

Authors: Kourosh Salehi-Ashtiani (ksa3@nyu.edu) and Jason A. Papin (papin@virginia.edu)

Keywords: Algae, *Chlamydomonas reinhardtii*, metabolism, ORFeome, gene annotation, network reconstruction, flux balance analysis, systems biology

I. DOE award number and information

Award Number: DE-FG02-07ER64496

Title: Experimental Definition and Validation of Protein Coding Transcripts in *Chlamydomonas reinhardtii*.

Recipient: Dana-Farber Cancer Institute

Principal Investigator: Salehi-Ashtiani, Kourosh (PI); Papin, Jason A. (subaward PI)

II. Authorized distribution limitation notices

None.

III. Executive summary

Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest.

Using *Chlamydomonas reinhardtii* as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology.

Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and can be readily expanded to other microbial systems as well as higher plants and animals.

IV. A comparison of the Actual accomplishments with the goals and objectives of the project

Our stated Specific Aims were: 1) Experimentally verify/define transcript structure(s) of metabolic genes; 2) identify protein-protein interaction among the metabolic gene products; 3) build protein interaction maps and metabolic networks.

During the course of the project, we have expanded some areas of the proposed work, reduced certain areas, and added additional experiments and analyses as needed. These changes are as follows: 1) Development of a functional annotation pipeline to functionally annotate *Chlamydomonas reinhardtii* proteome; 2) introduction of next-generation sequencing to more effectively sequence ORFs and verify structural annotations; 3) expansion of our ORF cloning efforts; 4) expansion of constraint-based metabolic modeling; 5) omission of yeast-two hybrid experiments from the project.

Briefly, upon intimation of the project in 2007, we recognized numerous gaps in the existing KEGG functional annotation. We therefore devised an in-house functional annotation pipeline and annotated first the JGI v3.1 proteome, JGI v4.0, and Augustus 5 proteomes. We expanded our cloning efforts. We initiated our work on JGI 3.1 ORFs and carried out cloning and RACE on a set of core metabolic ORFs. However, during the course of the project, two new annotations were released: JGI 4.0 and Augustus 5. We carried out cloning efforts on both sets of metabolic ORFs from these annotations (subsequently published in *BMC Genomics*, 2011, PMID: 21810206, and *Mol. Sys. Biol.*, 2011, PMID: 21811229). To improve structural verification of these ORFs we carried out multiple runs of 454FLX sequencing in addition to conventional high throughput Sanger sequencing.

We excluded construction of protein-protein interaction network while we expanded our metabolic modeling efforts. We first reconstructed a core metabolic network (designated as iAM303) accounting for 259 reactions using the JGI 3.1 structural annotation. This work was published in *Nature Methods* (PMID: 19597503). We then reconstructed a genome-scale network (designated as iRC1080), and experimentally verified all Augustus 5 annotated transcripts in the model. The genome-scale reconstruction of the metabolic network was published in *Mol. Syst. Biol.* in 2011 (PMID: 21811229).

V. Summary of project activities for the entire period of funding

A.1 Integration of transcript verification and central metabolic network reconstruction

Given the close relationship between gene annotation and metabolic network reconstruction, we developed a novel targeted and iterative strategy, integrating experimental transcript verification with genome-scale computational modeling. Here, an initial metabolic network reconstruction, generated based on existing literature sources and bioinformatics-generated functional annotation, serves to identify *C. reinhardtii* genes in need of experimental definition and validation. We perform Reverse-Transcription PCR (RT-PCR) and Rapid Amplification of cDNA ends (RACE) to verify existence of hypothetical transcripts, and to provide refinements to structural gene annotations. Results of transcript verification experiments are applied directly toward refining the metabolic model, with a focus on eliminating reactions associated with experimentally unverified transcripts. Gaps in pathways are filled using alternative sets

of enzymes, or else further attempts and alternative approaches are used to identify transcripts associated with the necessary reactions. Further, pathways may be added and expanded to yield a more complete metabolic model which serves as the basis for another round of transcript verification experiments and network modeling. Iterative refinement continues until the network and its associated genes are fully developed and validated. As the process moves forward, the resulting network model can be used to identify targets for metabolic engineering, and the generated clone resource can be used to test these hypotheses *in vivo*.

A.2. EC assignment to JGI v3.1 transcripts

To begin this iterative process, functional annotation of the v3.1 *C. reinhardtii* genome sequence was needed. Because the Enzyme Commission (EC) annotation was only available for a previous version of the genome (JGI v3.0), we generated our own EC annotations. Using the publicly available *C. reinhardtii* version 3.1 transcripts (JGI v3.1, ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.1/Chlre3_1.fasta.gz), EC numbers were assigned by BLAST sequence comparison of *in silico* translated v3.1 transcripts against the UniProt-SwissProt database and the complete *Arabidopsis thaliana* proteome data set (<http://proteomics.arabidopsis.info/>). The UniProt-SwissProt database contained a set of ~120,000 proteins from over 5,000 species carrying 2,321 EC terms; the *A. thaliana* proteome data set catalogued 1,800 proteins which were assigned to 498 unique EC numbers. Our merged annotations from the two data sets yielded assignment to 929 unique EC terms for the translated JGI v3.1 transcripts, 206 of which were common to both UniProt and *Arabidopsis*. Of the EC terms common to both databases, 189 (or 91.7%) were supported by both UniProt “high confidence” values (at least 40% identity and BLAST score of 50 or higher) and *A. thaliana* orthology, and only a small portion (17 transcripts or 8.25%) showed a discrepancy. Our new annotation includes many EC terms missing from existing annotation, yielding functional differences in metabolic pathways. For example, glycerate kinase (EC 2.7.1.31) is needed for function of *Chlamydomonas* metabolism, but absent from the existing online database (JGI v3.0). In addition, five EC terms used for production of triacylglycerol, a glyceride of interest for biofuel purposes, are included in our new annotation but not in existing annotations.

A.3. Reconstruction of *Chlamydomonas* central metabolism

Having assigned EC annotation for the translated JGI v3.1 transcripts, we reconstructed the central metabolism of *C. reinhardtii*, integrating literature sources with the Kyoto Encyclopedia of Genes and Genomes (KEGG, <http://www.genome.jp/kegg/pathway.html>) to establish the structure of pathways included in the metabolic network. We further drew on our newly generated EC annotation of JGI v3.1 to establish the set of enzymes to be included in the network model. Finally, KEGG, ExPASy (<http://ca.expasy.org/enzyme/>) and other literature sources were used to delineate stoichiometry of the included reactions. The resulting metabolic network model specifies the full stoichiometry of central carbon flow in *C. reinhardtii*, accounting for all cofactors and metabolite connections. The reconstruction accounts for reaction localization primarily in the cytosol, mitochondria and chloroplast, including the lumen as a subcompartment of the chloroplast for photosynthesis, and with additional reactions localized to the glyoxysome and the flagellum. Localization evidence was obtained mainly by literature sources and supplemented by subcellular localization predictions. Transport reactions were included to allow for the presence of metabolites in multiple compartments, inferring the correct form of transport reactions using literature evidence where possible, and supplementing with information from online databases where appropriate. Because stoichiometry of all metabolites is accounted for explicitly, our mathematical representation of the reconstruction using

matrix algebra allows prediction of physiological and metabolic phenotypes based on defined environmental conditions *in silico*. Of the 69 unique EC terms contained within the initial reconstruction and used to guide transcript verification experiments (please see section A.4.), 65 were present within our annotated *C. reinhardtii* v3.1 proteome. The four missing EC terms (1.1.1.28, 1.2.7.1, 1.3.99.1, and 6.2.1.5) could be assigned to homologous *C. reinhardtii* proteins but matched better to reference proteins bearing different EC numbers; consequently, they could not be assigned unambiguously.

Working with the EC assignments generated by our group, we pooled the 174 transcripts corresponding to 65 unique EC numbers accounted for in the initial version of the metabolic network. The EC assignments for these transcripts were further confirmed by assigning enzymatic and other associated domains to their respective protein products using sensitive profile-based sequence search encoding programs like HMMER, by which we specifically assigned domain families of the Pfam database, and PSI-BLAST.

A.4. Experimental verification of central metabolic open reading frames (ORFs)

Having accurately assigned functional annotation to these transcripts, we experimentally verified them in two ways. First, RT-PCR was performed with primers corresponding to putative ORFs of the central metabolic transcripts. The successful Gateway cloning and sequencing of an ORF, as either a minipool or single colony, is evidence for the presence of the hypothesized transcript, while failure is most often due to annotation errors of the ORF termini. Second, we carried out RACE on ORFs that either could not be cloned via RT-PCR or were confirmed only at one end, with the aim of correcting ORF termini annotation errors. Using RT-PCR, we were able to confirm 78% of the tested JGI v3.1 ORF models in the central model. Analysis of the RACE results indicated confirmation of 53% and refinement of 24% of the RT-PCR failed ORFs. We were able to verify 90% and refine structural annotation of 5% of central metabolic ORFs.

Altogether, these results provided experimental evidence for 172 metabolic ORFs (or 99% of the examined ORFs). Our experimental verification of ORF models guides refinement of the generated metabolic model in the next cycle of our iterative methodology. The generated ORF clones serve as a resource for downstream studies. Our iterative process includes both computational and experimental components which may be performed in parallel. Accordingly, while experiments were underway, we further expanded the metabolic network reconstruction to include more complete coverage of all pathways included in the initial model. While the initial reconstruction only included four enzymes of glyoxylate metabolism necessary for acetate uptake (EC 4.1.3.1, 2.3.3.8, 2.3.3.9, 6.2.1.1), the final reconstruction includes 19 reactions in this pathway, and reflects a more complete curation of literature and genomic evidence for this pathway.

A.5. Network validation

After updating the metabolic network reconstruction based on transcript verification, we further validated the model by comparing *in silico* predictions to literature-reported values using flux balance analysis and flux variability analysis for a variety of environmental conditions and knockouts. Validating model predictions against reported literature values allows us to assess whether the metabolic network provides qualitative and quantitative predictions consistent with what is reported in the literature. Our simulations comparing *in silico* predictions of physiological parameters under various environmental conditions predicted dark aerobic acetate growth yield within 30% of the literature derived value, indicated a dark anaerobic Formate:Ethanol:Acetate fermentation ratio of 2:1:1 which matched the literature based value for dark anaerobic conditions, supported the photosynthetic release of hydrogen gas coupled with optimal

biomass production, and showed photosynthetic oxygen uptake, evolution, and net production closely paralleling experimental measurements. We also verified qualitative agreement between *in silico* predictions and literature-based characterization for three mutants with impaired use of acetate (EC 1.6.5.3, 1.9.3.1, 1.10.2.2), two mutants with restricted photosynthetic abilities (EC 4.2.1.1, 4.1.1.39), and one mutant with restricted oxygen and hydrogen photoevolution. Correspondence of our *in silico* predictions with literature-based physiological parameters, for the full network and under perturbation, suggests novel predictions made to identify targets for metabolic engineering may be viewed with more confidence.

The resulting network reconstruction, named iAM303 per established convention, accounts for 259 reactions corresponding to 106 distinct EC terms. Of the experimentally tested JGI v3.1 transcripts corresponding to EC terms in the metabolic model, only phosphofructokinase (PFK, EC 2.7.1.11) and the Rieske iron-sulfur protein of ubiquinol-cytochrome-c oxidoreductase complex (EC 1.10.2.2) were not fully verified by our RT-PCR or RACE experiments. Only one of the four transcripts corresponding to PFK in our experimental test set was left unverified in our experiments. Similarly, one of the three transcripts corresponding to ubiquinol-cytochrome-c reductase complex (the Rieske iron-sulfur protein) was left unverified. As our cell samples were grown under constant light, these results suggest we have identified light/dark regulated forms of transcripts corresponding to these enzymes in *C. reinhardtii*, evidence for which has been documented with PFK in the blue-green algae *Synechocystis* sp. Although any evidence drawn from cyanobacteria is tentative, the fact that the unverified transcript for PFK was the only one mapped by subcellular localization prediction to the chloroplast further indicates that light/dark regulation may also occur in the eukaryotic *C. reinhardtii*. These findings indicate our integrative approach is flexible towards functional annotation of differentially regulated transcripts and transcript variants.

B. Functional assignment of Augustus 5 and JGI v4 transcripts

Thus far, the described work was based on the JGI v3.0 genome assembly and v3.1 transcript models. However an improved assembly of the *Chlamydomonas reinhardtii* genome became available from JGI (<http://genome.jgi-psf.org/cgi-bin/searchGM?db=Chlre4>). We used the new *JGI* “filtered transcript models” (Chlre4_best_transcripts and Chlre4_best_proteins), and the *Augustus* 5 models released through the *JGI* portal (<http://genome.jgi-psf.org/Chlre4/Chlre4.home.html>) for both functional assignments and structural annotation verifications. Enzymatic functional assignments were made by associating Enzyme Classification (EC) numbers through reciprocal blast searches against UniProt enzyme database (with over 100,000 protein entries). The best match for each translated ORF was identified (with an e-value threshold of 10^{-3}) and the EC number from the UniProt best match was transferred on to the ORF. We extended the EC assignments to the respective paralogs of the ORFs by clustering ORFs using BLASTCLUST (sequence identity cut-off of 35% and sequence length cut-off of 70%) within each annotation group (i.e., *Augustus* 5 and *JGI* *filtered models*). Altogether, we were able to assign 970 EC numbers to 1,427 *JGI* and to 1,874 *Augustus* models. Over 93% of the EC terms were assigned to both *JGI* and *Augustus* models. We then carried out all possible pairwise alignments between the *JGI* and *Augustus* transcripts that had been assigned the same EC numbers by the above-mentioned procedure. In contrast to the high overlap between the two models in terms of EC assignments, less than half of each set were found to be 100% identical in sequence, indicating that the structural annotations of many of the two sets differ from one another.

C. Experimental verification of the *C. reinhardtii* metabolic ORFeome

To experimentally verify annotation of the ORFs, we carried out two types of experiments: First, targeted experiments in which RT-PCR was performed with primers corresponding to putative ORFs and cloning of the resulting amplicons. Second, we carried out whole transcriptome sequencing using the 454FLX platform. The latter was done using three distinct growth conditions aiming to capture annotation information on genes that may not be expressed under the condition that the cloning experiments were carried out, and to obtain expression information on various genes under different growth conditions.

For the Augustus annotated ORFs, we synthesized primers to amplify 2,776 ORFs, including 248 transporters, 1,874 EC assigned ORFs, and 654 regulatory genes (transcription factors and chromatin associated proteins). Our EC annotation of the JGI transcript models identified 1,431 transcripts with putative enzymatic functions. Of these, 645 ORFs had identical structure as the Augustus ORFs that we had assigned enzymatic function to, we therefore did not re-synthesize primers for these overlapping ORFs; however, we synthesized primers for the remaining 786 unique JGI ORFs. Altogether we synthesized 3,421 pairs of primers for amplification and cloning of various ORFs.

We grew *C. reinhardtii* under a permissive condition by providing light, organic carbon sources and nitrogen (as ammonium chloride or other ammonium salts). RNA was isolated from cells undergoing exponential growth. The isolated RNA was reverse transcribed and used as template for amplification of the ORFs for which we had designed primers for.

The amplified ORFs were cloned using recombinational cloning into pDONR223 vector. The Augustus metabolic and transporter ORFs were end sequenced by conventional high-throughput Sanger sequencing. From 2,119 Augustus ORFs tested, we were able to verify 1,408 ORFs by cloning and sequencing, while 711 cases could not be verified confidently. In other words, based on this experiment, 66% of the Augustus ORFs could be verified (please note the chromatin associated and transcription factors ORFs were not included in this set).

As an alternative sequencing method, we carried out next generation sequencing (using the 454FLX platform). We amplified the inserts of the cloned ORFs by PCR, fragmented the amplicons, and carried out 454 sequencing. The obtained 454 reads were then aligned to the ORF reference sequences to assess annotation accuracy.

Briefly, the 454 reads could cover 90-100% of the 61.4% of the JGI ORFs, 39.16% of the Augustus ORFs, and 72.39% of ORFs common between the JGI and Augustus. These results indicate that 1) the JGI models are more accurately annotated than the Augustus models, and 2) ORFs that are common between the two annotations (i.e., JGI and Augustus) are more accurately annotated than either the unique JGI or Augustus sets.

Because the experiments described in the previous section were “targeted” i.e., relied on choice of primers used to amplify the ORFs, we carried out whole transcriptome sequencing to sample the transcriptome without primer choice bias. We grew *C. reinhardtii* under three different growth conditions: 1) permissive condition with acetate and light, light and no acetate (light autotrophic growth), and dark plus acetate. Messenger RNA was isolated from these cultures, fragmented, reverse transcribed, then prepared as a library for 454FLX sequencing. We carried out two full 454 Titanium runs

for each condition. The obtained reads were then aligned to the Augustus and JGI reference sequences to assess expression and annotation accuracy.

For the Augustus models, we obtained >90% coverage for 52 to 64% the ORF models depending on the growth condition, while for the JGI, the numbers ranged from 60% to 73%. Therefore, consistent with the targeted verification results, we obtained higher verification rates for the JGI ORF models as compared to the Augustus models, indicating that the JGI models are more accurately annotated. Interestingly, between the three growth conditions examined, the light - no acetate condition produced the highest coverage rates for both JGI and Augustus models, suggesting upregulation of a significant number of genes when organic carbon source is removed from the growth medium.

D. Genome-scale reconstruction of *Chlamydomonas* metabolism network model

Beginning with our reconstruction of *C. reinhardtii* central metabolism, we added pathways to the reconstruction one-by-one according to the list of target pathways chosen for the reconstruction effort. To initiate reconstruction of each individual pathway, KEGG and other classical biochemistry references were used as a starting point, with functional EC annotation used to indicate which enzymes in the pathway were genomically present. Each pathway was then manually curated using available literature evidence from *C. reinhardtii* and related species to establish presence of particular enzymes and associated reactions, reaction directionality, and cofactors involved in particular reactions. Individual reactions were localized by experimental evidence as reported in the literature, and supplemented with PASUB localization predictions as needed.

After thorough manual curation of each pathway, we followed up with gap-filling to account for dead-ends in conversion of included intermediates and cofactors. As a general rule, enzymes absent from the EC annotation were only included in the network reconstruction if (1) literature evidence was deemed sufficient to establish presence of the enzymes, (2) only one reaction was needed to fill the gap between intermediates in the pathway and available literature evidence did not contradict presence of the associated enzyme, or (3) the reaction(s) were necessary for functionality of pathways known to be present in *C. reinhardtii*.

Reaction assignment and localization for each pathway included in the network model was followed by assignment of transporters needed for functional conversion of pathway intermediates. Literature evidence and publicly available databases (e.g. TCDB and TransportDB) were used as available to assign family and stoichiometry of transporters. In the absence of other evidence, transporters were inferred from other organisms or else assumed to take the form of passive diffusion.

Having reconstructed individual pathways of the network model, we took steps to integrate these pathways. Initial and final reactants and products of each pathway were investigated to identify potential dead-ends, and additional metabolic or transport reactions were incorporated as appropriate. In addition to these manual quality control steps for pathway integration, modeling based gap-filling was also performed in the framework of flux balance analysis, with the addition of reactions needed for *in silico* growth.

With a complete version of the metabolic network reconstruction in place, we performed global quality controls, including elemental balancing and elimination of free energy loops. Referencing the full protonated elemental composition in KEGG, we compiled an E-matrix (Elemental matrix) containing elemental composition of all included metabolites. This E-matrix was then combined with the S-matrix (Stoichiometric matrix, representing all reactions in the model), and a check of $E \cdot S = 0$ ensured elemental balance for all included reactions. Finally, our metabolic network reconstruction was evaluated with extreme pathway analysis, and all type III pathways, or internal loops corresponding to free energy consumption in the network, were removed.

The generated genome-scale reconstruction of *C. reinhardtii*, accounts for all pathways and metabolic functions indicated by the latest release of the genome (JGI v4.0) combined with our in-house generated functional annotation. The reconstruction accounts for 1,080 genes, associated with 2,190 reactions, and includes 1068 unique metabolites, and encompasses 83 subsystems distributed across 10 compartments. As the most comprehensive metabolic network reconstruction of *C. reinhardtii* to date, ours is the first to account for three different wavelengths of light involved in photosynthesis and includes considerable expansion of fatty acid metabolism over previous reconstructions, with detail at the level of individual R-groups. Further, the metabolic network reconstruction presented here provides a greater level of compartmentalization than existing reconstructions of *C. reinhardtii*, with the inclusion of the lumen as a distinct component of the chloroplast for photosynthetic functionality, and the eyespot used to guide the flagella in phototaxis.

We have carried out simulations under a variety of growth conditions (e.g. acetate/no acetate, light/no light, aerobic/anaerobic), and physiological validation of *in silico* gene knockout against known mutant data for a variety of phenotypes (e.g. increased use of acetate; light; CO_2 ; nitrogen; and other media components, amino acid requiring, altered color). In addition, we have detailed simulations demonstrating how photon absorption and different wavelengths of light affect downstream metabolic processes, elucidating the benefits of sunlight versus artificial light conditions. Our well-validated and comprehensive genome-scale reconstruction of *C. reinhardtii* metabolism provides a valuable quantitative and predictive resource for metabolic engineering toward improved production of biofuels and other commercial targets.

VI. Products developed under the award

A. Publications

1. *Nat. Methods*. 2009 Aug;6(8):589-92. Metabolic network analysis integrated with transcript verification for sequenced genomes. Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA. (PMID: 19597503)
2. *Biotechnol. J.* 2010 Jul;5(7):660-70. Metabolic systems analysis to advance algal biotechnology. Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin, JA. (PMID: 20665641)
3. *BMC Genomics*. 2011 Jun 15;12 Suppl 1:S4. Genome-wide functional annotation and structural verification of metabolic ORFeome of *Chlamydomonas reinhardtii*. Ghamsari L, Balaji S, Shen Y, Yang X, Balcha D, Fan C, Hao T, Yu H, Papin JA, Salehi-Ashtiani K.

(PMID: 21810206)

4. *Mol. Syst. Biol.* 2011 Aug 2;7:518. Metabolic network reconstruction of *Chlamydomonas* offers insight into light-driven algal metabolism. Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K, Papin JA. (PMID: 21811229)

B. Websites and other internet sites that provide public access to results of this project.

1. <http://www.bme.virginia.edu/csbl/downloads-chlamy.php>
2. <http://www.biomedcentral.com/1471-2164/12/S1/S4/additional>
3. http://www.nature.com/msb/journal/v7/n1/supplinfo/msb201152_S1.html

C. Network or collaborations fostered.

The following collaborations were established in support of the project:

1. Harvard University, Andrew Murray lab
2. Cornell University, Haiyuan Yu Lab
3. University of Iceland and University of California, San Diego, Bernhard Palsson lab
4. University of Iceland, Ines Thiele lab

D. Technologies/Techniques.

We developed an integrated experimental and modeling approach to facilitate our proposed work. This approach is described in section V of this document and is published (please see *Nat. Methods* 2009 in publication list above)

E. Inventions/Patents.

None.

F. Other products (physical collections, models, etc).

1. Clones: As part of our efforts under this award, we have generated a substantial number of cDNA clones. These clones are described in publications listed above (*Mol. Syst. Biol.*, 2011, PMID: 21811229; *BMC Genomics* 2011, PMID: 21810206). We intend to submit these clones to Chlamydomonas Center (<http://www.chlamy.org/>) for public distribution.
2. Models: We have generated two metabolic network models describing steady-state metabolic fluxes in *Chlamydomonas*. The models, iAM303 and iRC1080, describe the central metabolism and global metabolism of *C. reinhardtii* respectively. Both models are described in our peer-reviewed publications, validated, and are publically available (please see above under section VI.A. and VI.B.). These models are provided as

standard SBML format as well as “.mat” format (please see Section VI.B). Metabolic analyses on these models can be performed using the COBRA toolbox (publically available from <http://opencobra.sourceforge.net/openCOBRA/Welcome.html>). The COBRA toolbox runs within Matlab environment.

For background information (including methodology, assumptions, limitations, and usage) on constraint based metabolic modeling used in this project, please see:

1. *Methods Enzymol.* 2011; 500:411-433. Whole-genome metabolic network reconstruction and constraint-based modeling. Haggart CR, Bartell JA, Saucrman JJ, Papin JA. (PMID: 21943909)
2. *Nat. Protoc.* 2011 Aug 4;6(9):1290-307. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ. (PMID: 21886097)
3. *Mol. Sys. Biol.* 2009; 500:61-80. Applications of genome-scale metabolic reconstructions. Oberhardt MA, Palsson BP, Papin JA. (PMID: 19888215)

Appendix

Copies of Publications:

1. *Nat. Methods.* 2009 Aug;6(8):589-92. Metabolic network analysis integrated with transcript verification for sequenced genomes. Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA. (PMID: 19597503)
2. *Biotechnol. J.* 2010 Jul;5(7):660-70. Metabolic systems analysis to advance algal biotechnology. Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin, JA. (PMID: 20665641)
3. *BMC Genomics.* 2011 Jun 15;12 Suppl 1:S4. Genome-wide functional annotation and structural verification of metabolic ORFeome of *Chlamydomonas reinhardtii*. Ghamsari L, Balaji S, Shen Y, Yang X, Balcha D, Fan C, Hao T, Yu H, Papin JA, Salehi-Ashtiani K. (PMID: 21810206)
4. *Mol. Syst. Biol.* 2011 Aug 2;7:518. Metabolic network reconstruction of *Chlamydomonas* offers insight into light-driven algal metabolism. Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K, Papin JA. (PMID: 21811229)

NIH Public Access

Author Manuscript

Nat Methods. Author manuscript; available in PMC 2011 July 19.

Published in final edited form as:
Nat Methods. 2009 August ; 6(8): 589–592. doi:10.1038/nmeth.1348.

Metabolic network analysis integrated with transcript verification for sequenced genomes

Ani Manichaikul^{1,6}, Lila Ghamsari^{2,6}, Erik F Y Hom^{3,6}, Chenwei Lin^{2,6}, Ryan R Murray^{2,6}, Roger L Chang^{4,6}, S Balaji², Tong Hao², Yun Shen², Arvind K Chavali¹, Ines Thiele^{4,5}, Xinping Yang², Changyu Fan², Elizabeth Mello², David E Hill², Marc Vidal², Kourosh Salehi-Ashtiani², and Jason A Papin¹

¹ Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA

² Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA

³ Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA

⁴ Department of Bioengineering, University of California, San Diego, La Jolla, California, USA

Abstract

With sequencing of thousands of organisms completed or in progress, there is a growing need to integrate gene prediction with metabolic network analysis. Using *Chlamydomonas reinhardtii* as a model, we describe a systems-level methodology bridging metabolic network reconstruction with experimental verification of enzyme encoding open reading frames. Our quantitative and predictive metabolic model and its associated cloned open reading frames provide useful resources for metabolic engineering.

Present availability of genome sequences for diverse microorganisms brings opportunities for metabolic engineering through systems-level characterization of these organisms' metabolic networks¹. Such efforts require both functional and structural annotation of metabolic components encoded within these genomes. Although advances have been made in defining transcribed protein coding sequences for widely studied eukaryotes, notable deficiencies in genome annotation remain². These problems are evident in the genomes of less widely studied species for which comparative genomic information is scarce. Structural annotations of boundaries for many genes in newly sequenced genomes are often poorly defined because of incomplete understanding of transcriptional-initiation, termination and splicing rules, and deficiencies in gene-prediction algorithms³. Genes with valid structural

© 2009 Nature America, Inc. All rights reserved.

Correspondence should be addressed to K.S.-A. (kourosh_salehi-ashtiani@dfci.harvard.edu) or J.A.P. (papin@virginia.edu).

⁵Present address: Center for Systems Biology, University of Iceland, Reykjavik, Iceland.

⁶These authors contributed equally to this work.

AUTHOR CONTRIBUTIONS

A.M., A.K.C., R.L.C. and I.T. reconstructed metabolic networks; L.G., R.R.M., X.Y. and E.M. performed transcript verification experiments, E.F.Y.H. performed localization prediction; L.G., C.L., Y.S., C.F. and T.H., annotated transcripts and analyzed sequences; S.B. annotated transcripts; D.E.H. and M.V. initially developed the transcript verification pipeline; A.M., L.G., E.F.Y.H., K.S.A., J.P., development of pipeline to integrate model with experiments; A.M., L.G., E.F.Y.H., C.L., R.L.C., R.R.M., K.S.-A. and J.A.P. wrote and edited the manuscript; D.E.H. and M.V. edited the manuscript; K.S.-A. guided transcript verification experiments and transcript annotation; J.A.P. guided the metabolic network reconstruction; J.A.P. and K.S.-A. conceived the study.

Note: Supplementary information is available on the *Nature Methods* website.

Reprints and permissions information is available online at <http://npg.nature.com/reprintsandpermissions/>.

annotations lack thorough functional annotations linking transcripts to enzymatic or regulatory activities of corresponding proteins⁴.

Given the close relationship between gene annotation and metabolic network reconstruction^{1,5}, we propose a targeted iterative methodology, integrating experimental transcript verification with genome-scale computational modeling (Fig. 1). An initial metabolic network, generated using literature sources and bioinformatics-generated functional annotation, served to identify *C. reinhardtii* genes in need of experimental definition and validation. We performed reverse-transcription PCR (RT-PCR) and rapid amplification of cDNA ends (RACE) to verify existence of hypothetical transcripts and to refine structural annotations. We used the results of transcript verification experiments to refine the metabolic model, with a focus on eliminating reactions associated with experimentally unverified transcripts. We filled resulting gaps in pathways by incorporating alternative sets of enzymes and by applying more detailed functional annotation to identify transcript models associated with necessary reactions. We also added and expanded pathways to yield a more complete metabolic model, providing the basis for another round of transcript verification and network modeling. Iterative refinement continued until the network and its associated genes were fully developed and validated.

To begin our iterative process, functional annotation was needed for current *C. reinhardtii* genome sequence. Because Enzyme Commission (EC) annotation was only available for a previous version of the genome (Joint Genome Institute (JGI) v3.0), we generated our own annotations (Supplementary Note and Supplementary Figs. 1,2). Using the publicly available *C. reinhardtii* version 3.1 transcripts (JGI v3.1, ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.1/Chlre3_1.fasta.gz), we assigned EC numbers by basic local alignment search tool (BLAST) sequence comparison of *in silico*–translated v3.1 transcripts against UniProt-SwissProt⁶ and the complete *Arabidopsis thaliana* proteome dataset. Our new annotation (Supplementary Table 1) included EC terms missing from existing annotation, yielding functional differences in metabolic pathways (Fig. 2a,b). For example, six EC terms used for production of triacylglycerol, a glyceride of interest for biofuel purposes, were included in our new annotation but not in existing annotations (Supplementary Table 2).

Having assigned EC annotation for the translated JGI v3.1 transcripts, we generated a central metabolic network reconstruction of *C. reinhardtii*, integrating literature-sourced data with our newly generated EC annotation of JGI v3.1. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG), Expert Protein Analysis System (ExPASy) and literature sources to delineate pathway structure and reaction stoichiometry. The resulting metabolic network model specified the full stoichiometry of central metabolism in *C. reinhardtii*, accounting for all cofactors and metabolite connections¹, with reactions localized to the cytosol, mitochondria, chloroplast (including the lumen as a subcompartment for photosynthesis) glyoxysome and flagellum. We obtained the localization evidence mainly from literature and supplemented it by subcellular localization predictions⁷. We established transport reactions using literature-sourced evidence where possible, supplementing it with information from online databases where appropriate. Of the 69 unique EC terms contained within the initial reconstruction and used to guide transcript verification experiments (Supplementary Table 3), all but four were annotated in the *C. reinhardtii* v3.1 proteome. The missing EC terms (1.1.1.28, 1.2.7.1, 1.3.99.1 and 6.2.1.5) could be assigned to homologous *C. reinhardtii* proteins but matched better to reference proteins bearing different EC numbers, and so could not be assigned unambiguously.

We confirmed EC assignments for 174 transcripts by assigning enzymatic domains to the protein products using hidden Markov model-based software HMMER⁸ (Supplementary

Table 4) and experimentally verified these transcripts in two ways. First, we performed RT-PCR with primers corresponding to putative open reading frames (ORFs) encoding central metabolic enzymes (Supplementary Table 5). The successful cloning and a matched sequence⁹ of an ORF to its predicted model indicated the presence of the hypothesized transcript, whereas failure in this task was most often due to annotation errors of ORF termini². Second, we carried out RACE on ORFs that either could not be cloned via RT-PCR or were confirmed only at one end, with the aim of correcting ORF termini annotation errors. Using RT-PCR, we confirmed 78% of the tested JGI v3.1 ORF models, and RACE allowed confirmation of 53% and refinement of 24% of the ORFs that we could not verify by RT-PCR. Altogether, we verified 90%, refined structural annotation of 5% and provided experimental evidence for 99% of the 174 examined ORFs encoding central metabolic enzymes (Fig. 2c and Supplementary Table 4). Our experimental verification of ORF models guided refinement of the metabolic model in the next cycle of our iterative methodology, and generated ORF clones can be used for downstream studies.

We expanded the metabolic network reconstruction to include more complete coverage of all pathways included in the initial model. For example, the glyoxylate metabolism pathway in our initial network reconstruction included only four enzymes needed for acetate uptake, but our final reconstruction included 16 enzymes, reflecting more complete curation of this pathway. After additionally updating the metabolic network reconstruction with transcript verification results, we validated the model by comparing *in silico* predictions to quantitative literature-based physiological parameters under a variety of environmental conditions and qualitative literature-based characterization of known mutants (Supplementary Note, Supplementary Tables 6,7 and Supplementary Fig. 3). Agreement between *in silico* predictions and existing experimental data brought confidence to predictions of metabolic engineering targets (Supplementary Fig. 4).

The resulting network reconstruction, named iAM303 per established convention¹⁰, accounted for 259 reactions corresponding to 106 distinct EC terms (Supplementary Fig. 5, Supplementary Tables 8,9 and Supplementary Data 1). Of the experimentally tested JGI v3.1 transcripts corresponding to 65 unique EC terms from the initial metabolic model, only phosphofructokinase and the Rieske iron-sulfur protein of ubiquinol-cytochrome *c* oxidoreductase complex were not verified in our RT-PCR or RACE experiments: we left unverified one of the four transcripts corresponding to phosphofructokinase and one of the three transcripts corresponding to ubiquinol-cytochrome *c* oxidoreductase complex (the Rieske iron-sulfur protein) (Supplementary Table 4). As we grew our cultures under constant light, these results suggest that we identified light/dark-regulated forms of transcripts corresponding to these enzymes, evidence for which has been documented for phosphofructokinase in the cyanobacteria *Synechocystis* sp.¹¹. Although any parallel drawn from cyanobacteria is tentative, that the unverified phosphofructokinase transcript was the only one mapped by subcellular localization prediction⁷ to the chloroplast further indicates light/dark regulation may occur in the eukaryotic *C. reinhardtii*. These findings indicate our integrative approach is flexible toward functional annotation of differentially regulated transcripts and transcript variants.

With ORF verification results for all annotated enzymes in the current version of our metabolic network reconstruction, we demonstrated a complete cycle of our iterative approach. Although not all enzymes in the model could be completely validated experimentally, we seek to recover these enzymes in the next round of experiments. For enzymes present in the network reconstruction but lacking functionally assigned transcripts in the *C. reinhardtii* genome, we performed more detailed searches using position-specific iterative BLAST (PSI-BLAST) to assign likely targets to corresponding EC numbers (Table 1); newly assigned transcript models can be followed up in the next iteration of experiments.

EC terms annotated in JGI v3.1 which were not fully verified by our RACE and RT-PCR transcript verification experiments, but are supported by both literature and modeling evidence, suggest corresponding transcripts are present in *C. reinhardtii*, particularly under dark conditions. In the next round of experiments, we will attempt to verify these transcripts in the absence of light. Our structural reannotation of transcripts will also inform reannotation of functional enzymatic domains needed to refine and expand our metabolic network model.

Although throughput of our method is modest compared to fully automated computational approaches, we achieved higher quality structural and functional annotation for a targeted set of metabolic enzymes. Accordingly, our integrative approach produced: (i) a well-validated metabolic network reconstruction of *C. reinhardtii*, (ii) functional annotation needed to map the network reconstruction to associated transcripts and (iii) experimentally based structural annotation, providing the requisite toolset for metabolic engineering toward improved biofuel production (Supplementary Fig. 4). Whereas the latter does not provide direct proof of function, it establishes the necessary condition upon which functional assignments can be proposed, and targeted experiments may be performed to verify function.

With only 1% of experimentally tested transcripts left unverified, our effort provides proof of concept for the proposed approach integrating network analysis with experimental transcript verification. Because this success may be attributed in part to our focus on central metabolism, enzymes and pathways of which are generally the best characterized, our manual curation efforts will be even more important in informing high-quality transcript annotation refinement as we extend our metabolic model to the genome-wide scale. Although our work has focused on *C. reinhardtii*, integration of gene annotation experiments with network reconstruction can be applied broadly toward improved annotation of existing and emerging genome sequences. Our pipeline for functional annotation based on existing annotation of *A. thaliana* provides a computationally efficient approach to extract functional annotation for species with one or more well-annotated close relatives. For new genome sequences without availability of closely related reference sequence, more sophisticated approaches, including PSI-BLAST and hidden Markov model-based programs, may provide viable alternatives. Although existing transcriptomic technologies lag behind RT-PCR and RACE in their ability to provide well-defined ORF structure and precise definition of exon-boundaries for eukaryotic sequence data, emerging sequencing technologies¹² open possibilities to scale up the throughput of our methodology. Finally, we may look beyond metabolic network modeling toward reconstruction of regulatory¹³ and signaling¹⁴ networks as alternative systems-level frameworks to guide future efforts.

METHODS

Methods and any associated references are available in the online version of the paper at <http://www.nature.com/naturemethods/>.

Supplementary Material

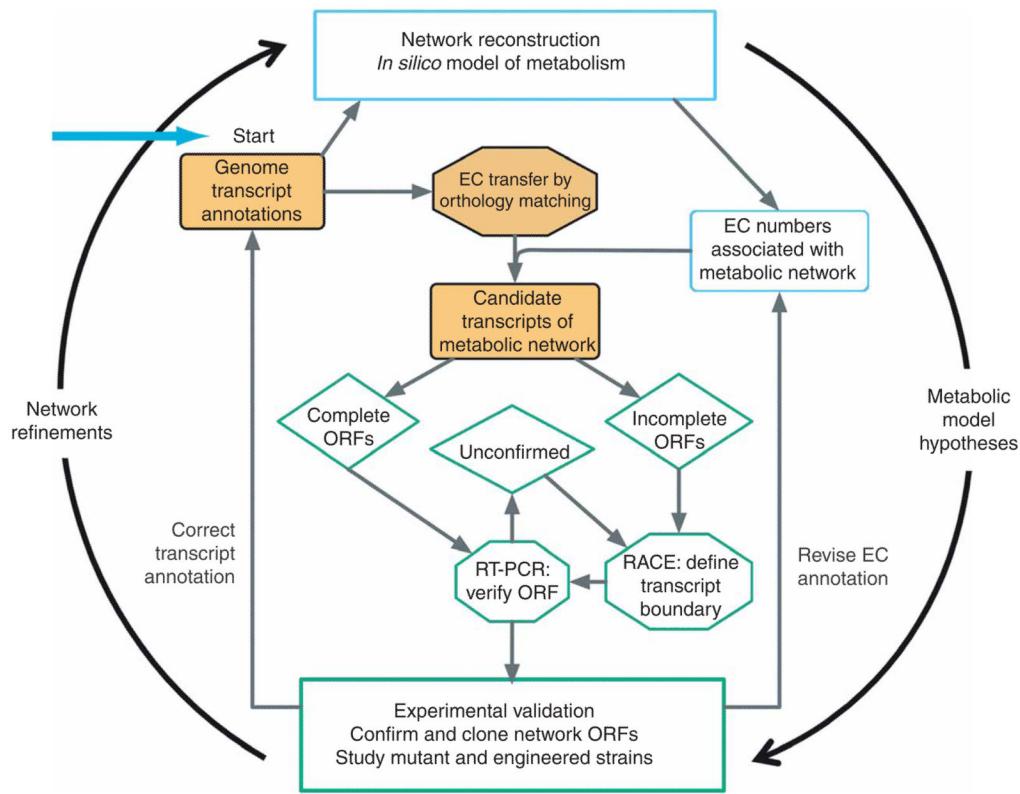
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

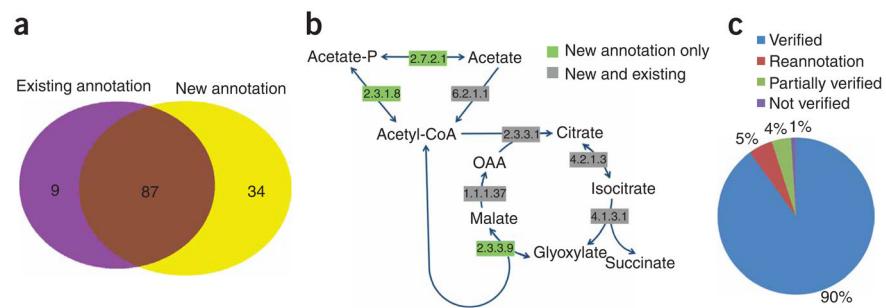
This research was supported by the Office of Science (Biological and Environmental Research), US Department of Energy, grant DE-FG02-07ER64496 (to J.A.P. and K.S.-A.), the Jane Coffin Childs Memorial Fund for Medical Research (to E.F.Y.H.) and by National Science Foundation IGERT training grant DGE0504645 (to R.L.C.).

References

1. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson B. *Nat Rev Microbiol.* 2009; 7:129–143. [PubMed: 19116616]
2. Reboul J, et al. *Nat Genet.* 2001; 27:332–336. [PubMed: 11242119]
3. Jones SJM. *Annu Rev Genomics Hum Genet.* 2006; 7:315–338. [PubMed: 16824019]
4. Frishman D. *Chem Rev.* 2007; 107:3448–3466. [PubMed: 17658902]
5. Boyle NR, Morgan JA. *BMC Syst Biol.* 2009; 3:4. [PubMed: 19128495]
6. Apweiler R, et al. *Nucleic Acids Res.* 2004; 32:D115–D119. [PubMed: 14681372]
7. Lu Z, et al. *Bioinformatics.* 2004; 20:547–556. [PubMed: 14990451]
8. Zhang Z, Wood WI. *Bioinformatics.* 2003; 19:307–308. [PubMed: 12538263]
9. Walhout AJ, et al. *Methods Enzymol.* 2000; 328:575–592. [PubMed: 11075367]
10. Reed JL, Vo TD, Schilling CH, Palsson BO. *Genome Biol.* 2003; 4:R54. [PubMed: 12952533]
11. Kucho K, et al. *J Bacteriol.* 2005; 187:2190–2199. [PubMed: 15743968]
12. Shendure J, Ji H. *Nat Biotechnol.* 2008; 26:1135–1145. [PubMed: 18846087]
13. Herrgård MJ, Covert MW, Palsson B. *Curr Opin Biotechnol.* 2004; 15:70–77. [PubMed: 15102470]
14. Papin JA, Hunter T, Palsson BO, Subramaniam S. *Nat Rev Mol Cell Biol.* 2005; 6:99–111. [PubMed: 15654321]

**Figure 1.**

Assessing and improving gene annotation for *C. reinhardtii*: iterative process integrating gene annotation experiments with metabolic network reconstruction and analysis. Starting with a draft network reconstruction, EC terms associated with model reactions are mapped to corresponding transcripts. Experimentally verified transcripts are used to propose changes in structural annotation, along with functional annotation changes that motivate refinements in the network reconstruction. The reconstructed metabolic network is then used to motivate another round of transcript verification experiments.

**Figure 2.**

Integrating the network model with transcript verification experiments. (a) Comparison of central metabolic EC terms annotated in existing JGI v3.0 and our annotation of JGI v3.1 (Supplementary Note). (b) Applying these two versions of EC annotation to inform the network reconstruction yielded functional differences in core metabolic pathways, as illustrated in acetate uptake pathways inferred from the two sets of annotation. As acetate is the sole carbon source used by wild-type *C. reinhardtii* *in vivo*, these pathway differences translate directly to measureable growth phenotypes. (c) Results summary for verification and structural annotation of *C. reinhardtii* central metabolic transcripts by RT-PCR and RACE. ‘Partially verified’ denotes cases for which the assembled ORF did not completely match the genome sequence or a complete sequence could not be assembled.

EC terms guiding reconciliation of literature, modeling and experimental evidence

Table 1

Enzyme name (EC number)	Pathway(s) affected	Literature evidence				Modeling evidence ^a				Action
		Dark aerobic	Dark anaerobic	Light	Light with acetate	PSI-BLAST hit(s)				
Absent in our annotation of JGI v3.1 translated transcripts	L-lactate dehydrogenase (1.1.1.27) D-lactate dehydrogenase (1.1.1.28) L-lactate dehydrogenase, cytochrome (1.1.2.3)	Pyruvate metabolism Pyruvate metabolism Pyruvate metabolism	Yes Yes None	WT WT WT	WT WT WT	WT WT WT	estExt_fgenesh2_pg.C_190058 Chlre2_kg_scaffold_1000146 estExt_gwp_1HC_90212	Perform transcript verification for functional matches identified by PSI-BLAST		
Pyruvate synthase (1.2.7.1)	Pyruvate metabolism Photosynthesis; TCA cycle	Pyruvate metabolism Photosynthesis; TCA cycle	Yes Yes	WT WT	N WT	WT WT	WT WT	e_gwWT_62.37.1 fgenesh2_pg.C_scaffold_1000904 estExt_fgenesh2_pg.C_30248		
Limit dextrinase (3.2.1.142)	Starch metabolism	Starch metabolism	Yes	R	N	R	R	fgenesh2_pg.C_scaffold_33000007		
Oxalate decarboxylase (4.1.1.2)	Glyoxylate metabolism	Glyoxylate metabolism	None	WT	WT	WT	WT	estExt_fgenesh2_pg.C_160183		
Succinyl-CoA ligase (6.2.1.5)	TCA cycle	TCA cycle	Yes	R	WT	WT	WT	estExt_GenewiseH_1C_190100 estExt_fgenesh2_kg.C_130058		
One or more experimentally unverified transcript models		Phosphofructo-kinase (2.7.1.11) Ubiquinol cytochrome c oxidoreductase (1.10.2.2)	Glycolysis Oxidative phosphorylation	Yes Yes	WT R	N WT	WT R	Analysis not performed because transcripts were already identified for these enzymes	Perform transcript verification for cells grown in the dark	

^aWT, wild-type flux; R, reduced flux; and N, no flux.

We probed these ten EC terms through *in silico* knockout experiments under the four indicated environmental conditions. We interpreted reduced or zero flux through the objective function to indicate the given enzyme was necessary or important under the stated environmental condition. Finally, we used PSI-BLAST to search more thoroughly for EC terms with no corresponding transcripts in our annotation JGI v3.1. Because PSI-BLAST identified alternative transcripts for each of these EC terms, none of the corresponding reactions were deleted from the network reconstruction.

RESEARCH

Open Access

Genome-wide functional annotation and structural verification of metabolic ORFeome of *Chlamydomonas reinhardtii*

Lila Ghamsari^{1,2†}, Santhanam Balaji^{1,2†}, Yun Shen^{1,2}, Xinpeng Yang^{1,2}, Dawit Balcha^{1,2}, Changyu Fan^{1,2}, Tong Hao^{1,2}, Haiyuan Yu^{3*}, Jason A Papin^{4*}, Kourosh Salehi-Ashtiani^{1,2,5*}

Abstract

Background: Recent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the *C. reinhardtii* genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI), prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale.

Results: We assigned enzymatic functions to the translated JGI ORF models of *C. reinhardtii* by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST.

In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate.

Conclusions: We functionally annotated approximately 1,400 JGI predicted metabolic ORFs that can facilitate the reconstruction and refinement of a genome-scale metabolic network. The unveiling of the metabolic potential of this organism, along with structural verification of the relevant ORFs, facilitates the selection of metabolic engineering targets with applications in bioenergy and biopharmaceuticals. The ORF clones are a resource for downstream studies.

* Correspondence: Haiyuan.Yu@cornell.edu; papin@virginia.edu; ksa3@nyu.edu

† Contributed equally

¹Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA

³Department of Biological Statistics and Computational Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA

Full list of author information is available at the end of the article

Background

Recent advances in sequencing genomes of prokaryotes and eukaryotes [1] and the explosion of the development and use of genome-scale metabolic network reconstructions [2] are expected to facilitate the selection of targets for metabolic engineering [3,4]. The unicellular green alga *Chlamydomonas reinhardtii* has been an attractive organism for exploration of metabolic engineering hypotheses due to its capability to flexibly regulate alternative biochemical pathways to produce biofuels [6-9]. However, the optimal selection of the enzymatic targets has been so far hindered by the lack of a comprehensive knowledge of the encoded genes that carry out the metabolic activities of the organism. Although the released genome sequence of *C. reinhardtii* by the Joint Genome Institute (JGI) [10] provided the needed resource to predict nearly 17,000 genes in this organism, it alone does not reveal the underlying principles of metabolic network function, nor does it disclose the functions of the predicted "parts-list" of the organism. To define genes and map their products to function, computational algorithms have been extensively applied to annotate the accumulated genomic data from many organisms including *C. reinhardtii* [11,12]. Most of these approaches are unable to predict the transcript structures precisely and accurately in a uniform manner due to 1) the incompleteness of the EST data, 2) the lack of comparative genomic information, particularly in less widely studied species, and 3) the complexity of the rules governing transcription initiation, termination and splicing events. Even for the well-studied nematode *C. elegans*, for which a high quality genome sequence has been available for over 10 years, inconsistencies still remain in defining the ORF structures [13,14]. Previous large-scale studies on *C. reinhardtii*, have included microarray [15,16], proteomics [17], and, more recently, RNAseq experiments [18] which have provided valuable expression data based on earlier releases of JGI annotations. Currently, the JGI v4.0 predicted *C. reinhardtii* ORFome remains for the most part unverified; therefore, the functional annotation and experimental structural verification of the encoded ORFs are urgently needed prior to use in functional studies including metabolic engineering experiments.

We previously reported the functional annotation of the gene products involved in central metabolism of *C. reinhardtii* using JGI v3.0 gene models [19] in which we improved the existing functional and structural annotations of the ORF models. In the re-evaluation of the central metabolic ORFs, for which the ORFs are generally the best characterized in the proteome, we observed that as much as 10% of the ORFs were annotated with structural errors. The errors included incorrect 5' or 3'

boundary annotations, which we identified through RACE [19].

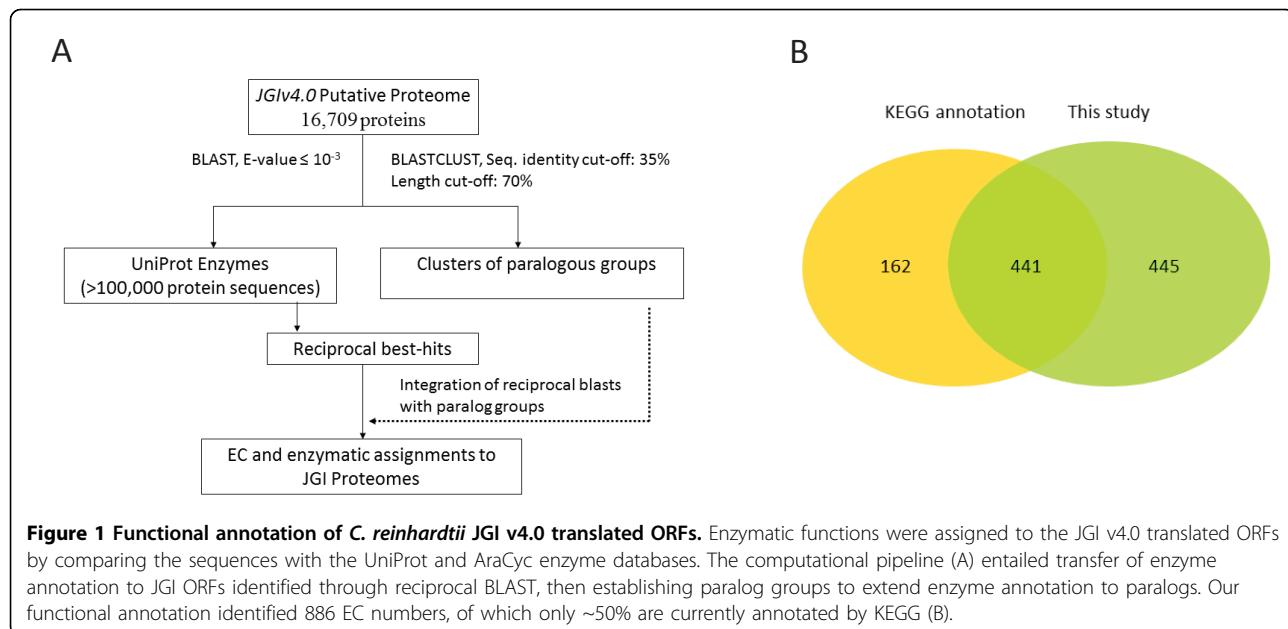
In this study, we computationally assigned enzyme functions to the predicted and newly released JGI v4.0 protein-coding ORF models and targeted the enzymatic ORFome for structural verification. Our results, in addition to structural verification, provide expression evidence for the enzymatic gene products, predict their subcellular localization, and identify the ORF models that may need to be re-annotated.

Results and discussion

Functional annotation of JGI v4.0 transcripts

We used the new JGI "filtered transcript models" released through the JGI portal (<http://genome.jgi-psf.org/Chlre4/Chlre4.home.html>) for both functional assignments and structural annotation verifications. Enzymatic functional assignments to the *C. reinhardtii* ORFs were made by associating Enzyme Commission (EC) numbers through reciprocal BLAST searches against the UniProt enzyme database [20] (<http://www.uniprot.org/>, with over 100,000 protein entries) (Figure 1A) supplemented with AraCyc database entries [21]. The best match for each translated ORF was identified (with an e-value threshold of 10^{-3}) and the EC number from the UniProt best match (or enzyme annotation from AraCyc) was transferred on to the JGI predicted ORF. We extended the EC assignments to the respective paralogs of the ORFs by clustering ORFs for the JGI filtered models. Altogether, we were able to assign 886 EC numbers to 1,427 JGI ORFs (Figure 1B, Additional file 1). KEGG currently provides 603 enzymatic annotations for the JGI v4.0 transcripts, of which there are 441 shared with our annotation. The assignments given in this study provide an additional 445 EC numbers not present in KEGG. The list of the enzymatic JGI v4.0 gene models with their assigned EC numbers are provided in Additional file 1.

In order to provide additional functional information, WoLF PSORT [22] was implemented to assign subcellular localizations to each translated JGI v4.0 enzymatic ORF. WoLF PSORT is a high-performance localization prediction algorithm evolved from PSORT [23], PSORT II [24] and iPSORT [25]; it combines localization features from these algorithms together with amino acid composition in a weighted k -nearest neighbors framework. Based on the cross-validation results, WoLF PSORT makes reliable predictions for nucleus, mitochondria, cytosol, plasma membrane, extracellular and (in plants) chloroplast. For other subcellular compartments, the performance is not as good, but still informative [22]. Compared to other methods, WoLF PSORT has been shown to have good performance for most



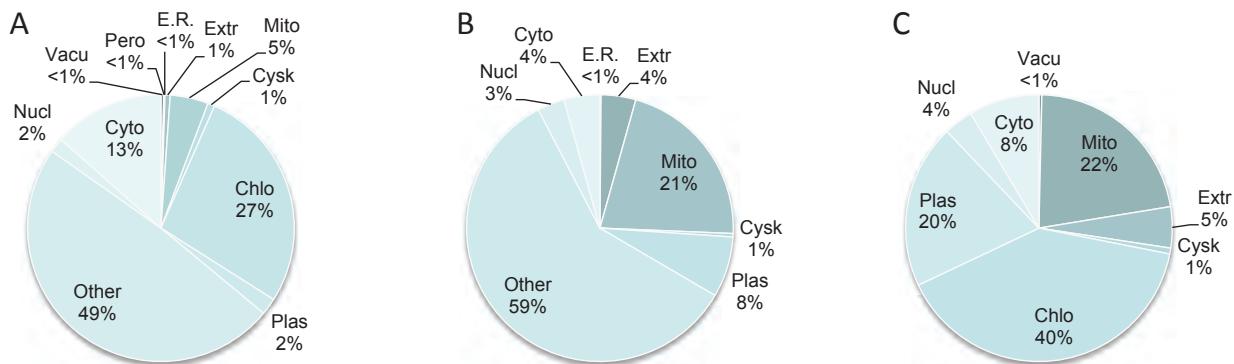
subcellular localizations [26]. Importantly, predictions are not made on the basis of signal sequences that can introduce vulnerability to errors in sequence and/or annotations on the 5' end of the gene [27]. Furthermore, due to the unique phylogenetic position of *C. reinhardtii* and a lack of extensive GO annotation, alternative methods such as MultiLoc2 [28], which use GO annotation for refinement of predictions, would not be applicable here.

The results (Additional file 2) are presented as the number of nearest neighbors in different subcellular compartments for each protein. The default value for the total number of nearest neighbors (i.e., k) is 32. Even though *C. reinhardtii* is in the plant lineage, it has retained key animal genes [10] and is a unicellular organism that shares ancestry at the branching point of plants and animals. We therefore performed two WoLF PSORT runs in which *C. reinhardtii* was considered either as a plant or animal. Because *C. reinhardtii* is closer to plants than animals [10], predictions made when considering it as a plant are likely to be more accurate. However, because WoLF PSORT uses homology to known proteins, and some *C. reinhardtii* proteins may be closer to those in animals than plants [10], the predictions assuming an animal lineage provide alternative assignments, particularly for cases where ambiguous predictions are made for the proteins assuming plant origins. To summarize the obtained results (Fig. 2), we have binned the encoded proteins based on the assigned probability values for each protein, such that, if more than 50% of the nearest neighbors of the protein belong to a given compartment, that protein is assigned to a

single compartment as its primary localization site. In cases where different localization predictions made based on animal and plant assumptions both meet an 85% cutoff, we took the higher confidence prediction as the final localization assignment (Additional file 3). Using this integration scheme, the largest compartment is the chloroplast when *C. reinhardtii* is considered a plant, and the second largest is the mitochondrion (Fig. 2C). These localization predictions agree with the fact that these genes are all related to metabolism. To verify the performance of our predictions, we manually curated a number of experimentally derived *C. reinhardtii* subcellular protein localizations recently reported by Weinkoop et al.[29]. Due to the limited number of localizations that could be transferred to v4.0 annotations from this study, we were only able to evaluate 9 ORFs in our set. Our predicted localizations of all 9 ORFs agreed with the experimentally determined localizations. Although the number is too small for adequate statistical analysis, it still shows the high quality of the predictions.

Experimental verification of *C. reinhardtii* enzymatic ORFeome

Our EC annotation of the JGI v4.0 transcript models identified 1,427 predicted transcripts with putative enzymatic functions. To experimentally verify structural annotation of the enzymatic ORFs, we carried out targeted transcriptome sequencing experiments after we amplified the ORFs by reverse transcription-PCR (RT-PCR) (Figure 3A). The generated amplicons were sequenced using the 454FLX platform before and after



cloning of the amplicons into a Gateway vector. The sequences of the clones were further verified by conventional Sanger sequencing.

In order to perform the verification experiments, we grew *C. reinhardtii* under permissive condition by

providing light, organic carbon sources and other nutrients (Methods). Total RNA from cells undergoing exponential growth was isolated and reverse transcribed to serve as a template for amplification of the ORFs for which we designed Gateway-tailed primers. Following

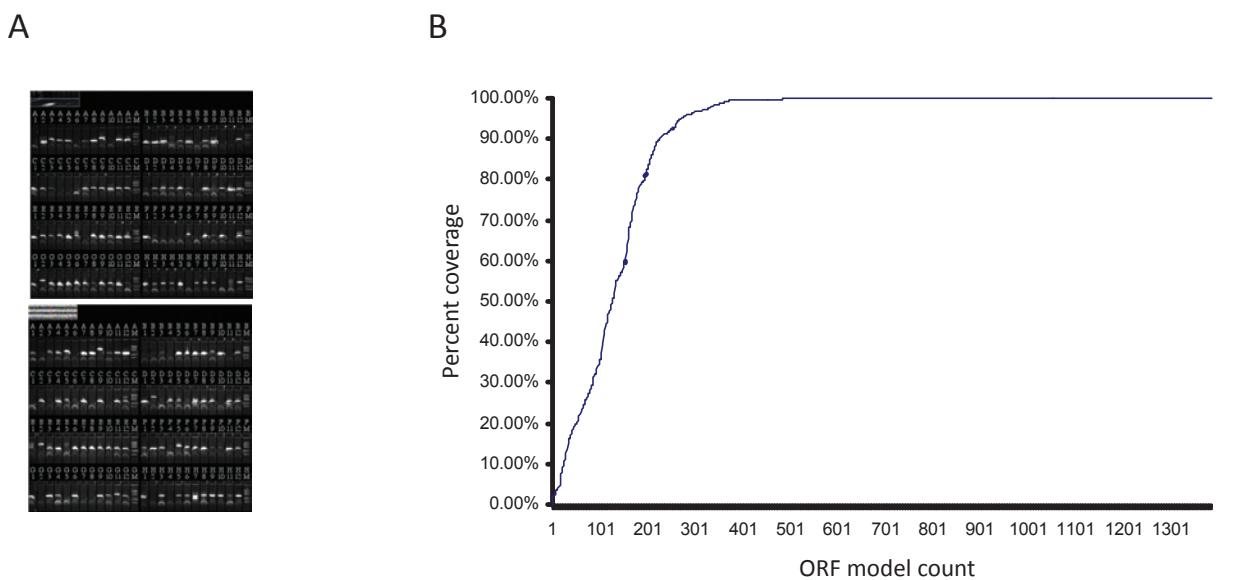


Figure 3 ORF verification by RT-PCR followed by multiplex sequencing. RNA isolated from *C. reinhardtii* grown under a permissive condition (continuous illumination and acetate as a source of carbon) was reverse transcribed, then used as template for PCR in which ORf-specific primers were used to amplify the JGI annotated ORFs. The amplicons were then sequenced directly using the 454FLX platform, or cloned, then sequenced by 454. (A) Amplification of representative metabolic ORFs are shown after electrophoresis (192 amplicons analyzed in two 96 well E-gels). (B) Percent coverage of 1,427 enzymatic ORF reference sequences by the obtained reads from 454 sequencing. The 454 reads were aligned to the JGI ORF reference sequences and percent coverage of the length of each reference sequence was determined (100% denotes all bases of the reference sequences could be covered by one or more 454 read). The entire lengths of 699 ORFs were 100% verified.

amplification, we carried out next generation sequencing (using the 454FLX platform) of the amplicons. The obtained 454 reads were then aligned to the JGI v4.0 ORF reference sequences to assess annotation accuracy. The aligned ORFs were binned according to their percent coverage; i.e., based on the percentage of the entire length of the ORF reference sequence that could be covered by the contigs assembled from the 454 reads.

For 78% of the JGI v4.0 ORF reference sequences, the 454 reads provided 95-100% coverage (Fig. 3B; Additional file 1), of this set approximately 92% had a coverage rate of 99-100%, demonstrating high verification rates. Approximately 10% of the ORF models showed coverage of 50-95%. The remaining 12% were covered less than 50% and of this set, 7% of the ORF models had less than 20% of their length verified by 454-reads.

As an alternative method of verifying the ORFs, we end-sequenced the cloned PCR products by conventional high-throughput Sanger sequencing. From 1,427 JGI v4.0 ORFs tested, we were able to obtain 661 ORF sequence tags (OSTs) that were aligned to the 5' end of the ORF models, and 631 OSTs that could be aligned to the 3' ends. Altogether, 42% (602) ORFs had OSTs that verified both ends of the ORF models. We could assemble full-length contigs for 242 ORFs (Additional file 1).

Overall, we obtained expression evidence for 1,401 of 1,427 ORF models with assigned enzymatic functions based on targeted transcriptome sequencing results and sequencing of the clones, though clearly not all of these ORF models can be considered verified. We consider an ORF model to be verified if 98 to 100% of its reference sequence could be covered by 454-reads, or if a full-length contig generated from Sanger sequencing of an obtained clone completely matched the reference sequence. For 73% of the ORF models, the 454-reads give confirmation at the 98-100% level. Sanger sequencing of the clones could verify an additional 36 ORF models (for which we could assemble contigs using 3' and 5' end reads). These models can therefore be considered verified, though it should be noted that even 100% coverage of an ORF model does not exclude the possibility of the presence of exons that were not annotated. The high coverage rates do, however, guarantee that the annotated exons are expressed. Furthermore, incomplete coverage by 454-reads does not necessarily imply inaccurate annotation; in some cases, less than 100% coverage could be the result of low expression level of the transcript and consequently low sequencing depth. We note that due to the amplification of the transcripts, the targeted transcriptome method that we have used is expected to normalize the abundance of the amplicons to a degree.

While end verification by Sanger sequencing can confidently verify the 5' and 3' ends, this method provides

no information on the internal exon structure of long ORFs (unless internal primer walking [30] is carried out). We also find that the overall success rate of sequencing clones using the Sanger method is significantly lower than the 454 sequencing of amplicons. Cloning bottlenecks, failure to generate contigs due to end reads not covering the internal segments, and random sequencing failures could be among the contributing factors. Direct sequencing of amplicons through 454 or other parallel sequencing methods clearly bypasses these limitations.

Conclusions

A central challenge in the post-genomic era is the mapping of the genotype-phenotype relationship. For biochemical networks, the functional connections between genotype and phenotype are deciphered through the use of the available high-throughput experimental and computational platforms. Each technology can be used to generate a vast amount of data particular to some aspects of a given biochemical network. Ultimately the gathered data could be used to manipulate the biochemical systems for biotechnological and medical purposes. However, such efforts rest upon the availability of accurate structural and functional annotations, as well as the availability of the biological resources, such as ORF clones. In this study, we have carried out both computational functional annotation and direct experimental verification of structural annotations of JGI v4.0 enzymatic ORFs, which include both metabolic and non-metabolic enzymes. We carried out targeted amplification of the ORFs by RT-PCR and sequenced the products (before and after the cloning) to verify the ORF structures. The approach of using targeted amplification of ORFs offers several advantages over other high-throughput approaches that are not targeted; importantly, it establishes the *cis*-connectivity between the 5' and 3' ends of the ORF. Such *cis*-connectivity cannot be established from whole transcriptome sequencing, tiling array analysis or other high-throughput transcriptome survey methodologies (e.g., [18,31-34]). In addition, the generated amplicons can be cloned, as we have done so here, to provide reagents for downstream large- or small-scale experiments, which can be used to define genotype to phenotype maps as well as accomplishing bio-engineering tasks. With an ever-increasing number of organisms whose genome sequences are becoming available (e.g., the diatom *Phaeodactylum tricornutum* [35], the algae *Ostreococcus* Sp. [36] and *Volvox carteri* [37]), the need for structural and functional annotation and their verification is clear. The approach and experiments carried out in this study can be readily extended to other species to facilitate functional annotation and structural verification of their gene models.

Methods

Enzyme annotation of JGI v4 Proteome

We assigned Enzyme classification (EC) to the translated JGI v4.0 filtered ORF models (Chlre4_best_transcripts and Chlre4_best_proteins) using UniProt [20] and AraCyc [21] enzyme protein sequences and their EC annotations as the basis. The transfer of enzyme annotations to ORF models involved two main steps: (1) Carrying out and deciphering reciprocal best-hits, if any, for each of the translated JGI ORF models to the UniProt and AraCyc sequences, then transferring the EC from the best-hits UniProt/AraCyc sequences to the corresponding ORF models. This transfer was done using BLASTP with an e-value threshold 0.001 [38,39]]; (2) Identification of paralogs, in the entire collection of translated JGI models, of already EC assigned translated ORF models and then transferring their EC annotations to their paralogs as well. This transfer was done using BLASTCLUST (http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/doc/blast/blastclust.html) with a sequence identity cut-off of 35% and length cut-off of 70%. BLASTCLUST can cluster protein sequences (using BLAST) systematically through pair wise alignments when statistically significant matches are found. Importantly, BLASTCLUST uses "single-linkage" clustering, which allows linkage of clusters through their "best matching" components. This aspect of the algorithm allows for clustering of sequences, which otherwise may lie below a set similarity threshold among themselves, but are linked through a sequence that has an above threshold similarity.

Subcellular localization predictions

WoLF PSORT [22] was used to assign subcellular localizations to each translated JGI v4.0 enzymatic ORFs. The output for each ORF provides the number of nearest neighbors in different subcellular compartments for each protein. The default value for total number of nearest neighbors (i.e., k) is 32. For each protein, the result can be transformed into a probability model:

$$P(c_i) = \frac{N(c_i)}{\sum_{i=1}^m N(c_i)}$$

where c_i is the i th subcellular compartment; $N(c_i)$ is the number of nearest neighbors the protein has for the i th subcellular compartment, and m is the total number of subcellular compartments predicted for the protein. We carried out the localization assignments of *C. reinhardtii* ORFs considering it as a plant and animal.

C. reinhardtii strain and growth condition

C. reinhardtii strain CC-503 was used for our experiments. *C. reinhardtii* cells were grown in Tris-acetate-phosphate (TAP) medium containing 100 mg l⁻¹ carbamycin without agitation, at room temperature (22–25 °C) and under continuous illumination with cool white light at a photosynthetic photon flux of 60 μmol m⁻² s⁻¹.

RNA isolation and quality assessment

Total RNA was isolated from *C. reinhardtii* cells grown in TAP medium and under constant light. Cells from mid-log phase were collected by centrifugation at 2,000 rpm (650g) for 10 min. Total RNA was isolated using TRIzol reagent (Invitrogen). The quality of the isolated RNA was improved by digesting the remainder of the cellular DNA using 0.08 U μl⁻¹ RNase-free DNase I enzyme (Ambion). The integrity and quality of the total RNA was assessed by Agilent 2100 Bioanalyzer (Agilent) using RNA pico 6000 kit and by following the manufacturer's instruction. The fraction of RNA with RNA Integrity Number (RIN) of more than 7.5 was used for cDNA synthesis. The concentration of the RNA was measured spectrophotometrically.

Structural verification of the JGI v4.0 transcripts: Reverse transcription-PCR of the metabolic ORFs

The annotated metabolic ORFs were subjected to reverse transcription followed by PCR to verify their predicted sequences. Reverse transcription of RNA was carried out using Superscript III reverse transcriptase (Invitrogen) following the manufacturer's instructions using random N6 and dT(16) (Ambion) as universal primers. The reaction mixture contained 1.2 M betaine (Sigma-Aldrich) to prevent premature terminations owing to the high G+C content of the *C. reinhardtii* transcriptome. The synthesized cDNAs were used as templates in PCR reactions. ORF-specific primers tailed with Gateway compatible sequences were designed automatically using the OSP program [40]. The forward primer starts from nucleotide A of the ATG start codon and was flanked with the Gateway B1.1 sequence at its 5' end. The reverse primer starts from the codon immediately before the termination codon and carried the Gateway B2.1 sequence at its 5' end. All primers had a melting temperature (Tm) between 55 °C and 65 °C. KOD hot start DNA polymerase (Novagen) catalyzed the amplification of ~1,430 ORFs individually in separate 50 μl reaction mixtures containing 1.2 M betaine and 0.25 μg/μl cDNA.

Gateway cloning of the metabolic ORFs, their transformation and amplicon generation for sequencing

The generated amplicons were recombinationally cloned into the pDONR223 Gateway vector to generate Entry

clones [41]. The recombinational cloning was performed using BP clonase (Invitrogen) following the manufacturer's instructions. The Entry clones were subsequently transformed into chemically competent *E. coli* DH5α. The positive transformants were selected and grown in 96-well format plates containing LB and 100 mg/l spectinomycin. Following growth in liquid media, the transformed bacteria were used as a source of template in PCR reactions containing 1.2 M betaine and KOD hot start DNA polymerase (Novagen) to amplify the clones. Vector primers were used to generate the final DNA templates for sequencing.

Generation of ORF sequence tags (OSTs) by Sanger sequencing

PCR products were sequenced bi-directionally using conventional automated cycle sequencing to generate ORF sequence tags (OSTs) [42]. Sequencing was carried out by Agencourt Bioscience Corp.

Forward and reverse sequences were vector-clipped (using Cross_match, <http://www.phrap.org/phredphrap/general.html>), then assembled. We used Phrap (<http://www.phrap.org/>) to assemble the forward and reverse sequences. Both assembled contigs and singlets were aligned against the coding sequences (CDSs) of corresponding predicted transcripts from *C. reinhardtii* assembly v4.0 (<http://genome.jgi-psf.org/Chlre4/Chlre4.home.html>) using MUSCLE [43,44]. The alignment files were then used to verify the CDSs of the predicted transcripts. An ORF model was considered verified if a contig could be assembled from both end reads and if the contig verifies the predicted sequence.

ORF model verification by 454FLX sequencing

The generated ORF amplicons were sequenced using the 454FLX Titanium sequencing system (454 Life Sciences Corp., Roche). For targeted transcriptome sequencing, the amplicons generated in RT-PCR reactions were pooled in equimolar ratios. For verification of cloned ORFs, the PCR products of the entry clones were pooled in equimolar quantities. The resulting mixes were partially purified using Qiagen MinElute PCR purification kit following the manufacturer's instruction. Five micrograms of DNA from each sample was subjected to nebulization for 90 seconds under nitrogen gas pressure of 30 psi(2.1 bar). After purification of the sheared DNA using the MinElute PCR purification kit, the DNA fragments were size-selected using AMPure beads (Agencourt). DNA fragments with the size range of 300-800 bp were end repaired and the adaptors were ligated to the ends. After melting into single stranded DNA molecules, the quality of the DNA library was assessed on a BioAnalyzer RNA Pico 6000 LabChip (Agilent). The resulting single stranded DNA

libraries were then purified and used to set up emulsion PCR reactions according to the manufacturer's instruction (454 Life Sciences Corp., Roche). After the amplification step, the emulsions were chemically broken and the beads carrying the amplified DNA library were recovered and enriched. The sequencing was performed on the Roche 454 Genome Sequencer Instrument with the GS FLX Titanium Sequencing Kit XLR70. Approximately 800,000 DNA-carrying beads along with enzyme and packing beads were loaded onto a PicoTitréPlate device. The sequencing was operated and monitored for ~9 hrs during which 200 flow cycles were completed. The generated data were processed using the GS FLX data analysis software v2.3. The vector sequences and Gateway tail sequences were trimmed from the raw reads and the reads shorter than 20 nt were filtered out. The trimmed and filtered reads were aligned against JGI v4.0 reference sequences using the GS Reference Mapper application (gsMapper v2.3). A minimum overlap length of 40 nt and minimum overlap identity of 90% were used to align the reads against the JGI v4.0 reference sequences. An ORF model was called verified if more than 98% of its entire length was covered by (matched to) the assembled contigs from the 454 reads.

Additional material

Additional File 1: JGIv4.0 gene model names, their predicted sequence, EC annotation, and verification status of their structural annotation.

Additional File 2: Subcellular localization prediction of JGI v4.0 enzymes predicted by WoLF PSORT as plant or animal proteins.

Additional File 3: A consolidated set of high confidence subcellular localization predictions made by WoLF PSORT. Subcellular compartments predicted for JGI v4.0 as plant or animal at 0.85 or higher ratio relative to other compartments were selected then consolidated by reporting the prediction with the higher value.

List of abbreviations used

ORF: Open Reading Frame; OST: ORF Sequence Tag; JGI: Joint Genome Institute

Acknowledgements

This research was supported by the Office of Science (Biological and Environmental Research), US Department of Energy, grant No. DE-FG02-07ER64496 (to J.P. and K.S.-A.), and additionally by New York University Abu Dhabi Research funds (to K.S.-A.), and Institute Sponsored Research funds from the Dana-Farber Cancer Institute Strategic Initiative (to CCSB). This article has been published as part of *BMC Genomics* Volume 12 Supplement 1, 2011: Validation methods for functional genome annotation. The full contents of the supplement are available online at <http://www.biomedcentral.com/1471-2164/12?issue=S1>.

Author details

¹Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ²Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ³Department of Biological Statistics and Computational Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.

⁴Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. ⁵New York University Abu Dhabi, Abu Dhabi, UAE, and Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.

Authors' contributions

LG designed the cloning experiments, carried out molecular cloning, 454 sequencing, sequence analysis and drafted the manuscript. SB designed the functional annotation pipeline and carried out functional annotations of the ORFs; DB contributed to cloning; XY contributed to 454 sequencing. YS, CF, and TH carried out primer design and sequence alignments. HY carried out localization prediction of the ORFs. HY, JP, and KSA conceived the study, participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Published: 15 June 2011

References

1. Galperin MY, Koonin EV: From complete genome sequence to 'complete' understanding? *Trends Biotechnol* 2010, 28(8):398-406.
2. Oberhardt MA, Palsson BØ, Papin JA: Applications of genome-scale metabolic reconstructions. *Mol Syst Biol* 2009, 5:320.
3. Park JH, Lee SY: Towards systems metabolic engineering of microorganisms for amino acid production. *Curr Opin Biotechnol* 2008, 19(5):454-460.
4. Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin JA: Metabolic systems analysis to advance algal biotechnology. *Biotechnol J* 2010, 5(7):660-670.
5. Li Y, Han D, Hu G, Sommerfeld M, Hu Q: Inhibition of starch synthesis results in overproduction of lipids in *Chlamydomonas reinhardtii*. *Biotechnol Bioeng* 2010, 107(2):258-268.
6. Boyle NR, Morgan JA: Flux balance analysis of primary metabolism in *Chlamydomonas reinhardtii*. *BMC Syst Biol* 2009, 3:4.
7. Rupprecht J: From systems biology to fuel-*Chlamydomonas reinhardtii* as a model for a systems biology approach to improve biohydrogen production. *J Biotechnol* 2009, 142(1):10-20.
8. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B: Improved photobiological H₂ production in engineered green algal cells. *J Biol Chem* 2005, 280(40):34170-34177.
9. Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F: A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of *Chlamydomonas*. *Proc Natl Acad Sci U S A* 2008, 105(51):20546-20551.
10. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippel M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaferi J, Luo Y, Martínez D, Ngau WC, Ottillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR: The *Chlamydomonas* genome reveals the evolution of key animal and plant functions. *Science* 2007, 318(5848):245-250.
11. Mao X, Cai T, Olyarchuk JG, Wei L: Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. *Bioinformatics* 2005, 21(19):3787-3793.
12. Wortman JR, Haas BJ, Hannick LI, Smith RK Jr, Maiti R, Ronning CM, Chan AP, Yu C, Ayele M, Whitelaw CA, White OR, Town CD: Annotation of the *Arabidopsis* genome. *Plant Physiol* 2003, 132(2):461-468.
13. Hillier LW, Reinke V, Green P, Hirst M, Marra MA, Waterston RH: Massively parallel sequencing of the polyadenylated transcriptome of *C. elegans*. *Genome Res* 2009, 19(4):657-666.
14. Salehi-Ashtiani K, Lin C, Hao T, Shen Y, Szeto D, Yang X, Ghamsari L, Lee H, Fan C, Murray RR, Milstein S, Svrzikapa N, Cusick ME, Roth FP, Hill DE, Vidal M: Large-scale RACE approach for proactive experimental definition of *C. elegans* ORFeome. *Genome Res* 2009, 19(12):2334-2342.
15. Eberhard S, Jain M, Im CS, Pollock S, Shrager J, Lin Y, Peek AS, Grossman AR: Generation of an oligonucleotide array for analysis of gene expression in *Chlamydomonas reinhardtii*. *Curr Genet* 2006, 49(2):106-124.
16. Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM: Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga *Chlamydomonas reinhardtii*. *Eukaryot Cell* 2008, 7(11):1965-1979.
17. May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, Weiss J, Recuenco-Munoz L, Ebenhö O, Weckwerth W, Walther D: Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of *Chlamydomonas reinhardtii*. *Genetics* 2008, 179(1):157-166.
18. González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR: RNA-seq analysis of sulfur-deprived *Chlamydomonas* cells reveals aspects of acclimation critical for cell survival. *Plant Cell* 2010, 22(6):2058-2084.
19. Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA: Metabolic network analysis integrated with transcript verification for sequenced genomes. *Nat Methods* 2009, 6(8):589-592.
20. Apweiler R, Bairoch A, Wu CH: Protein sequence databases. *Chem Biol* 2004, 8(1):76-80.
21. Mueller L, Zhang P, Rhee SY: AraCyc: a biochemical pathway database for *Arabidopsis*. *Plant Physiol* 2003, 132(2):453-460.
22. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K: WoLF PSORT: protein localization predictor. *Nucleic Acids Res* 2007, 35(Web Server issue):W585-587.
23. Nakai K, Horton P: PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. *Trends Biochem Sci* 1999, 24(1):34-36.
24. Nakai K, Kanehisa M: A knowledge base for predicting protein localization sites in eukaryotic cells. *Genomics* 1992, 14(4):897-911.
25. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S: Extensive feature detection of N-terminal protein sorting signals. *Bioinformatics* 2002, 18(2):298-305.
26. Casadio R, Martelli PL, Pierleoni A: The prediction of protein subcellular localization from sequence: a shortcut to functional genome annotation. *Brief Funct Genomic Proteomic* 2008, 7(1):63-73.
27. Reinhardt A, Hubbard T: Using neural networks for prediction of the subcellular location of proteins. *Nucleic Acids Res* 1998, 26(9):2230-2236.
28. Blum T, Briesemeister S, Kohlbacher O: MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. *BMC Bioinformatics* 2009, 10:274.
29. Wienkoop S, Weiss J, May P, Kempa S, Irgang S, Recuenco-Munoz L, Pietzke M, Schwemmer T, Rupprecht J, Egelhofer V, Weckwerth W: Targeted proteomics for *Chlamydomonas reinhardtii* combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. *Mol Biosyst* 2010, 6(6):1018-1031.
30. Voss H, Schwager C, Wiemann S, Zimmermann J, Stegemann J, Erfle H, Voie AM, Drzonek H, Ansorge W: Efficient low redundancy large-scale DNA sequencing at EMBL. *J Biotechnol* 1995, 41(2-3):121-129.
31. Djebali S, Kapranov P, Foissac S, Lagarde J, Reymond A, Ucla C, Wyss C, Drenkow J, Dumais E, Murray RR, Lin C, Szeto D, Denoeud F, Calvo M, Frankish A, Harrow J, Makrythanasis P, Vidal M, Salehi-Ashtiani K, Antonarakis SE, Gingeras TR, Guigó R: Efficient targeted transcript discovery via array-based normalization of RACE libraries. *Nat Methods* 2008, 5(7):629-635.

32. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: **Mapping and quantifying mammalian transcriptomes by RNA-Seq.** *Nat Methods* 2008, 5(7):621-628.
33. Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y: **Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage.** *Proc Natl Acad Sci USA* 2003, 100(26):15776-15781.
34. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: **Serial analysis of gene expression.** *Science* 1995, 270(5235):484-487.
35. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otilar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentini K, Verret F, Bergez JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Dettner JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Ryneanson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV: **The Phaeodactylum genome reveals the evolutionary history of diatom genomes.** *Nature* 2008, 456(7219):239-234.
36. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombaut S, Zhou K, Otilar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev IV: **The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation.** *Proc Natl Acad Sci USA* 2007, 104(18):7705-7710.
37. Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS: **Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri.** *Science* 2010, 329(5988):223-226.
38. Madan Babu M, Balaji S, Aravind L: **General trends in the evolution of prokaryotic transcriptional regulatory networks.** *Genome Dyn* 2007, 3:66-80.
39. Balaji S, Babu MM, Aravind L: **Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of *E. coli*.** *J Mol Biol* 2007, 372(4):1108-1122.
40. Hillier L, Green P: **OSP: a computer program for choosing PCR and DNA sequencing primers.** *PCR Methods Appl* 1991, 1(2):124-128.
41. Walhout AJ, Temple GF, Brasch MA, Hartley JL, Lorson MA, van den Heuvel S, Vidal M: **GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes.** *Methods Enzymol* 2000, 328:575-592.
42. Reboul J, Vaglio P, Tzellas N, Thierry-Mieg N, Moore T, Jackson C, Shin-i T, Kohara Y, Thierry-Mieg D, Thierry-Mieg J, Lee H, Hitti J, Doucette-Stamm L, Hartley JL, Temple GF, Brasch MA, Vandenhoute J, Lamesch PE, Hill DE, Vidal M: **Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in *C. elegans*.** *Nat Genet* 2001, 27(3):332-336.
43. Edgar RC: **MUSCLE: a multiple sequence alignment method with reduced time and space complexity.** *BMC Bioinformatics* 2004, 5:113.
44. Edgar RC: **MUSCLE: multiple sequence alignment with high accuracy and high throughput.** *Nucleic Acids Res* 2004, 32(5):1792-1797.

doi:10.1186/1471-2164-12-S1-S4

Cite this article as: Ghamsari et al.: Genome-wide functional annotation and structural verification of metabolic ORFeome of *Chlamydomonas reinhardtii*. *BMC Genomics* 2011 12(Suppl 1):S4.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Metabolic network reconstruction of *Chlamydomonas* offers insight into light-driven algal metabolism

Roger L Chang^{1,9}, Lila Ghamsari^{2,3,9}, Ani Manichaikul⁴, Erik FY Horwitz⁵, Santhanam Balaji^{2,3}, Weiqi Fu⁶, Yun Shen^{2,3}, Tong Hao^{2,3}, Bernhard Ø Palsson¹, Kourosh Salehi-Ashtiani^{2,3,7,8,*} and Jason A Papin^{4,*}

¹ Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA, ² Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA, ³ Department of Genetics, Harvard Medical School, Boston, MA, USA, ⁴ Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA, ⁵ Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA, ⁶ Center for Systems Biology, University of Iceland, Reykjavik, Iceland, ⁷ New York University Abu Dhabi, Abu Dhabi, UAE and ⁸ Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA

⁹ RL Chang led the network reconstruction and computational modeling; L Ghamsari led the transcript verification

* Corresponding author. K Salehi-Ashtiani, New York University Abu Dhabi, Abu Dhabi, UAE, and Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA. Tel.: +1 212 992 6964; Fax: +1 212 995 4015; E-mail: ksa3@nyu.edu or JA Papin, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. Tel.: +1 434 924 8195; Fax: +1 434 982 3870; E-mail: papin@virginia.edu

Received 15.2.11; accepted 18.6.11

Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga *Chlamydomonas reinhardtii* is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology.

Molecular Systems Biology 7: 518; published online 2 August 2011; doi:10.1038/msb.2011.52

Subject Categories: metabolic and regulatory networks; plant biology

Keywords: *Chlamydomonas reinhardtii*; lipid metabolism; metabolic engineering; photobioreactor

Introduction

Algae have garnered significant interest in recent years for their potential commercial applications in biofuels (Hu *et al.*, 2008; Hemschemeier *et al.*, 2009) and nutritional supplements (Spolaore *et al.*, 2006). Among eukaryotic microalgae, *Chlamydomonas reinhardtii* has arisen as the hallmark, model organism (Harris, 2001). *C. reinhardtii* has been widely used to study photosynthesis, cell motility and phototaxis, cell wall biogenesis, and other fundamental cellular processes (Harris, 2001).

Commercial use and basic scientific research of photosynthetic organisms could benefit from better understanding of how light is absorbed and affects cellular systems. The quality of light sources implemented in photobioreactors largely determines the efficiency of energy usage in industrial algal farming (Fernandes *et al.*, 2010). Light spectral quality also affects how photon absorption induces various metabolic processes: photosynthesis, pigment and vitamin synthesis, and the retinol pathway required for phototaxis.

Metabolic network reconstruction provides a framework to integrate diverse experimental data for investigation of global

properties of metabolism, and as such, can provide clear advantages as a mode of studying the effects of light upon a photosynthetic biological system if light input is accounted for explicitly. The standardized reconstruction process (Thiele and Palsson, 2010) yields a biochemically and genomically structured knowledgebase and, coupled with the standard simulation approach of flux balance analysis (FBA) (Orth *et al.*, 2010), provides a basis for predictive phenotype modeling; both contexts have been used for a variety of applications (Durot *et al.*, 2009; Oberhardt *et al.*, 2009; Gianchandani *et al.*, 2010), among them the design of genetic engineering strategies for production strains (Bro *et al.*, 2006; Park *et al.*, 2011). To date, however, photon flux, with associated spectral constraints, has not been integrated into a metabolic network reconstruction.

Characterizing algal metabolism is key to engineering production strains and framing the study of photosynthesis. Extensive literature on *C. reinhardtii* metabolism, reviewed in Stern *et al.* (2008), and multiple metabolic mutants (Harris *et al.*, 2008) provide a solid foundation for detailed characterization of its metabolic functions. The availability of complete genome sequence data for *C. reinhardtii* (Merchant *et al.*, 2007)

and its functional annotation have enabled bioinformatic approaches to inform the presence of genome-encoded enzymes (Grossman *et al*, 2007; Boyle and Morgan, 2009; Manichaikul *et al*, 2009). We have employed these resources to reconstruct and experimentally validate a genome-scale metabolic network of *C. reinhardtii*, the first network to account for detailed photon absorption permitting growth simulations under different light sources. This network accounts for the activity of substantially more genes with metabolic functions than existing reconstructions (Boyle and Morgan, 2009; Manichaikul *et al*, 2009).

Results

Reconstruction contents and advances

The genome-scale *C. reinhardtii* metabolic network (Figure 1A; Supplementary Figure S1; Supplementary Table S1; Supplementary Table S2; Supplementary Model S1) accounts for 1080 genes, associated with 2190 reactions and 1068 unique metabolites, and encompasses 83 subsystems distributed across 10 compartments. As per convention (Reed *et al*, 2003), we call this network *iRC1080* based on the primary reconstructionist and the scope of genomic content. Of the putative protein-coding genes in the *C. reinhardtii* genome (<http://augustus.gobics.de/predictions/chlamydomonas/augustus.u5.aa>), an estimated 20% function in metabolism (Supplementary Table S3). *iRC1080* accounts for the activity of >32% of the estimated

genes with metabolic functions, a significant expansion over existing reconstructions (Boyle and Morgan, 2009; Manichaikul *et al*, 2009). *iRC1080* is the most comprehensive metabolic network reconstruction of *C. reinhardtii* to date based on inclusion of pathways and a level of detail absent from previous reconstructions.

A major emergent feature of *C. reinhardtii* metabolism, apparent in Figure 1A, is the relative centrality of the chloroplast and its importance in light-driven metabolism. The chloroplast, including the thylakoid and eyespot subcompartments, accounts for >30% of the total reactions in the network and 9 of the 10 photon-utilizing reactions. The thylakoid contains essential pathways for photoautotrophic growth including photosynthesis, chlorophyll synthesis, and carotenoid synthesis, producing photoprotective pigments also valuable as fish feed additives and nutritional supplements for human consumption. The eyespot accounts for retinol metabolism, the mechanistic basis for phototaxis. Several pathways are partially duplicated across the chloroplast and other cellular compartments, in agreement with known biochemistry. A few crucial pathways are divided between the chloroplast and cytosol, including glycolysis and glycerolipid metabolism. Among the glycerolipids, triacylglycerides carrying high energy, long-chain fatty acids relevant for biofuel production accumulate substantially in microalgae. *iRC1080* provides a thorough resource for studying these and other metabolic products and a basis for strain design for genetic engineering.

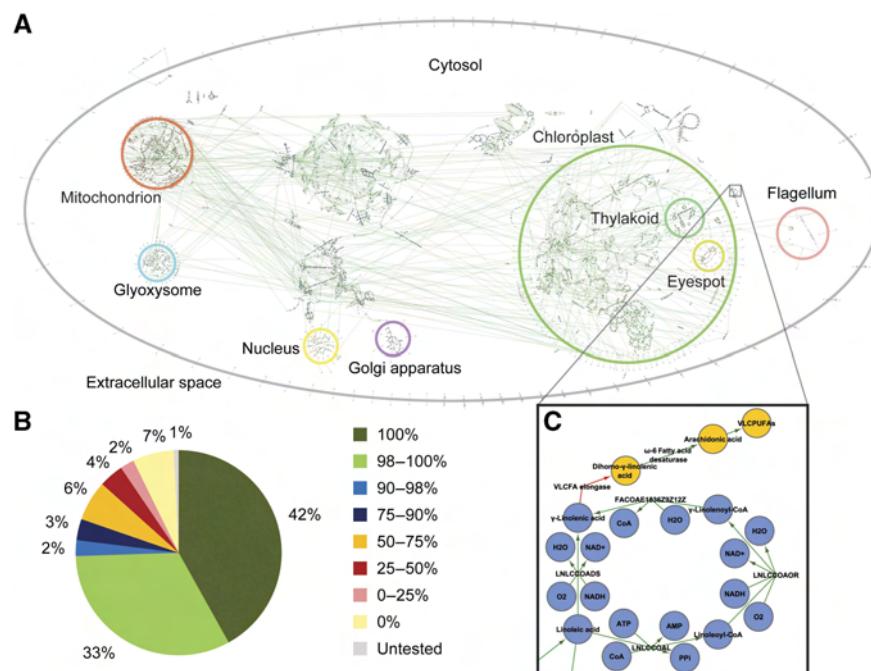


Figure 1 Contents of the *iRC1080* metabolic network reconstruction. **(A)** Compartmentalized network diagram. The full genome-scale metabolic network is depicted, denoting compartments. A high-resolution diagram without compartment labels is also available (Supplementary Figure S1). **(B)** Global transcript verification status. The graph shows the distribution of transcripts accounted for in the network categorized by their verification status. Color codes correspond to the noted percentage of transcript sequence verified experimentally. For example, 42% of transcripts in the network were verified experimentally by 100% sequence coverage. **(C)** Latent VLCPUFA pathway diagram. Blue nodes represent metabolites included in *iRC1080*, and orange nodes represent metabolites not included in *iRC1080*, hypothesized to be absent in *C. reinhardtii*. Green edges represent enzyme activities accounted for in our functional annotation, and the red edge represents the VLCPUFA elongase missing from our annotation and hypothesized to have been lost in *C. reinhardtii*'s evolution. This pathway diagram also demonstrates the detail of the high-resolution network diagram (Supplementary Figure S1).

iRC1080 considerably expands lipid metabolic pathways over previous reconstructions. We compared the lipid pathways of *iRC1080* with several previously published metabolic reconstructions (Duarte *et al*, 2007; Feist *et al*, 2007; Boyle and Morgan, 2009; Mo *et al*, 2009; Montagud *et al*, 2010) counting the number of genes, reactions, and chemically distinct lipid molecules included in pathways for each lipid class (Table I). The extent of gene, reaction, and metabolite content of lipid pathways in *iRC1080* is, in general, greater than previous reconstructions. The coverage of ketoacyl lipid chemical properties represented in each network was also analyzed for all metabolites in fatty acyl, glycerolipid, glycerophospholipid, and sphingolipid classes; the fraction of lipid metabolites in the networks that account for a given applicable property was determined (Table I). Lower coverage signifies incompletely specified molecular species and often lumped

lipid reactions and metabolites. *iRC1080* accounts explicitly for all metabolites in these pathways, providing sufficient detail to completely specify all individual molecular species: backbone molecule and its stereochemical numbering of acyl-chain positions; acyl-chain length; and number, position, and *cis-trans* stereoisomerism of carbon–carbon double bonds. This level of detail enables a significantly higher degree of precision in lipid studies and in metabolic engineering design involving these pathways.

Experimental transcript verification

We have analyzed *iRC1080* via experimental transcript verification under permissive growth conditions (Supplementary Table S4), representing the largest genome-scale transcript validation effort to date. More than 75% of included

Table I Lipid pathway reconstruction properties in *iRC1080* in comparison to other metabolic network reconstructions

	Reconstructions					
	<i>iRC1080</i> <i>C. reinhardtii</i>	[<i>iNB305</i>] <i>C. reinhardtii</i>	<i>iSyn669</i> <i>Synechocystis</i>	<i>iMM904</i> <i>S. cerevisiae</i>	<i>iAF1260</i> <i>E. coli</i>	Recon 1 <i>Homo sapiens</i>
<i>Ketoacyl lipid chemical properties</i> ^a						
Backbone molecule	1.00	0.94	1.00	1.00	1.00	1.00
Stereochemical numbering	1.00	0.00	0.60	0.85	1.00	0.00
Acyl-chain length	1.00	0.72	0.90	0.91	1.00	0.70
C=C number	1.00	0.72	0.75	0.91	1.00	0.70
C=C positions	1.00	0.00	0.80	0.42	0.91	0.60
E-Z stereoisomerism	1.00	0.00	0.80	0.50	0.42	0.53
<i>Fatty acyls</i>						
G ^b	64	7	13	32	26	91
R ^c	167	41	71	108	139	233
M ^d	104	21	55	55	95	137
<i>Glycerolipids</i>						
G ^b	40	0	0	18	0	27
R ^c	292	4	0	12	0	13
M ^d	135	4	2	4	7	4
<i>Glycerophospholipids</i>						
G ^b	47	0	8	46	22	87
R ^c	126	5	7	52	227	51
M ^d	56	4	3	4	102	22
<i>Sphingolipids</i>						
G ^b	8	0	0	21	0	54
R ^c	10	0	0	63	0	79
M ^d	6	0	0	31	0	59
<i>Sterol lipids</i>						
G ^b	22	0	1	32	0	87
R ^c	34	0	3	49	0	156
M ^d	26	0	4	22	0	105
<i>Prenol lipids</i>						
G ^b	37	4	15	9	16	21
R ^c	59	5	53	17	20	50
M ^d	43	4	42	15	17	41
<i>Total lipids</i>						
G ^b	218	11	37	158	64	367
R ^c	688	55	134	301	386	582
M ^d	370	33	106	131	221	368

^aValues are the fraction of lipid metabolites in each network that account for each property, when applicable.

^bGene transcripts (can be duplicated across lipid classes).

^cLipid pathway reactions (non-transport).

^dLipid metabolites (unique lipids).

transcripts were verified at >90% sequence coverage, and 92% of tested transcripts were at least partially validated experimentally (i.e. a portion of the sequence was recovered in the sequenced transcripts) (Figure 1B). We also analyzed the strength of transcript verification by specific metabolic subsystems (Figure 2, a representative subset; Supplementary Figure S2, the full set). The full lengths of all transcripts associated with 10 subsystems were verified, notably including biosynthesis of unsaturated fatty acids, histidine metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis, with 12, 12, and 24 transcripts, respectively. Many more subsystems were also well verified, 61 out of 76 gene-associated subsystems with >90% of associated transcripts at least partially validated. It should be noted that only sequencing reads that uniquely map to reference transcript sequences were counted toward the percentage of length validation; thus, sequencing reads unique enough to unambiguously specify the corresponding reference transcript were detected for every transcript with >0% validation. A few subsystems stood out as being more poorly verified, including

chloroplast and mitochondrial transport systems and sphingolipid metabolism, all of which exhibited <80% of transcripts validated to any extent. This may reflect low expression level or imperfect structural annotation of these genes, particularly compartmental transporters. Low expression levels or complete deactivation of these genes is consistent with a hypothesized evolutionary trend (see below) in the case of sphingolipid metabolism.

Evolution of latent lipid pathways

The comprehensive reconstruction of lipid metabolism in iRC1080 revealed hypothetical latent pathways, the functions of which have likely been lost through evolution. Previous studies established that *C. reinhardtii* lacks the practically ubiquitous membrane lipids phosphatidylcholine (Giroud et al, 1988) and phosphatidylserine (Riekhof et al, 2005). Similarly, our reconstruction suggests that *C. reinhardtii* also lacks very long-chain fatty acids (VLCFAs), their polyunsaturated analogs (VLCPUFAs) (Figure 1C), and ceramides.

Surveys of *C. reinhardtii* lipid species have not detected VLCFAs (Giroud et al, 1988; Giroud and Eichenberger, 1989; Tatsuzawa et al, 1996; Dubertret et al, 2002; Kajikawa et al, 2006; Lang, 2007), likely due to a lack of functional VLCFA elongase (Weers and Gulati, 1997; Guschina and Harwood, 2006; Kajikawa et al, 2006). No candidate VLCFA elongase was identified in our comprehensive functional annotation (Supplementary Table S3), and our annotation suggests several downstream gaps in arachidonic acid metabolism as well, corroborating this hypothesis. Arachidonic acid, the 20-carbon parent fatty acid of all VLCFAs and VLCPUFAs, is synthesized by a VLCFA elongase-catalyzed extension of γ -linolenic acid, which is present in *C. reinhardtii* (Griffiths et al, 2000). Notably, *C. reinhardtii* does encode a fatty acid desaturase that accepts arachidonic acid as substrate (Kajikawa et al, 2006) and, based on our functional annotation, encodes several other enzymes that act upon this substrate, indicating that algal ancestors likely had a functional VLCFA elongase.

Multiple lines of evidence uncovered during the reconstruction also support the absence of ceramides in *C. reinhardtii*. Our functional annotation did not uncover a convincing candidate for ceramide synthetase (EC:2.3.1.24), a required enzyme for ceramide synthesis, nor, to our knowledge, has one been discovered by previous efforts, including *C. reinhardtii* enzyme annotations of the Kyoto Encyclopedia of Genes and Genomes. Similarly, our functional annotation suggests substantial gaps downstream in the sphingolipid metabolic pathway. As aforementioned, *C. reinhardtii* also lacks VLCFAs, and VLCFA-CoA is a required substrate for the ceramide synthetase reaction (Hills and Roscoe, 2006). Finally, our experimental transcript analysis failed to verify 2 out of 8 transcripts associated with sphingolipid metabolism (Figure 2) that were included in iRC1080, 1 of 2 serine C-palmitoyltransferases and a putative sphingosine 1-phosphate aldolase. This result may reflect still further gene function loss in this pathway, perhaps occurring more recently in evolutionary time given that our functional annotation actually detected candidate sequences for these enzymes. Considering this evidence, we suggest that the evolutionary history of *C. reinhardtii* includes the loss of ceramide metabolism,

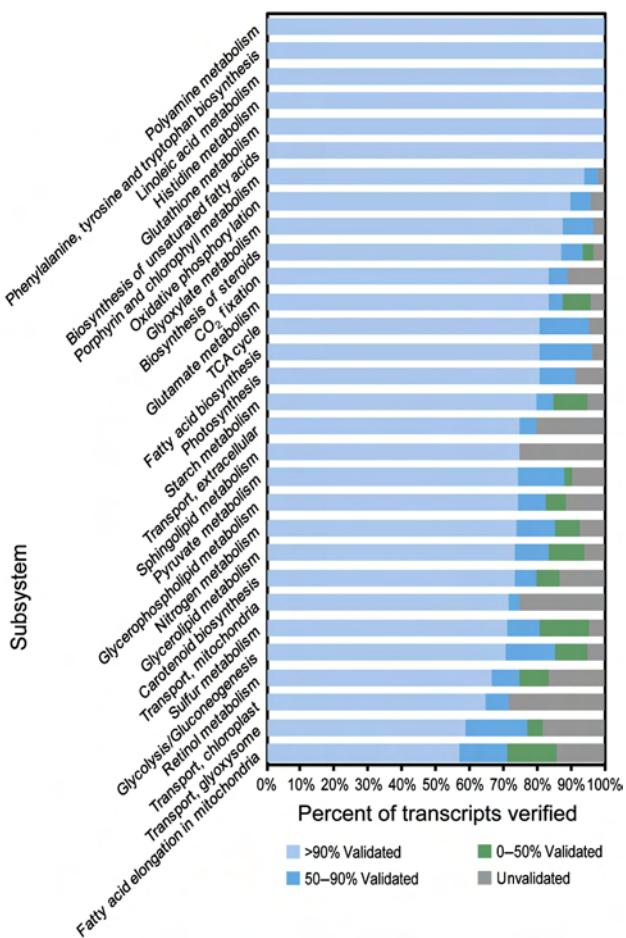


Figure 2 Experimental transcript verification by subsystem. The graph summarizes transcript verification status (see Materials and methods and Supplementary information for details) for 30 of the 76 gene-associated subsystems of iRC1080. Identical analysis for the full complement of 76 subsystems is also available (Supplementary Figure S2). The x axis corresponds to the percentage of subsystem-associated transcripts that were experimentally verified to the extent noted by the color code.

although this hypothesis remains to be verified. Annotated enzymes in this pathway separated from the broader network by gaps may represent multifunctional proteins or proteins that have evolved to function in a pathway distinct from ceramide synthesis. These gaps in *C. reinhardtii* metabolism not only increase understanding of the evolution of algal lipid pathways but also represent potential targets for genetic engineering in an effort to expand the diversity of lipids this alga can synthesize. Such engineering efforts serve as valuable test cases for engineering industrial strains and could improve *C. reinhardtii* as a model alga for biofuel development.

Modeling metabolic light usage

Our reconstruction accounted for effective light spectral ranges by analyzing biochemical activity spectra (Figure 3A), either reaction activity or absorbance at varying light wavelengths. Defining effective spectral bandwidths associated with each photon-utilizing reaction enabled our network to model growth under different light sources via stoichiometric representation of the spectral composition of emitted light, which we term prism reactions. The coefficients for different

photon wavelengths in prism reactions correspond to the ratios of photon flux in the defined effective spectral ranges to the total photon flux in the visible spectrum emitted by a given light source (Figure 3A and B). In this manner, it is possible to distinguish the amount of emitted photons that drive different metabolic reactions. We created prism reactions for 11 distinct light sources (Supplementary Figure S3), covering most sources that have been used in published studies for algal and plant growth including solar light, various light bulbs, and LEDs.

The network reconstruction provides a detailed account of metabolic photon absorption by light-driven reactions. Photosystems I and II in iRC1080 stoichiometrically absorb photons according to the Z-scheme (Berg et al, 2007). The light-dependent protochlorophyllide oxidoreductases require a single photon per catalysis as demonstrated in wheat (Griffiths et al, 1996). Extrapolation of UVB energy requirements for spontaneous provitamin D₃ conversion to vitamin D₃ (Bjorn, 2007) based on the average photon energy in the UVB range suggests a stoichiometric ratio of approximately one. Two phototactic rhodopsins, reactants of the rhodopsin photoisomerase reaction, are encoded by *C. reinhardtii*, one

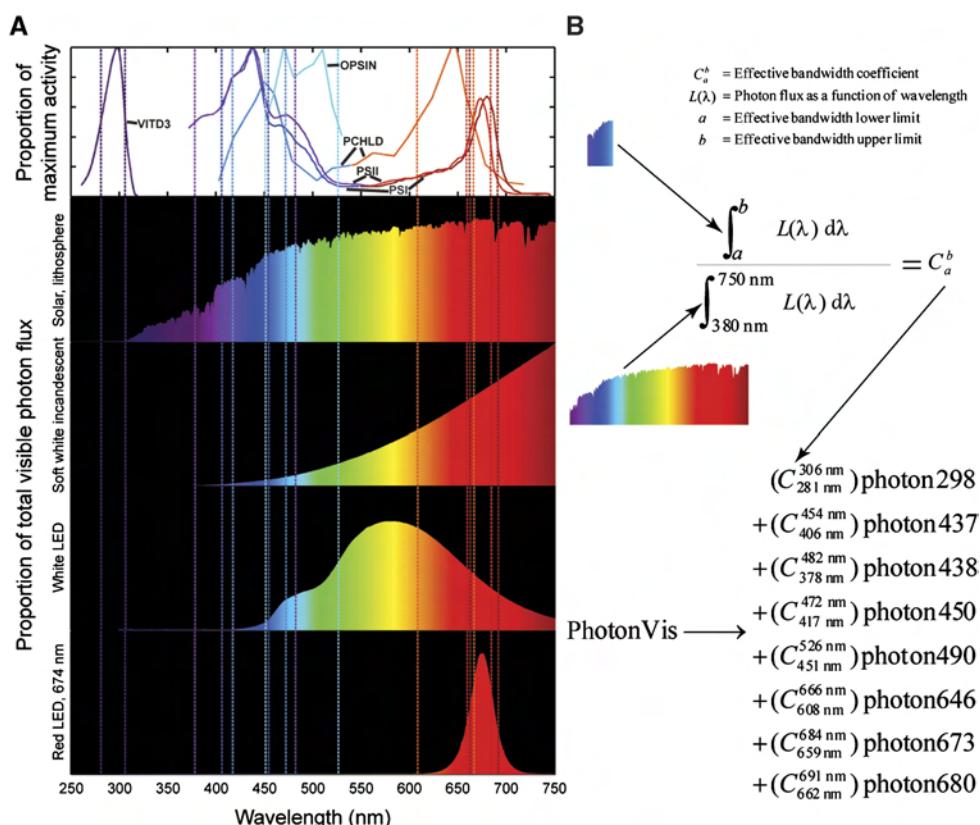


Figure 3 Analysis of light spectra. **(A)** Activity and irradiance spectra. The top graph displays activity spectra for photon-utilizing reactions included in iRC1080. The abbreviated reactions are defined as follows: VITD3, vitamin D₃ synthesis; OPSIN, rhodopsin photoisomerase; PCHLD, both protochlorophyllide photoreductase and divinylprotochlorophyllide photoreductase; PSI, photosystem I; PSII, photosystem II. The y axis for the activity spectra is the fraction of maximum-measured activity with respect to each noted reaction. Four of the eleven sample irradiance spectra (Supplementary Figure S3) are depicted with y axes set as the percentage of total visible photon flux at each wavelength (x axis). Effective spectral bandwidths are denoted by vertical dashed lines color coded to match the activity spectra for each reaction. **(B)** Prism reaction derivation. The photon flux from wavelengths a to b is normalized by the total visible photon flux from 380 to 750 nm to yield the effective spectral bandwidth coefficient C . The coefficients for each range are compiled into a single prism reaction for a given light source, representing the composition of emitted light as defined by photon-utilizing metabolic reactions. Equation variables are defined at top.

requiring a single photon and one requiring two photons for activation; the average effective stoichiometric photon count was measured to be 1.6 (Hegemann and Marwan, 1988).

A prism reaction is the intermediate step between light input and the specific photon-utilizing metabolic reactions mentioned above. Flux through the photon exchange reaction 'EX_photonVis(e)' represents the total metabolically active photon flux incident upon the cell. Flux passing through this exchange reaction then passes through a single user-specified prism reaction, for example 'PRISM_solar_litho,' and is distributed across specific spectral ranges. These ranges are specified explicitly in the photon-dependent metabolic reaction formulas (Supplementary Table S2), thereby making these reactions wavelength specific. Flux through the photon-dependent metabolic reactions is then propagated through the network. Excess wavelength-specific photon fluxes that are not absorbed metabolically leave the system via demand reactions, for example 'DM_photon298(c),' completing the pathway of light through the network.

To accurately model metabolic activity of a photosynthetic organism, it is also important to consider regulatory effects resulting from lighting conditions. Indeed, light and dark conditions have been shown to affect metabolic enzyme activity in *C. reinhardtii* at multiple levels: transcriptional regulation (Bohne and Linden, 2002), chloroplast RNA degradation (Salvador et al, 1993), translational regulation (Cahoon and Timko, 2000), and thioredoxin-mediated enzyme regulation (Lemaire et al, 2004). As a preliminary attempt to incorporate light and dark regulatory effects, literature was reviewed to identify such regulation upon enzymes in iRC1080 (Supplementary Table S5), focusing mainly on thioredoxin regulation of chloroplast enzymes since most published data relate to this mode. In the absence of activity spectra for these effects, it is not yet possible to represent these effects via prism reactions. Therefore, we modeled regulation with Boolean reaction flux constraints following published approaches (Covert et al, 2001).

Environmental and genetic validation of iRC1080

Implementing light-regulated constraints and basic environmental exchange constraints (Supplementary Table S6) yielded photoautotrophic, heterotrophic, and mixotrophic models from iRC1080. We simulated various growth conditions (Supplementary Table S7) and all gene knockouts for which phenotypes have been published and are assessable in our network (Supplementary Table S8) to validate the predictive ability of the models. All 30 validations involving environmental parameters displayed very close agreement with experimental results (Supplementary Table S7). Of particular note is the ability of our photosynthetic model in sunlight to accurately recapitulate O₂-PAR (photosynthetically active radiation) energy conversion efficiency, predicting an efficiency of 2% compared with the experimental result (Greenbaum, 1988) of 1.3–4.5%. Of the 14 gene knockouts simulated, 7 were partially or completely validated relative to experimental results (Supplementary Table S8). The unconfirmed gene knockout phenotypes may result from network errors or an incomplete set of constraints in the model (e.g. enzyme capacity, regulatory, thermodynamic, or other

constraints). No internal model reactions were constrained in the models except indirectly via constraints on the input exchanges and the few explicitly noted Boolean regulatory constraints imposed (Supplementary Table S5). The unconfirmed knockout phenotypes were investigated through model analysis and literature search, although in most cases, current literature evidence could not completely explain these discrepancies, leaving them to be fully accounted for by future studies.

Two discrepancies may result from incomplete genome functional annotation or missing constraints. Knockout of mitochondrial NADH:ubiquinone oxidoreductase complex I (EC:1.6.5.3) in the model fails to recapitulate a reduced heterotrophic growth phenotype (Remacle et al, 2001a). The NDA2 and NDA3 genes can substitute completely for this activity in the current model. Sequence-based localization analysis places both proteins in the mitochondria, but this may be incorrect as a recent study suggests that both may be plastid localized (Desplats et al, 2009). Two other network reactions can also substitute for the reduction of ubiquinone, succinate dehydrogenase (ubiquinone) (EC:1.3.5.1) and electron transfer flavoprotein-ubiquinone oxidoreductase (EC:1.5.5.1). The cytochrome c oxidase complex IV (EC:1.9.3.1) knockout does not result in an obligate photoautotrophic phenotype (Remacle et al, 2001b) in the model because the cytochrome c peroxidase (EC:1.11.1.5) reaction is capable of compensating. The *C. reinhardtii* CCPR1 protein is homologous to mitochondrial cytochrome c peroxidases from a number of species, but no focused studies have been carried out to provide further evidence for this enzyme. In the model, the complex IV and CCPR1 double knockout is an obligate photoautotroph. These discrepancies point out important genes that should be the focus of subsequent experimentation in order to more clearly understand these metabolic phenotypes.

Another discrepancy may result from missing thermodynamic constraints. The zeaxanthin epoxidase (EC:1.14.13.90) knockout does not preclude antheraxanthin, violaxanthin, or neoxanthin production (Baroli et al, 2003) in the model because violaxanthin de-epoxidase (EC:1.10.99.3) reactions compensate. This substitution depends on the reversibility of these de-epoxidase reactions and may point to missing thermodynamic constraints or to undiscovered regulation under this condition.

Two discrepancies result from the lack of accounting for kinetics of the reactions of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) from the model. Both phosphoglycolate phosphatase (EC:3.1.3.18) (Suzuki et al, 1990) and glycolate dehydrogenase (EC:1.1.99.14) (Nakamura et al, 2005) deficient mutants require high CO₂ for photoautotrophic growth *in vivo*, not recapitulated in simulations. This phenotype results from dominance of the oxygenase over carboxylase activity of RuBisCO under lower CO₂ conditions, both reactions sharing the same catalytic site. *In vivo*, these two mutants are deficient in the salvage of carbon from 2-phosphoglycolate, a product of the oxygenase activity of RuBisCO. Although these two reactions are carried out by the same enzyme in the model, their fluxes are treated as independent and not competitive; due to an absence of kinetic parameters in the model, the effect of relative CO₂ and O₂ concentrations upon RuBisCO activity cannot be explicitly

expressed. Because the carboxylase activity more efficiently promotes growth, both high and low CO₂ conditions drive only this reaction and not the oxygenase reaction in the model; therefore, the salvage pathway is unnecessary in the model to achieve wild-type growth rates.

Finally, two mutant phenotype discrepancies in the model result from complex compensatory pathways that convert an input carbon source to the mutant-required carbon source. The high CO₂ requirement for photoautotrophic growth due to knockout of the chloroplast carbonic anhydrase (EC:4.2.1.1) (Spalding *et al*, 1983; Funke *et al*, 1997) can be compensated for in the model by activity of a six-reaction pathway of pyrimidine metabolism leading from bicarbonate incorporation via carbamoyl-phosphate synthase (EC:6.3.5.5) to conversion to CO₂ via orotidine-5'-phosphate decarboxylase (EC:4.1.1.23). The chloroplast ATP synthase (EC:3.6.3.14) deficient mutant (Smart and Selman, 1991; Dent *et al*, 2005; Drapier *et al*, 2007) with an acetate-requiring phenotype can be compensated for in the model by a complex pathway consisting of >15 reactions by which CO₂ is converted to acetate, which is then used in pathways similar to those supporting heterotrophic growth. Although this complex pathway has many branch points, it is notable that chloroplast malate dehydrogenase (EC:1.1.1.40) and the diffusion of pyruvate between the cytosol and chloroplast are essential to coupling the CO₂ fixation reactions to pyruvate metabolism and ultimate conversion to acetate but are not essential to the wild-type photoautotrophic or heterotrophic models. Loss of either of these conditionally essential reactions prevents the CO₂-to-acetate conversion and recapitulates the acetate-requiring phenotype. Given the complexity of these compensatory pathways, a number of possible missing constraints could explain their inactivity *in vivo* under photosynthetic conditions, and the model offers a starting point to explore possible targets of regulation under these conditions.

Gene essentiality analysis

To demonstrate the prospective use of *iRC1080* in predicting phenotypic outcomes of genetic manipulations of *C. reinhardtii*, comprehensive essentiality analysis of all simulated single-gene knockouts was performed in models under four basic environmental conditions: growth in sunlight with and without acetate, aerobic growth in dark on acetate, and anaerobic subsistence in dark on starch. Phenotypes were defined as growth equivalent to wild-type, reduced growth relative to wild-type, or lethal based on the comparative objective fluxes of the mutant and wild-type models (Supplementary Table S9). A lethal phenotype was defined as no flux through the biomass reaction (defined as the objective function) in the mutant. Simulation results exhibited distinct metabolic system dependencies under each condition. There were 201 and 144 lethal knockouts in the model with sunlight and with and without acetate, respectively. There were 147 and only 3 lethal knockouts in the aerobic and anaerobic dark model, respectively. The metabolic processes associated with essential genes were ranked, and the three subsystems associated with the essential genes were compared under each condition. Photosynthesis, porphyrin and chlorophyll metabolism, and phenylalanine, tyrosine, and

tryptophan biosynthesis were the most essential subsystems in light without acetate. Phenylalanine, tyrosine, and tryptophan biosynthesis, porphyrin and chlorophyll metabolism, and purine metabolism were the most essential subsystems in light with acetate. Expectedly, photosynthesis is most crucial for photoautotrophic growth and not required in the presence of acetate. The dark, aerobic condition had the same top ranked essential subsystems as in the mixotrophic condition, which is also expected as amino acids, chlorophyll, and nucleotides make up a high proportion of the required biomass components under both conditions. For subsistence in dark on starch, glycolysis/gluconeogenesis, starch metabolism, and starch and sucrose metabolism were the most essential subsystems, paralleling the expected core pathways for ATP maintenance with starch breakdown. While these predicted genotype-phenotype relationships demonstrate a compelling prospective use of the network, the majority of the mutant phenotypes remain to be validated experimentally; however, these predictions could be used to help define the scope and expected outcomes of such future studies.

Light-source-specific model validations

Next, we performed more extensive validations of light models grown under specific light sources at varying intensities. Varying sunlight intensity in our model and evaluating photosynthetic O₂ evolution, we observed that the model reached photosynthetic saturation at light intensity consistent with experimental measurement (Polle *et al*, 2003) (Figure 4A). Our model under red LED light (653 nm) also showed fair agreement with our experimentally measured maximum growth rate across the range of unsaturated photon flux (Figure 4B), despite divergence above the experimental saturation point. The principal explanation for this divergence lies in the relative CO₂ supplies of the experimental setup and the model. All reported photoautotrophic model simulations utilize the same maximum CO₂ exchange constraint corresponding to the maximum-measured cellular uptake rate under non-CO₂-limiting conditions (Supplementary Table S6), while the CO₂ supply in our bioreactor setup was clearly growth-limiting given that the light-saturated maximum growth rate was 0.01 gDW/h, much lower than the maximum growth rate of 0.14 gDW/h under non-CO₂-limiting conditions (Janssen *et al*, 2000). It should also be noted that the linearity of the simulation trends is a property of steady-state system modeling, which is incapable of kinetic representation of growth shifts observable in the *in vivo* experiments. For further validation, we present that the maximum biomass yield under incandescent white light is 5.7×10^{-5} gDW/mE (Janssen *et al*, 2000), in close agreement with our analogous prediction of 2.6×10^{-5} gDW/mE (Figure 4C). Similarly, our predicted biomass yield on 674 nm peak LED light of 1.1×10^{-4} gDW/mE is on the same order of magnitude as our experimental results for *C. reinhardtii* under 660 nm peak LED light near growth-saturating photon flux, 4.3×10^{-4} gDW/mE. This agreement is striking given that the network explicitly accounts for the spectral photon flux of these light sources and the subsequent processing of this energy to generate all of the constituents of biomass without any parameter fitting to the experimental data. Together, these results constitute an

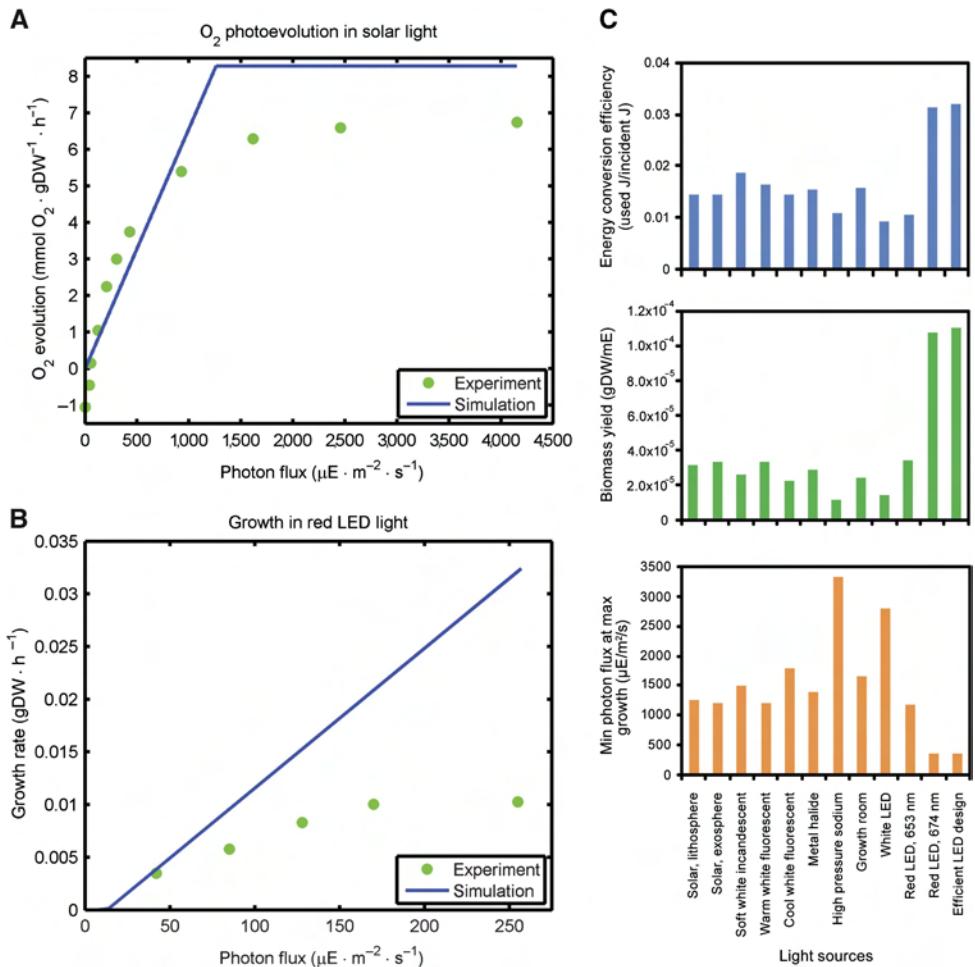


Figure 4 Photosynthetic model simulation results. **(A)** O_2 photoevolution under solar light. Simulated (blue line) and experimentally measured (green dots) O_2 evolution are compared. **(B)** Photosynthetic growth under red LED light. Simulations were performed using the 653-nm prism reaction, and experimentally grown culture was exposed to 660 nm LED light. Simulated (blue line) and experimentally measured (green dots) growth are compared. **(C)** Efficiency of light utilization. The minimum photon flux required for maximum-simulated growth (bottom), biomass yield (middle), and energy conversion efficiency (top) are presented for 11 light sources derived from measured spectra and for the designed growth-efficient LED.

important validation of our models using three different light sources.

To quantitatively evaluate the significance of the agreement between our reported model simulations using prism reactions derived through analysis of irradiance spectra and experimental measurements under the three light sources reported above, we compared the reported simulation results for each of these light sources with an unbiased sample of results representative of potential solutions achievable using our network. We sampled the space of possible light models by generating random prism reactions with the same total metabolically active photon flux. To obtain stoichiometric coefficients for a random prism reaction, a set of random fractions of the sum of stoichiometric coefficients of the prism reaction representing the evaluated light source was generated, contingent upon resulting in the same sum of coefficients. The simulations as reported above for sunlight, red LED, and white incandescent light were repeated using such random prism reactions. The Euclidean distance between

the simulated and experimental results was compared with the distribution of distances for 10 000 randomly sampled results (Figure 5). The probability of randomly achieving experimental agreement closer than seen in our simulations was determined empirically based on these distributions of distances. Only 77 of 10 000 randomized simulations (Figure 5A) had experimental agreement better than the simulated oxygen photoevolution under sunlight (Figure 4A), yielding an empirical P -value of 0.0077, and indicating our model had experimental agreement statistically significantly better than a random model constrained to have the same total metabolically active photon flux. Simulated growth under 665 nm peak LED (Figure 4B) had a suggestive P -value of 0.1947 (Figure 5B), although the reported simulation was still closer to experiment than the mean of randomized simulations. Our simulated growth under white incandescent light was statistically significantly closer to experiment (Janssen et al, 2000) than random (Figure 5C) with a P -value of 0.0285. This analysis shows that the reported model for each of these

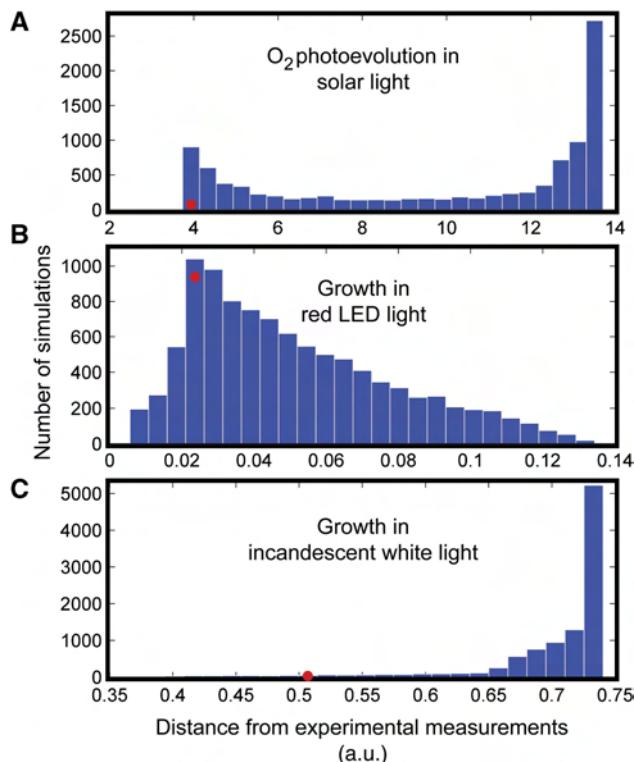


Figure 5 Distributions of randomly sampled distances from experimental measurements. **(A)** O₂ photoevolution under solar light. **(B)** Photosynthetic growth under red LED light. **(C)** Photosynthetic growth under white incandescent light. All three distance distributions result from 10 000 unbiased sampling results in which random prism reactions were generated with the same total metabolically active photon flux as the given light source. Each distribution is depicted in 25 equal-sized bins. The red dot in each plot is placed over the bin in which the distance of the reported simulation result for the given light source falls; the vertical placement of each red dot indicates the number of randomly sampled distances within the same bin that are less than that of the reported result.

light sources is exceptionally close to recapitulating experimental results and thus serves as an excellent validation. These results indicate that the network has the capacity to broadly differentiate light-dependent growth based on spectral properties and that the formulation of a prism reaction serves to accurately narrow the space of possible flux distributions relevant to a specific light source.

Application of iRC1080 to evaluate light source efficiency and design

Our photosynthetic model was applied prospectively to evaluate the efficiency of light utilization under different light sources. The photon energy conversion efficiency (Supplementary Equation 1) and biomass yield on light (Supplementary Equation 2) were computed for each light source given the minimum incident photon flux required to achieve maximum growth rate (Figure 4C); the minimum photon flux for maximum growth rate is the growth-saturating photon flux value for a given light source. One clear result is that red LEDs provide the greatest efficiency in terms of both absorbed

photon energy and biomass yield, about two and three times as efficient as can be optimally achieved in sunlight by these respective measures. Although experimental growth data for validation is only presented for three light sources, simulation results are presented for all 11 light sources for which irradiance spectra were obtainable (Figure 4C). This analysis demonstrates the prospective extensibility of the network and modeling approach to any possible lighting condition, natural or manmade, for which an irradiance spectrum can be measured.

Given the capability of our photosynthetic model to evaluate light source efficiency, we applied it to design an LED spectrum providing maximum photon utilization efficiency for growth (Supplementary Figure S3). The result was a 677-nm peak LED spectrum with a total incident photon flux of 360 $\mu\text{E}/\text{m}^2/\text{s}$ (Figure 4C; Supplementary Figure S3), which is quite close to the 674-nm LED with a minimum incident photon flux of 362 $\mu\text{E}/\text{m}^2/\text{s}$ for maximum growth. This result suggests that for the simple objective of maximizing growth efficiency, LED technology has already reached an effective theoretical optimum, which is further supported by experimental measurements of the spectral peak of light absorption for green algae (Akkerman *et al.*, 2002) and the quantum action spectrum of land plants (Barta *et al.*, 1992) (Supplementary Table S7).

Discussion

We have presented a genome-scale network reconstruction of *C. reinhardtii* metabolism, well validated in content and function, and its application for detailed modeling of diverse light sources. Initial model validations also highlight the need for more experimental studies to uncover regulatory mechanisms in order to expand understanding of the complexity of light regulation of algal metabolism. This open research topic presents important challenges and opportunities in enumerating such effects on a genome scale.

Given the importance of lipid metabolism in biofuel production, iRC1080 was reconstructed enumerating all lipids supported by evidence in the literature and genome functional annotation. The capacity of iRC1080 as a knowledgebase was demonstrated through analysis of lipid metabolism to generate novel hypotheses about latent metabolic pathways resulting from algal evolution. In particular, the exclusion of certain enzymatic reactions in VLCFA and sphingolipid pathways from iRC1080 suggests evolutionary recession of these pathways in *C. reinhardtii*, a hypothesis supported by undetected lipids in experimental measurements, gaps in genome functional annotation for these enzymes, and incomplete transcript verification for other enzymes included in these pathways. Not only do these network gaps reflect the relatively simple lipid biosynthetic capabilities of *C. reinhardtii* among microalgae, but their identification suggests gene insertions that could expand its lipid metabolic repertoire, relevant for industrial and scientific purposes. Of particular interest may be the potential for enabling algal synthesis of essential fatty acids for human health such as docosahexaenoic acid (Yashodhara *et al.*, 2009). Candidate enzymes for the conversion of arachidonic acid to essential fatty acids downstream of the

apparently absent VLCFA elongase reaction are present in our functional annotation.

The models developed from iRC1080 provide a platform for prediction of phenotypic outcomes of system perturbations, light source evaluation and design, and genetic engineering design for production of biofuels and other commodity chemicals. We demonstrated an approach applying iRC1080 to the design of an energetically efficient light source for growth, a novel application of metabolic networks. Other light sources may be more efficient for other metabolic objectives or under other environmental conditions or genetic backgrounds. This result could be of significant interest to the metabolic engineering and bioreactor-design communities because it demonstrates that our network and light-modeling approach are capable of accurately predicting light source efficiencies in terms of a metabolic objective.

The prism reactions developed and applied in this study to quantitatively integrate spectral quality with biological activity represent a significant integration of diverse data types for biological system modeling, which hopefully will encourage a new paradigm for systems biology. This modeling approach could be used for applications beyond light source design, including as a metabolic basis for studying and simulating phototaxis. Given the acquisition of appropriate biological spectral activity data, this approach could be extended to other biological light-response phenomena and other organisms. The importance of understanding how light parameters affect biological systems may also extend beyond natural phenomena with recent progress in protein engineering leading to chimeric light-inducible proteins (Shimizu-Sato et al, 2002; Levskaya et al, 2005).

The iRC1080 network and presented metabolic modeling represent a milestone in systems biology. Our network provides a broad knowledgebase of the biochemistry and genomics underlying global metabolism of a photoautotroph, and our modeling of light-driven metabolism exemplifies how integration of largely unvisited data types, such as physico-chemical environmental parameters, can expand the diversity of applications of metabolic networks.

Materials and methods

Metabolic network reconstruction

Building from our previously published reconstruction of *C. reinhardtii* central metabolism (Manichaikul et al, 2009), iAM303, the iRC1080 network was reconstructed in a bottom-up manner according to current standards (Thiele and Palsson, 2010) on a pathway-by-pathway basis, drawing biochemical, genomic, and physiological evidence from >250 publications (Supplementary Table S2). The genomic evidence was derived from our own functional annotation (Supplementary Table S3) of metabolic enzymes, coenzymes, and transport proteins. Network gap-filling was performed to make pathways functional and account for dead-end metabolites. Global quality control checks were then performed, including elemental balancing and elimination of as many internal thermodynamically infeasible loops and new photon-driven, input-only pathways as possible (Supplementary Figure S4; Supplementary information). We also accounted for subcellular compartment pH in the protonation states of metabolites as much as possible.

iRC1080 is publicly available at <http://www.ebi.ac.uk/biomodels> (Accession: MODEL1106200000) and as Supplementary Model S1.

Functional annotation of transcripts

Functional annotation for iRC1080 was performed using a consensus of two separate approaches. In the first approach, gene models (<http://augustus.gobics.de/predictions/chlamydomonas/augustus.u5.aa>) from the Augustus update 5 (Au5) of *C. reinhardtii* genome assembly version JGI v4.0 were functionally annotated by assigning enzyme classification (EC) terms using BLASTP results against UniProt (<http://www.uniprot.org/>) and AraCyc (<http://www.arabidopsis.org/biocyc/>) enzyme protein sequences and their EC annotations as the basis. The second approach followed from mapping of Au5 gene models to annotated JGI v3.1 gene models, for which EC terms and Gene Ontology annotation were assigned using a combination of BLASTP, AutoFACT, InterProScan, and PRIAM. The comprehensive annotation is presented in Supplementary Table S3. See Supplementary information for full details.

Growth simulations

Simulation procedures consisted of FBA (Orth et al, 2010) and flux variability analysis (FVA) (Mahadevan and Schilling, 2003) as implemented in the COBRA toolbox (Becker et al, 2007), testing model capabilities while optimizing biomass functions to simulate growth (Supplementary Table S10) or subsistence on starch by optimizing ATP maintenance. FBA is a widely used simulation approach for large-scale, constraint-based metabolic models and has become a standard method in the systems biology field with a long history of success (Gianchandani et al, 2010). Different environmental conditions were modeled by appropriately setting reaction flux constraints in iRC1080 (Supplementary Table S6) including environmental exchanges, non-growth associated ATP maintenance, O₂ photoevolution, starch degradation, and light- or dark-regulated enzymatic reactions (Supplementary Table S5).

C. reinhardtii strains and growth conditions

For transcript verification experiments, *C. reinhardtii* strain CC-503 was grown in tris-acetate-phosphate medium containing 100 mg/l carbamicillin without agitation, at room temperature (22–25°C) and under continuous illumination with cool white light at a photosynthetic photon flux of 60 μE/m²/s.

For growth experiments under 660 nm peak LED light (Supplementary Figure S5), *C. reinhardtii* strain UTEX2243 was grown in a bubble column photobioreactor at 23–27°C with P49 medium. The total volume of algal culture was 300 ml, and the gas supply was 180 ml/min air with 2.5% CO₂. The 660-nm peak LED light supply was set at 10 kHz frequency and different duty cycles to get varied average photon fluxes.

Transcript verification by sequencing

ORF amplicons were generated from *C. reinhardtii* cells by RT-PCR from RNA or PCR from Gateway clones. The Roche 454FLX Titanium sequencing system was used for sequencing of the generated ORF amplicons according to the manufacturer's instructions. The generated data were processed using the GS FLX data analysis software v2.3. Minimum overlap length of 40 nucleotides and minimum overlap identity of 90% were used to align the sequencing reads against the Au5 reference sequences. ORFs encoding transporter proteins were verified by capillary Sanger sequencing.

Prism reaction derivation

Spectral bandwidths that effectively drive each photon-utilizing reaction in iRC1080 were determined from published experimental activity spectral data or absorbance data. Effective spectral bandwidths were defined as the full width half maximum of activity, denoted by color-paired dashed lines in Figure 3A. The effective spectral bandwidths were used to derive stoichiometric coefficients of the prism reactions used to quantitatively represent different light sources from the composition of their published irradiance spectra, converted to photon flux units according to Supplementary Equations

3 and 4. Coefficients for each of the effective spectral bandwidths were computed based on Equation 1.

$$C_a^b = \frac{\int_a^b L(\lambda) d\lambda}{\int_{380\text{nm}}^{750\text{nm}} L(\lambda) d\lambda} \quad (1)$$

C_a^b = effective bandwidth coefficient
 $L(\lambda)$ = photon flux as a function of wavelength
 a = effective bandwidth lower limit
 b = effective bandwidth upper limit

Each coefficient represents the ratio of photon flux in the defined effective bandwidth to total visible photon flux. Definite integrals in Equation 1 were approximated using the trapezoidal rule. For each light source, all effective bandwidth coefficients were compiled into a single reaction in the form of Equation 2.

Constraints on prism reaction fluxes (Supplementary Table S6) were derived from the total visible photon flux, the definite integral of the spectrum from 380 to 750 nm. The total experimentally measured emitted visible photon flux was converted to model units of incident photon flux using the values in Supplementary Table S11 and Supplementary Equations 5 and 6. Prism reactions for 11 different light sources (Supplementary Figure S3) were generated.

Random sampling of prism reaction space and significance test

For a given prism reaction, first the sum of the stoichiometric coefficients was calculated, representing the total quantity of metabolically active photons per incident photon from the specified light source. Next, to sample the space of prism reactions, 10 000 random prism reactions with the same sum of stoichiometric coefficients were generated and used in growth simulations. In these simulations, input photon flux was constrained to the reported experimental values, generating a set of simulated results (biomass or photosynthetically evolved O₂ flux, depending on the experimental parameter) with one value corresponding to each experimental data point. The Euclidean distance between the sampled and experimental results was calculated for each of the 10 000 randomized prism reactions (Figure 5). The significance of the experimental agreement with simulations reported for a given prism reaction derived directly from analysis of irradiance spectra was established by comparison between the corresponding Euclidean distance and the distribution of distances from the randomly sampled prism reactions. Probability of achieving equal or closer results to experiments by chance was computed as the proportion of smaller values in the randomly sampled distribution of 10 000 distances.

Procedure for efficient LED design

Multiple iterations of FVA were used to maximize growth while minimizing the energy of the sum of individual wavelengths of model photon flux. The ratios of these individual wavelength photon fluxes to total photon flux were set as stoichiometric coefficients for a theoretical maximum-efficiency prism reaction. The Euclidean vector distance was computed (Supplementary Figure S6) between this set of coefficients and prism reaction coefficients calculated for an LED spectrum of the same shape as the experimentally measured 674 nm peak LED but centered at varying wavelengths across the visible spectrum, with a total photon flux equal to the total theoretical maximum-efficiency photon flux. The spectrum corresponding to the minimum distance was taken as the solution and subsequently tested through growth simulation.

Supplementary information

Supplementary information is available at the *Molecular Systems Biology* website (www.nature.com/msb).

Acknowledgements

We thank Harish Nagarajan for his critical assessment of this work. This research was supported by the Office of Science (Biological and Environmental Research), US Department of Energy, Grant DE-FG02-07ER64496 (to JP and KS-A), New York University Abu Dhabi Research funds (to KS-A), and Institute Sponsored Research funds from the Dana-Farber Cancer Institute Strategic Initiative (to CCSB). RLC was supported by the National Science Foundation IGERT training Grant DGE0504645, and EFYH was supported by the Jane Coffin Childs Memorial Fund for Medical Research.

Author contributions: RLC wrote the manuscript and developed the light-modeling approach. RLC and AM reconstructed the metabolic network and performed model simulations and analysis. LG, YS and TH performed transcript verification experiments and associated computational analyses. EFYH and SB performed genome functional annotation. WF performed bioreactor growth experiments. BØP, JAP, and KS-A designed the study.

References

- Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. *Int J Hydrogen Energy* **27**: 1195–1208
- Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects *Chlamydomonas reinhardtii* from photooxidative stress. *Plant Cell* **15**: 992–1008
- Barta DJ, Tibbitts TW, Bula RJ, Morrow RC (1992) Evaluation of light emitting diode characteristics for a space-based plant irradiation source. *Adv Space Res* **12**: 141–149
- Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. *Nat Protoc* **2**: 727–738
- Berg J, Tymoczko J, Stryer L (2007) *Biochemistry*. New York, USA: W.H. Freeman
- Bjorn L (2007) *Photobiology: The Science of Life and Light*. Dordrecht, Netherlands: Springer
- Bohne F, Linden H (2002) Regulation of carotenoid biosynthesis genes in response to light in *Chlamydomonas reinhardtii*. *Biochim Biophys Acta* **1579**: 26–34
- Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in *Chlamydomonas reinhardtii*. *BMC Syst Biol* **3**: 4
- Bro C, Regenberg B, Forster J, Nielsen J (2006) In silico aided metabolic engineering of *Saccharomyces cerevisiae* for improved bioethanol production. *Metab Eng* **8**: 102–111
- Cahoon AB, Timko MP (2000) yellow-in-the-dark mutants of *Chlamydomonas* lack the CHLL subunit of light-independent protochlorophyllide reductase. *Plant Cell* **12**: 559–568
- Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. *J Theor Biol* **213**: 73–88
- Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of *Chlamydomonas reinhardtii*. *Plant Physiol* **137**: 545–556
- Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastоquinone-reducing type II NAD(P)H dehydrogenase in *chlamydomonas* chloroplasts. *J Biol Chem* **284**: 4148–4157

Drapier D, Rimbault B, Vallon O, Wollman FA, Choquet Y (2007) Intertwined translational regulations set uneven stoichiometry of chloroplast ATP synthase subunits. *EMBO J* **26**: 3581–3591

Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivats R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. *Proc Natl Acad Sci USA* **104**: 1777–1782

Dubertret G, Gerard-Hirne C, Trémolières A (2002) Importance of trans-Δ3-hexadecenoic acid containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in *Chlamydomonas*. *Plant Physiol Biochem* **40**: 829–836

Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. *FEMS Microbiol Rev* **33**: 164–190

Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for *Escherichia coli* K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. *Mol Syst Biol* **3**: 121

Fernandes BD, Dragone GM, Teixeira JA, Vicente AA (2010) Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. *Appl Biochem Biotechnol* **161**: 218–226

Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in *Chlamydomonas reinhardtii* at atmospheric levels of CO₂. Demonstration via genomic complementation of the high-CO₂-requiring mutant ca-1. *Plant Physiol* **114**: 237–244

Gianchandani EP, Chavali AK, Papin JA (2010) The application of flux balance analysis in systems biology. *Wiley Interdiscip Rev Syst Biol Med* **2**: 372–382

Giroud C, Eichenberger W (1989) Lipids of *Chlamydomonas reinhardtii*. Incorporation of [14C]acetate, [14C]palmitate and [14C]oleate into different lipids and evidence for lipid-linked desaturation of fatty acids. *Plant Cell Physiol* **30**: 121–128

Giroud C, Gerber A, Eichenberger W (1988) Lipids of *Chlamydomonas reinhardtii*. Analysis of molecular species and intracellular site(s) of biosynthesis. *Plant Cell Physiol* **29**: 587–595

Greenbaum E (1988) Energetic efficiency of hydrogen photoevolution by algal water splitting. *Biophys J* **54**: 365–368

Griffiths G, Leverentz M, Silkowski H, Gill N, Sanchez-Serrano JJ (2000) Lipid hydroperoxide levels in plant tissues. *J Exp Bot* **51**: 1363–1370

Griffiths WT, McHugh T, Blankenship RE (1996) The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. *FEBS Lett* **398**: 235–238

Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in *Chlamydomonas* through the lens of genomics. *Curr Opin Plant Biol* **10**: 190–198

Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. *Prog Lipid Res* **45**: 160–186

Harris E, Stern D, Witman G (2008) *The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use*. Amsterdam, Netherlands: Academic Press

Harris EH (2001) *Chlamydomonas* as a model organism. *Annu Rev Plant Physiol Plant Mol Biol* **52**: 363–406

Hegemann P, Marwan W (1988) Single photons are sufficient to trigger movement responses in *Chlamydomonas reinhardtii*. *Photochem Photobiol* **48**: 99–106

Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. *Photosynth Res* **102**: 523–540

Hills MJ, Roscoe TJ (2006) *Synthesis of Structural and Storage Lipids by the ER*. Berlin/Heidelberg: Springer

Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. *Plant J* **54**: 621–639

Janssen M, de Winter M, Tramper J, Mur LR, Snel J, Wijffels RH (2000) Efficiency of light utilization of *Chlamydomonas reinhardtii* under medium-duration light/dark cycles. *J Biotechnol* **78**: 123–137

Kajikawa M, Yamato KT, Kohzu Y, Shoji S, Matsui K, Tanaka Y, Sakai Y, Fukuzawa H (2006) A front-end desaturase from *Chlamydomonas reinhardtii* produces pinolenic and coniferonic acids by omega13 desaturation in methylotrophic yeast and tobacco. *Plant Cell Physiol* **47**: 64–73

Lang ID (2007) *New Fatty Acids, Oxylipins and Volatiles in Microalgae*, PhD Thesis, Göttingen: Mathematisch-naturwissenschaftliche Fakultäten, Georg-August-Universität Göttingen

Lemaire SD, Guillou B, Le Marechal P, Keryer E, Miginac-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote *Chlamydomonas reinhardtii*. *Proc Natl Acad Sci USA* **101**: 7475–7480

Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Synthetic biology: engineering *Escherichia coli* to see light. *Nature* **438**: 441–442

Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. *Metab Eng* **5**: 264–276

Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. *Nat Methods* **6**: 589–592

Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H et al (2007) The *Chlamydomonas* genome reveals the evolution of key animal and plant functions. *Science* **318**: 245–250

Mo ML, Palsson BO, Herrgard MJ (2009) Connecting extracellular metabolic measurements to intracellular flux states in yeast. *BMC Syst Biol* **3**: 37

Montagud A, Navarro E, Fernandez de Cordoba P, Urchueguia JF, Patil KR (2010) Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. *BMC Syst Biol* **4**: 156

Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H (2005) Four Na⁺/H⁺ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. *J Biol Chem* **280**: 1561–1572

Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. *Mol Syst Biol* **5**: 320

Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? *Nat Biotechnol* **28**: 245–248

Park JH, Kim TY, Lee KH, Lee SY (2011) Fed-batch culture of *Escherichia coli* for L-valine production based on in silico flux response analysis. *Biotechnol Bioeng* **108**: 934–946

Polle JE, Kanakagiri SD, Melis A (2003) tla1, a DNA insertional transformant of the green alga *Chlamydomonas reinhardtii* with a truncated light-harvesting chlorophyll antenna size. *Planta* **217**: 49–59

Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of *Escherichia coli* K-12 (iJR904 GSM/GPR). *Genome Biol* **4**: R54

Remacle C, Baurain D, Cardol P, Matagne RF (2001a) Mutants of *Chlamydomonas reinhardtii* deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence. *Genetics* **158**: 1051–1060

Remacle C, Duby F, Cardol P, Matagne RF (2001b) Mutations inactivating mitochondrial genes in *Chlamydomonas reinhardtii*. *Biochem Soc Trans* **29**: 442–446

Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in *Chlamydomonas reinhardtii*: discovery of the betaine lipid synthase BTA1Cr. *Eukaryot Cell* **4**: 242–252

Salvador ML, Klein U, Bogorad L (1993) Light-regulated and endogenous fluctuations of chloroplast transcript levels in *Chlamydomonas*. Regulation by transcription and RNA degradation. *Plant J* **3**: 213–219

Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. *Nat Biotechnol* **20**: 1041–1044

Smart EJ, Selman BR (1991) Isolation and characterization of a *Chlamydomonas reinhardtii* mutant lacking the gamma-subunit of chloroplast coupling factor 1 (CF1). *Mol Cell Biol* **11**: 5053–5058

Spalding MH, Spreitzer RJ, Ogren WL (1983) Carbonic anhydrase-deficient mutant of *Chlamydomonas reinhardtii* requires elevated carbon dioxide concentration for photoautotrophic growth. *Plant Physiol* **73**: 268–272

Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. *J Biosci Bioeng* **101**: 87–96

Stern D, Harris E, Witman G (2008) *The Chlamydomonas Sourcebook: Organellar and Metabolic Processes*. Amsterdam, Netherlands: Academic Press

Suzuki K, Marek LF, Spalding MH (1990) A photorespiratory mutant of *Chlamydomonas reinhardtii*. *Plant Physiol* **93**: 231–237

Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga *Chlamydomonas* sp. *J Phycol* **32**: 598–601

Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. *Nat Protoc* **5**: 93–121

Weers PMM, Gulati RD (1997) Growth and reproduction of *Daphnia galeata* in response to changes in fatty acids, phosphorus, and nitrogen in *Chlamydomonas reinhardtii*. *Limnol Oceanogr* **42**: 1584–1589

Yashodhara BM, Umakanth S, Pappachan JM, Bhat SK, Kamath R, Choo BH (2009) Omega-3 fatty acids: a comprehensive review of their role in health and disease. *Postgrad Med J* **85**: 84–90

Molecular Systems Biology is an open-access journal published by European Molecular Biology Organization and Nature Publishing Group. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.