two formulations that work extremely
well. In one, we use a cross section representation that preserves a preset number of energy-
loss moments through a superpostion of discrete energy losses. While a purely discrete cross
section representation is ideal for sampling energy losses in Monte Carlo, not surprisingly dis-
crete artifacts arise and, indeed, can dominate the straggling distribution. To mitigate these
artifacts, we supplement the discrete representation with a continuous-in-energy component
in our second approach, to create a hybrid discrete-continuous cross section. Specifically, we
use the exact Möller differential cross section to describe large energy transfer collisions and
a discrete component to ensure lower moments are preserved. An interpolating parameter
is introduced to connect the two components. The following sections describe, in detail, the
purely discrete and hybrid energy-loss models.

6.2.1 Purely Discrete Energy-Loss Model

The purely discrete scattering distribution was originally used to approximate elastic scat-
tering. In this setting, the approximate differential cross section can be represented as a
superposition of discrete scattering angles as

Σ∗

el(E, µ0) =
L∑

l=1

γl(E)

2π
δ[µ0 − ξl(E)], (15)
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where Σel(E, µ0) is the approximate elastic scattering cross section for a particle with inci-
dent scattering cosine µ0, and incident energy E. In Eq.(15), ξl are the discrete scattering
cosines with their corresponding amplitudes γl, for l = 1, 2 . . . L. The scattering angles and
amplitudes are constrained to exactly yield the first 2L momentum transfer moments of the
analog differential elastic scattering cross section, given by

Σn,el,mom(E) = 2π

∫
1

−1

dµ0(1 − µ0)
nΣel(E, µ0), n = 1, 2 . . . . (16)

Due to the similarities in the cross sections (i.e. steep cross sections for decreasing energies
and steep cross sections for small angle scatters), it is possible to extend the idea of a
discrete distribution to represent the continuous angular distribution to a discrete energy-
loss distribution. With this we can represent the differential energy-loss cross section as a
superposition of discrete energy-losses,

Σ∗

e−(E,Q) =

L∑

l=1

αlδ[Q−Ql]. (17)

In Eq.(17), we have Ql discrete energy losses and the corresponding weights αl, for l =
1, 2 . . . L. As with the discrete angular distribution, these discrete energy-losses and weights
give 2L free parameters with which we can preserve exactly 2L energy-loss moments. The
advantage of this approximate cross section is that we now have a systematic method of
preserving energy-loss moments to a desired order. For every discrete energy-loss we add to
the distribution, we preserve two additional energy-loss moments.

Preserving the moments requires that we set the energy-loss moments of Eq.(17) to the
exact energy-loss moments. For example, if we use L = 1 so that we preserve the first two
energy loss moments, we form the following non-linear system of algebraic equations,

Q1 = α1Q1,

Q2 = α1Q
2

1, (18)

where Q1 and Q2 are the exact moments of the Möller differential energy-loss cross section.
Using substitution, the system can be solved for α1 and Q1 in terms of Q1 and Q2,

Q1 =
Q2

Q1

, (19)

α1 =
Q2

1

Q2

. (20)

Because we set the first and second moments of Eq.(17) to the exact moments of the appro-
priate energy-loss distribution, we are exactly preserving the first two energy-loss moments
of the total cross section. However, by only preserving these two low order moments, we are
essentially approximating the total cross section and all higher order moments by Q1 and
Q2.
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6.2.2 Higher Order Approximations

For higher order approximations (i.e., L > 1), there is no simple analytic solution for the
non-linear system of equations. It is possible that one could solve the system using a New-
ton iteration scheme, but convergence is observed to be very slow. Sloan [8] reworked an
algorithm in the code MORSE [7] to calculate discrete angles and corresponding weights
using a Radau quadrature. The original MORSE implementation used a gauss quadrature
to produce angles and weights, preserving the Legendre moments of the angular scatter-
ing distribution. The refined method uses the Legendre coefficients, given by the Legendre
moments of the elastic cross section,

Σl,el,leg(E) = 2π

∫
1

−1

dµ0Pl(µ0)Σel(E, µ0), l = 1, 2 . . . , (21)

where Pl(µ0) are the Legendre polynomials of µ0. The Legendre coefficients are given by,

fl =
Σl+1,el,leg

Σ0,el,leg

, l = 0, 1, 2 . . . . (22)

Sloan’s revision to the MORSE algorithm uses the calculated Legendre coefficients and
first calculates Gauss moments, and using differences between successive Gauss moments,
Radau moments are generated. The algorithm preserves the total cross section and 2L
moments in L + 1 angles, where the forward angle, µ0 = 1, is always preserved. Using the
Radau quadrature solution, the distribution can now be represented as

Σ∗

el(E, µ0) =
γ0

2π
δ[µ0 − 1] +

L∑

l=1

γl(E)

2π
δ[µ0 − ξl(E)], l = 1, 2 . . . , (23)

where the forward direction µ0 = 1 represents a collision in which no scattering occurs at
all. Knowing this we can essentially eliminate the delta function for the forward direction
from Eq.(23), to get

Σ∗

el(E, µ0) =

L∑

l=1

γl(E)

2π
δ[µ0 − ξl(E)], (24)

and we can now calculate the corresponding total cross section as

Σ∗

el(E) =

( L∑

l=1

γl

)
− γ0, (25)

where Σ∗

el(E) is now reduced by the weight of the forward direction, and thus gives a reduction
in the total cross section and an increase in the mean free path. In other words, the use of
the forward angle has preserved the higher order moments of the distribution, and yielded a
system with a cross section that is smaller in magnitude and less forward peaked than the
analog cross section.
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6.2.3 Linear Mapping from Energy to Angle

The underlying similarities between elastic and inelastic scattering cross sections lead to
using the algorithm developed by Sloan as a method to solve for Ql and αl from Eq.(17). As
mentioned previously, this algorithm uses the Legendre coefficients of the elastic scattering
differential cross section.

Given an energy-loss cross section (i.e., the Möller), we wish to map the cross section

Σe−(E,Q), 0 < Q < Qmax, to a pseudo-scattering cross section Σ̃(E, µ0), for −1 < µ0 < 1.

Here, µ0 is the directional cosine of the pseudo-scattering angle, and we constrain Σ̃(E, µ0)
so that the momentum transfer moments, Σl,el,mom, or the Legendre moments, Σl,el,leg can
be related directly to the energy-loss moments (Eq.(14)). This constraint is achieved by
assuming a one-to-one relationship between µ0 and Q, so that we have

2πΣ̃(E, µ0)dµ0 = Σe−(E,Q)dQ. (26)

If we further assume that we have a known invertible mapping, i.e.,

Q = T (µ0), (27)

µ0 = T−1(Q), (28)

we can obtain an explicit pseudo-scattering cross section from using the energy-loss cross
section, given by

Σ̃(E, µ0) =
1

2π
Σ[T (µ0)]

∣∣∣∣
dT

dµ0

∣∣∣∣ . (29)

Because we have assumed a one-to-one relationship, we can form the linear mapping of
the form

Q = T (µ0) = a + bµ0, (30)

where a and b are selected such that T (1) = 0 and T (−1) = Qmax, i.e., a forward scatter
corresponds to zero energy-loss and a backscatter corresponds with a maximum energy-loss.
Using these conditions, we find

0 = a + b, (31)

Qmax = a− b, (32)

yielding the following

a =
Qmax

2
, (33)

b = −
Qmax

2
. (34)

Using the results for a and b, we now have an explicit mapping

Q = T (µ0) =
Qmax

2
(1 − µ0), (35)

and it’s inverse

µ0 = T−1(Q) = 1 −
2Q

Qmax

. (36)
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In the case that the cross section for Q < Qmin is not defined, we set Σ(E,Q) = 0 for
0 ≤ Q < Qmin, giving us a cutoff value for µ0 of

µcut = 1 −
2Qmin

Qmax

, (37)

in turn giving an analogous condition on the pseudo-scattering cross of Σ̃(E, µ0) = 0 for
−1 ≤ µ0 < µcut.

With these relationships, we can now directly calculate either the Legendre or momentum-
transfer moments of the pseudo-scattering cross section directly, and obtain the Legendre
coefficients necessary for refined MORSE algorithm to create pseudo-scattering angles and
their corresponding weights.

We also present an alternative method for finding the Legendre coefficients using a direct
relationship between the energy-loss moments of the inelastic scattering cross section and the
momentum transfer moments of the pseudo-scattering cross section (using the linear mapping
from energy to angle). With the momentum transfer moments of the pseudo-scattering cross
section, we can form a direct relationship between the momentum transfer moments and the
energy loss moments. Manipulating Eq.(35) we obtain the following relationship between Q
and (1 − µ0)

1 − µ0 =
2Q

Qmax

. (38)

Using Eq.(38) in Eq.(16), we can now represent the momentum transfer moments directly
in terms of the energy-loss moments:

Σ̃l,el,mom =

(
2

Qmax

)l ∫ Qmax

Qmin

QlΣe−(E,Q), (39)

where we can see that the integral in Eq.(39) is exactly equivalent to Eq.(14). The direct
relationship between the energy-loss moments and the momentum transfer moments is then
given by

Σ̃l,el,mom(E) =

(
2

Qmax

)l

Ql, (40)

where Ql are the energy-loss moments. To obtain the Legendre coefficients, however, we
must now relate the momentum transfer moments to the Legendre moments. To do this, we
first perform a Taylor series expansion of P (µ0) about (1 − µ0), which is shown as

Pl(µ0) = Pl(1 − (1 − µ0)) =
l∑

n=0

cn
(−1)n

n!
(1 − µ0)

n, (41)

where cn are dependent on the Legendre polynomials [?], and given as

cln =
dn

dµ0
nPl(µ0)

∣∣∣∣
µ0=1

. (42)
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The Taylor series expansion in Eq.(41) truncates at n = l due to the fact that Pl is a
polynomial of degree l and only has a maximum of l nonzero derivatives. The recursion
relationship for cln [?] is given by

cln =
1

2nn!

n−1∏

i=0

[
l(l + 1) − i(i+ 1)

]
. (43)

Using the pseudo-scattering cross section and Eq.(41) in Eq.(21), we obtain

Σ̃l,el,leg(E) =
l∑

n=0

cln2π

∫
1

−1

dµ0(1 − µ0)
nΣ̃(E, µ0), (44)

where the integral on the right hand side of the equation is equivalent to the momentum
transfer moments given by Eq.(16), so we can now represent the Legendre moments of the
pseudo-scattering cross section in terms of the momentum transfer cross section:

Σ̃l,el,leg(E) =
l∑

n=0

clnΣ̃n,el,mom(E). (45)

With Eq.(40), we now can represent the Legendre moments in terms of the exact energy-loss
moments (Qn) of the appropriate differential energy-loss cross section as

Σ̃l,el,leg(E) =

l∑

n=0

cln

(
2

Qmax

)n

Qn. (46)

We can further simplify Σ̃l,el,leg(E), due to the fact that for all n at l = 0 we have c0n = 1,
and for all n = 0 for l = 1, 2 . . ., cl0 = 0, we can write Eq.(46) in terms of the reduced total
cross section, given by

Σ̃l,el,leg(E) = Q0 +

l∑

n=1

cln

(
2

Qmax

)n

Qn (47)

Using the refined scattering algorithm from MORSE, the discrete scattering angles and
their corresponding weights can now be calculated. From these discrete angles we can use the
prescribed mapping (i.e., Eq.(30)) to map from the pseudo-scattering angle back to energy to
obtain our discrete energies, Ql. These discrete energies will be comprised of Q0 = Qmin, and
Ql for l = 1, 2 . . . L, preserving 2L moments of the energy-loss cross section. The weights,

γl, are obtained from the original relationship for Σ̃(E, µ0) in Eq.(29). Using our discrete
cross sections for energy-loss (Eq.(17)) and angle (Eq.(15)) in Eq.(29), we find that αl = γl,
for all l.

It is important to note that with Eq.(46), it is no longer necessary to have an explicit
differential energy-loss cross section. Although this feature of the linear mapping is not
discussed in this paper, if the energy-loss moments are known (either experimentally or
empirically derived energy-loss moments) it would be possible to calculate the Legendre
coefficients necessary to generate a discrete energy-loss distribution.
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6.2.4 Hybrid Discrete-Continuous Energy-Loss Model

The motivating factor with this model completely lies with the fact that high energy-loss
collisions only occur a small fraction of time compared to low energy-loss collisions. If we
represent the limiting factor of the distribution (i.e., low energy-loss collisions) by an efficient
distribution (i.e., a discrete distribution) and represent the large energy-losses exactly, we can
effectively smooth any artifacts caused by the discrete distribution. Discrete collisions can
be smoothed if there are large numbers of collisions that occur before the quantity of interest
is calculated (i.e., energy-loss spectra or dose). With energy-loss spectra, especially for thin
slabs, there are large numbers of small energy-loss collisions, but for the larger energy-loss
collisions there are not enough collisions that could smooth a purely discrete distribution.
If we represent only the small energy-losses by the discrete energy-loss distribution, it is
possible that the large number of collisions of these small energy-loss will smooth out the
discrete distribution in this portion of energy-loss spectra. In addition, representing the
larger energy losses by the analog cross section will of course yield exact results for higher
energy transfers.

The decomposition of the distribution, so that we use a discrete cross section to represent
the low energy losses by a discrete distribution and the high energy losses by the continuous
analog distribution, is performed by creating a cutoff or interpolating parameter, Q∗. With
Q∗ we now have our hybrid cross section, given by

Σe−(E,Q)dQ =

{
Σ∗

e−(E,Q)dQ , Qmin ≤ Q ≤ Q∗

Σe−(E,Q)dQ , Q∗ < Q ≤ Qmax
(48)

It is highly desirable that the Q∗ is chosen so that it not only represents enough of
the low energy-losses so that the total mean free path from the hybrid total cross section
will be reduced significantly, but still retain enough of the high energy-loss portion of the
cross section so that there are no discrete artifacts due to the discrete distribution. Here
we propose a method of determining Q∗, such that we preserve the mean free path of the
distribution for Q∗ ≤ Q ≤ Qmax. This gives us the following equation from which we can
solve for Q∗,

1

λ
=

∫ Qmax

Q∗

Σe−(E,Q)dQ, (49)

where λ is the mean free path of the high energy-loss portion of the distribution which can
be represented in terms of the total energy-loss cross section,

Σe−(E) =
1

λ
. (50)

From Eq.(49), we can now choose an arbitrary value for the mean free path, and in essence
“dial” the mean free path. This is a very attractive feature of our hybrid method, as the
mean free path of our distribution for Q > Q∗ will determine how much of the distribution
will be represented by the discrete distribution. The arbitrary choice does pose a difficulty,
in that we must choose the total cross section for Q > Q∗ so that it is large enough so that
it will represent enough large energy-loss collisions exactly in turn removing any discrete
artifacts from the energy-loss distribution, and also make sure that the total cross section is
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small enough that we significantly reduce the total cross section of the entire distribution. It
is also important to note that because we have the freedom of choosing the mean free path
of the continuous portion of the cross section, as Q∗ approaches Qmin, the total mean free
path of the entire distribution approaches the analog mean free path.

To provide a systematic method in which we can calculate Q∗, we preserve the mean free
path for Q > Q∗ as one condensed history “step size”. Preserving the mean free path as a
step size now gives us the following relationship for Q∗,

1

λCH

=

∫ Qmax

Q∗

Σe−(E,Q)dQ, (51)

where λCH is the condensed history step size. Using the Möller differential cross section we
can now calculate Q∗.

6.3 Implementation in MCNP

We have implemented our new straggling model in MCNP using the following algorithm
that avoids the need for a precomputed spectrum. The electron is transported through the
step using a single event Monte Carlo simulation based on the moment-preserving model
cross sections described above, and the exiting energy is taken to be the incident energy
for the next step. This is done for each history for successive steps until the electron is
terminated. Since our approach solves the exact transport equation (without deflection),
the exiting energy represents a valid sample from the exact energy distribution at the end of
the step. That is, the statistically converged (with respect to the number of electron histories)
straggling distribution obtained using this method constitutes a solution of Eq.(13) with the
approximate cross section. Although not as fast as sampling a precomputed distribution,
the use of smooth cross sections with associated mean free paths that are long compared to
analog but sufficiently short compared to a step size, ensures that the Monte Carlo solution
does not incur an excessive additional computational cost.

In our modification of MCNP, an option in the MCNP input deck allows for the use of
either the Landau straggling model or the above moment-preserving model thereby facili-
tating a direct comparison of the two approaches. We note that for these comparisons to be
meaningful it is necessary to ensure that the sole free parameter in the Landau distribution,
namely the mean energy loss, or stopping power, is identical to that used in the new model.
In generating numerical results, we have used the stopping power from the Möller cross sec-
tion in both implementations. We have also implemented a third option, namely the solution
of the analog problem using the same single event Monte Carlo logic as for the modeled cross
section. This provides a means of benchmarking the two approximate straggling methods
as well as a measure of computational efficiency realized with these methods. Finally, we
mention that the angular deflections are described using the existing Goudsmidt-Saunderson
multiple scattering model in MCNP for each of the three energy straggling options described
above.
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7 Numerical Results and Discussion

In this section we present illustrative numerical results for energy spectra and dose dis-
tributions, comparing predications from the existing straggling model in MCNP and our
new approach against analog results. Figure 7 displays the transmitted energy spectra for
a 10 MeV electron beam incident on a 0.68 cm slab of water, equivalent to a single step.
While the purely discrete model shows the anticipated artifacts (heightened by virtue of
the extremely thin target layer), the accuracy of the hybrid model, on the other hand, is
outstanding. The Landau straggling distribution is accurate over the higher energy part of
the spectrum but displays a prolonged tail, the well known artifact resulting from the preset
cut-off designed to make the mean energy loss finite.

Table 2 shows radial and axial leakages, as well as cpu times, from a cylinder of radius
0.5 cm and height 1.5 cm for a 10 MeV beam of electrons incident on axis. The accuracy of all
models is exceptional for the radial and transmitted leakages, but particularly noteworthy
is that a very low order purely discrete model suffices to also give very accurate results.
While the same cannot be said for the backscattered or reflected current the results are
nevertheless very satisfying. All problems were run on the same single processor (3GHz,
Pentium 4) and MCNP was compiled using the Intel 8.0 compiler with no optimizations.
From these runtimes, we see that all of the methods result in dramatic speedups over the
benchmark solution and while the expense of our new method increases with increasing
numbers of moments preserved, the penalty relative to sampling Landau is not excessive.
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Figure 7: Emerging Energy Spectra for 10 MeV e− incident on a 0.68 cm slab of
H2O

In Figure 8 we show radial dose profiles at three different locations in a cylinder of water
with a radius of 5 cm and a height of 10 cm, again for a 10 MeV electron pencil beam on
axis. The dose profiles were computed at z = 1 cm and z = 4 cm, with axial thickness of
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Table 2: Surface Current Tallies and Runtimes, 10 MeV on H2O Cylinder
(R=0.5 cm,Z=1.5 cm)

Model z=0.0 cm z = 1.5 cm r = 0.5 cm Runtime

Benchmark 5.7100x10−5 9.1340x10−1 8.6542x10−2 367.79

Landau 5.9200x10−5 9.1280x10−1 8.7135x10−2 8.24

Disc. L=1 5.4900x10−5 9.1249x10−1 8.7456x10−2 7.18

Disc. L=4 5.5600x10−5 9.1357x10−1 8.6369x10−2 8.26

Disc. L=8 5.7200x10−5 9.1335x10−1 8.6591x10−2 12.99

Hybrid 5.9300x10−5 9.1351x10−1 8.6426x10−2 16.61

1 cm, and at z = 8 cm with thickness of 2 cm, and with radial cell width 0.1 cm at all
locations. Once again, the accuracy of the hybrid model is uniformly outstanding, as is also
the case for the standard model using Landau. The purely discrete model with four discrete
energy-losses (preserving eight moments) also gives results that are barely distinguishable
from the other models, while even a single discrete energy-loss model (preserving just two
moments) is capable of yielding useful results.

Finally, in Figures 9, 10, and 11 we show the radial dose profiles for three different
simulations, with cylinders of silicon located within a cylinder of water, similar to the above
cylinder of water (i.e., a cylinder of radius 5 cm and a height of 10 cm). Also, similar
to Figure 8, the radial dose profiles are of cylinders with radial cell widths of 0.1 cm and
with axial thickness of 1 cm located at z = 1 cm and z = 4 cm (Figures 9 and 10), and
a cylinder of axial thickness of 2 cm located at z = 8 cm (Figure 11). It should also be
noted that these simulations were run with 108 electrons. Included in each figure is the
benchmark for the simulation with Si in the cylinder and the appropriate approximations,
and for comparison, the benchmark with H2O in the cylinder. In Figure 9, we see the dose is
primarily distributed in the center of the Si cylinder. The dose in this region is approximated
with high accuracy for all of the approximate methods. It is also evident that for the purely
discrete model, only four discrete energies are required to obtain an accurate approximation.
Figure 10 is more interesting, as it demonstrates the effectiveness of the approximations as
the electron beam spreads due to scattering. As with the previous Si cylinder, the hybrid
and Landau simulations are highly accurate and indistinguishable from the benchmark. The
purely discrete model, while preserving only two moments, provides even a fairly accurate
approximation. Preserving 8 moments, using 4 discrete energies, provides an result that is
indistinguishable from the benchmark as well. In Figure 11, we see that the beam has spread
much more and much of the energy of the incident electrons has been absorbed earlier in the
cylinder. Again, the Landau and the hybrid models provide excellent approximations to the
benchmark. The purely discrete model, however, underestimates the dose deposited in the
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Si cylinder for both the L = 1 and L = 4 (which still gives a fairly accurate approximation)
models. Due to the increasing accuracy obtained with increasing the number of preserved
moments, by preserving 16 moments through 8 discrete energies, we are able to obtain a
highly accurate solution.

8 Conclusions

We have demonstrated a new energy straggling model for use with the condensed history
algorithm in MCNP. A modeled energy-loss cross section, which eliminates the singularity
in the analog cross section while retaining important physical characteristics, in conjunction
with a single event Monte Carlo simulation through every CH step has been shown to yield
highly accurate energy spectra and dose profiles. Our method is potentially more accurate
than the standard Landau straggling model with only a small increase in computational cost.
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